aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp1474
1 files changed, 852 insertions, 622 deletions
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 3ba811574489..e3ec288a683e 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -67,12 +67,6 @@ static cl::opt<bool> ExperimentalVectorWideningLegalization(
"rather than promotion."),
cl::Hidden);
-static cl::opt<int> ReciprocalEstimateRefinementSteps(
- "x86-recip-refinement-steps", cl::init(1),
- cl::desc("Specify the number of Newton-Raphson iterations applied to the "
- "result of the hardware reciprocal estimate instruction."),
- cl::NotHidden);
-
// Forward declarations.
static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
SDValue V2);
@@ -842,13 +836,10 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
- // Only provide customized ctpop vector bit twiddling for vector types we
- // know to perform better than using the popcnt instructions on each vector
- // element. If popcnt isn't supported, always provide the custom version.
- if (!Subtarget->hasPOPCNT()) {
- setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
- setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
- }
+ setOperationAction(ISD::CTPOP, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
@@ -1113,6 +1104,11 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v32i8, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v16i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i64, Custom);
+
if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
setOperationAction(ISD::FMA, MVT::v8f32, Legal);
setOperationAction(ISD::FMA, MVT::v4f64, Legal);
@@ -1147,16 +1143,6 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
// when we have a 256bit-wide blend with immediate.
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
- // Only provide customized ctpop vector bit twiddling for vector types we
- // know to perform better than using the popcnt instructions on each
- // vector element. If popcnt isn't supported, always provide the custom
- // version.
- if (!Subtarget->hasPOPCNT())
- setOperationAction(ISD::CTPOP, MVT::v4i64, Custom);
-
- // Custom CTPOP always performs better on natively supported v8i32
- setOperationAction(ISD::CTPOP, MVT::v8i32, Custom);
-
// AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i8, Legal);
@@ -1273,7 +1259,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i32, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i32, Legal);
-
+
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Custom);
setOperationAction(ISD::XOR, MVT::i1, Legal);
@@ -1842,7 +1828,7 @@ X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
Subtarget->isPICStyleGOT());
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
// entries.
- return MCSymbolRefExpr::Create(MBB->getSymbol(),
+ return MCSymbolRefExpr::create(MBB->getSymbol(),
MCSymbolRefExpr::VK_GOTOFF, Ctx);
}
@@ -1866,7 +1852,7 @@ getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
// Otherwise, the reference is relative to the PIC base.
- return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
+ return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
}
std::pair<const TargetRegisterClass *, uint8_t>
@@ -1981,7 +1967,7 @@ X86TargetLowering::LowerReturn(SDValue Chain,
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
}
else if (VA.getLocInfo() == CCValAssign::BCvt)
- ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
+ ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
assert(VA.getLocInfo() != CCValAssign::FPExt &&
"Unexpected FP-extend for return value.");
@@ -2018,13 +2004,13 @@ X86TargetLowering::LowerReturn(SDValue Chain,
if (Subtarget->is64Bit()) {
if (ValVT == MVT::x86mmx) {
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
- ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
+ ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
ValToCopy);
// If we don't have SSE2 available, convert to v4f32 so the generated
// register is legal.
if (!Subtarget->hasSSE2())
- ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
+ ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
}
}
}
@@ -2451,7 +2437,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::BCvt)
- ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+ ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
if (VA.isExtInLoc()) {
// Handle MMX values passed in XMM regs.
@@ -2780,6 +2766,19 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
if (MF.getTarget().Options.DisableTailCalls)
isTailCall = false;
+ if (Subtarget->isPICStyleGOT() &&
+ !MF.getTarget().Options.GuaranteedTailCallOpt) {
+ // If we are using a GOT, disable tail calls to external symbols with
+ // default visibility. Tail calling such a symbol requires using a GOT
+ // relocation, which forces early binding of the symbol. This breaks code
+ // that require lazy function symbol resolution. Using musttail or
+ // GuaranteedTailCallOpt will override this.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (!G || (!G->getGlobal()->hasLocalLinkage() &&
+ G->getGlobal()->hasDefaultVisibility()))
+ isTailCall = false;
+ }
+
bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
if (IsMustTail) {
// Force this to be a tail call. The verifier rules are enough to ensure
@@ -2898,14 +2897,14 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
else if (RegVT.is128BitVector()) {
// Special case: passing MMX values in XMM registers.
- Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
+ Arg = DAG.getBitcast(MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
} else
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
+ Arg = DAG.getBitcast(RegVT, Arg);
break;
case CCValAssign::Indirect: {
// Store the argument.
@@ -2964,8 +2963,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Note: The actual moving to ECX is done further down.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
- if (G && !G->getGlobal()->hasHiddenVisibility() &&
- !G->getGlobal()->hasProtectedVisibility())
+ if (G && !G->getGlobal()->hasLocalLinkage() &&
+ G->getGlobal()->hasDefaultVisibility())
Callee = LowerGlobalAddress(Callee, DAG);
else if (isa<ExternalSymbolSDNode>(Callee))
Callee = LowerExternalSymbol(Callee, DAG);
@@ -4073,7 +4072,7 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
} else
llvm_unreachable("Unexpected vector type");
- return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+ return DAG.getBitcast(VT, Vec);
}
static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
@@ -4200,9 +4199,9 @@ static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8);
- Vec256 = DAG.getNode(ISD::BITCAST, dl, CastVT, Vec256);
+ Vec256 = DAG.getBitcast(CastVT, Vec256);
Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
- return DAG.getNode(ISD::BITCAST, dl, ResultVT, Vec256);
+ return DAG.getBitcast(ResultVT, Vec256);
}
return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
@@ -4255,7 +4254,7 @@ static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
} else
llvm_unreachable("Unexpected vector type");
- return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+ return DAG.getBitcast(VT, Vec);
}
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
@@ -4611,7 +4610,7 @@ static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
}
}
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
+ return DAG.getBitcast(MVT::v16i8, V);
}
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
@@ -4749,7 +4748,7 @@ static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
SDLoc DL(Op);
SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getIntPtrConstant(InsertPSMask, DL));
- return DAG.getNode(ISD::BITCAST, DL, VT, Result);
+ return DAG.getBitcast(VT, Result);
}
/// Return a vector logical shift node.
@@ -4759,12 +4758,11 @@ static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
assert(VT.is128BitVector() && "Unknown type for VShift");
MVT ShVT = MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
- SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
+ SrcOp = DAG.getBitcast(ShVT, SrcOp);
MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(SrcOp.getValueType());
assert(NumBits % 8 == 0 && "Only support byte sized shifts");
SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
+ return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
}
static SDValue
@@ -4949,7 +4947,7 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
SDValue(ResNode.getNode(), 1));
}
- return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
+ return DAG.getBitcast(VT, ResNode);
}
return SDValue();
}
@@ -5261,8 +5259,8 @@ X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
SDValue Imm = ConvertI1VectorToInterger(Op, DAG);
if (Imm.getValueSizeInBits() == VT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, dl, VT, Imm);
- SDValue ExtVec = DAG.getNode(ISD::BITCAST, dl, MVT::v8i1, Imm);
+ return DAG.getBitcast(VT, Imm);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
@@ -5277,7 +5275,7 @@ X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
SDValue In = Op.getOperand(idx);
if (In.getOpcode() == ISD::UNDEF)
continue;
- if (!isa<ConstantSDNode>(In))
+ if (!isa<ConstantSDNode>(In))
NonConstIdx.push_back(idx);
else {
Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
@@ -5304,12 +5302,12 @@ X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
}
else if (HasConstElts)
Imm = DAG.getConstant(0, dl, VT);
- else
+ else
Imm = DAG.getUNDEF(VT);
if (Imm.getValueSizeInBits() == VT.getSizeInBits())
- DstVec = DAG.getNode(ISD::BITCAST, dl, VT, Imm);
+ DstVec = DAG.getBitcast(VT, Imm);
else {
- SDValue ExtVec = DAG.getNode(ISD::BITCAST, dl, MVT::v8i1, Imm);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
@@ -5818,9 +5816,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
- return DAG.getNode(
- ISD::BITCAST, dl, VT,
- getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
+ return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
+ Item, Idx * 2, true, Subtarget, DAG));
}
}
@@ -5866,7 +5863,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
- return DAG.getNode(ISD::BITCAST, dl, VT, Item);
+ return DAG.getBitcast(VT, Item);
}
}
@@ -6257,6 +6254,42 @@ is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
return true;
}
+/// \brief Test whether a shuffle mask is equivalent within each 256-bit lane.
+///
+/// This checks a shuffle mask to see if it is performing the same
+/// 256-bit lane-relative shuffle in each 256-bit lane. This trivially implies
+/// that it is also not lane-crossing. It may however involve a blend from the
+/// same lane of a second vector.
+///
+/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
+/// non-trivial to compute in the face of undef lanes. The representation is
+/// *not* suitable for use with existing 256-bit shuffles as it will contain
+/// entries from both V1 and V2 inputs to the wider mask.
+static bool
+is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ int LaneSize = 256 / VT.getScalarSizeInBits();
+ RepeatedMask.resize(LaneSize, -1);
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ if ((Mask[i] % Size) / LaneSize != i / LaneSize)
+ // This entry crosses lanes, so there is no way to model this shuffle.
+ return false;
+
+ // Ok, handle the in-lane shuffles by detecting if and when they repeat.
+ if (RepeatedMask[i % LaneSize] == -1)
+ // This is the first non-undef entry in this slot of a 256-bit lane.
+ RepeatedMask[i % LaneSize] =
+ Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
+ else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
+ // Found a mismatch with the repeated mask.
+ return false;
+ }
+ return true;
+}
+
/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
/// arguments.
///
@@ -6316,6 +6349,22 @@ static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
return DAG.getConstant(Imm, DL, MVT::i8);
}
+/// \brief Get a 8-bit shuffle, 1 bit per lane, immediate for a mask.
+///
+/// This helper function produces an 8-bit shuffle immediate corresponding to
+/// the ubiquitous shuffle encoding scheme used in x86 instructions for
+/// shuffling 8 lanes.
+static SDValue get1bitLaneShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
+ SelectionDAG &DAG) {
+ assert(Mask.size() <= 8 &&
+ "Up to 8 elts may be in Imm8 1-bit lane shuffle mask");
+ unsigned Imm = 0;
+ for (unsigned i = 0; i < Mask.size(); ++i)
+ if (Mask[i] >= 0)
+ Imm |= (Mask[i] % 2) << i;
+ return DAG.getConstant(Imm, DL, MVT::i8);
+}
+
/// \brief Try to emit a blend instruction for a shuffle using bit math.
///
/// This is used as a fallback approach when first class blend instructions are
@@ -6341,10 +6390,9 @@ static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
// We have to cast V2 around.
MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
- V2 = DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
- DAG.getNode(ISD::BITCAST, DL, MaskVT, V1Mask),
- DAG.getNode(ISD::BITCAST, DL, MaskVT, V2)));
+ V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
+ DAG.getBitcast(MaskVT, V1Mask),
+ DAG.getBitcast(MaskVT, V2)));
return DAG.getNode(ISD::OR, DL, VT, V1, V2);
}
@@ -6395,11 +6443,11 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
BlendMask |= 1u << (i * Scale + j);
MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
- V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
- DAG.getConstant(BlendMask, DL, MVT::i8)));
+ V1 = DAG.getBitcast(BlendVT, V1);
+ V2 = DAG.getBitcast(BlendVT, V2);
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8)));
}
// FALLTHROUGH
case MVT::v8i16: {
@@ -6412,11 +6460,11 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
for (int j = 0; j < Scale; ++j)
BlendMask |= 1u << (i * Scale + j);
- V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
- DAG.getConstant(BlendMask, DL, MVT::i8)));
+ V1 = DAG.getBitcast(MVT::v8i16, V1);
+ V2 = DAG.getBitcast(MVT::v8i16, V2);
+ return DAG.getBitcast(VT,
+ DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8)));
}
case MVT::v16i16: {
@@ -6465,13 +6513,12 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
: DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
MVT::i8));
- V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
- return DAG.getNode(
- ISD::BITCAST, DL, VT,
- DAG.getNode(ISD::VSELECT, DL, BlendVT,
- DAG.getNode(ISD::BUILD_VECTOR, DL, BlendVT, VSELECTMask),
- V1, V2));
+ V1 = DAG.getBitcast(BlendVT, V1);
+ V2 = DAG.getBitcast(BlendVT, V2);
+ return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT,
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ BlendVT, VSELECTMask),
+ V1, V2));
}
default:
@@ -6652,13 +6699,12 @@ static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
if (Subtarget->hasSSSE3()) {
// Cast the inputs to i8 vector of correct length to match PALIGNR.
MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
- Lo = DAG.getNode(ISD::BITCAST, DL, AlignVT, Lo);
- Hi = DAG.getNode(ISD::BITCAST, DL, AlignVT, Hi);
+ Lo = DAG.getBitcast(AlignVT, Lo);
+ Hi = DAG.getBitcast(AlignVT, Hi);
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
- DAG.getConstant(Rotation * Scale, DL,
- MVT::i8)));
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
+ DAG.getConstant(Rotation * Scale, DL, MVT::i8)));
}
assert(VT.getSizeInBits() == 128 &&
@@ -6671,15 +6717,15 @@ static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
int HiByteShift = Rotation * Scale;
// Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
- Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo);
- Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi);
+ Lo = DAG.getBitcast(MVT::v2i64, Lo);
+ Hi = DAG.getBitcast(MVT::v2i64, Hi);
SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
DAG.getConstant(LoByteShift, DL, MVT::i8));
SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
DAG.getConstant(HiByteShift, DL, MVT::i8));
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
+ return DAG.getBitcast(VT,
+ DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
}
/// \brief Compute whether each element of a shuffle is zeroable.
@@ -6740,8 +6786,8 @@ static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
IntEltVT);
if (EltVT.isFloatingPoint()) {
- Zero = DAG.getNode(ISD::BITCAST, DL, EltVT, Zero);
- AllOnes = DAG.getNode(ISD::BITCAST, DL, EltVT, AllOnes);
+ Zero = DAG.getBitcast(EltVT, Zero);
+ AllOnes = DAG.getBitcast(EltVT, AllOnes);
}
SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
@@ -6833,11 +6879,11 @@ static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
"Illegal integer vector type");
- V = DAG.getNode(ISD::BITCAST, DL, ShiftVT, V);
+ V = DAG.getBitcast(ShiftVT, V);
V = DAG.getNode(OpCode, DL, ShiftVT, V,
DAG.getConstant(ShiftAmt, DL, MVT::i8));
- return DAG.getNode(ISD::BITCAST, DL, VT, V);
+ return DAG.getBitcast(VT, V);
};
// SSE/AVX supports logical shifts up to 64-bit integers - so we can just
@@ -6878,31 +6924,28 @@ static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
if (Subtarget->hasSSE41()) {
MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
NumElements / Scale);
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
+ return DAG.getBitcast(VT, DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
}
// For any extends we can cheat for larger element sizes and use shuffle
// instructions that can fold with a load and/or copy.
if (AnyExt && EltBits == 32) {
int PSHUFDMask[4] = {0, -1, 1, -1};
- return DAG.getNode(
- ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
- DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
- getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getBitcast(MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
if (AnyExt && EltBits == 16 && Scale > 2) {
int PSHUFDMask[4] = {0, -1, 0, -1};
InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
- DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
+ DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
int PSHUFHWMask[4] = {1, -1, -1, -1};
- return DAG.getNode(
- ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
- DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
- getV4X86ShuffleImm8ForMask(PSHUFHWMask, DL, DAG)));
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
+ DAG.getBitcast(MVT::v8i16, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFHWMask, DL, DAG)));
}
// If this would require more than 2 unpack instructions to expand, use
@@ -6914,11 +6957,11 @@ static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
for (int i = 0; i < 16; ++i)
PSHUFBMask[i] =
DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, DL, MVT::i8);
- InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
- DAG.getNode(ISD::BUILD_VECTOR, DL,
- MVT::v16i8, PSHUFBMask)));
+ InputV = DAG.getBitcast(MVT::v16i8, InputV);
+ return DAG.getBitcast(VT,
+ DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ MVT::v16i8, PSHUFBMask)));
}
// Otherwise emit a sequence of unpacks.
@@ -6926,13 +6969,13 @@ static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
: getZeroVector(InputVT, Subtarget, DAG, DL);
- InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
+ InputV = DAG.getBitcast(InputVT, InputV);
InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
Scale /= 2;
EltBits *= 2;
NumElements /= 2;
} while (Scale > 1);
- return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
+ return DAG.getBitcast(VT, InputV);
}
/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
@@ -7030,9 +7073,9 @@ static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
};
if (SDValue V = CanZExtLowHalf()) {
- V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V);
+ V = DAG.getBitcast(MVT::v2i64, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
- return DAG.getNode(ISD::BITCAST, DL, VT, V);
+ return DAG.getBitcast(VT, V);
}
// No viable ext lowering found.
@@ -7106,7 +7149,7 @@ static SDValue lowerVectorShuffleAsElementInsertion(
if (SDValue V2S = getScalarValueForVectorElement(
V2, Mask[V2Index] - Mask.size(), DAG)) {
// We need to zext the scalar if it is smaller than an i32.
- V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
+ V2S = DAG.getBitcast(EltVT, V2S);
if (EltVT == MVT::i8 || EltVT == MVT::i16) {
// Using zext to expand a narrow element won't work for non-zero
// insertions.
@@ -7155,7 +7198,7 @@ static SDValue lowerVectorShuffleAsElementInsertion(
V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
if (ExtVT != VT)
- V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
+ V2 = DAG.getBitcast(VT, V2);
if (V2Index != 0) {
// If we have 4 or fewer lanes we can cheaply shuffle the element into
@@ -7167,13 +7210,13 @@ static SDValue lowerVectorShuffleAsElementInsertion(
V2Shuffle[V2Index] = 0;
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
} else {
- V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
+ V2 = DAG.getBitcast(MVT::v2i64, V2);
V2 = DAG.getNode(
X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
DAG.getConstant(
V2Index * EltVT.getSizeInBits()/8, DL,
DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
- V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
+ V2 = DAG.getBitcast(VT, V2);
}
}
return V2;
@@ -7396,13 +7439,13 @@ static SDValue lowerVectorShuffleAsUnpack(SDLoc DL, MVT VT, SDValue V1,
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
// Cast the inputs to the type we will use to unpack them.
- V1 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V2);
+ V1 = DAG.getBitcast(UnpackVT, V1);
+ V2 = DAG.getBitcast(UnpackVT, V2);
// Unpack the inputs and cast the result back to the desired type.
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
- DL, UnpackVT, V1, V2));
+ return DAG.getBitcast(
+ VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ UnpackVT, V1, V2));
};
// We try each unpack from the largest to the smallest to try and find one
@@ -7558,12 +7601,12 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We have to map the mask as it is actually a v4i32 shuffle instruction.
- V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
+ V1 = DAG.getBitcast(MVT::v4i32, V1);
int WidenedMask[4] = {
std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
- return DAG.getNode(
- ISD::BITCAST, DL, MVT::v2i64,
+ return DAG.getBitcast(
+ MVT::v2i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
}
@@ -7584,12 +7627,12 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
};
if (SDValue V1Pack = GetPackNode(V1))
if (SDValue V2Pack = GetPackNode(V2))
- return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
- DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
- Mask[0] == 0 ? V1Pack.getOperand(0)
- : V1Pack.getOperand(1),
- Mask[1] == 2 ? V2Pack.getOperand(0)
- : V2Pack.getOperand(1)));
+ return DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
+ Mask[0] == 0 ? V1Pack.getOperand(0)
+ : V1Pack.getOperand(1),
+ Mask[1] == 2 ? V2Pack.getOperand(0)
+ : V2Pack.getOperand(1)));
// Try to use shift instructions.
if (SDValue Shift =
@@ -7639,10 +7682,10 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// incur 2 cycles of stall for integer vectors on Nehalem and older chips.
// However, all the alternatives are still more cycles and newer chips don't
// have this problem. It would be really nice if x86 had better shuffles here.
- V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
- return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
- DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
+ V1 = DAG.getBitcast(MVT::v2f64, V1);
+ V2 = DAG.getBitcast(MVT::v2f64, V2);
+ return DAG.getBitcast(MVT::v2i64,
+ DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
}
/// \brief Test whether this can be lowered with a single SHUFPS instruction.
@@ -7941,11 +7984,10 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// up the inputs, bypassing domain shift penalties that we would encur if we
// directly used PSHUFD on Nehalem and older. For newer chips, this isn't
// relevant.
- return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
- DAG.getVectorShuffle(
- MVT::v4f32, DL,
- DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
- DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
+ return DAG.getBitcast(
+ MVT::v4i32,
+ DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1),
+ DAG.getBitcast(MVT::v4f32, V2), Mask));
}
/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
@@ -8123,11 +8165,10 @@ static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
int PSHUFDMask[] = {0, 1, 2, 3};
PSHUFDMask[ADWord] = BDWord;
PSHUFDMask[BDWord] = ADWord;
- V = DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT,
- DAG.getNode(ISD::BITCAST, DL, PSHUFDVT, V),
- getV4X86ShuffleImm8ForMask(PSHUFDMask, DL,
- DAG)));
+ V = DAG.getBitcast(
+ VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// Adjust the mask to match the new locations of A and B.
for (int &M : Mask)
@@ -8368,11 +8409,10 @@ static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFDMask))
- V = DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT,
- DAG.getNode(ISD::BITCAST, DL, PSHUFDVT, V),
- getV4X86ShuffleImm8ForMask(PSHUFDMask, DL,
- DAG)));
+ V = DAG.getBitcast(
+ VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// At this point, each half should contain all its inputs, and we can then
// just shuffle them into their final position.
@@ -8433,11 +8473,11 @@ static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
if (V1InUse)
V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
- DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V1),
+ DAG.getBitcast(MVT::v16i8, V1),
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
if (V2InUse)
V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
- DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V2),
+ DAG.getBitcast(MVT::v16i8, V2),
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
// If we need shuffled inputs from both, blend the two.
@@ -8448,7 +8488,7 @@ static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
V = V1InUse ? V1 : V2;
// Cast the result back to the correct type.
- return DAG.getNode(ISD::BITCAST, DL, VT, V);
+ return DAG.getBitcast(VT, V);
}
/// \brief Generic lowering of 8-lane i16 shuffles.
@@ -8749,10 +8789,9 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// Update the lane map based on the mapping we ended up with.
LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
}
- V1 = DAG.getNode(
- ISD::BITCAST, DL, MVT::v16i8,
- DAG.getVectorShuffle(MVT::v8i16, DL,
- DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
+ V1 = DAG.getBitcast(
+ MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
// Unpack the bytes to form the i16s that will be shuffled into place.
@@ -8770,10 +8809,9 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
assert(PostDupI16Shuffle[i / 2] == MappedMask &&
"Conflicting entrties in the original shuffle!");
}
- return DAG.getNode(
- ISD::BITCAST, DL, MVT::v16i8,
- DAG.getVectorShuffle(MVT::v8i16, DL,
- DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
+ return DAG.getBitcast(
+ MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
};
if (SDValue V = tryToWidenViaDuplication())
@@ -8866,19 +8904,18 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// We use the mask type to pick which bytes are preserved based on how many
// elements are dropped.
MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
- SDValue ByteClearMask =
- DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
- DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
+ SDValue ByteClearMask = DAG.getBitcast(
+ MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
if (!IsSingleInput)
V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
// Now pack things back together.
- V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
- V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
+ V1 = DAG.getBitcast(MVT::v8i16, V1);
+ V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
for (int i = 1; i < NumEvenDrops; ++i) {
- Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
+ Result = DAG.getBitcast(MVT::v8i16, Result);
Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
}
@@ -8912,7 +8949,7 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
[](int M) { return M >= 0 && M % 2 == 1; })) {
// Use a mask to drop the high bytes.
- VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
+ VLoHalf = DAG.getBitcast(MVT::v8i16, V);
VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
DAG.getConstant(0x00FF, DL, MVT::v8i16));
@@ -8929,10 +8966,10 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
} else {
// Otherwise just unpack the low half of V into VLoHalf and the high half into
// VHiHalf so that we can blend them as i16s.
- VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
- DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
- VHiHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
- DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
+ VLoHalf = DAG.getBitcast(
+ MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
+ VHiHalf = DAG.getBitcast(
+ MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
}
SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
@@ -9073,8 +9110,8 @@ static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps);
HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps);
}
- return std::make_pair(DAG.getNode(ISD::BITCAST, DL, SplitVT, LoV),
- DAG.getNode(ISD::BITCAST, DL, SplitVT, HiV));
+ return std::make_pair(DAG.getBitcast(SplitVT, LoV),
+ DAG.getBitcast(SplitVT, HiV));
};
SDValue LoV1, HiV1, LoV2, HiV2;
@@ -9407,12 +9444,12 @@ static SDValue lowerVectorShuffleByMerging128BitLanes(
LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
}
- V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2);
+ V1 = DAG.getBitcast(LaneVT, V1);
+ V2 = DAG.getBitcast(LaneVT, V2);
SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
// Cast it back to the type we actually want.
- LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle);
+ LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
// Now do a simple shuffle that isn't lane crossing.
SmallVector<int, 8> NewMask;
@@ -9441,6 +9478,37 @@ static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
return true;
}
+static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+
+ // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, ..
+ // Mask for V4F64; 0/1, 4/5, 2/3, 6/7..
+ assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD");
+ int NumElts = VT.getVectorNumElements();
+ bool ShufpdMask = true;
+ bool CommutableMask = true;
+ unsigned Immediate = 0;
+ for (int i = 0; i < NumElts; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ int Val = (i & 6) + NumElts * (i & 1);
+ int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1);
+ if (Mask[i] < Val || Mask[i] > Val + 1)
+ ShufpdMask = false;
+ if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
+ CommutableMask = false;
+ Immediate |= (Mask[i] % 2) << i;
+ }
+ if (ShufpdMask)
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
+ DAG.getConstant(Immediate, DL, MVT::i8));
+ if (CommutableMask)
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
+ DAG.getConstant(Immediate, DL, MVT::i8));
+ return SDValue();
+}
+
/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
///
/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
@@ -9505,24 +9573,9 @@ static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
return Blend;
// Check if the blend happens to exactly fit that of SHUFPD.
- if ((Mask[0] == -1 || Mask[0] < 2) &&
- (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
- (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
- (Mask[3] == -1 || Mask[3] >= 6)) {
- unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
- ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
- return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
- DAG.getConstant(SHUFPDMask, DL, MVT::i8));
- }
- if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
- (Mask[1] == -1 || Mask[1] < 2) &&
- (Mask[2] == -1 || Mask[2] >= 6) &&
- (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
- unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
- ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
- return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
- DAG.getConstant(SHUFPDMask, DL, MVT::i8));
- }
+ if (SDValue Op =
+ lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
+ return Op;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
@@ -9584,10 +9637,10 @@ static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
}
- return DAG.getNode(
- ISD::BITCAST, DL, MVT::v4i64,
+ return DAG.getBitcast(
+ MVT::v4i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
- DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
+ DAG.getBitcast(MVT::v8i32, V1),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
}
@@ -9700,11 +9753,11 @@ static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
if (Subtarget->hasAVX2())
- return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
- DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
- DAG.getNode(ISD::BUILD_VECTOR, DL,
+ return DAG.getNode(
+ X86ISD::VPERMV, DL, MVT::v8f32,
+ DAG.getBitcast(MVT::v8f32, DAG.getNode(ISD::BUILD_VECTOR, DL,
MVT::v8i32, VPermMask)),
- V1);
+ V1);
// Otherwise, fall back.
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
@@ -9894,12 +9947,11 @@ static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8);
PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8);
}
- return DAG.getNode(
- ISD::BITCAST, DL, MVT::v16i16,
- DAG.getNode(
- X86ISD::PSHUFB, DL, MVT::v32i8,
- DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
- DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
+ return DAG.getBitcast(MVT::v16i16,
+ DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8,
+ DAG.getBitcast(MVT::v32i8, V1),
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ MVT::v32i8, PSHUFBMask)));
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
@@ -10039,10 +10091,9 @@ static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
VT.getVectorNumElements());
- V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
+ V1 = DAG.getBitcast(FpVT, V1);
+ V2 = DAG.getBitcast(FpVT, V2);
+ return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
}
switch (VT.SimpleTy) {
@@ -10064,64 +10115,60 @@ static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
}
}
-/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
-static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
- const X86Subtarget *Subtarget,
- SelectionDAG &DAG) {
- SDLoc DL(Op);
- assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
- assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- ArrayRef<int> Mask = SVOp->getMask();
- assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
-
- // X86 has dedicated unpack instructions that can handle specific blend
- // operations: UNPCKH and UNPCKL.
- if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
- return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2);
- if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
- return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2);
+static SDValue lowerVectorShuffleWithVALIGN(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
- // FIXME: Implement direct support for this type!
- return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG);
+ assert(VT.getScalarSizeInBits() >= 32 && "Unexpected data type for VALIGN");
+ // VALIGN pattern 2, 3, 4, 5, .. (sequential, shifted right)
+ int AlignVal = -1;
+ for (int i = 0; i < (signed)VT.getVectorNumElements(); ++i) {
+ if (Mask[i] < 0)
+ continue;
+ if (Mask[i] < i)
+ return SDValue();
+ if (AlignVal == -1)
+ AlignVal = Mask[i] - i;
+ else if (Mask[i] - i != AlignVal)
+ return SDValue();
+ }
+ // Vector source operands should be swapped
+ return DAG.getNode(X86ISD::VALIGN, DL, VT, V2, V1,
+ DAG.getConstant(AlignVal, DL, MVT::i8));
}
-/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
-static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
- const X86Subtarget *Subtarget,
- SelectionDAG &DAG) {
- SDLoc DL(Op);
- assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
- assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- ArrayRef<int> Mask = SVOp->getMask();
- assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
- // Use dedicated unpack instructions for masks that match their pattern.
- if (isShuffleEquivalent(V1, V2, Mask,
- {// First 128-bit lane.
- 0, 16, 1, 17, 4, 20, 5, 21,
- // Second 128-bit lane.
- 8, 24, 9, 25, 12, 28, 13, 29}))
- return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2);
- if (isShuffleEquivalent(V1, V2, Mask,
- {// First 128-bit lane.
- 2, 18, 3, 19, 6, 22, 7, 23,
- // Second 128-bit lane.
- 10, 26, 11, 27, 14, 30, 15, 31}))
- return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2);
+ assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV");
- // FIXME: Implement direct support for this type!
- return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG);
+ MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
+ MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
+
+ SmallVector<SDValue, 32> VPermMask;
+ for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
+ VPermMask.push_back(Mask[i] < 0 ? DAG.getUNDEF(MaskEltVT) :
+ DAG.getConstant(Mask[i], DL,MaskEltVT));
+ SDValue MaskNode = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecVT,
+ VPermMask);
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
+
+ return DAG.getNode(X86ISD::VPERMV3, DL, VT, MaskNode, V1, V2);
}
-/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
-static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+
+/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
+static SDValue lowerV8X64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
- assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
- assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ MVT VT = Op.getSimpleValueType();
+ assert((V1.getSimpleValueType() == MVT::v8f64 ||
+ V1.getSimpleValueType() == MVT::v8i64) && "Bad operand type!");
+ assert((V2.getSimpleValueType() == MVT::v8f64 ||
+ V2.getSimpleValueType() == MVT::v8i64) && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
@@ -10129,21 +10176,40 @@ static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// X86 has dedicated unpack instructions that can handle specific blend
// operations: UNPCKH and UNPCKL.
if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
- return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2);
+ return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
- return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2);
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
- // FIXME: Implement direct support for this type!
- return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG);
+ if (SDValue Op = lowerVectorShuffleWithVALIGN(DL, VT, Mask, V1, V2, DAG))
+ return Op;
+
+ if (SDValue Op = lowerVectorShuffleWithSHUFPD(DL, VT, Mask, V1, V2, DAG))
+ return Op;
+
+ // PERMILPD instruction - mask 0/1, 0/1, 2/3, 2/3, 4/5, 4/5, 6/7, 6/7
+ if (isSingleInputShuffleMask(Mask)) {
+ if (!is128BitLaneCrossingShuffleMask(VT, Mask))
+ return DAG.getNode(X86ISD::VPERMILPI, DL, VT, V1,
+ get1bitLaneShuffleImm8ForMask(Mask, DL, DAG));
+
+ SmallVector<int, 4> RepeatedMask;
+ if (is256BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask))
+ return DAG.getNode(X86ISD::VPERMI, DL, VT, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+ }
+ return lowerVectorShuffleWithPERMV(DL, VT, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
-static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+static SDValue lowerV16X32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
- assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
- assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ assert((V1.getSimpleValueType() == MVT::v16i32 ||
+ V1.getSimpleValueType() == MVT::v16f32) && "Bad operand type!");
+ assert((V2.getSimpleValueType() == MVT::v16i32 ||
+ V2.getSimpleValueType() == MVT::v16f32) && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
@@ -10154,16 +10220,39 @@ static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
0, 16, 1, 17, 4, 20, 5, 21,
// Second 128-bit lane.
8, 24, 9, 25, 12, 28, 13, 29}))
- return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2);
+ return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
if (isShuffleEquivalent(V1, V2, Mask,
{// First 128-bit lane.
2, 18, 3, 19, 6, 22, 7, 23,
// Second 128-bit lane.
10, 26, 11, 27, 14, 30, 15, 31}))
- return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2);
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
- // FIXME: Implement direct support for this type!
- return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG);
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10,
+ 12, 12, 14, 14}))
+ return DAG.getNode(X86ISD::MOVSLDUP, DL, VT, V1);
+ if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11,
+ 13, 13, 15, 15}))
+ return DAG.getNode(X86ISD::MOVSHDUP, DL, VT, V1);
+
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask)) {
+ if (isSingleInputShuffleMask(Mask)) {
+ unsigned Opc = VT.isInteger() ? X86ISD::PSHUFD : X86ISD::VPERMILPI;
+ return DAG.getNode(Opc, DL, VT, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+ }
+
+ for (int i = 0; i < 4; ++i)
+ if (RepeatedMask[i] >= 16)
+ RepeatedMask[i] -= 12;
+ return lowerVectorShuffleWithSHUFPS(DL, VT, RepeatedMask, V1, V2, DAG);
+ }
+
+ if (SDValue Op = lowerVectorShuffleWithVALIGN(DL, VT, Mask, V1, V2, DAG))
+ return Op;
+
+ return lowerVectorShuffleWithPERMV(DL, VT, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
@@ -10223,13 +10312,11 @@ static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// the requisite ISA extensions for that element type are available.
switch (VT.SimpleTy) {
case MVT::v8f64:
- return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
- case MVT::v16f32:
- return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v8i64:
- return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ return lowerV8X64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16f32:
case MVT::v16i32:
- return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ return lowerV16X32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v32i16:
if (Subtarget->hasBWI())
return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
@@ -10311,10 +10398,10 @@ static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
// Make sure that the new vector type is legal. For example, v2f64 isn't
// legal on SSE1.
if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
- V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
+ V1 = DAG.getBitcast(NewVT, V1);
+ V2 = DAG.getBitcast(NewVT, V2);
+ return DAG.getBitcast(
+ VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
}
}
@@ -10509,12 +10596,11 @@ static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
if (Idx == 0)
- return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
- DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BITCAST, dl,
- MVT::v4i32,
- Op.getOperand(0)),
- Op.getOperand(1)));
+ return DAG.getNode(
+ ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+ Op.getOperand(1)));
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
@@ -10538,10 +10624,9 @@ static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
- Op.getOperand(0)),
- Op.getOperand(1));
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
+ DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+ Op.getOperand(1));
+ return DAG.getBitcast(MVT::f32, Extract);
}
if (VT == MVT::i32 || VT == MVT::i64) {
@@ -10655,8 +10740,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BITCAST, dl,
- MVT::v4i32, Vec),
+ DAG.getBitcast(MVT::v4i32, Vec),
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
MVT EltVT = MVT::i32;
@@ -10877,8 +10961,8 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
assert(OpVT.is128BitVector() && "Expected an SSE type!");
- return DAG.getNode(ISD::BITCAST, dl, OpVT,
- DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
+ return DAG.getBitcast(
+ OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
}
// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
@@ -11670,14 +11754,13 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
- SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
- DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
- CLod0);
+ SDValue Unpck1 =
+ getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
- SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
+ SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
SDValue Result;
@@ -11685,12 +11768,11 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
// FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
} else {
- SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
+ SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
S2F, 0x4E, DAG);
Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
- DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
- Sub);
+ DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
@@ -11713,20 +11795,19 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
- DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
+ DAG.getBitcast(MVT::v2f64, Load),
DAG.getIntPtrConstant(0, dl));
// Or the load with the bias.
- SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
- DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
- DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
- MVT::v2f64, Load)),
- DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
- DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
- MVT::v2f64, Bias)));
- Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
- DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
- DAG.getIntPtrConstant(0, dl));
+ SDValue Or = DAG.getNode(
+ ISD::OR, dl, MVT::v2i64,
+ DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
+ DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
+ Or =
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
// Subtract the bias.
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
@@ -11805,19 +11886,16 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
if (Subtarget.hasSSE41()) {
EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
- SDValue VecCstLowBitcast =
- DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow);
- SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V);
+ SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
+ SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
// Low will be bitcasted right away, so do not bother bitcasting back to its
// original type.
Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
- SDValue VecCstHighBitcast =
- DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh);
- SDValue VecShiftBitcast =
- DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift);
+ SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
+ SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
// High will be bitcasted right away, so do not bother bitcasting back to
// its original type.
High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
@@ -11843,11 +11921,11 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
makeArrayRef(&CstFAddArray[0], NumElts));
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
- SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High);
+ SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
SDValue FHigh =
DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
// return (float4) lo + fhi;
- SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low);
+ SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
}
@@ -12103,8 +12181,8 @@ static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements()/2);
- OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
- OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
+ OpLo = DAG.getBitcast(HVT, OpLo);
+ OpHi = DAG.getBitcast(HVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
@@ -12189,14 +12267,14 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
if (InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 &&
Subtarget->hasBWI())
return Op; // legal, will go to VPMOVB2M, VPMOVW2M
- if ((InVT.is256BitVector() || InVT.is128BitVector())
+ if ((InVT.is256BitVector() || InVT.is128BitVector())
&& InVT.getScalarSizeInBits() <= 16 &&
Subtarget->hasBWI() && Subtarget->hasVLX())
return Op; // legal, will go to VPMOVB2M, VPMOVW2M
if (InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 &&
Subtarget->hasDQI())
return Op; // legal, will go to VPMOVD2M, VPMOVQ2M
- if ((InVT.is256BitVector() || InVT.is128BitVector())
+ if ((InVT.is256BitVector() || InVT.is128BitVector())
&& InVT.getScalarSizeInBits() >= 32 &&
Subtarget->hasDQI() && Subtarget->hasVLX())
return Op; // legal, will go to VPMOVB2M, VPMOVQ2M
@@ -12224,7 +12302,7 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
// On AVX2, v4i64 -> v4i32 becomes VPERMD.
if (Subtarget->hasInt256()) {
static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
- In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
+ In = DAG.getBitcast(MVT::v8i32, In);
In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
ShufMask);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
@@ -12235,8 +12313,8 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(2, DL));
- OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
- OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
+ OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+ OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
static const int ShufMask[] = {0, 2, 4, 6};
return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
}
@@ -12244,7 +12322,7 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
// On AVX2, v8i32 -> v8i16 becomed PSHUFB.
if (Subtarget->hasInt256()) {
- In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
+ In = DAG.getBitcast(MVT::v32i8, In);
SmallVector<SDValue,32> pshufbMask;
for (unsigned i = 0; i < 2; ++i) {
@@ -12261,14 +12339,14 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
}
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
- In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
+ In = DAG.getBitcast(MVT::v4i64, In);
static const int ShufMask[] = {0, 2, -1, -1};
In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
&ShufMask[0]);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
- return DAG.getNode(ISD::BITCAST, DL, VT, In);
+ return DAG.getBitcast(VT, In);
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
@@ -12277,8 +12355,8 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(4, DL));
- OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
- OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
+ OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
+ OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
// The PSHUFB mask:
static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
@@ -12288,13 +12366,13 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
- OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
- OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
+ OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+ OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
// The MOVLHPS Mask:
static const int ShufMask2[] = {0, 1, 4, 5};
SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
- return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
+ return DAG.getBitcast(MVT::v8i16, res);
}
// Handle truncation of V256 to V128 using shuffles.
@@ -12310,8 +12388,7 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
// Prepare truncation shuffle mask
for (unsigned i = 0; i != NumElems; ++i)
MaskVec[i] = i * 2;
- SDValue V = DAG.getVectorShuffle(NVT, DL,
- DAG.getNode(ISD::BITCAST, DL, NVT, In),
+ SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
DAG.getUNDEF(NVT), &MaskVec[0]);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
DAG.getIntPtrConstant(0, DL));
@@ -12420,13 +12497,12 @@ static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
// For a vector, cast operands to a vector type, perform the logic op,
// and cast the result back to the original value type.
MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
- SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
- SDValue Operand = IsFNABS ?
- DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) :
- DAG.getNode(ISD::BITCAST, dl, VecVT, Op0);
+ SDValue MaskCasted = DAG.getBitcast(VecVT, Mask);
+ SDValue Operand = IsFNABS ? DAG.getBitcast(VecVT, Op0.getOperand(0))
+ : DAG.getBitcast(VecVT, Op0);
unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
+ return DAG.getBitcast(VT,
+ DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
}
// If not vector, then scalar.
@@ -12591,7 +12667,7 @@ static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
// Cast all vectors into TestVT for PTEST.
for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
- VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
+ VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
// If more than one full vectors are evaluated, OR them first before PTEST.
for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
@@ -12925,29 +13001,31 @@ SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps,
bool &UseOneConstNR) const {
- // FIXME: We should use instruction latency models to calculate the cost of
- // each potential sequence, but this is very hard to do reliably because
- // at least Intel's Core* chips have variable timing based on the number of
- // significant digits in the divisor and/or sqrt operand.
- if (!Subtarget->useSqrtEst())
- return SDValue();
-
EVT VT = Op.getValueType();
+ const char *RecipOp;
- // SSE1 has rsqrtss and rsqrtps.
+ // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
// TODO: Add support for AVX512 (v16f32).
// It is likely not profitable to do this for f64 because a double-precision
// rsqrt estimate with refinement on x86 prior to FMA requires at least 16
// instructions: convert to single, rsqrtss, convert back to double, refine
// (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
- if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
- (Subtarget->hasAVX() && VT == MVT::v8f32)) {
- RefinementSteps = 1;
- UseOneConstNR = false;
- return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
- }
- return SDValue();
+ if (VT == MVT::f32 && Subtarget->hasSSE1())
+ RecipOp = "sqrtf";
+ else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
+ (VT == MVT::v8f32 && Subtarget->hasAVX()))
+ RecipOp = "vec-sqrtf";
+ else
+ return SDValue();
+
+ TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
+ if (!Recips.isEnabled(RecipOp))
+ return SDValue();
+
+ RefinementSteps = Recips.getRefinementSteps(RecipOp);
+ UseOneConstNR = false;
+ return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
}
/// The minimum architected relative accuracy is 2^-12. We need one
@@ -12955,15 +13033,9 @@ SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
- // FIXME: We should use instruction latency models to calculate the cost of
- // each potential sequence, but this is very hard to do reliably because
- // at least Intel's Core* chips have variable timing based on the number of
- // significant digits in the divisor.
- if (!Subtarget->useReciprocalEst())
- return SDValue();
-
EVT VT = Op.getValueType();
-
+ const char *RecipOp;
+
// SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
// TODO: Add support for AVX512 (v16f32).
// It is likely not profitable to do this for f64 because a double-precision
@@ -12971,12 +13043,20 @@ SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
// 15 instructions: convert to single, rcpss, convert back to double, refine
// (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
- if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
- (Subtarget->hasAVX() && VT == MVT::v8f32)) {
- RefinementSteps = ReciprocalEstimateRefinementSteps;
- return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
- }
- return SDValue();
+ if (VT == MVT::f32 && Subtarget->hasSSE1())
+ RecipOp = "divf";
+ else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
+ (VT == MVT::v8f32 && Subtarget->hasAVX()))
+ RecipOp = "vec-divf";
+ else
+ return SDValue();
+
+ TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
+ if (!Recips.isEnabled(RecipOp))
+ return SDValue();
+
+ RefinementSteps = Recips.getRefinementSteps(RecipOp);
+ return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
}
/// If we have at least two divisions that use the same divisor, convert to
@@ -13407,8 +13487,8 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
assert(Subtarget->hasSSE2() && "Don't know how to lower!");
// First cast everything to the right type.
- Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
- Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
+ Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+ Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations. The lower
@@ -13442,7 +13522,7 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
- return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ return DAG.getBitcast(VT, Result);
}
if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
@@ -13451,8 +13531,8 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
// First cast everything to the right type.
- Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
- Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
+ Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+ Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Do the compare.
SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
@@ -13465,7 +13545,7 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
- return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ return DAG.getBitcast(VT, Result);
}
}
@@ -13662,7 +13742,7 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
EVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
- VCmp = DAG.getNode(ISD::BITCAST, DL, VCmpVT, VCmp);
+ VCmp = DAG.getBitcast(VCmpVT, VCmp);
SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
@@ -13687,12 +13767,12 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
Op2Scalar = Op2.getOperand(0);
if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
- SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
+ SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
Op1Scalar.getValueType(),
Cond, Op1Scalar, Op2Scalar);
if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, VT, newSelect);
- SDValue ExtVec = DAG.getNode(ISD::BITCAST, DL, MVT::v8i1, newSelect);
+ return DAG.getBitcast(VT, newSelect);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
DAG.getIntPtrConstant(0, DL));
}
@@ -13975,7 +14055,7 @@ static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,
Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
- Curr = DAG.getNode(ISD::BITCAST, dl, CurrVT, Curr);
+ Curr = DAG.getBitcast(CurrVT, Curr);
}
SDValue SignExt = Curr;
@@ -13993,7 +14073,7 @@ static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,
SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
DAG.getConstant(31, dl, MVT::i8));
SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
- return DAG.getNode(ISD::BITCAST, dl, VT, Ext);
+ return DAG.getBitcast(VT, Ext);
}
return SDValue();
@@ -14202,7 +14282,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
// Bitcast the loaded value to a vector of the original element type, in
// the size of the target vector type.
- SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
+ SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
unsigned SizeRatio = RegSz / MemSz;
if (Ext == ISD::SEXTLOAD) {
@@ -14227,7 +14307,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
SDValue Shuff = DAG.getVectorShuffle(
WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
- Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+ Shuff = DAG.getBitcast(RegVT, Shuff);
// Build the arithmetic shift.
unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
@@ -14249,7 +14329,7 @@ static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
// Bitcast to the requested type.
- Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+ Shuff = DAG.getBitcast(RegVT, Shuff);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Shuff;
}
@@ -14933,7 +15013,7 @@ static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
MVT EltVT = VT.getVectorElementType();
EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
- ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
+ ShAmt = DAG.getBitcast(ShVT, ShAmt);
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
@@ -14959,8 +15039,8 @@ static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
// In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
// are extracted by EXTRACT_SUBVECTOR.
SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
- DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
- DAG.getIntPtrConstant(0, dl));
+ DAG.getBitcast(BitcastVT, Mask),
+ DAG.getIntPtrConstant(0, dl));
switch (Op.getOpcode()) {
default: break;
@@ -15017,12 +15097,31 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
Op.getOperand(2), Op.getOperand(3));
case INTR_TYPE_1OP_MASK_RM: {
SDValue Src = Op.getOperand(1);
- SDValue Src0 = Op.getOperand(2);
+ SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
- SDValue RoundingMode = Op.getOperand(4);
+ SDValue RoundingMode;
+ if (Op.getNumOperands() == 4)
+ RoundingMode = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ else
+ RoundingMode = Op.getOperand(4);
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ unsigned Round = cast<ConstantSDNode>(RoundingMode)->getZExtValue();
+ if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION)
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(), Src, RoundingMode),
+ Mask, PassThru, Subtarget, DAG);
+ }
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
RoundingMode),
- Mask, Src0, Subtarget, DAG);
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_1OP_MASK: {
+ SDValue Src = Op.getOperand(1);
+ SDValue Passthru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
+ Mask, Passthru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
@@ -15069,6 +15168,30 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
Src1,Src2),
Mask, PassThru, Subtarget, DAG);
}
+ case INTR_TYPE_3OP_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(6);
+ unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
+ if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
case FMA_OP_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
@@ -15140,7 +15263,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
DAG.getUNDEF(BitcastVT), CmpMask,
DAG.getIntPtrConstant(0, dl));
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ return DAG.getBitcast(Op.getValueType(), Res);
}
case COMI: { // Comparison intrinsics
ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
@@ -15176,7 +15299,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
Mask.getValueType().getSizeInBits());
SDLoc dl(Op);
SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
- DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress,
@@ -15191,7 +15314,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
Mask.getValueType().getSizeInBits());
SDLoc dl(Op);
SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
- DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
Op.getOperand(2));
@@ -15211,16 +15334,6 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(1));
- case Intrinsic::x86_avx512_mask_valign_q_512:
- case Intrinsic::x86_avx512_mask_valign_d_512:
- // Vector source operands are swapped.
- return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
- Op.getValueType(), Op.getOperand(2),
- Op.getOperand(1),
- Op.getOperand(3)),
- Op.getOperand(5), Op.getOperand(4),
- Subtarget, DAG);
-
// ptest and testp intrinsics. The intrinsic these come from are designed to
// return an integer value, not just an instruction so lower it to the ptest
// or testp pattern and a setcc for the result.
@@ -15289,8 +15402,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
case Intrinsic::x86_avx512_kortestz_w:
case Intrinsic::x86_avx512_kortestc_w: {
unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
- SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
- SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
+ SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
@@ -15378,7 +15491,6 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
// Compute the symbol for the LSDA. We know it'll get emitted later.
MachineFunction &MF = DAG.getMachineFunction();
SDValue Op1 = Op.getOperand(1);
- Op1->dump();
auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
GlobalValue::getRealLinkageName(Fn->getName()));
@@ -15409,7 +15521,7 @@ static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
if (MaskC)
MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
else
- MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ MaskInReg = DAG.getBitcast(MaskVT, Mask);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
@@ -15437,7 +15549,7 @@ static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
if (MaskC)
MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
else
- MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ MaskInReg = DAG.getBitcast(MaskVT, Mask);
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
@@ -15460,7 +15572,7 @@ static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
if (MaskC)
MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
else
- MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ MaskInReg = DAG.getBitcast(MaskVT, Mask);
//SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
@@ -15693,23 +15805,25 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
+ EVT VT = DataToCompress.getValueType();
if (isAllOnes(Mask)) // return just a store
return DAG.getStore(Chain, dl, DataToCompress, Addr,
- MachinePointerInfo(), false, false, 0);
+ MachinePointerInfo(), false, false,
+ VT.getScalarSizeInBits()/8);
- EVT VT = DataToCompress.getValueType();
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
VT.getVectorNumElements());
EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
Mask.getValueType().getSizeInBits());
SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
- DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
SDValue Compressed = DAG.getNode(IntrData->Opc0, dl, VT, VMask,
DataToCompress, DAG.getUNDEF(VT));
return DAG.getStore(Chain, dl, Compressed, Addr,
- MachinePointerInfo(), false, false, 0);
+ MachinePointerInfo(), false, false,
+ VT.getScalarSizeInBits()/8);
}
case EXPAND_FROM_MEM: {
SDLoc dl(Op);
@@ -15721,17 +15835,18 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
if (isAllOnes(Mask)) // return just a load
return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
- false, 0);
+ false, VT.getScalarSizeInBits()/8);
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
VT.getVectorNumElements());
EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
Mask.getValueType().getSizeInBits());
SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
- DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
- false, false, false, 0);
+ false, false, false,
+ VT.getScalarSizeInBits()/8);
SDValue Results[] = {
DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand, PathThru),
@@ -16274,8 +16389,8 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
-1, 4, -1, 5, -1, 6, -1, 7};
ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
- ALo = DAG.getNode(ISD::BITCAST, dl, ExVT, ALo);
- BLo = DAG.getNode(ISD::BITCAST, dl, ExVT, BLo);
+ ALo = DAG.getBitcast(ExVT, ALo);
+ BLo = DAG.getBitcast(ExVT, BLo);
ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
}
@@ -16294,8 +16409,8 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
-1, 12, -1, 13, -1, 14, -1, 15};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
- AHi = DAG.getNode(ISD::BITCAST, dl, ExVT, AHi);
- BHi = DAG.getNode(ISD::BITCAST, dl, ExVT, BHi);
+ AHi = DAG.getBitcast(ExVT, AHi);
+ BHi = DAG.getBitcast(ExVT, BHi);
AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
}
@@ -16323,8 +16438,8 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
// Now multiply odd parts.
SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
- Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
- Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
+ Evens = DAG.getBitcast(VT, Evens);
+ Odds = DAG.getBitcast(VT, Odds);
// Merge the two vectors back together with a shuffle. This expands into 2
// shuffles.
@@ -16352,10 +16467,10 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
// Bit cast to 32-bit vectors for MULUDQ
EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
(VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
- A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
- B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
- Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
- Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
+ A = DAG.getBitcast(MulVT, A);
+ B = DAG.getBitcast(MulVT, B);
+ Ahi = DAG.getBitcast(MulVT, Ahi);
+ Bhi = DAG.getBitcast(MulVT, Bhi);
SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
@@ -16417,7 +16532,7 @@ SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) cons
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
- return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
+ return DAG.getBitcast(VT, CallInfo.first);
}
static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
@@ -16455,12 +16570,10 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
(!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
// PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
- SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
+ SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
// PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
// => <2 x i64> <bf|dh>
- SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
+ SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
// Shuffle it back into the right order.
SDValue Highs, Lows;
@@ -16499,16 +16612,16 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
// Return true if the requred (according to Opcode) shift-imm form is natively
// supported by the Subtarget
-static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget,
+static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget,
unsigned Opcode) {
if (VT.getScalarSizeInBits() < 16)
return false;
-
+
if (VT.is512BitVector() &&
(VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI()))
return true;
- bool LShift = VT.is128BitVector() ||
+ bool LShift = VT.is128BitVector() ||
(VT.is256BitVector() && Subtarget->hasInt256());
bool AShift = LShift && (Subtarget->hasVLX() ||
@@ -16518,15 +16631,15 @@ static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget,
// The shift amount is a variable, but it is the same for all vector lanes.
// These instrcutions are defined together with shift-immediate.
-static
-bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget,
+static
+bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget,
unsigned Opcode) {
return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
}
// Return true if the requred (according to Opcode) variable-shift form is
// natively supported by the Subtarget
-static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget,
+static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget,
unsigned Opcode) {
if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16)
@@ -16574,7 +16687,7 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
// Make a large shift.
SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
R, ShiftAmt, DAG);
- SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
+ SHL = DAG.getBitcast(VT, SHL);
// Zero out the rightmost bits.
SmallVector<SDValue, 32> V(
NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, MVT::i8));
@@ -16585,7 +16698,7 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
// Make a large shift.
SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
R, ShiftAmt, DAG);
- SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
+ SRL = DAG.getBitcast(VT, SRL);
// Zero out the leftmost bits.
SmallVector<SDValue, 32> V(
NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, MVT::i8));
@@ -16801,7 +16914,7 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
Op = DAG.getNode(ISD::ADD, dl, VT, Op,
DAG.getConstant(0x3f800000U, dl, VT));
- Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
+ Op = DAG.getBitcast(MVT::v4f32, Op);
Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
return DAG.getNode(ISD::MUL, dl, VT, Op, R);
}
@@ -16871,11 +16984,11 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
if (TargetOpcode == X86ISD::MOVSD)
CastVT = MVT::v2i64;
- SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
- SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
+ SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1);
+ SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2);
SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
BitCast1, DAG);
- return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ return DAG.getBitcast(VT, Result);
}
}
@@ -16931,10 +17044,10 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R);
SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R);
- ALo = DAG.getNode(ISD::BITCAST, dl, ExtVT, ALo);
- AHi = DAG.getNode(ISD::BITCAST, dl, ExtVT, AHi);
- RLo = DAG.getNode(ISD::BITCAST, dl, ExtVT, RLo);
- RHi = DAG.getNode(ISD::BITCAST, dl, ExtVT, RHi);
+ ALo = DAG.getBitcast(ExtVT, ALo);
+ AHi = DAG.getBitcast(ExtVT, AHi);
+ RLo = DAG.getBitcast(ExtVT, RLo);
+ RHi = DAG.getBitcast(ExtVT, RHi);
SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
@@ -17293,7 +17406,7 @@ static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
- SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
+ SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
DAG.getIntPtrConstant(0, dl));
}
@@ -17315,141 +17428,241 @@ static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
return SDValue();
}
-static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
- SelectionDAG &DAG) {
- SDNode *Node = Op.getNode();
- SDLoc dl(Node);
+/// Compute the horizontal sum of bytes in V for the elements of VT.
+///
+/// Requires V to be a byte vector and VT to be an integer vector type with
+/// wider elements than V's type. The width of the elements of VT determines
+/// how many bytes of V are summed horizontally to produce each element of the
+/// result.
+static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(V);
+ MVT ByteVecVT = V.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ int NumElts = VT.getVectorNumElements();
+ assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
+ "Expected value to have byte element type.");
+ assert(EltVT != MVT::i8 &&
+ "Horizontal byte sum only makes sense for wider elements!");
+ unsigned VecSize = VT.getSizeInBits();
+ assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
+
+ // PSADBW instruction horizontally add all bytes and leave the result in i64
+ // chunks, thus directly computes the pop count for v2i64 and v4i64.
+ if (EltVT == MVT::i64) {
+ SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+ V = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT, V, Zeros);
+ return DAG.getBitcast(VT, V);
+ }
+
+ if (EltVT == MVT::i32) {
+ // We unpack the low half and high half into i32s interleaved with zeros so
+ // that we can use PSADBW to horizontally sum them. The most useful part of
+ // this is that it lines up the results of two PSADBW instructions to be
+ // two v2i64 vectors which concatenated are the 4 population counts. We can
+ // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
+ SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros);
+ SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros);
+
+ // Do the horizontal sums into two v2i64s.
+ Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+ Low = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT,
+ DAG.getBitcast(ByteVecVT, Low), Zeros);
+ High = DAG.getNode(X86ISD::PSADBW, DL, ByteVecVT,
+ DAG.getBitcast(ByteVecVT, High), Zeros);
+
+ // Merge them together.
+ MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
+ V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
+ DAG.getBitcast(ShortVecVT, Low),
+ DAG.getBitcast(ShortVecVT, High));
+
+ return DAG.getBitcast(VT, V);
+ }
+
+ // The only element type left is i16.
+ assert(EltVT == MVT::i16 && "Unknown how to handle type");
+
+ // To obtain pop count for each i16 element starting from the pop count for
+ // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
+ // right by 8. It is important to shift as i16s as i8 vector shift isn't
+ // directly supported.
+ SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT));
+ SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters);
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter);
+ V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
+ DAG.getBitcast(ByteVecVT, V));
+ return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter);
+}
+
+static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned VecSize = VT.getSizeInBits();
- Op = Op.getOperand(0);
- EVT VT = Op.getValueType();
- assert((VT.is128BitVector() || VT.is256BitVector()) &&
- "CTPOP lowering only implemented for 128/256-bit wide vector types");
+ // Implement a lookup table in register by using an algorithm based on:
+ // http://wm.ite.pl/articles/sse-popcount.html
+ //
+ // The general idea is that every lower byte nibble in the input vector is an
+ // index into a in-register pre-computed pop count table. We then split up the
+ // input vector in two new ones: (1) a vector with only the shifted-right
+ // higher nibbles for each byte and (2) a vector with the lower nibbles (and
+ // masked out higher ones) for each byte. PSHUB is used separately with both
+ // to index the in-register table. Next, both are added and the result is a
+ // i8 vector where each element contains the pop count for input byte.
+ //
+ // To obtain the pop count for elements != i8, we follow up with the same
+ // approach and use additional tricks as described below.
+ //
+ const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
+ /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
+ /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
+ /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
+
+ int NumByteElts = VecSize / 8;
+ MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
+ SDValue In = DAG.getBitcast(ByteVecVT, Op);
+ SmallVector<SDValue, 16> LUTVec;
+ for (int i = 0; i < NumByteElts; ++i)
+ LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
+ SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec);
+ SmallVector<SDValue, 16> Mask0F(NumByteElts,
+ DAG.getConstant(0x0F, DL, MVT::i8));
+ SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F);
+
+ // High nibbles
+ SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8));
+ SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four);
+ SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
+
+ // Low nibbles
+ SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
+
+ // The input vector is used as the shuffle mask that index elements into the
+ // LUT. After counting low and high nibbles, add the vector to obtain the
+ // final pop count per i8 element.
+ SDValue HighPopCnt =
+ DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
+ SDValue LowPopCnt =
+ DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
+ SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
- unsigned NumElts = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- unsigned Len = EltVT.getSizeInBits();
+ if (EltVT == MVT::i8)
+ return PopCnt;
+
+ return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
+}
+
+static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ assert(VT.is128BitVector() &&
+ "Only 128-bit vector bitmath lowering supported.");
+
+ int VecSize = VT.getSizeInBits();
+ MVT EltVT = VT.getVectorElementType();
+ int Len = EltVT.getSizeInBits();
// This is the vectorized version of the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// with a minor tweak to use a series of adds + shifts instead of vector
- // multiplications. Implemented for the v2i64, v4i64, v4i32, v8i32 types:
- //
- // v2i64, v4i64, v4i32 => Only profitable w/ popcnt disabled
- // v8i32 => Always profitable
- //
- // FIXME: There a couple of possible improvements:
- //
- // 1) Support for i8 and i16 vectors (needs measurements if popcnt enabled).
- // 2) Use strategies from http://wm.ite.pl/articles/sse-popcount.html
- //
- assert(EltVT.isInteger() && (Len == 32 || Len == 64) && Len % 8 == 0 &&
- "CTPOP not implemented for this vector element type.");
+ // multiplications. Implemented for all integer vector types. We only use
+ // this when we don't have SSSE3 which allows a LUT-based lowering that is
+ // much faster, even faster than using native popcnt instructions.
+
+ auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
+ MVT VT = V.getSimpleValueType();
+ SmallVector<SDValue, 32> Shifters(
+ VT.getVectorNumElements(),
+ DAG.getConstant(Shifter, DL, VT.getVectorElementType()));
+ return DAG.getNode(OpCode, DL, VT, V,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters));
+ };
+ auto GetMask = [&](SDValue V, APInt Mask) {
+ MVT VT = V.getSimpleValueType();
+ SmallVector<SDValue, 32> Masks(
+ VT.getVectorNumElements(),
+ DAG.getConstant(Mask, DL, VT.getVectorElementType()));
+ return DAG.getNode(ISD::AND, DL, VT, V,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks));
+ };
- // X86 canonicalize ANDs to vXi64, generate the appropriate bitcasts to avoid
- // extra legalization.
- bool NeedsBitcast = EltVT == MVT::i32;
- MVT BitcastVT = VT.is256BitVector() ? MVT::v4i64 : MVT::v2i64;
+ // We don't want to incur the implicit masks required to SRL vNi8 vectors on
+ // x86, so set the SRL type to have elements at least i16 wide. This is
+ // correct because all of our SRLs are followed immediately by a mask anyways
+ // that handles any bits that sneak into the high bits of the byte elements.
+ MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
- SDValue Cst55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl,
- EltVT);
- SDValue Cst33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl,
- EltVT);
- SDValue Cst0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl,
- EltVT);
+ SDValue V = Op;
// v = v - ((v >> 1) & 0x55555555...)
- SmallVector<SDValue, 8> Ones(NumElts, DAG.getConstant(1, dl, EltVT));
- SDValue OnesV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ones);
- SDValue Srl = DAG.getNode(ISD::SRL, dl, VT, Op, OnesV);
- if (NeedsBitcast)
- Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
-
- SmallVector<SDValue, 8> Mask55(NumElts, Cst55);
- SDValue M55 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask55);
- if (NeedsBitcast)
- M55 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M55);
-
- SDValue And = DAG.getNode(ISD::AND, dl, Srl.getValueType(), Srl, M55);
- if (VT != And.getValueType())
- And = DAG.getNode(ISD::BITCAST, dl, VT, And);
- SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op, And);
+ SDValue Srl =
+ DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
+ SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
+ V = DAG.getNode(ISD::SUB, DL, VT, V, And);
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
- SmallVector<SDValue, 8> Mask33(NumElts, Cst33);
- SDValue M33 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask33);
- SmallVector<SDValue, 8> Twos(NumElts, DAG.getConstant(2, dl, EltVT));
- SDValue TwosV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Twos);
+ SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
+ Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
+ SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
+ V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
- Srl = DAG.getNode(ISD::SRL, dl, VT, Sub, TwosV);
- if (NeedsBitcast) {
- Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
- M33 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M33);
- Sub = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Sub);
- }
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
+ SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
+ V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
- SDValue AndRHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Srl, M33);
- SDValue AndLHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Sub, M33);
- if (VT != AndRHS.getValueType()) {
- AndRHS = DAG.getNode(ISD::BITCAST, dl, VT, AndRHS);
- AndLHS = DAG.getNode(ISD::BITCAST, dl, VT, AndLHS);
- }
- SDValue Add = DAG.getNode(ISD::ADD, dl, VT, AndLHS, AndRHS);
+ // At this point, V contains the byte-wise population count, and we are
+ // merely doing a horizontal sum if necessary to get the wider element
+ // counts.
+ if (EltVT == MVT::i8)
+ return V;
- // v = (v + (v >> 4)) & 0x0F0F0F0F...
- SmallVector<SDValue, 8> Fours(NumElts, DAG.getConstant(4, dl, EltVT));
- SDValue FoursV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Fours);
- Srl = DAG.getNode(ISD::SRL, dl, VT, Add, FoursV);
- Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
-
- SmallVector<SDValue, 8> Mask0F(NumElts, Cst0F);
- SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask0F);
- if (NeedsBitcast) {
- Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
- M0F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M0F);
- }
- And = DAG.getNode(ISD::AND, dl, M0F.getValueType(), Add, M0F);
- if (VT != And.getValueType())
- And = DAG.getNode(ISD::BITCAST, dl, VT, And);
-
- // The algorithm mentioned above uses:
- // v = (v * 0x01010101...) >> (Len - 8)
- //
- // Change it to use vector adds + vector shifts which yield faster results on
- // Haswell than using vector integer multiplication.
- //
- // For i32 elements:
- // v = v + (v >> 8)
- // v = v + (v >> 16)
- //
- // For i64 elements:
- // v = v + (v >> 8)
- // v = v + (v >> 16)
- // v = v + (v >> 32)
- //
- Add = And;
- SmallVector<SDValue, 8> Csts;
- for (unsigned i = 8; i <= Len/2; i *= 2) {
- Csts.assign(NumElts, DAG.getConstant(i, dl, EltVT));
- SDValue CstsV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Csts);
- Srl = DAG.getNode(ISD::SRL, dl, VT, Add, CstsV);
- Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
- Csts.clear();
+ return LowerHorizontalByteSum(
+ DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
+ DAG);
+}
+
+static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ // FIXME: Need to add AVX-512 support here!
+ assert((VT.is256BitVector() || VT.is128BitVector()) &&
+ "Unknown CTPOP type to handle");
+ SDLoc DL(Op.getNode());
+ SDValue Op0 = Op.getOperand(0);
+
+ if (!Subtarget->hasSSSE3()) {
+ // We can't use the fast LUT approach, so fall back on vectorized bitmath.
+ assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
+ return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
}
- // The result is on the least significant 6-bits on i32 and 7-bits on i64.
- SDValue Cst3F = DAG.getConstant(APInt(Len, Len == 32 ? 0x3F : 0x7F), dl,
- EltVT);
- SmallVector<SDValue, 8> Cst3FV(NumElts, Cst3F);
- SDValue M3F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Cst3FV);
- if (NeedsBitcast) {
- Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
- M3F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M3F);
+ if (VT.is256BitVector() && !Subtarget->hasInt256()) {
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // Extract each 128-bit vector, compute pop count and concat the result.
+ SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL);
+ SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
+ LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
+ LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
}
- And = DAG.getNode(ISD::AND, dl, M3F.getValueType(), Add, M3F);
- if (VT != And.getValueType())
- And = DAG.getNode(ISD::BITCAST, dl, VT, And);
- return And;
+ return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
+}
+
+static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getValueType().isVector() &&
+ "We only do custom lowering for vector population count.");
+ return LowerVectorCTPOP(Op, Subtarget, DAG);
}
static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
@@ -17840,8 +18053,8 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
MVT::f64);
SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
- DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
- Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
+ DAG.getBitcast(MVT::v2i64, VBias));
+ Or = DAG.getBitcast(MVT::v2f64, Or);
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
return;
@@ -17964,7 +18177,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, N->getOperand(0));
- SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
+ SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
if (ExperimentalVectorWideningLegalization) {
// If we are legalizing vectors by widening, we already have the desired
@@ -17994,7 +18207,6 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::FANDN: return "X86ISD::FANDN";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
- case X86ISD::FSRL: return "X86ISD::FSRL";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
@@ -18121,6 +18333,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
case X86ISD::SHUFP: return "X86ISD::SHUFP";
+ case X86ISD::SHUF128: return "X86ISD::SHUF128";
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
@@ -18143,8 +18356,11 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
case X86ISD::VPERMI: return "X86ISD::VPERMI";
+ case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM";
+ case X86ISD::VRANGE: return "X86ISD::VRANGE";
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
+ case X86ISD::PSADBW: return "X86ISD::PSADBW";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
@@ -18184,6 +18400,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND";
case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND";
case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND";
+ case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND";
+ case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND";
case X86ISD::ADDS: return "X86ISD::ADDS";
case X86ISD::SUBS: return "X86ISD::SUBS";
}
@@ -18193,7 +18411,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
- Type *Ty) const {
+ Type *Ty,
+ unsigned AS) const {
// X86 supports extremely general addressing modes.
CodeModel::Model M = getTargetMachine().getCodeModel();
Reloc::Model R = getTargetMachine().getRelocationModel();
@@ -20028,7 +20247,7 @@ static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
SDValue(ResNode.getNode(), 1));
}
- return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
+ return DAG.getBitcast(VT, ResNode);
}
}
@@ -20087,7 +20306,7 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
// Just remove no-op shuffle masks.
if (Mask.size() == 1) {
- DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input),
/*AddTo*/ true);
return true;
}
@@ -20123,14 +20342,14 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
}
if (Depth == 1 && Root->getOpcode() == Shuffle)
return false; // Nothing to do!
- Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ Op = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Op.getNode());
if (Shuffle == X86ISD::MOVDDUP)
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
else
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
DCI.AddToWorklist(Op.getNode());
- DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
/*AddTo*/ true);
return true;
}
@@ -20141,11 +20360,11 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
MVT ShuffleVT = MVT::v4f32;
if (Depth == 1 && Root->getOpcode() == Shuffle)
return false; // Nothing to do!
- Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ Op = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
DCI.AddToWorklist(Op.getNode());
- DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
/*AddTo*/ true);
return true;
}
@@ -20155,11 +20374,11 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
MVT ShuffleVT = MVT::v4f32;
if (Depth == 1 && Root->getOpcode() == Shuffle)
return false; // Nothing to do!
- Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ Op = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
DCI.AddToWorklist(Op.getNode());
- DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
/*AddTo*/ true);
return true;
}
@@ -20189,11 +20408,11 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
default:
llvm_unreachable("Impossible mask size!");
};
- Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ Op = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
DCI.AddToWorklist(Op.getNode());
- DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
/*AddTo*/ true);
return true;
}
@@ -20222,14 +20441,14 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
}
MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
- Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Input);
+ Op = DAG.getBitcast(ByteVT, Input);
DCI.AddToWorklist(Op.getNode());
SDValue PSHUFBMaskOp =
DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask);
DCI.AddToWorklist(PSHUFBMaskOp.getNode());
Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp);
DCI.AddToWorklist(Op.getNode());
- DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
/*AddTo*/ true);
return true;
}
@@ -20401,7 +20620,7 @@ static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
#ifndef NDEBUG
for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
for (int j = 0; j < LaneElts; ++j)
- assert(Mask[j] == Mask[i * LaneElts + j] - LaneElts &&
+ assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
"Mask doesn't repeat in high 128-bit lanes!");
#endif
Mask.resize(LaneElts);
@@ -20532,7 +20751,7 @@ combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
SDValue W = Chain.pop_back_val();
if (V.getValueType() != W.getOperand(0).getValueType())
- V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
+ V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
switch (W.getOpcode()) {
default:
@@ -20551,7 +20770,7 @@ combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
}
}
if (V.getValueType() != N.getValueType())
- V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
+ V = DAG.getBitcast(N.getValueType(), V);
// Return the new chain to replace N.
return V;
@@ -20668,12 +20887,12 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
DMask[DOffset + 0] = DOffset + 1;
DMask[DOffset + 1] = DOffset + 0;
MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
- V = DAG.getNode(ISD::BITCAST, DL, DVT, V);
+ V = DAG.getBitcast(DVT, V);
DCI.AddToWorklist(V.getNode());
V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
DCI.AddToWorklist(V.getNode());
- return DAG.getNode(ISD::BITCAST, DL, VT, V);
+ return DAG.getBitcast(VT, V);
}
// Look for shuffle patterns which can be implemented as a single unpack.
@@ -20704,7 +20923,7 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
// We can replace all three shuffles with an unpack.
- V = DAG.getNode(ISD::BITCAST, DL, VT, D.getOperand(0));
+ V = DAG.getBitcast(VT, D.getOperand(0));
DCI.AddToWorklist(V.getNode());
return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
: X86ISD::UNPCKH,
@@ -20848,8 +21067,8 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
CanFold = SVOp->getMaskElt(i) < 0;
if (CanFold) {
- SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
- SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
+ SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
+ SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
}
@@ -20981,7 +21200,7 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
InVec.getOperand(0), Shuffle,
&ShuffleMask[0]);
- Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle);
+ Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
EltNo);
}
@@ -21101,7 +21320,7 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
SDValue Vals[4];
if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
- SDValue Cst = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, InputVector);
+ SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy();
SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
DAG.getConstant(0, dl, VecIdxTy));
@@ -21717,13 +21936,13 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
if (TValIsAllOnes && FValIsAllZeros)
Ret = Cond;
else if (TValIsAllOnes)
- Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
- DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
+ Ret =
+ DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS));
else if (FValIsAllZeros)
Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
- DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
+ DAG.getBitcast(CondVT, LHS));
- return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
+ return DAG.getBitcast(VT, Ret);
}
}
@@ -22554,15 +22773,13 @@ static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
// and work with those going forward.
SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
OnesOrZeroesF);
- SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
- Vector64);
+ SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
Vector32, DAG.getIntPtrConstant(0, DL));
IntVT = MVT::i32;
}
- SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT,
- OnesOrZeroesF);
+ SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
DAG.getConstant(1, DL, IntVT));
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
@@ -22775,7 +22992,7 @@ static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask);
- return DAG.getNode(ISD::BITCAST, DL, N0.getValueType(), NewShuffle);
+ return DAG.getBitcast(N0.getValueType(), NewShuffle);
}
static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
@@ -22916,7 +23133,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
"Unsupported VT for PSIGN");
Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
- return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
+ return DAG.getBitcast(VT, Mask);
}
// PBLENDVB only available on SSE 4.1
if (!Subtarget->hasSSE41())
@@ -22924,11 +23141,11 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
- X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
- Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
- Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
+ X = DAG.getBitcast(BlendVT, X);
+ Y = DAG.getBitcast(BlendVT, Y);
+ Mask = DAG.getBitcast(BlendVT, Mask);
Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
- return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
+ return DAG.getBitcast(VT, Mask);
}
}
@@ -23129,7 +23346,7 @@ static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
// Convert Src0 value
- SDValue WideSrc0 = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mld->getSrc0());
+ SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
if (Mld->getSrc0().getOpcode() != ISD::UNDEF) {
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
@@ -23146,7 +23363,7 @@ static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
SDValue Mask = Mld->getMask();
if (Mask.getValueType() == VT) {
// Mask and original value have the same type
- NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
+ NewMask = DAG.getBitcast(WideVecVT, Mask);
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
@@ -23214,7 +23431,7 @@ static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
- SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mst->getValue());
+ SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
@@ -23231,7 +23448,7 @@ static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
SDValue Mask = Mst->getMask();
if (Mask.getValueType() == VT) {
// Mask and original value have the same type
- NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
+ NewMask = DAG.getBitcast(WideVecVT, Mask);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
@@ -23323,7 +23540,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
- SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
+ SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
@@ -23354,7 +23571,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
- SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
+ SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
SmallVector<SDValue, 8> Chains;
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, dl,
TLI.getPointerTy());
@@ -23495,7 +23712,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
SDValue ExtOp0 = OldExtract.getOperand(0);
unsigned VecSize = ExtOp0.getValueSizeInBits();
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
- SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtOp0);
+ SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
BitCast, OldExtract.getOperand(1));
return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
@@ -24239,10 +24456,10 @@ static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
// DAG.
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
// The AND node needs bitcasts to/from an integer vector type around it.
- SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
+ SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
N->getOperand(0)->getOperand(0), MaskConst);
- SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
+ SDValue Res = DAG.getBitcast(VT, NewAnd);
return Res;
}
@@ -24442,8 +24659,7 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
// In this case, the inner vzext is completely dead because we're going to
// only look at bits inside of the low element. Just do the outer vzext on
// a bitcast of the input to the inner.
- return DAG.getNode(X86ISD::VZEXT, DL, VT,
- DAG.getNode(ISD::BITCAST, DL, OpVT, V));
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
}
// Check if we can bypass extracting and re-inserting an element of an input
@@ -24465,7 +24681,7 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
DAG.getIntPtrConstant(0, DL));
}
- Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV);
+ Op = DAG.getBitcast(OpVT, OrigV);
return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
}
}
@@ -25301,6 +25517,10 @@ X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
Res.first = DestReg;
Res.second = &X86::GR64RegClass;
}
+ } else if (VT != MVT::Other) {
+ // Type mismatch and not a clobber: Return an error;
+ Res.first = 0;
+ Res.second = nullptr;
}
} else if (Res.second == &X86::FR32RegClass ||
Res.second == &X86::FR64RegClass ||
@@ -25326,13 +25546,23 @@ X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
Res.second = &X86::VR256RegClass;
else if (X86::VR512RegClass.hasType(VT))
Res.second = &X86::VR512RegClass;
+ else if (VT != MVT::Other) {
+ // Type mismatch and not a clobber: Return an error;
+ Res.first = 0;
+ Res.second = nullptr;
+ }
+ } else if (VT != MVT::Other) {
+ // Type mismatch and not a clobber: Return an error;
+ Res.first = 0;
+ Res.second = nullptr;
}
return Res;
}
int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
- Type *Ty) const {
+ Type *Ty,
+ unsigned AS) const {
// Scaling factors are not free at all.
// An indexed folded instruction, i.e., inst (reg1, reg2, scale),
// will take 2 allocations in the out of order engine instead of 1
@@ -25351,7 +25581,7 @@ int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
// E.g., on Haswell:
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
// vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
- if (isLegalAddressingMode(AM, Ty))
+ if (isLegalAddressingMode(AM, Ty, AS))
// Scale represents reg2 * scale, thus account for 1
// as soon as we use a second register.
return AM.Scale != 0;