aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine')
-rw-r--r--lib/Transforms/InstCombine/InstCombineAddSub.cpp12
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp8
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp23
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp2
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp20
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp38
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp77
-rw-r--r--lib/Transforms/InstCombine/InstCombineSelect.cpp2
-rw-r--r--lib/Transforms/InstCombine/InstCombineShifts.cpp4
-rw-r--r--lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp239
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp4
11 files changed, 229 insertions, 200 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 174ec8036274..e30a4bafb9b0 100644
--- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -1044,14 +1044,14 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
const APInt *RHSC;
if (match(RHS, m_APInt(RHSC))) {
- if (RHSC->isSignBit()) {
+ if (RHSC->isSignMask()) {
// If wrapping is not allowed, then the addition must set the sign bit:
- // X + (signbit) --> X | signbit
+ // X + (signmask) --> X | signmask
if (I.hasNoSignedWrap() || I.hasNoUnsignedWrap())
return BinaryOperator::CreateOr(LHS, RHS);
// If wrapping is allowed, then the addition flips the sign bit of LHS:
- // X + (signbit) --> X ^ signbit
+ // X + (signmask) --> X ^ signmask
return BinaryOperator::CreateXor(LHS, RHS);
}
@@ -1120,9 +1120,9 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
XorLHS);
}
- // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
- // transform them into (X + (signbit ^ C))
- if (XorRHS->getValue().isSignBit())
+ // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
+ // transform them into (X + (signmask ^ C))
+ if (XorRHS->getValue().isSignMask())
return BinaryOperator::CreateAdd(XorLHS,
ConstantExpr::getXor(XorRHS, CI));
}
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index b2a41c699202..3a98e8937bda 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -2078,7 +2078,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *NOr = Builder->CreateOr(A, Op1);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr,
- cast<Instruction>(Op0)->getOperand(1));
+ ConstantInt::get(NOr->getType(), *C));
}
// Y|(X^C) -> (X|Y)^C iff Y&C == 0
@@ -2087,7 +2087,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *NOr = Builder->CreateOr(A, Op0);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr,
- cast<Instruction>(Op1)->getOperand(1));
+ ConstantInt::get(NOr->getType(), *C));
}
}
@@ -2480,8 +2480,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
return BinaryOperator::CreateSub(SubOne(NegOp0CI),
Op0I->getOperand(0));
- } else if (RHSC->getValue().isSignBit()) {
- // (X + C) ^ signbit -> (X + C + signbit)
+ } else if (RHSC->getValue().isSignMask()) {
+ // (X + C) ^ signmask -> (X + C + signmask)
Constant *C = Builder->getInt(RHSC->getValue() + Op0CI->getValue());
return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 69484f47223f..e7aa1a457371 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -839,7 +839,8 @@ static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
// Length bits.
if (CI0) {
APInt Elt = CI0->getValue();
- Elt = Elt.lshr(Index).zextOrTrunc(Length);
+ Elt.lshrInPlace(Index);
+ Elt = Elt.zextOrTrunc(Length);
return LowConstantHighUndef(Elt.getZExtValue());
}
@@ -1036,7 +1037,7 @@ static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
// The PD variants uses bit 1 to select per-lane element index, so
// shift down to convert to generic shuffle mask index.
if (IsPD)
- Index = Index.lshr(1);
+ Index.lshrInPlace(1);
// The _256 variants are a bit trickier since the mask bits always index
// into the corresponding 128 half. In order to convert to a generic
@@ -4067,21 +4068,15 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
- !CallerPAL.isEmpty())
+ !CallerPAL.isEmpty()) {
// In this case we have more arguments than the new function type, but we
// won't be dropping them. Check that these extra arguments have attributes
// that are compatible with being a vararg call argument.
- for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
- unsigned Index = CallerPAL.getSlotIndex(i - 1);
- if (Index <= FT->getNumParams())
- break;
-
- // Check if it has an attribute that's incompatible with varargs.
- AttributeList PAttrs = CallerPAL.getSlotAttributes(i - 1);
- if (PAttrs.hasAttribute(Index, Attribute::StructRet))
- return false;
- }
-
+ unsigned SRetIdx;
+ if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
+ SRetIdx > FT->getNumParams())
+ return false;
+ }
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary.
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 25683132c786..9127ddca5915 100644
--- a/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -1591,7 +1591,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// GEP into CI would undo canonicalizing addrspacecast with different
// pointer types, causing infinite loops.
(!isa<AddrSpaceCastInst>(CI) ||
- GEP->getType() == GEP->getPointerOperand()->getType())) {
+ GEP->getType() == GEP->getPointerOperandType())) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index bbafa9e9f468..003029ae39d5 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -140,7 +140,7 @@ static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
case ICmpInst::ICMP_UGE:
// True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = true;
- return RHS.isSignBit();
+ return RHS.isSignMask();
default:
return false;
}
@@ -1532,14 +1532,14 @@ Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
}
if (Xor->hasOneUse()) {
- // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
- if (!Cmp.isEquality() && XorC->isSignBit()) {
+ // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
+ if (!Cmp.isEquality() && XorC->isSignMask()) {
Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
: Cmp.getSignedPredicate();
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
}
- // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
+ // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
: Cmp.getSignedPredicate();
@@ -2402,9 +2402,9 @@ Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
const APInt &Upper = CR.getUpper();
const APInt &Lower = CR.getLower();
if (Cmp.isSigned()) {
- if (Lower.isSignBit())
+ if (Lower.isSignMask())
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
- if (Upper.isSignBit())
+ if (Upper.isSignMask())
return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
} else {
if (Lower.isMinValue())
@@ -2604,7 +2604,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
break;
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
- if (BOC->isSignBit()) {
+ if (BOC->isSignMask()) {
Constant *Zero = Constant::getNullValue(BOp0->getType());
auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(NewPred, BOp0, Zero);
@@ -3032,9 +3032,9 @@ Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
- // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
+ // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
- if (CI->getValue().isSignBit()) {
+ if (CI->getValue().isSignMask()) {
ICmpInst::Predicate Pred =
I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
@@ -3797,7 +3797,7 @@ static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
bool isSignCheck) {
if (isSignCheck)
- return APInt::getSignBit(BitWidth);
+ return APInt::getSignMask(BitWidth);
ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
if (!CI) return APInt::getAllOnesValue(BitWidth);
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index 6288e054f1bc..675553017838 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -931,6 +931,18 @@ static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
return nullptr;
}
+static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
+ const Value *GEPI0 = GEPI->getOperand(0);
+ if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0)
+ return true;
+ }
+ if (isa<UndefValue>(Op) ||
+ (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0))
+ return true;
+ return false;
+}
+
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
@@ -979,27 +991,13 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (!LI.isUnordered()) return nullptr;
// load(gep null, ...) -> unreachable
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
- const Value *GEPI0 = GEPI->getOperand(0);
- // TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
- // Insert a new store to null instruction before the load to indicate
- // that this code is not reachable. We do this instead of inserting
- // an unreachable instruction directly because we cannot modify the
- // CFG.
- new StoreInst(UndefValue::get(LI.getType()),
- Constant::getNullValue(Op->getType()), &LI);
- return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
- }
- }
-
// load null/undef -> unreachable
- // TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<UndefValue>(Op) ||
- (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
- // Insert a new store to null instruction before the load to indicate that
- // this code is not reachable. We do this instead of inserting an
- // unreachable instruction directly because we cannot modify the CFG.
+ // TODO: Consider a target hook for valid address spaces for this xforms.
+ if (canSimplifyNullLoadOrGEP(LI, Op)) {
+ // Insert a new store to null instruction before the load to indicate
+ // that this code is not reachable. We do this instead of inserting
+ // an unreachable instruction directly because we cannot modify the
+ // CFG.
new StoreInst(UndefValue::get(LI.getType()),
Constant::getNullValue(Op->getType()), &LI);
return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index f1ac82057e6c..ce66581a491a 100644
--- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -944,22 +944,21 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
}
}
- if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
- if (One->isOne() && !I.getType()->isIntegerTy(1)) {
- bool isSigned = I.getOpcode() == Instruction::SDiv;
- if (isSigned) {
- // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
- // result is one, if Op1 is -1 then the result is minus one, otherwise
- // it's zero.
- Value *Inc = Builder->CreateAdd(Op1, One);
- Value *Cmp = Builder->CreateICmpULT(
- Inc, ConstantInt::get(I.getType(), 3));
- return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
- } else {
- // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
- // result is one, otherwise it's zero.
- return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
- }
+ if (match(Op0, m_One())) {
+ assert(!I.getType()->getScalarType()->isIntegerTy(1) &&
+ "i1 divide not removed?");
+ if (I.getOpcode() == Instruction::SDiv) {
+ // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
+ // result is one, if Op1 is -1 then the result is minus one, otherwise
+ // it's zero.
+ Value *Inc = Builder->CreateAdd(Op1, Op0);
+ Value *Cmp = Builder->CreateICmpULT(
+ Inc, ConstantInt::get(I.getType(), 3));
+ return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
+ } else {
+ // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
+ // result is one, otherwise it's zero.
+ return new ZExtInst(Builder->CreateICmpEQ(Op1, Op0), I.getType());
}
}
@@ -1238,25 +1237,23 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
- if (I.getType()->isIntegerTy()) {
- APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
- if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
- // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
+ APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
+ if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
- if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, &AC, &I, &DT)) {
- // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
- // Safe because the only negative value (1 << Y) can take on is
- // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
- // the sign bit set.
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
+ if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, &AC, &I, &DT)) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
}
}
@@ -1546,13 +1543,11 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
- if (I.getType()->isIntegerTy()) {
- APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
- MaskedValueIsZero(Op0, Mask, 0, &I)) {
- // X srem Y -> X urem Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateURem(Op0, Op1, I.getName());
- }
+ APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
+ MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
// If it's a constant vector, flip any negative values positive.
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
index 693b6c95c169..5d6d899da4b5 100644
--- a/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -618,7 +618,7 @@ Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
{
unsigned BitWidth =
DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
- APInt MinSignedValue = APInt::getSignBit(BitWidth);
+ APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
Value *X;
const APInt *Y, *C;
bool TrueWhenUnset;
diff --git a/lib/Transforms/InstCombine/InstCombineShifts.cpp b/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 9aa679c60e47..f77d713b9b07 100644
--- a/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -370,7 +370,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
MaskV <<= Op1C->getZExtValue();
else {
assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
- MaskV = MaskV.lshr(Op1C->getZExtValue());
+ MaskV.lshrInPlace(Op1C->getZExtValue());
}
// shift1 & 0x00FF
@@ -760,7 +760,7 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
}
// See if we can turn a signed shr into an unsigned shr.
- if (MaskedValueIsZero(Op0, APInt::getSignBit(BitWidth), 0, &I))
+ if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
return BinaryOperator::CreateLShr(Op0, Op1);
return nullptr;
diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index 4e6f02058d83..2ba052b7e02d 100644
--- a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -38,7 +38,7 @@ static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
// If there are no bits set that aren't demanded, nothing to do.
Demanded = Demanded.zextOrTrunc(C->getBitWidth());
- if ((~Demanded & *C) == 0)
+ if (C->isSubsetOf(Demanded))
return false;
// This instruction is producing bits that are not demanded. Shrink the RHS.
@@ -117,27 +117,16 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
KnownOne.getBitWidth() == BitWidth &&
"Value *V, DemandedMask, KnownZero and KnownOne "
"must have same BitWidth");
- const APInt *C;
- if (match(V, m_APInt(C))) {
- // We know all of the bits for a scalar constant or a splat vector constant!
- KnownOne = *C & DemandedMask;
- KnownZero = ~KnownOne & DemandedMask;
- return nullptr;
- }
- if (isa<ConstantPointerNull>(V)) {
- // We know all of the bits for a constant!
- KnownOne.clearAllBits();
- KnownZero = DemandedMask;
+
+ if (isa<Constant>(V)) {
+ computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
return nullptr;
}
KnownZero.clearAllBits();
KnownOne.clearAllBits();
- if (DemandedMask == 0) { // Not demanding any bits from V.
- if (isa<UndefValue>(V))
- return nullptr;
+ if (DemandedMask == 0) // Not demanding any bits from V.
return UndefValue::get(VTy);
- }
if (Depth == 6) // Limit search depth.
return nullptr;
@@ -187,16 +176,14 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(VTy, IKnownOne);
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
- (DemandedMask & ~LHSKnownZero))
+ if (DemandedMask.isSubsetOf(LHSKnownZero | RHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
- (DemandedMask & ~RHSKnownZero))
+ if (DemandedMask.isSubsetOf(RHSKnownZero | LHSKnownOne))
return I->getOperand(1);
// If the RHS is a constant, see if we can simplify it.
@@ -224,25 +211,14 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(VTy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
- (DemandedMask & ~LHSKnownOne))
+ if (DemandedMask.isSubsetOf(LHSKnownOne | RHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
- (DemandedMask & ~RHSKnownOne))
- return I->getOperand(1);
-
- // If all of the potentially set bits on one side are known to be set on
- // the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
- (DemandedMask & (~RHSKnownZero)))
- return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
- (DemandedMask & (~LHSKnownZero)))
+ if (DemandedMask.isSubsetOf(RHSKnownOne | LHSKnownZero))
return I->getOperand(1);
// If the RHS is a constant, see if we can simplify it.
@@ -271,20 +247,20 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(VTy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
- if ((DemandedMask & RHSKnownZero) == DemandedMask)
+ if (DemandedMask.isSubsetOf(RHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & LHSKnownZero) == DemandedMask)
+ if (DemandedMask.isSubsetOf(LHSKnownZero))
return I->getOperand(1);
// If all of the demanded bits are known to be zero on one side or the
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
+ if (DemandedMask.isSubsetOf(RHSKnownZero | LHSKnownZero)) {
Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
@@ -295,14 +271,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
- // all known
- if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
- Constant *AndC = Constant::getIntegerValue(VTy,
- ~RHSKnownOne & DemandedMask);
- Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
- return InsertNewInstWith(And, *I);
- }
+ if (DemandedMask.isSubsetOf(RHSKnownZero|RHSKnownOne) &&
+ RHSKnownOne.isSubsetOf(LHSKnownOne)) {
+ Constant *AndC = Constant::getIntegerValue(VTy,
+ ~RHSKnownOne & DemandedMask);
+ Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
+ return InsertNewInstWith(And, *I);
}
// If the RHS is a constant, see if we can simplify it.
@@ -529,9 +503,9 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
KnownZero.setLowBits(ShiftAmt);
}
break;
- case Instruction::LShr:
- // For a logical shift right
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ case Instruction::LShr: {
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Unsigned shift right.
@@ -546,13 +520,14 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Depth + 1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShiftAmt);
- KnownOne = KnownOne.lshr(ShiftAmt);
+ KnownZero.lshrInPlace(ShiftAmt);
+ KnownOne.lshrInPlace(ShiftAmt);
if (ShiftAmt)
KnownZero.setHighBits(ShiftAmt); // high bits known zero.
}
break;
- case Instruction::AShr:
+ }
+ case Instruction::AShr: {
// If this is an arithmetic shift right and only the low-bit is set, we can
// always convert this into a logical shr, even if the shift amount is
// variable. The low bit of the shift cannot be an input sign bit unless
@@ -566,15 +541,16 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the sign bit is the only bit demanded by this ashr, then there is no
// need to do it, the shift doesn't change the high bit.
- if (DemandedMask.isSignBit())
+ if (DemandedMask.isSignMask())
return I->getOperand(0);
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
- // If any of the "high bits" are demanded, we should set the sign bit as
+ // If any of the high bits are demanded, we should set the sign bit as
// demanded.
if (DemandedMask.countLeadingZeros() <= ShiftAmt)
DemandedMaskIn.setSignBit();
@@ -587,31 +563,32 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
Depth + 1))
return I;
+
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// Compute the new bits that are at the top now.
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
- KnownZero = KnownZero.lshr(ShiftAmt);
- KnownOne = KnownOne.lshr(ShiftAmt);
+ KnownZero.lshrInPlace(ShiftAmt);
+ KnownOne.lshrInPlace(ShiftAmt);
// Handle the sign bits.
- APInt SignBit(APInt::getSignBit(BitWidth));
+ APInt SignMask(APInt::getSignMask(BitWidth));
// Adjust to where it is now in the mask.
- SignBit = SignBit.lshr(ShiftAmt);
+ SignMask.lshrInPlace(ShiftAmt);
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
(HighBits & ~DemandedMask) == HighBits) {
- // Perform the logical shift right.
- BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
- SA, I->getName());
- NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
- return InsertNewInstWith(NewVal, *I);
- } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
+ I->getOperand(1));
+ LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
+ return InsertNewInstWith(LShr, *I);
+ } else if ((KnownOne & SignMask) != 0) { // New bits are known one.
KnownOne |= HighBits;
}
}
break;
+ }
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
// X % -1 demands all the bits because we don't want to introduce
@@ -624,7 +601,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return I->getOperand(0);
APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
+ APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
if (SimplifyDemandedBits(I, 0, Mask2, LHSKnownZero, LHSKnownOne,
Depth + 1))
return I;
@@ -635,26 +612,26 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If LHS is non-negative or has all low bits zero, then the upper bits
// are all zero.
- if (LHSKnownZero.isNegative() || ((LHSKnownZero & LowBits) == LowBits))
+ if (LHSKnownZero.isSignBitSet() || ((LHSKnownZero & LowBits) == LowBits))
KnownZero |= ~LowBits;
// If LHS is negative and not all low bits are zero, then the upper bits
// are all one.
- if (LHSKnownOne.isNegative() && ((LHSKnownOne & LowBits) != 0))
+ if (LHSKnownOne.isSignBitSet() && ((LHSKnownOne & LowBits) != 0))
KnownOne |= ~LowBits;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ break;
}
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero.
- if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ if (DemandedMask.isSignBitSet()) {
computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
CxtI);
// If it's known zero, our sign bit is also zero.
- if (LHSKnownZero.isNegative())
+ if (LHSKnownZero.isSignBitSet())
KnownZero.setSignBit();
}
break;
@@ -744,7 +721,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(KnownZero|KnownOne))
return Constant::getIntegerValue(VTy, KnownOne);
return nullptr;
}
@@ -783,17 +760,15 @@ Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(ITy, IKnownOne);
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and' in this
// context.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
- (DemandedMask & ~LHSKnownZero))
+ if (DemandedMask.isSubsetOf(LHSKnownZero | RHSKnownOne))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
- (DemandedMask & ~RHSKnownZero))
+ if (DemandedMask.isSubsetOf(RHSKnownZero | LHSKnownOne))
return I->getOperand(1);
KnownZero = std::move(IKnownZero);
@@ -817,26 +792,15 @@ Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(ITy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the
// other. These bits cannot contribute to the result of the 'or' in this
// context.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
- (DemandedMask & ~LHSKnownOne))
+ if (DemandedMask.isSubsetOf(LHSKnownOne | RHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
- (DemandedMask & ~RHSKnownOne))
- return I->getOperand(1);
-
- // If all of the potentially set bits on one side are known to be set on
- // the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
- (DemandedMask & (~RHSKnownZero)))
- return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
- (DemandedMask & (~LHSKnownZero)))
+ if (DemandedMask.isSubsetOf(RHSKnownOne | LHSKnownZero))
return I->getOperand(1);
KnownZero = std::move(IKnownZero);
@@ -861,14 +825,14 @@ Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(ITy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the
// other.
- if ((DemandedMask & RHSKnownZero) == DemandedMask)
+ if (DemandedMask.isSubsetOf(RHSKnownZero))
return I->getOperand(0);
- if ((DemandedMask & LHSKnownZero) == DemandedMask)
+ if (DemandedMask.isSubsetOf(LHSKnownZero))
return I->getOperand(1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
@@ -883,7 +847,7 @@ Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
// If this user is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
+ if (DemandedMask.isSubsetOf(KnownZero|KnownOne))
return Constant::getIntegerValue(ITy, KnownOne);
break;
@@ -1641,7 +1605,52 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts.setHighBits(VWidth / 2);
break;
case Intrinsic::amdgcn_buffer_load:
- case Intrinsic::amdgcn_buffer_load_format: {
+ case Intrinsic::amdgcn_buffer_load_format:
+ case Intrinsic::amdgcn_image_sample:
+ case Intrinsic::amdgcn_image_sample_cl:
+ case Intrinsic::amdgcn_image_sample_d:
+ case Intrinsic::amdgcn_image_sample_d_cl:
+ case Intrinsic::amdgcn_image_sample_l:
+ case Intrinsic::amdgcn_image_sample_b:
+ case Intrinsic::amdgcn_image_sample_b_cl:
+ case Intrinsic::amdgcn_image_sample_lz:
+ case Intrinsic::amdgcn_image_sample_cd:
+ case Intrinsic::amdgcn_image_sample_cd_cl:
+
+ case Intrinsic::amdgcn_image_sample_c:
+ case Intrinsic::amdgcn_image_sample_c_cl:
+ case Intrinsic::amdgcn_image_sample_c_d:
+ case Intrinsic::amdgcn_image_sample_c_d_cl:
+ case Intrinsic::amdgcn_image_sample_c_l:
+ case Intrinsic::amdgcn_image_sample_c_b:
+ case Intrinsic::amdgcn_image_sample_c_b_cl:
+ case Intrinsic::amdgcn_image_sample_c_lz:
+ case Intrinsic::amdgcn_image_sample_c_cd:
+ case Intrinsic::amdgcn_image_sample_c_cd_cl:
+
+ case Intrinsic::amdgcn_image_sample_o:
+ case Intrinsic::amdgcn_image_sample_cl_o:
+ case Intrinsic::amdgcn_image_sample_d_o:
+ case Intrinsic::amdgcn_image_sample_d_cl_o:
+ case Intrinsic::amdgcn_image_sample_l_o:
+ case Intrinsic::amdgcn_image_sample_b_o:
+ case Intrinsic::amdgcn_image_sample_b_cl_o:
+ case Intrinsic::amdgcn_image_sample_lz_o:
+ case Intrinsic::amdgcn_image_sample_cd_o:
+ case Intrinsic::amdgcn_image_sample_cd_cl_o:
+
+ case Intrinsic::amdgcn_image_sample_c_o:
+ case Intrinsic::amdgcn_image_sample_c_cl_o:
+ case Intrinsic::amdgcn_image_sample_c_d_o:
+ case Intrinsic::amdgcn_image_sample_c_d_cl_o:
+ case Intrinsic::amdgcn_image_sample_c_l_o:
+ case Intrinsic::amdgcn_image_sample_c_b_o:
+ case Intrinsic::amdgcn_image_sample_c_b_cl_o:
+ case Intrinsic::amdgcn_image_sample_c_lz_o:
+ case Intrinsic::amdgcn_image_sample_c_cd_o:
+ case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
+
+ case Intrinsic::amdgcn_image_getlod: {
if (VWidth == 1 || !DemandedElts.isMask())
return nullptr;
@@ -1656,8 +1665,17 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Type *NewTy = (NewNumElts == 1) ? EltTy :
VectorType::get(EltTy, NewNumElts);
- Function *NewIntrin = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
- NewTy);
+ auto IID = II->getIntrinsicID();
+
+ bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
+ IID == Intrinsic::amdgcn_buffer_load_format;
+
+ Function *NewIntrin = IsBuffer ?
+ Intrinsic::getDeclaration(M, IID, NewTy) :
+ // Samplers have 3 mangled types.
+ Intrinsic::getDeclaration(M, IID,
+ { NewTy, II->getArgOperand(0)->getType(),
+ II->getArgOperand(1)->getType()});
SmallVector<Value *, 5> Args;
for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
@@ -1669,6 +1687,29 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
NewCall->takeName(II);
NewCall->copyMetadata(*II);
+
+ if (!IsBuffer) {
+ ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
+ if (DMask) {
+ unsigned DMaskVal = DMask->getZExtValue() & 0xf;
+
+ unsigned PopCnt = 0;
+ unsigned NewDMask = 0;
+ for (unsigned I = 0; I < 4; ++I) {
+ const unsigned Bit = 1 << I;
+ if (!!(DMaskVal & Bit)) {
+ if (++PopCnt > NewNumElts)
+ break;
+
+ NewDMask |= Bit;
+ }
+ }
+
+ NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
+ }
+ }
+
+
if (NewNumElts == 1) {
return Builder->CreateInsertElement(UndefValue::get(V->getType()),
NewCall, static_cast<uint64_t>(0));
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index 88ef17bbc8fa..81f2d9fa179f 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -148,9 +148,9 @@ static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
bool Overflow = false;
if (Opcode == Instruction::Add)
- BVal->sadd_ov(*CVal, Overflow);
+ (void)BVal->sadd_ov(*CVal, Overflow);
else
- BVal->ssub_ov(*CVal, Overflow);
+ (void)BVal->ssub_ov(*CVal, Overflow);
return !Overflow;
}