aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/GVNHoist.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/GVNHoist.cpp')
-rw-r--r--lib/Transforms/Scalar/GVNHoist.cpp825
1 files changed, 825 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/GVNHoist.cpp b/lib/Transforms/Scalar/GVNHoist.cpp
new file mode 100644
index 000000000000..cce1db3874b7
--- /dev/null
+++ b/lib/Transforms/Scalar/GVNHoist.cpp
@@ -0,0 +1,825 @@
+//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass hoists expressions from branches to a common dominator. It uses
+// GVN (global value numbering) to discover expressions computing the same
+// values. The primary goal is to reduce the code size, and in some
+// cases reduce critical path (by exposing more ILP).
+// Hoisting may affect the performance in some cases. To mitigate that, hoisting
+// is disabled in the following cases.
+// 1. Scalars across calls.
+// 2. geps when corresponding load/store cannot be hoisted.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/GVN.h"
+#include "llvm/Transforms/Utils/MemorySSA.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "gvn-hoist"
+
+STATISTIC(NumHoisted, "Number of instructions hoisted");
+STATISTIC(NumRemoved, "Number of instructions removed");
+STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
+STATISTIC(NumLoadsRemoved, "Number of loads removed");
+STATISTIC(NumStoresHoisted, "Number of stores hoisted");
+STATISTIC(NumStoresRemoved, "Number of stores removed");
+STATISTIC(NumCallsHoisted, "Number of calls hoisted");
+STATISTIC(NumCallsRemoved, "Number of calls removed");
+
+static cl::opt<int>
+ MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
+ cl::desc("Max number of instructions to hoist "
+ "(default unlimited = -1)"));
+static cl::opt<int> MaxNumberOfBBSInPath(
+ "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
+ cl::desc("Max number of basic blocks on the path between "
+ "hoisting locations (default = 4, unlimited = -1)"));
+
+namespace {
+
+// Provides a sorting function based on the execution order of two instructions.
+struct SortByDFSIn {
+private:
+ DenseMap<const BasicBlock *, unsigned> &DFSNumber;
+
+public:
+ SortByDFSIn(DenseMap<const BasicBlock *, unsigned> &D) : DFSNumber(D) {}
+
+ // Returns true when A executes before B.
+ bool operator()(const Instruction *A, const Instruction *B) const {
+ // FIXME: libc++ has a std::sort() algorithm that will call the compare
+ // function on the same element. Once PR20837 is fixed and some more years
+ // pass by and all the buildbots have moved to a corrected std::sort(),
+ // enable the following assert:
+ //
+ // assert(A != B);
+
+ const BasicBlock *BA = A->getParent();
+ const BasicBlock *BB = B->getParent();
+ unsigned NA = DFSNumber[BA];
+ unsigned NB = DFSNumber[BB];
+ if (NA < NB)
+ return true;
+ if (NA == NB) {
+ // Sort them in the order they occur in the same basic block.
+ BasicBlock::const_iterator AI(A), BI(B);
+ return std::distance(AI, BI) < 0;
+ }
+ return false;
+ }
+};
+
+// A map from a pair of VNs to all the instructions with those VNs.
+typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
+ VNtoInsns;
+// An invalid value number Used when inserting a single value number into
+// VNtoInsns.
+enum : unsigned { InvalidVN = ~2U };
+
+// Records all scalar instructions candidate for code hoisting.
+class InsnInfo {
+ VNtoInsns VNtoScalars;
+
+public:
+ // Inserts I and its value number in VNtoScalars.
+ void insert(Instruction *I, GVN::ValueTable &VN) {
+ // Scalar instruction.
+ unsigned V = VN.lookupOrAdd(I);
+ VNtoScalars[{V, InvalidVN}].push_back(I);
+ }
+
+ const VNtoInsns &getVNTable() const { return VNtoScalars; }
+};
+
+// Records all load instructions candidate for code hoisting.
+class LoadInfo {
+ VNtoInsns VNtoLoads;
+
+public:
+ // Insert Load and the value number of its memory address in VNtoLoads.
+ void insert(LoadInst *Load, GVN::ValueTable &VN) {
+ if (Load->isSimple()) {
+ unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
+ VNtoLoads[{V, InvalidVN}].push_back(Load);
+ }
+ }
+
+ const VNtoInsns &getVNTable() const { return VNtoLoads; }
+};
+
+// Records all store instructions candidate for code hoisting.
+class StoreInfo {
+ VNtoInsns VNtoStores;
+
+public:
+ // Insert the Store and a hash number of the store address and the stored
+ // value in VNtoStores.
+ void insert(StoreInst *Store, GVN::ValueTable &VN) {
+ if (!Store->isSimple())
+ return;
+ // Hash the store address and the stored value.
+ Value *Ptr = Store->getPointerOperand();
+ Value *Val = Store->getValueOperand();
+ VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
+ }
+
+ const VNtoInsns &getVNTable() const { return VNtoStores; }
+};
+
+// Records all call instructions candidate for code hoisting.
+class CallInfo {
+ VNtoInsns VNtoCallsScalars;
+ VNtoInsns VNtoCallsLoads;
+ VNtoInsns VNtoCallsStores;
+
+public:
+ // Insert Call and its value numbering in one of the VNtoCalls* containers.
+ void insert(CallInst *Call, GVN::ValueTable &VN) {
+ // A call that doesNotAccessMemory is handled as a Scalar,
+ // onlyReadsMemory will be handled as a Load instruction,
+ // all other calls will be handled as stores.
+ unsigned V = VN.lookupOrAdd(Call);
+ auto Entry = std::make_pair(V, InvalidVN);
+
+ if (Call->doesNotAccessMemory())
+ VNtoCallsScalars[Entry].push_back(Call);
+ else if (Call->onlyReadsMemory())
+ VNtoCallsLoads[Entry].push_back(Call);
+ else
+ VNtoCallsStores[Entry].push_back(Call);
+ }
+
+ const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
+
+ const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
+
+ const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
+};
+
+typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
+typedef SmallVector<Instruction *, 4> SmallVecInsn;
+typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
+
+// This pass hoists common computations across branches sharing common
+// dominator. The primary goal is to reduce the code size, and in some
+// cases reduce critical path (by exposing more ILP).
+class GVNHoist {
+public:
+ GVN::ValueTable VN;
+ DominatorTree *DT;
+ AliasAnalysis *AA;
+ MemoryDependenceResults *MD;
+ const bool OptForMinSize;
+ DenseMap<const BasicBlock *, unsigned> DFSNumber;
+ BBSideEffectsSet BBSideEffects;
+ MemorySSA *MSSA;
+ int HoistedCtr;
+
+ enum InsKind { Unknown, Scalar, Load, Store };
+
+ GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md,
+ bool OptForMinSize)
+ : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {}
+
+ // Return true when there are exception handling in BB.
+ bool hasEH(const BasicBlock *BB) {
+ auto It = BBSideEffects.find(BB);
+ if (It != BBSideEffects.end())
+ return It->second;
+
+ if (BB->isEHPad() || BB->hasAddressTaken()) {
+ BBSideEffects[BB] = true;
+ return true;
+ }
+
+ if (BB->getTerminator()->mayThrow()) {
+ BBSideEffects[BB] = true;
+ return true;
+ }
+
+ BBSideEffects[BB] = false;
+ return false;
+ }
+
+ // Return true when all paths from A to the end of the function pass through
+ // either B or C.
+ bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B,
+ const BasicBlock *C) {
+ // We fully copy the WL in order to be able to remove items from it.
+ SmallPtrSet<const BasicBlock *, 2> WL;
+ WL.insert(B);
+ WL.insert(C);
+
+ for (auto It = df_begin(A), E = df_end(A); It != E;) {
+ // There exists a path from A to the exit of the function if we are still
+ // iterating in DF traversal and we removed all instructions from the work
+ // list.
+ if (WL.empty())
+ return false;
+
+ const BasicBlock *BB = *It;
+ if (WL.erase(BB)) {
+ // Stop DFS traversal when BB is in the work list.
+ It.skipChildren();
+ continue;
+ }
+
+ // Check for end of function, calls that do not return, etc.
+ if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator()))
+ return false;
+
+ // Increment DFS traversal when not skipping children.
+ ++It;
+ }
+
+ return true;
+ }
+
+ /* Return true when I1 appears before I2 in the instructions of BB. */
+ bool firstInBB(BasicBlock *BB, const Instruction *I1, const Instruction *I2) {
+ for (Instruction &I : *BB) {
+ if (&I == I1)
+ return true;
+ if (&I == I2)
+ return false;
+ }
+
+ llvm_unreachable("I1 and I2 not found in BB");
+ }
+ // Return true when there are users of Def in BB.
+ bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB,
+ const Instruction *OldPt) {
+ const BasicBlock *DefBB = Def->getBlock();
+ const BasicBlock *OldBB = OldPt->getParent();
+
+ for (User *U : Def->users())
+ if (auto *MU = dyn_cast<MemoryUse>(U)) {
+ BasicBlock *UBB = MU->getBlock();
+ // Only analyze uses in BB.
+ if (BB != UBB)
+ continue;
+
+ // A use in the same block as the Def is on the path.
+ if (UBB == DefBB) {
+ assert(MSSA->locallyDominates(Def, MU) && "def not dominating use");
+ return true;
+ }
+
+ if (UBB != OldBB)
+ return true;
+
+ // It is only harmful to hoist when the use is before OldPt.
+ if (firstInBB(UBB, MU->getMemoryInst(), OldPt))
+ return true;
+ }
+
+ return false;
+ }
+
+ // Return true when there are exception handling or loads of memory Def
+ // between OldPt and NewPt.
+
+ // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
+ // return true when the counter NBBsOnAllPaths reaces 0, except when it is
+ // initialized to -1 which is unlimited.
+ bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt,
+ MemoryAccess *Def, int &NBBsOnAllPaths) {
+ const BasicBlock *NewBB = NewPt->getParent();
+ const BasicBlock *OldBB = OldPt->getParent();
+ assert(DT->dominates(NewBB, OldBB) && "invalid path");
+ assert(DT->dominates(Def->getBlock(), NewBB) &&
+ "def does not dominate new hoisting point");
+
+ // Walk all basic blocks reachable in depth-first iteration on the inverse
+ // CFG from OldBB to NewBB. These blocks are all the blocks that may be
+ // executed between the execution of NewBB and OldBB. Hoisting an expression
+ // from OldBB into NewBB has to be safe on all execution paths.
+ for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
+ if (*I == NewBB) {
+ // Stop traversal when reaching HoistPt.
+ I.skipChildren();
+ continue;
+ }
+
+ // Impossible to hoist with exceptions on the path.
+ if (hasEH(*I))
+ return true;
+
+ // Check that we do not move a store past loads.
+ if (hasMemoryUseOnPath(Def, *I, OldPt))
+ return true;
+
+ // Stop walk once the limit is reached.
+ if (NBBsOnAllPaths == 0)
+ return true;
+
+ // -1 is unlimited number of blocks on all paths.
+ if (NBBsOnAllPaths != -1)
+ --NBBsOnAllPaths;
+
+ ++I;
+ }
+
+ return false;
+ }
+
+ // Return true when there are exception handling between HoistPt and BB.
+ // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
+ // return true when the counter NBBsOnAllPaths reaches 0, except when it is
+ // initialized to -1 which is unlimited.
+ bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB,
+ int &NBBsOnAllPaths) {
+ assert(DT->dominates(HoistPt, BB) && "Invalid path");
+
+ // Walk all basic blocks reachable in depth-first iteration on
+ // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
+ // blocks that may be executed between the execution of NewHoistPt and
+ // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
+ // on all execution paths.
+ for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) {
+ if (*I == HoistPt) {
+ // Stop traversal when reaching NewHoistPt.
+ I.skipChildren();
+ continue;
+ }
+
+ // Impossible to hoist with exceptions on the path.
+ if (hasEH(*I))
+ return true;
+
+ // Stop walk once the limit is reached.
+ if (NBBsOnAllPaths == 0)
+ return true;
+
+ // -1 is unlimited number of blocks on all paths.
+ if (NBBsOnAllPaths != -1)
+ --NBBsOnAllPaths;
+
+ ++I;
+ }
+
+ return false;
+ }
+
+ // Return true when it is safe to hoist a memory load or store U from OldPt
+ // to NewPt.
+ bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
+ MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
+
+ // In place hoisting is safe.
+ if (NewPt == OldPt)
+ return true;
+
+ const BasicBlock *NewBB = NewPt->getParent();
+ const BasicBlock *OldBB = OldPt->getParent();
+ const BasicBlock *UBB = U->getBlock();
+
+ // Check for dependences on the Memory SSA.
+ MemoryAccess *D = U->getDefiningAccess();
+ BasicBlock *DBB = D->getBlock();
+ if (DT->properlyDominates(NewBB, DBB))
+ // Cannot move the load or store to NewBB above its definition in DBB.
+ return false;
+
+ if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
+ if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
+ if (firstInBB(DBB, NewPt, UD->getMemoryInst()))
+ // Cannot move the load or store to NewPt above its definition in D.
+ return false;
+
+ // Check for unsafe hoistings due to side effects.
+ if (K == InsKind::Store) {
+ if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths))
+ return false;
+ } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
+ return false;
+
+ if (UBB == NewBB) {
+ if (DT->properlyDominates(DBB, NewBB))
+ return true;
+ assert(UBB == DBB);
+ assert(MSSA->locallyDominates(D, U));
+ }
+
+ // No side effects: it is safe to hoist.
+ return true;
+ }
+
+ // Return true when it is safe to hoist scalar instructions from BB1 and BB2
+ // to HoistBB.
+ bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1,
+ const BasicBlock *BB2, int &NBBsOnAllPaths) {
+ // Check that the hoisted expression is needed on all paths. When HoistBB
+ // already contains an instruction to be hoisted, the expression is needed
+ // on all paths. Enable scalar hoisting at -Oz as it is safe to hoist
+ // scalars to a place where they are partially needed.
+ if (!OptForMinSize && BB1 != HoistBB &&
+ !hoistingFromAllPaths(HoistBB, BB1, BB2))
+ return false;
+
+ if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) ||
+ hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths))
+ return false;
+
+ // Safe to hoist scalars from BB1 and BB2 to HoistBB.
+ return true;
+ }
+
+ // Each element of a hoisting list contains the basic block where to hoist and
+ // a list of instructions to be hoisted.
+ typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
+ typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
+
+ // Partition InstructionsToHoist into a set of candidates which can share a
+ // common hoisting point. The partitions are collected in HPL. IsScalar is
+ // true when the instructions in InstructionsToHoist are scalars. IsLoad is
+ // true when the InstructionsToHoist are loads, false when they are stores.
+ void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
+ HoistingPointList &HPL, InsKind K) {
+ // No need to sort for two instructions.
+ if (InstructionsToHoist.size() > 2) {
+ SortByDFSIn Pred(DFSNumber);
+ std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
+ }
+
+ int NBBsOnAllPaths = MaxNumberOfBBSInPath;
+
+ SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
+ SmallVecImplInsn::iterator Start = II;
+ Instruction *HoistPt = *II;
+ BasicBlock *HoistBB = HoistPt->getParent();
+ MemoryUseOrDef *UD;
+ if (K != InsKind::Scalar)
+ UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt));
+
+ for (++II; II != InstructionsToHoist.end(); ++II) {
+ Instruction *Insn = *II;
+ BasicBlock *BB = Insn->getParent();
+ BasicBlock *NewHoistBB;
+ Instruction *NewHoistPt;
+
+ if (BB == HoistBB) {
+ NewHoistBB = HoistBB;
+ NewHoistPt = firstInBB(BB, Insn, HoistPt) ? Insn : HoistPt;
+ } else {
+ NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
+ if (NewHoistBB == BB)
+ NewHoistPt = Insn;
+ else if (NewHoistBB == HoistBB)
+ NewHoistPt = HoistPt;
+ else
+ NewHoistPt = NewHoistBB->getTerminator();
+ }
+
+ if (K == InsKind::Scalar) {
+ if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) {
+ // Extend HoistPt to NewHoistPt.
+ HoistPt = NewHoistPt;
+ HoistBB = NewHoistBB;
+ continue;
+ }
+ } else {
+ // When NewBB already contains an instruction to be hoisted, the
+ // expression is needed on all paths.
+ // Check that the hoisted expression is needed on all paths: it is
+ // unsafe to hoist loads to a place where there may be a path not
+ // loading from the same address: for instance there may be a branch on
+ // which the address of the load may not be initialized.
+ if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
+ hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) &&
+ // Also check that it is safe to move the load or store from HoistPt
+ // to NewHoistPt, and from Insn to NewHoistPt.
+ safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) &&
+ safeToHoistLdSt(NewHoistPt, Insn,
+ cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)),
+ K, NBBsOnAllPaths)) {
+ // Extend HoistPt to NewHoistPt.
+ HoistPt = NewHoistPt;
+ HoistBB = NewHoistBB;
+ continue;
+ }
+ }
+
+ // At this point it is not safe to extend the current hoisting to
+ // NewHoistPt: save the hoisting list so far.
+ if (std::distance(Start, II) > 1)
+ HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
+
+ // Start over from BB.
+ Start = II;
+ if (K != InsKind::Scalar)
+ UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start));
+ HoistPt = Insn;
+ HoistBB = BB;
+ NBBsOnAllPaths = MaxNumberOfBBSInPath;
+ }
+
+ // Save the last partition.
+ if (std::distance(Start, II) > 1)
+ HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
+ }
+
+ // Initialize HPL from Map.
+ void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
+ InsKind K) {
+ for (const auto &Entry : Map) {
+ if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
+ return;
+
+ const SmallVecInsn &V = Entry.second;
+ if (V.size() < 2)
+ continue;
+
+ // Compute the insertion point and the list of expressions to be hoisted.
+ SmallVecInsn InstructionsToHoist;
+ for (auto I : V)
+ if (!hasEH(I->getParent()))
+ InstructionsToHoist.push_back(I);
+
+ if (!InstructionsToHoist.empty())
+ partitionCandidates(InstructionsToHoist, HPL, K);
+ }
+ }
+
+ // Return true when all operands of Instr are available at insertion point
+ // HoistPt. When limiting the number of hoisted expressions, one could hoist
+ // a load without hoisting its access function. So before hoisting any
+ // expression, make sure that all its operands are available at insert point.
+ bool allOperandsAvailable(const Instruction *I,
+ const BasicBlock *HoistPt) const {
+ for (const Use &Op : I->operands())
+ if (const auto *Inst = dyn_cast<Instruction>(&Op))
+ if (!DT->dominates(Inst->getParent(), HoistPt))
+ return false;
+
+ return true;
+ }
+
+ Instruction *firstOfTwo(Instruction *I, Instruction *J) const {
+ for (Instruction &I1 : *I->getParent())
+ if (&I1 == I || &I1 == J)
+ return &I1;
+ llvm_unreachable("Both I and J must be from same BB");
+ }
+
+ // Replace the use of From with To in Insn.
+ void replaceUseWith(Instruction *Insn, Value *From, Value *To) const {
+ for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
+ UI != UE;) {
+ Use &U = *UI++;
+ if (U.getUser() == Insn) {
+ U.set(To);
+ return;
+ }
+ }
+ llvm_unreachable("should replace exactly once");
+ }
+
+ bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt) const {
+ // Check whether the GEP of a ld/st can be synthesized at HoistPt.
+ GetElementPtrInst *Gep = nullptr;
+ Instruction *Val = nullptr;
+ if (auto *Ld = dyn_cast<LoadInst>(Repl))
+ Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
+ if (auto *St = dyn_cast<StoreInst>(Repl)) {
+ Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
+ Val = dyn_cast<Instruction>(St->getValueOperand());
+ // Check that the stored value is available.
+ if (Val) {
+ if (isa<GetElementPtrInst>(Val)) {
+ // Check whether we can compute the GEP at HoistPt.
+ if (!allOperandsAvailable(Val, HoistPt))
+ return false;
+ } else if (!DT->dominates(Val->getParent(), HoistPt))
+ return false;
+ }
+ }
+
+ // Check whether we can compute the Gep at HoistPt.
+ if (!Gep || !allOperandsAvailable(Gep, HoistPt))
+ return false;
+
+ // Copy the gep before moving the ld/st.
+ Instruction *ClonedGep = Gep->clone();
+ ClonedGep->insertBefore(HoistPt->getTerminator());
+ replaceUseWith(Repl, Gep, ClonedGep);
+
+ // Also copy Val when it is a GEP.
+ if (Val && isa<GetElementPtrInst>(Val)) {
+ Instruction *ClonedVal = Val->clone();
+ ClonedVal->insertBefore(HoistPt->getTerminator());
+ replaceUseWith(Repl, Val, ClonedVal);
+ }
+
+ return true;
+ }
+
+ std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
+ unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
+ for (const HoistingPointInfo &HP : HPL) {
+ // Find out whether we already have one of the instructions in HoistPt,
+ // in which case we do not have to move it.
+ BasicBlock *HoistPt = HP.first;
+ const SmallVecInsn &InstructionsToHoist = HP.second;
+ Instruction *Repl = nullptr;
+ for (Instruction *I : InstructionsToHoist)
+ if (I->getParent() == HoistPt) {
+ // If there are two instructions in HoistPt to be hoisted in place:
+ // update Repl to be the first one, such that we can rename the uses
+ // of the second based on the first.
+ Repl = !Repl ? I : firstOfTwo(Repl, I);
+ }
+
+ if (Repl) {
+ // Repl is already in HoistPt: it remains in place.
+ assert(allOperandsAvailable(Repl, HoistPt) &&
+ "instruction depends on operands that are not available");
+ } else {
+ // When we do not find Repl in HoistPt, select the first in the list
+ // and move it to HoistPt.
+ Repl = InstructionsToHoist.front();
+
+ // We can move Repl in HoistPt only when all operands are available.
+ // The order in which hoistings are done may influence the availability
+ // of operands.
+ if (!allOperandsAvailable(Repl, HoistPt) &&
+ !makeOperandsAvailable(Repl, HoistPt))
+ continue;
+ Repl->moveBefore(HoistPt->getTerminator());
+ }
+
+ if (isa<LoadInst>(Repl))
+ ++NL;
+ else if (isa<StoreInst>(Repl))
+ ++NS;
+ else if (isa<CallInst>(Repl))
+ ++NC;
+ else // Scalar
+ ++NI;
+
+ // Remove and rename all other instructions.
+ for (Instruction *I : InstructionsToHoist)
+ if (I != Repl) {
+ ++NR;
+ if (isa<LoadInst>(Repl))
+ ++NumLoadsRemoved;
+ else if (isa<StoreInst>(Repl))
+ ++NumStoresRemoved;
+ else if (isa<CallInst>(Repl))
+ ++NumCallsRemoved;
+ I->replaceAllUsesWith(Repl);
+ I->eraseFromParent();
+ }
+ }
+
+ NumHoisted += NL + NS + NC + NI;
+ NumRemoved += NR;
+ NumLoadsHoisted += NL;
+ NumStoresHoisted += NS;
+ NumCallsHoisted += NC;
+ return {NI, NL + NC + NS};
+ }
+
+ // Hoist all expressions. Returns Number of scalars hoisted
+ // and number of non-scalars hoisted.
+ std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
+ InsnInfo II;
+ LoadInfo LI;
+ StoreInfo SI;
+ CallInfo CI;
+ for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
+ for (Instruction &I1 : *BB) {
+ if (auto *Load = dyn_cast<LoadInst>(&I1))
+ LI.insert(Load, VN);
+ else if (auto *Store = dyn_cast<StoreInst>(&I1))
+ SI.insert(Store, VN);
+ else if (auto *Call = dyn_cast<CallInst>(&I1)) {
+ if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
+ if (isa<DbgInfoIntrinsic>(Intr) ||
+ Intr->getIntrinsicID() == Intrinsic::assume)
+ continue;
+ }
+ if (Call->mayHaveSideEffects()) {
+ if (!OptForMinSize)
+ break;
+ // We may continue hoisting across calls which write to memory.
+ if (Call->mayThrow())
+ break;
+ }
+ CI.insert(Call, VN);
+ } else if (OptForMinSize || !isa<GetElementPtrInst>(&I1))
+ // Do not hoist scalars past calls that may write to memory because
+ // that could result in spills later. geps are handled separately.
+ // TODO: We can relax this for targets like AArch64 as they have more
+ // registers than X86.
+ II.insert(&I1, VN);
+ }
+ }
+
+ HoistingPointList HPL;
+ computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
+ computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
+ computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
+ computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
+ computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
+ computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
+ return hoist(HPL);
+ }
+
+ bool run(Function &F) {
+ VN.setDomTree(DT);
+ VN.setAliasAnalysis(AA);
+ VN.setMemDep(MD);
+ bool Res = false;
+
+ unsigned I = 0;
+ for (const BasicBlock *BB : depth_first(&F.getEntryBlock()))
+ DFSNumber.insert({BB, ++I});
+
+ // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
+ while (1) {
+ // FIXME: only compute MemorySSA once. We need to update the analysis in
+ // the same time as transforming the code.
+ MemorySSA M(F, AA, DT);
+ MSSA = &M;
+
+ auto HoistStat = hoistExpressions(F);
+ if (HoistStat.first + HoistStat.second == 0) {
+ return Res;
+ }
+ if (HoistStat.second > 0) {
+ // To address a limitation of the current GVN, we need to rerun the
+ // hoisting after we hoisted loads in order to be able to hoist all
+ // scalars dependent on the hoisted loads. Same for stores.
+ VN.clear();
+ }
+ Res = true;
+ }
+
+ return Res;
+ }
+};
+
+class GVNHoistLegacyPass : public FunctionPass {
+public:
+ static char ID;
+
+ GVNHoistLegacyPass() : FunctionPass(ID) {
+ initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
+
+ GVNHoist G(&DT, &AA, &MD, F.optForMinSize());
+ return G.run(F);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<MemoryDependenceWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+};
+} // namespace
+
+PreservedAnalyses GVNHoistPass::run(Function &F,
+ AnalysisManager<Function> &AM) {
+ DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ AliasAnalysis &AA = AM.getResult<AAManager>(F);
+ MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
+
+ GVNHoist G(&DT, &AA, &MD, F.optForMinSize());
+ if (!G.run(F))
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ return PA;
+}
+
+char GVNHoistLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
+ "Early GVN Hoisting of Expressions", false, false)
+INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
+ "Early GVN Hoisting of Expressions", false, false)
+
+FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }