aboutsummaryrefslogtreecommitdiff
path: root/lib/asan/tests/asan_interface_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'lib/asan/tests/asan_interface_test.cc')
-rw-r--r--lib/asan/tests/asan_interface_test.cc334
1 files changed, 334 insertions, 0 deletions
diff --git a/lib/asan/tests/asan_interface_test.cc b/lib/asan/tests/asan_interface_test.cc
new file mode 100644
index 000000000000..c26ed92468b3
--- /dev/null
+++ b/lib/asan/tests/asan_interface_test.cc
@@ -0,0 +1,334 @@
+//===-- asan_interface_test.cc ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+//
+//===----------------------------------------------------------------------===//
+#include <pthread.h>
+#include <stdio.h>
+#include <string.h>
+
+#include "asan_test_config.h"
+#include "asan_test_utils.h"
+#include "asan_interface.h"
+
+TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
+ EXPECT_EQ(1, __asan_get_estimated_allocated_size(0));
+ const size_t sizes[] = { 1, 30, 1<<30 };
+ for (size_t i = 0; i < 3; i++) {
+ EXPECT_EQ(sizes[i], __asan_get_estimated_allocated_size(sizes[i]));
+ }
+}
+
+static const char* kGetAllocatedSizeErrorMsg =
+ "__asan_get_allocated_size failed";
+
+TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
+ const size_t kArraySize = 100;
+ char *array = Ident((char*)malloc(kArraySize));
+ int *int_ptr = Ident(new int);
+
+ // Allocated memory is owned by allocator. Allocated size should be
+ // equal to requested size.
+ EXPECT_EQ(true, __asan_get_ownership(array));
+ EXPECT_EQ(kArraySize, __asan_get_allocated_size(array));
+ EXPECT_EQ(true, __asan_get_ownership(int_ptr));
+ EXPECT_EQ(sizeof(int), __asan_get_allocated_size(int_ptr));
+
+ // We cannot call GetAllocatedSize from the memory we didn't map,
+ // and from the interior pointers (not returned by previous malloc).
+ void *wild_addr = (void*)0x1;
+ EXPECT_EQ(false, __asan_get_ownership(wild_addr));
+ EXPECT_DEATH(__asan_get_allocated_size(wild_addr), kGetAllocatedSizeErrorMsg);
+ EXPECT_EQ(false, __asan_get_ownership(array + kArraySize / 2));
+ EXPECT_DEATH(__asan_get_allocated_size(array + kArraySize / 2),
+ kGetAllocatedSizeErrorMsg);
+
+ // NULL is a valid argument and is owned.
+ EXPECT_EQ(true, __asan_get_ownership(NULL));
+ EXPECT_EQ(0, __asan_get_allocated_size(NULL));
+
+ // When memory is freed, it's not owned, and call to GetAllocatedSize
+ // is forbidden.
+ free(array);
+ EXPECT_EQ(false, __asan_get_ownership(array));
+ EXPECT_DEATH(__asan_get_allocated_size(array), kGetAllocatedSizeErrorMsg);
+
+ delete int_ptr;
+}
+
+TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
+ size_t before_malloc, after_malloc, after_free;
+ char *array;
+ const size_t kMallocSize = 100;
+ before_malloc = __asan_get_current_allocated_bytes();
+
+ array = Ident((char*)malloc(kMallocSize));
+ after_malloc = __asan_get_current_allocated_bytes();
+ EXPECT_EQ(before_malloc + kMallocSize, after_malloc);
+
+ free(array);
+ after_free = __asan_get_current_allocated_bytes();
+ EXPECT_EQ(before_malloc, after_free);
+}
+
+static void DoDoubleFree() {
+ int *x = Ident(new int);
+ delete Ident(x);
+ delete Ident(x);
+}
+
+// This test is run in a separate process, so that large malloced
+// chunk won't remain in the free lists after the test.
+// Note: use ASSERT_* instead of EXPECT_* here.
+static void RunGetHeapSizeTestAndDie() {
+ size_t old_heap_size, new_heap_size, heap_growth;
+ // We unlikely have have chunk of this size in free list.
+ static const size_t kLargeMallocSize = 1 << 29; // 512M
+ old_heap_size = __asan_get_heap_size();
+ fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
+ free(Ident(malloc(kLargeMallocSize)));
+ new_heap_size = __asan_get_heap_size();
+ heap_growth = new_heap_size - old_heap_size;
+ fprintf(stderr, "heap growth after first malloc: %zu\n", heap_growth);
+ ASSERT_GE(heap_growth, kLargeMallocSize);
+ ASSERT_LE(heap_growth, 2 * kLargeMallocSize);
+
+ // Now large chunk should fall into free list, and can be
+ // allocated without increasing heap size.
+ old_heap_size = new_heap_size;
+ free(Ident(malloc(kLargeMallocSize)));
+ heap_growth = __asan_get_heap_size() - old_heap_size;
+ fprintf(stderr, "heap growth after second malloc: %zu\n", heap_growth);
+ ASSERT_LT(heap_growth, kLargeMallocSize);
+
+ // Test passed. Now die with expected double-free.
+ DoDoubleFree();
+}
+
+TEST(AddressSanitizerInterface, GetHeapSizeTest) {
+ EXPECT_DEATH(RunGetHeapSizeTestAndDie(), "double-free");
+}
+
+// Note: use ASSERT_* instead of EXPECT_* here.
+static void DoLargeMallocForGetFreeBytesTestAndDie() {
+ size_t old_free_bytes, new_free_bytes;
+ static const size_t kLargeMallocSize = 1 << 29; // 512M
+ // If we malloc and free a large memory chunk, it will not fall
+ // into quarantine and will be available for future requests.
+ old_free_bytes = __asan_get_free_bytes();
+ fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
+ fprintf(stderr, "free bytes before malloc: %zu\n", old_free_bytes);
+ free(Ident(malloc(kLargeMallocSize)));
+ new_free_bytes = __asan_get_free_bytes();
+ fprintf(stderr, "free bytes after malloc and free: %zu\n", new_free_bytes);
+ ASSERT_GE(new_free_bytes, old_free_bytes + kLargeMallocSize);
+ // Test passed.
+ DoDoubleFree();
+}
+
+TEST(AddressSanitizerInterface, GetFreeBytesTest) {
+ static const size_t kNumOfChunks = 100;
+ static const size_t kChunkSize = 100;
+ char *chunks[kNumOfChunks];
+ size_t i;
+ size_t old_free_bytes, new_free_bytes;
+ // Allocate a small chunk. Now allocator probably has a lot of these
+ // chunks to fulfill future requests. So, future requests will decrease
+ // the number of free bytes.
+ chunks[0] = Ident((char*)malloc(kChunkSize));
+ old_free_bytes = __asan_get_free_bytes();
+ for (i = 1; i < kNumOfChunks; i++) {
+ chunks[i] = Ident((char*)malloc(kChunkSize));
+ new_free_bytes = __asan_get_free_bytes();
+ EXPECT_LT(new_free_bytes, old_free_bytes);
+ old_free_bytes = new_free_bytes;
+ }
+ // Deleting these chunks will move them to quarantine, number of free
+ // bytes won't increase.
+ for (i = 0; i < kNumOfChunks; i++) {
+ free(chunks[i]);
+ EXPECT_EQ(old_free_bytes, __asan_get_free_bytes());
+ }
+ EXPECT_DEATH(DoLargeMallocForGetFreeBytesTestAndDie(), "double-free");
+}
+
+static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<20, 357};
+static const size_t kManyThreadsIterations = 250;
+static const size_t kManyThreadsNumThreads = 200;
+
+void *ManyThreadsWithStatsWorker(void *arg) {
+ for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
+ for (size_t size_index = 0; size_index < 4; size_index++) {
+ free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
+ }
+ }
+ return 0;
+}
+
+TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
+ size_t before_test, after_test, i;
+ pthread_t threads[kManyThreadsNumThreads];
+ before_test = __asan_get_current_allocated_bytes();
+ for (i = 0; i < kManyThreadsNumThreads; i++) {
+ pthread_create(&threads[i], 0,
+ (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
+ }
+ for (i = 0; i < kManyThreadsNumThreads; i++) {
+ pthread_join(threads[i], 0);
+ }
+ after_test = __asan_get_current_allocated_bytes();
+ // ASan stats also reflect memory usage of internal ASan RTL structs,
+ // so we can't check for equality here.
+ EXPECT_LT(after_test, before_test + (1UL<<20));
+}
+
+TEST(AddressSanitizerInterface, ExitCode) {
+ int original_exit_code = __asan_set_error_exit_code(7);
+ EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(7), "");
+ EXPECT_EQ(7, __asan_set_error_exit_code(8));
+ EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(8), "");
+ EXPECT_EQ(8, __asan_set_error_exit_code(original_exit_code));
+ EXPECT_EXIT(DoDoubleFree(),
+ ::testing::ExitedWithCode(original_exit_code), "");
+}
+
+static const char* kUseAfterPoisonErrorMessage = "use-after-poison";
+
+#define ACCESS(ptr, offset) Ident(*(ptr + offset))
+
+#define DIE_ON_ACCESS(ptr, offset) \
+ EXPECT_DEATH(Ident(*(ptr + offset)), kUseAfterPoisonErrorMessage)
+
+TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
+ char *array = Ident((char*)malloc(120));
+ // poison array[40..80)
+ ASAN_POISON_MEMORY_REGION(array + 40, 40);
+ ACCESS(array, 39);
+ ACCESS(array, 80);
+ DIE_ON_ACCESS(array, 40);
+ DIE_ON_ACCESS(array, 60);
+ DIE_ON_ACCESS(array, 79);
+ ASAN_UNPOISON_MEMORY_REGION(array + 40, 40);
+ // access previously poisoned memory.
+ ACCESS(array, 40);
+ ACCESS(array, 79);
+ free(array);
+}
+
+TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
+ char *array = Ident((char*)malloc(120));
+ // Poison [0..40) and [80..120)
+ ASAN_POISON_MEMORY_REGION(array, 40);
+ ASAN_POISON_MEMORY_REGION(array + 80, 40);
+ DIE_ON_ACCESS(array, 20);
+ ACCESS(array, 60);
+ DIE_ON_ACCESS(array, 100);
+ // Poison whole array - [0..120)
+ ASAN_POISON_MEMORY_REGION(array, 120);
+ DIE_ON_ACCESS(array, 60);
+ // Unpoison [24..96)
+ ASAN_UNPOISON_MEMORY_REGION(array + 24, 72);
+ DIE_ON_ACCESS(array, 23);
+ ACCESS(array, 24);
+ ACCESS(array, 60);
+ ACCESS(array, 95);
+ DIE_ON_ACCESS(array, 96);
+ free(array);
+}
+
+TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
+ // Vector of capacity 20
+ char *vec = Ident((char*)malloc(20));
+ ASAN_POISON_MEMORY_REGION(vec, 20);
+ for (size_t i = 0; i < 7; i++) {
+ // Simulate push_back.
+ ASAN_UNPOISON_MEMORY_REGION(vec + i, 1);
+ ACCESS(vec, i);
+ DIE_ON_ACCESS(vec, i + 1);
+ }
+ for (size_t i = 7; i > 0; i--) {
+ // Simulate pop_back.
+ ASAN_POISON_MEMORY_REGION(vec + i - 1, 1);
+ DIE_ON_ACCESS(vec, i - 1);
+ if (i > 1) ACCESS(vec, i - 2);
+ }
+ free(vec);
+}
+
+// Make sure that each aligned block of size "2^granularity" doesn't have
+// "true" value before "false" value.
+static void MakeShadowValid(bool *shadow, int length, int granularity) {
+ bool can_be_poisoned = true;
+ for (int i = length - 1; i >= 0; i--) {
+ can_be_poisoned &= shadow[i];
+ shadow[i] &= can_be_poisoned;
+ if (i % (1 << granularity) == 0) {
+ can_be_poisoned = true;
+ }
+ }
+}
+
+TEST(AddressSanitizerInterface, PoisoningStressTest) {
+ const size_t kSize = 24;
+ bool expected[kSize];
+ char *arr = Ident((char*)malloc(kSize));
+ for (size_t l1 = 0; l1 < kSize; l1++) {
+ for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
+ for (size_t l2 = 0; l2 < kSize; l2++) {
+ for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
+ // Poison [l1, l1+s1), [l2, l2+s2) and check result.
+ ASAN_UNPOISON_MEMORY_REGION(arr, kSize);
+ ASAN_POISON_MEMORY_REGION(arr + l1, s1);
+ ASAN_POISON_MEMORY_REGION(arr + l2, s2);
+ memset(expected, false, kSize);
+ memset(expected + l1, true, s1);
+ MakeShadowValid(expected, 24, /*granularity*/ 3);
+ memset(expected + l2, true, s2);
+ MakeShadowValid(expected, 24, /*granularity*/ 3);
+ for (size_t i = 0; i < kSize; i++) {
+ ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
+ }
+ // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
+ ASAN_POISON_MEMORY_REGION(arr, kSize);
+ ASAN_UNPOISON_MEMORY_REGION(arr + l1, s1);
+ ASAN_UNPOISON_MEMORY_REGION(arr + l2, s2);
+ memset(expected, true, kSize);
+ memset(expected + l1, false, s1);
+ MakeShadowValid(expected, 24, /*granularity*/ 3);
+ memset(expected + l2, false, s2);
+ MakeShadowValid(expected, 24, /*granularity*/ 3);
+ for (size_t i = 0; i < kSize; i++) {
+ ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
+ }
+ }
+ }
+ }
+ }
+}
+
+static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
+static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";
+
+TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
+ char *array = Ident((char*)malloc(120));
+ ASAN_UNPOISON_MEMORY_REGION(array, 120);
+ // Try to unpoison not owned memory
+ EXPECT_DEATH(ASAN_UNPOISON_MEMORY_REGION(array, 121),
+ kInvalidUnpoisonMessage);
+ EXPECT_DEATH(ASAN_UNPOISON_MEMORY_REGION(array - 1, 120),
+ kInvalidUnpoisonMessage);
+
+ ASAN_POISON_MEMORY_REGION(array, 120);
+ // Try to poison not owned memory.
+ EXPECT_DEATH(ASAN_POISON_MEMORY_REGION(array, 121), kInvalidPoisonMessage);
+ EXPECT_DEATH(ASAN_POISON_MEMORY_REGION(array - 1, 120),
+ kInvalidPoisonMessage);
+ free(array);
+}