diff options
Diffstat (limited to 'lib/libdtrace/common/dt_aggregate.c')
-rw-r--r-- | lib/libdtrace/common/dt_aggregate.c | 1886 |
1 files changed, 1886 insertions, 0 deletions
diff --git a/lib/libdtrace/common/dt_aggregate.c b/lib/libdtrace/common/dt_aggregate.c new file mode 100644 index 000000000000..ac32f769a934 --- /dev/null +++ b/lib/libdtrace/common/dt_aggregate.c @@ -0,0 +1,1886 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +#include <stdlib.h> +#include <strings.h> +#include <errno.h> +#include <unistd.h> +#include <dt_impl.h> +#include <assert.h> +#if defined(sun) +#include <alloca.h> +#else +#include <sys/sysctl.h> +#endif +#include <limits.h> + +#define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ + +/* + * Because qsort(3C) does not allow an argument to be passed to a comparison + * function, the variables that affect comparison must regrettably be global; + * they are protected by a global static lock, dt_qsort_lock. + */ +static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; + +static int dt_revsort; +static int dt_keysort; +static int dt_keypos; + +#define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) +#define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) + +static void +dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) +{ + uint_t i; + + for (i = 0; i < size / sizeof (int64_t); i++) + existing[i] = existing[i] + new[i]; +} + +static int +dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) +{ + int64_t lvar = *lhs; + int64_t rvar = *rhs; + + if (lvar < rvar) + return (DT_LESSTHAN); + + if (lvar > rvar) + return (DT_GREATERTHAN); + + return (0); +} + +/*ARGSUSED*/ +static void +dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) +{ + if (*new < *existing) + *existing = *new; +} + +/*ARGSUSED*/ +static void +dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) +{ + if (*new > *existing) + *existing = *new; +} + +static int +dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) +{ + int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; + int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; + + if (lavg < ravg) + return (DT_LESSTHAN); + + if (lavg > ravg) + return (DT_GREATERTHAN); + + return (0); +} + +static int +dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs) +{ + uint64_t lsd = dt_stddev((uint64_t *)lhs, 1); + uint64_t rsd = dt_stddev((uint64_t *)rhs, 1); + + if (lsd < rsd) + return (DT_LESSTHAN); + + if (lsd > rsd) + return (DT_GREATERTHAN); + + return (0); +} + +/*ARGSUSED*/ +static void +dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) +{ + int64_t arg = *existing++; + uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); + int i; + + for (i = 0; i <= levels + 1; i++) + existing[i] = existing[i] + new[i + 1]; +} + +static long double +dt_aggregate_lquantizedsum(int64_t *lquanta) +{ + int64_t arg = *lquanta++; + int32_t base = DTRACE_LQUANTIZE_BASE(arg); + uint16_t step = DTRACE_LQUANTIZE_STEP(arg); + uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; + long double total = (long double)lquanta[0] * (long double)(base - 1); + + for (i = 0; i < levels; base += step, i++) + total += (long double)lquanta[i + 1] * (long double)base; + + return (total + (long double)lquanta[levels + 1] * + (long double)(base + 1)); +} + +static int64_t +dt_aggregate_lquantizedzero(int64_t *lquanta) +{ + int64_t arg = *lquanta++; + int32_t base = DTRACE_LQUANTIZE_BASE(arg); + uint16_t step = DTRACE_LQUANTIZE_STEP(arg); + uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; + + if (base - 1 == 0) + return (lquanta[0]); + + for (i = 0; i < levels; base += step, i++) { + if (base != 0) + continue; + + return (lquanta[i + 1]); + } + + if (base + 1 == 0) + return (lquanta[levels + 1]); + + return (0); +} + +static int +dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) +{ + long double lsum = dt_aggregate_lquantizedsum(lhs); + long double rsum = dt_aggregate_lquantizedsum(rhs); + int64_t lzero, rzero; + + if (lsum < rsum) + return (DT_LESSTHAN); + + if (lsum > rsum) + return (DT_GREATERTHAN); + + /* + * If they're both equal, then we will compare based on the weights at + * zero. If the weights at zero are equal (or if zero is not within + * the range of the linear quantization), then this will be judged a + * tie and will be resolved based on the key comparison. + */ + lzero = dt_aggregate_lquantizedzero(lhs); + rzero = dt_aggregate_lquantizedzero(rhs); + + if (lzero < rzero) + return (DT_LESSTHAN); + + if (lzero > rzero) + return (DT_GREATERTHAN); + + return (0); +} + +static int +dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) +{ + int nbuckets = DTRACE_QUANTIZE_NBUCKETS; + long double ltotal = 0, rtotal = 0; + int64_t lzero, rzero; + uint_t i; + + for (i = 0; i < nbuckets; i++) { + int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); + + if (bucketval == 0) { + lzero = lhs[i]; + rzero = rhs[i]; + } + + ltotal += (long double)bucketval * (long double)lhs[i]; + rtotal += (long double)bucketval * (long double)rhs[i]; + } + + if (ltotal < rtotal) + return (DT_LESSTHAN); + + if (ltotal > rtotal) + return (DT_GREATERTHAN); + + /* + * If they're both equal, then we will compare based on the weights at + * zero. If the weights at zero are equal, then this will be judged a + * tie and will be resolved based on the key comparison. + */ + if (lzero < rzero) + return (DT_LESSTHAN); + + if (lzero > rzero) + return (DT_GREATERTHAN); + + return (0); +} + +static void +dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) +{ + uint64_t pid = data[0]; + uint64_t *pc = &data[1]; + struct ps_prochandle *P; + GElf_Sym sym; + + if (dtp->dt_vector != NULL) + return; + + if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) + return; + + dt_proc_lock(dtp, P); + +#if defined(sun) + if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) +#else + if (proc_addr2sym(P, *pc, NULL, 0, &sym) == 0) +#endif + *pc = sym.st_value; + + dt_proc_unlock(dtp, P); + dt_proc_release(dtp, P); +} + +static void +dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) +{ + uint64_t pid = data[0]; + uint64_t *pc = &data[1]; + struct ps_prochandle *P; + const prmap_t *map; + + if (dtp->dt_vector != NULL) + return; + + if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) + return; + + dt_proc_lock(dtp, P); + +#if defined(sun) + if ((map = Paddr_to_map(P, *pc)) != NULL) +#else + if ((map = proc_addr2map(P, *pc)) != NULL) +#endif + *pc = map->pr_vaddr; + + dt_proc_unlock(dtp, P); + dt_proc_release(dtp, P); +} + +static void +dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) +{ + GElf_Sym sym; + uint64_t *pc = data; + + if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) + *pc = sym.st_value; +} + +static void +dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) +{ + uint64_t *pc = data; + dt_module_t *dmp; + + if (dtp->dt_vector != NULL) { + /* + * We don't have a way of just getting the module for a + * vectored open, and it doesn't seem to be worth defining + * one. This means that use of mod() won't get true + * aggregation in the postmortem case (some modules may + * appear more than once in aggregation output). It seems + * unlikely that anyone will ever notice or care... + */ + return; + } + + for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; + dmp = dt_list_next(dmp)) { + if (*pc - dmp->dm_text_va < dmp->dm_text_size) { + *pc = dmp->dm_text_va; + return; + } + } +} + +static dtrace_aggvarid_t +dt_aggregate_aggvarid(dt_ahashent_t *ent) +{ + dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; + caddr_t data = ent->dtahe_data.dtada_data; + dtrace_recdesc_t *rec = agg->dtagd_rec; + + /* + * First, we'll check the variable ID in the aggdesc. If it's valid, + * we'll return it. If not, we'll use the compiler-generated ID + * present as the first record. + */ + if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) + return (agg->dtagd_varid); + + agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + + rec->dtrd_offset)); + + return (agg->dtagd_varid); +} + + +static int +dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) +{ + dtrace_epid_t id; + uint64_t hashval; + size_t offs, roffs, size, ndx; + int i, j, rval; + caddr_t addr, data; + dtrace_recdesc_t *rec; + dt_aggregate_t *agp = &dtp->dt_aggregate; + dtrace_aggdesc_t *agg; + dt_ahash_t *hash = &agp->dtat_hash; + dt_ahashent_t *h; + dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; + dtrace_aggdata_t *aggdata; + int flags = agp->dtat_flags; + + buf->dtbd_cpu = cpu; + +#if defined(sun) + if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { +#else + if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) { +#endif + if (errno == ENOENT) { + /* + * If that failed with ENOENT, it may be because the + * CPU was unconfigured. This is okay; we'll just + * do nothing but return success. + */ + return (0); + } + + return (dt_set_errno(dtp, errno)); + } + + if (buf->dtbd_drops != 0) { + if (dt_handle_cpudrop(dtp, cpu, + DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) + return (-1); + } + + if (buf->dtbd_size == 0) + return (0); + + if (hash->dtah_hash == NULL) { + size_t size; + + hash->dtah_size = DTRACE_AHASHSIZE; + size = hash->dtah_size * sizeof (dt_ahashent_t *); + + if ((hash->dtah_hash = malloc(size)) == NULL) + return (dt_set_errno(dtp, EDT_NOMEM)); + + bzero(hash->dtah_hash, size); + } + + for (offs = 0; offs < buf->dtbd_size; ) { + /* + * We're guaranteed to have an ID. + */ + id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + + (uintptr_t)offs)); + + if (id == DTRACE_AGGIDNONE) { + /* + * This is filler to assure proper alignment of the + * next record; we simply ignore it. + */ + offs += sizeof (id); + continue; + } + + if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) + return (rval); + + addr = buf->dtbd_data + offs; + size = agg->dtagd_size; + hashval = 0; + + for (j = 0; j < agg->dtagd_nrecs - 1; j++) { + rec = &agg->dtagd_rec[j]; + roffs = rec->dtrd_offset; + + switch (rec->dtrd_action) { + case DTRACEACT_USYM: + dt_aggregate_usym(dtp, + /* LINTED - alignment */ + (uint64_t *)&addr[roffs]); + break; + + case DTRACEACT_UMOD: + dt_aggregate_umod(dtp, + /* LINTED - alignment */ + (uint64_t *)&addr[roffs]); + break; + + case DTRACEACT_SYM: + /* LINTED - alignment */ + dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); + break; + + case DTRACEACT_MOD: + /* LINTED - alignment */ + dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); + break; + + default: + break; + } + + for (i = 0; i < rec->dtrd_size; i++) + hashval += addr[roffs + i]; + } + + ndx = hashval % hash->dtah_size; + + for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { + if (h->dtahe_hashval != hashval) + continue; + + if (h->dtahe_size != size) + continue; + + aggdata = &h->dtahe_data; + data = aggdata->dtada_data; + + for (j = 0; j < agg->dtagd_nrecs - 1; j++) { + rec = &agg->dtagd_rec[j]; + roffs = rec->dtrd_offset; + + for (i = 0; i < rec->dtrd_size; i++) + if (addr[roffs + i] != data[roffs + i]) + goto hashnext; + } + + /* + * We found it. Now we need to apply the aggregating + * action on the data here. + */ + rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; + roffs = rec->dtrd_offset; + /* LINTED - alignment */ + h->dtahe_aggregate((int64_t *)&data[roffs], + /* LINTED - alignment */ + (int64_t *)&addr[roffs], rec->dtrd_size); + + /* + * If we're keeping per CPU data, apply the aggregating + * action there as well. + */ + if (aggdata->dtada_percpu != NULL) { + data = aggdata->dtada_percpu[cpu]; + + /* LINTED - alignment */ + h->dtahe_aggregate((int64_t *)data, + /* LINTED - alignment */ + (int64_t *)&addr[roffs], rec->dtrd_size); + } + + goto bufnext; +hashnext: + continue; + } + + /* + * If we're here, we couldn't find an entry for this record. + */ + if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) + return (dt_set_errno(dtp, EDT_NOMEM)); + bzero(h, sizeof (dt_ahashent_t)); + aggdata = &h->dtahe_data; + + if ((aggdata->dtada_data = malloc(size)) == NULL) { + free(h); + return (dt_set_errno(dtp, EDT_NOMEM)); + } + + bcopy(addr, aggdata->dtada_data, size); + aggdata->dtada_size = size; + aggdata->dtada_desc = agg; + aggdata->dtada_handle = dtp; + (void) dt_epid_lookup(dtp, agg->dtagd_epid, + &aggdata->dtada_edesc, &aggdata->dtada_pdesc); + aggdata->dtada_normal = 1; + + h->dtahe_hashval = hashval; + h->dtahe_size = size; + (void) dt_aggregate_aggvarid(h); + + rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; + + if (flags & DTRACE_A_PERCPU) { + int max_cpus = agp->dtat_maxcpu; + caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); + + if (percpu == NULL) { + free(aggdata->dtada_data); + free(h); + return (dt_set_errno(dtp, EDT_NOMEM)); + } + + for (j = 0; j < max_cpus; j++) { + percpu[j] = malloc(rec->dtrd_size); + + if (percpu[j] == NULL) { + while (--j >= 0) + free(percpu[j]); + + free(aggdata->dtada_data); + free(h); + return (dt_set_errno(dtp, EDT_NOMEM)); + } + + if (j == cpu) { + bcopy(&addr[rec->dtrd_offset], + percpu[j], rec->dtrd_size); + } else { + bzero(percpu[j], rec->dtrd_size); + } + } + + aggdata->dtada_percpu = percpu; + } + + switch (rec->dtrd_action) { + case DTRACEAGG_MIN: + h->dtahe_aggregate = dt_aggregate_min; + break; + + case DTRACEAGG_MAX: + h->dtahe_aggregate = dt_aggregate_max; + break; + + case DTRACEAGG_LQUANTIZE: + h->dtahe_aggregate = dt_aggregate_lquantize; + break; + + case DTRACEAGG_COUNT: + case DTRACEAGG_SUM: + case DTRACEAGG_AVG: + case DTRACEAGG_STDDEV: + case DTRACEAGG_QUANTIZE: + h->dtahe_aggregate = dt_aggregate_count; + break; + + default: + return (dt_set_errno(dtp, EDT_BADAGG)); + } + + if (hash->dtah_hash[ndx] != NULL) + hash->dtah_hash[ndx]->dtahe_prev = h; + + h->dtahe_next = hash->dtah_hash[ndx]; + hash->dtah_hash[ndx] = h; + + if (hash->dtah_all != NULL) + hash->dtah_all->dtahe_prevall = h; + + h->dtahe_nextall = hash->dtah_all; + hash->dtah_all = h; +bufnext: + offs += agg->dtagd_size; + } + + return (0); +} + +int +dtrace_aggregate_snap(dtrace_hdl_t *dtp) +{ + int i, rval; + dt_aggregate_t *agp = &dtp->dt_aggregate; + hrtime_t now = gethrtime(); + dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; + + if (dtp->dt_lastagg != 0) { + if (now - dtp->dt_lastagg < interval) + return (0); + + dtp->dt_lastagg += interval; + } else { + dtp->dt_lastagg = now; + } + + if (!dtp->dt_active) + return (dt_set_errno(dtp, EINVAL)); + + if (agp->dtat_buf.dtbd_size == 0) + return (0); + + for (i = 0; i < agp->dtat_ncpus; i++) { + if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))) + return (rval); + } + + return (0); +} + +static int +dt_aggregate_hashcmp(const void *lhs, const void *rhs) +{ + dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); + dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); + dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; + dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; + + if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) + return (DT_LESSTHAN); + + if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) + return (DT_GREATERTHAN); + + return (0); +} + +static int +dt_aggregate_varcmp(const void *lhs, const void *rhs) +{ + dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); + dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); + dtrace_aggvarid_t lid, rid; + + lid = dt_aggregate_aggvarid(lh); + rid = dt_aggregate_aggvarid(rh); + + if (lid < rid) + return (DT_LESSTHAN); + + if (lid > rid) + return (DT_GREATERTHAN); + + return (0); +} + +static int +dt_aggregate_keycmp(const void *lhs, const void *rhs) +{ + dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); + dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); + dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; + dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; + dtrace_recdesc_t *lrec, *rrec; + char *ldata, *rdata; + int rval, i, j, keypos, nrecs; + + if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) + return (rval); + + nrecs = lagg->dtagd_nrecs - 1; + assert(nrecs == ragg->dtagd_nrecs - 1); + + keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; + + for (i = 1; i < nrecs; i++) { + uint64_t lval, rval; + int ndx = i + keypos; + + if (ndx >= nrecs) + ndx = ndx - nrecs + 1; + + lrec = &lagg->dtagd_rec[ndx]; + rrec = &ragg->dtagd_rec[ndx]; + + ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; + rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; + + if (lrec->dtrd_size < rrec->dtrd_size) + return (DT_LESSTHAN); + + if (lrec->dtrd_size > rrec->dtrd_size) + return (DT_GREATERTHAN); + + switch (lrec->dtrd_size) { + case sizeof (uint64_t): + /* LINTED - alignment */ + lval = *((uint64_t *)ldata); + /* LINTED - alignment */ + rval = *((uint64_t *)rdata); + break; + + case sizeof (uint32_t): + /* LINTED - alignment */ + lval = *((uint32_t *)ldata); + /* LINTED - alignment */ + rval = *((uint32_t *)rdata); + break; + + case sizeof (uint16_t): + /* LINTED - alignment */ + lval = *((uint16_t *)ldata); + /* LINTED - alignment */ + rval = *((uint16_t *)rdata); + break; + + case sizeof (uint8_t): + lval = *((uint8_t *)ldata); + rval = *((uint8_t *)rdata); + break; + + default: + switch (lrec->dtrd_action) { + case DTRACEACT_UMOD: + case DTRACEACT_UADDR: + case DTRACEACT_USYM: + for (j = 0; j < 2; j++) { + /* LINTED - alignment */ + lval = ((uint64_t *)ldata)[j]; + /* LINTED - alignment */ + rval = ((uint64_t *)rdata)[j]; + + if (lval < rval) + return (DT_LESSTHAN); + + if (lval > rval) + return (DT_GREATERTHAN); + } + + break; + + default: + for (j = 0; j < lrec->dtrd_size; j++) { + lval = ((uint8_t *)ldata)[j]; + rval = ((uint8_t *)rdata)[j]; + + if (lval < rval) + return (DT_LESSTHAN); + + if (lval > rval) + return (DT_GREATERTHAN); + } + } + + continue; + } + + if (lval < rval) + return (DT_LESSTHAN); + + if (lval > rval) + return (DT_GREATERTHAN); + } + + return (0); +} + +static int +dt_aggregate_valcmp(const void *lhs, const void *rhs) +{ + dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); + dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); + dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; + dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; + caddr_t ldata = lh->dtahe_data.dtada_data; + caddr_t rdata = rh->dtahe_data.dtada_data; + dtrace_recdesc_t *lrec, *rrec; + int64_t *laddr, *raddr; + int rval, i; + + if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) + return (rval); + + if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) + return (DT_GREATERTHAN); + + if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) + return (DT_LESSTHAN); + + for (i = 0; i < lagg->dtagd_nrecs; i++) { + lrec = &lagg->dtagd_rec[i]; + rrec = &ragg->dtagd_rec[i]; + + if (lrec->dtrd_offset < rrec->dtrd_offset) + return (DT_LESSTHAN); + + if (lrec->dtrd_offset > rrec->dtrd_offset) + return (DT_GREATERTHAN); + + if (lrec->dtrd_action < rrec->dtrd_action) + return (DT_LESSTHAN); + + if (lrec->dtrd_action > rrec->dtrd_action) + return (DT_GREATERTHAN); + } + + laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); + raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); + + switch (lrec->dtrd_action) { + case DTRACEAGG_AVG: + rval = dt_aggregate_averagecmp(laddr, raddr); + break; + + case DTRACEAGG_STDDEV: + rval = dt_aggregate_stddevcmp(laddr, raddr); + break; + + case DTRACEAGG_QUANTIZE: + rval = dt_aggregate_quantizedcmp(laddr, raddr); + break; + + case DTRACEAGG_LQUANTIZE: + rval = dt_aggregate_lquantizedcmp(laddr, raddr); + break; + + case DTRACEAGG_COUNT: + case DTRACEAGG_SUM: + case DTRACEAGG_MIN: + case DTRACEAGG_MAX: + rval = dt_aggregate_countcmp(laddr, raddr); + break; + + default: + assert(0); + } + + return (rval); +} + +static int +dt_aggregate_valkeycmp(const void *lhs, const void *rhs) +{ + int rval; + + if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) + return (rval); + + /* + * If we're here, the values for the two aggregation elements are + * equal. We already know that the key layout is the same for the two + * elements; we must now compare the keys themselves as a tie-breaker. + */ + return (dt_aggregate_keycmp(lhs, rhs)); +} + +static int +dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) +{ + int rval; + + if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) + return (rval); + + return (dt_aggregate_varcmp(lhs, rhs)); +} + +static int +dt_aggregate_varkeycmp(const void *lhs, const void *rhs) +{ + int rval; + + if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) + return (rval); + + return (dt_aggregate_keycmp(lhs, rhs)); +} + +static int +dt_aggregate_valvarcmp(const void *lhs, const void *rhs) +{ + int rval; + + if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) + return (rval); + + return (dt_aggregate_varcmp(lhs, rhs)); +} + +static int +dt_aggregate_varvalcmp(const void *lhs, const void *rhs) +{ + int rval; + + if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) + return (rval); + + return (dt_aggregate_valkeycmp(lhs, rhs)); +} + +static int +dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) +{ + return (dt_aggregate_keyvarcmp(rhs, lhs)); +} + +static int +dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) +{ + return (dt_aggregate_varkeycmp(rhs, lhs)); +} + +static int +dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) +{ + return (dt_aggregate_valvarcmp(rhs, lhs)); +} + +static int +dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) +{ + return (dt_aggregate_varvalcmp(rhs, lhs)); +} + +static int +dt_aggregate_bundlecmp(const void *lhs, const void *rhs) +{ + dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); + dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); + int i, rval; + + if (dt_keysort) { + /* + * If we're sorting on keys, we need to scan until we find the + * last entry -- that's the representative key. (The order of + * the bundle is values followed by key to accommodate the + * default behavior of sorting by value.) If the keys are + * equal, we'll fall into the value comparison loop, below. + */ + for (i = 0; lh[i + 1] != NULL; i++) + continue; + + assert(i != 0); + assert(rh[i + 1] == NULL); + + if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) + return (rval); + } + + for (i = 0; ; i++) { + if (lh[i + 1] == NULL) { + /* + * All of the values are equal; if we're sorting on + * keys, then we're only here because the keys were + * found to be equal and these records are therefore + * equal. If we're not sorting on keys, we'll use the + * key comparison from the representative key as the + * tie-breaker. + */ + if (dt_keysort) + return (0); + + assert(i != 0); + assert(rh[i + 1] == NULL); + return (dt_aggregate_keycmp(&lh[i], &rh[i])); + } else { + if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) + return (rval); + } + } +} + +int +dt_aggregate_go(dtrace_hdl_t *dtp) +{ + dt_aggregate_t *agp = &dtp->dt_aggregate; + dtrace_optval_t size, cpu; + dtrace_bufdesc_t *buf = &agp->dtat_buf; + int rval, i; + + assert(agp->dtat_maxcpu == 0); + assert(agp->dtat_ncpu == 0); + assert(agp->dtat_cpus == NULL); + + agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; + agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX); + agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); + + if (agp->dtat_cpus == NULL) + return (dt_set_errno(dtp, EDT_NOMEM)); + + /* + * Use the aggregation buffer size as reloaded from the kernel. + */ + size = dtp->dt_options[DTRACEOPT_AGGSIZE]; + + rval = dtrace_getopt(dtp, "aggsize", &size); + assert(rval == 0); + + if (size == 0 || size == DTRACEOPT_UNSET) + return (0); + + buf = &agp->dtat_buf; + buf->dtbd_size = size; + + if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) + return (dt_set_errno(dtp, EDT_NOMEM)); + + /* + * Now query for the CPUs enabled. + */ + rval = dtrace_getopt(dtp, "cpu", &cpu); + assert(rval == 0 && cpu != DTRACEOPT_UNSET); + + if (cpu != DTRACE_CPUALL) { + assert(cpu < agp->dtat_ncpu); + agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; + + return (0); + } + + agp->dtat_ncpus = 0; + for (i = 0; i < agp->dtat_maxcpu; i++) { + if (dt_status(dtp, i) == -1) + continue; + + agp->dtat_cpus[agp->dtat_ncpus++] = i; + } + + return (0); +} + +static int +dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) +{ + dt_aggregate_t *agp = &dtp->dt_aggregate; + dtrace_aggdata_t *data; + dtrace_aggdesc_t *aggdesc; + dtrace_recdesc_t *rec; + int i; + + switch (rval) { + case DTRACE_AGGWALK_NEXT: + break; + + case DTRACE_AGGWALK_CLEAR: { + uint32_t size, offs = 0; + + aggdesc = h->dtahe_data.dtada_desc; + rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; + size = rec->dtrd_size; + data = &h->dtahe_data; + + if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { + offs = sizeof (uint64_t); + size -= sizeof (uint64_t); + } + + bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); + + if (data->dtada_percpu == NULL) + break; + + for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) + bzero(data->dtada_percpu[i] + offs, size); + break; + } + + case DTRACE_AGGWALK_ERROR: + /* + * We assume that errno is already set in this case. + */ + return (dt_set_errno(dtp, errno)); + + case DTRACE_AGGWALK_ABORT: + return (dt_set_errno(dtp, EDT_DIRABORT)); + + case DTRACE_AGGWALK_DENORMALIZE: + h->dtahe_data.dtada_normal = 1; + return (0); + + case DTRACE_AGGWALK_NORMALIZE: + if (h->dtahe_data.dtada_normal == 0) { + h->dtahe_data.dtada_normal = 1; + return (dt_set_errno(dtp, EDT_BADRVAL)); + } + + return (0); + + case DTRACE_AGGWALK_REMOVE: { + dtrace_aggdata_t *aggdata = &h->dtahe_data; + int max_cpus = agp->dtat_maxcpu; + + /* + * First, remove this hash entry from its hash chain. + */ + if (h->dtahe_prev != NULL) { + h->dtahe_prev->dtahe_next = h->dtahe_next; + } else { + dt_ahash_t *hash = &agp->dtat_hash; + size_t ndx = h->dtahe_hashval % hash->dtah_size; + + assert(hash->dtah_hash[ndx] == h); + hash->dtah_hash[ndx] = h->dtahe_next; + } + + if (h->dtahe_next != NULL) + h->dtahe_next->dtahe_prev = h->dtahe_prev; + + /* + * Now remove it from the list of all hash entries. + */ + if (h->dtahe_prevall != NULL) { + h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; + } else { + dt_ahash_t *hash = &agp->dtat_hash; + + assert(hash->dtah_all == h); + hash->dtah_all = h->dtahe_nextall; + } + + if (h->dtahe_nextall != NULL) + h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; + + /* + * We're unlinked. We can safely destroy the data. + */ + if (aggdata->dtada_percpu != NULL) { + for (i = 0; i < max_cpus; i++) + free(aggdata->dtada_percpu[i]); + free(aggdata->dtada_percpu); + } + + free(aggdata->dtada_data); + free(h); + + return (0); + } + + default: + return (dt_set_errno(dtp, EDT_BADRVAL)); + } + + return (0); +} + +void +dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, + int (*compar)(const void *, const void *)) +{ + int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; + dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; + + dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); + dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); + + if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { + dt_keypos = (int)keyposopt; + } else { + dt_keypos = 0; + } + + if (compar == NULL) { + if (!dt_keysort) { + compar = dt_aggregate_varvalcmp; + } else { + compar = dt_aggregate_varkeycmp; + } + } + + qsort(base, nel, width, compar); + + dt_revsort = rev; + dt_keysort = key; + dt_keypos = keypos; +} + +int +dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) +{ + dt_ahashent_t *h, *next; + dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; + + for (h = hash->dtah_all; h != NULL; h = next) { + /* + * dt_aggwalk_rval() can potentially remove the current hash + * entry; we need to load the next hash entry before calling + * into it. + */ + next = h->dtahe_nextall; + + if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) + return (-1); + } + + return (0); +} + +static int +dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg, + int (*sfunc)(const void *, const void *)) +{ + dt_aggregate_t *agp = &dtp->dt_aggregate; + dt_ahashent_t *h, **sorted; + dt_ahash_t *hash = &agp->dtat_hash; + size_t i, nentries = 0; + + for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) + nentries++; + + sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); + + if (sorted == NULL) + return (-1); + + for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) + sorted[i++] = h; + + (void) pthread_mutex_lock(&dt_qsort_lock); + + if (sfunc == NULL) { + dt_aggregate_qsort(dtp, sorted, nentries, + sizeof (dt_ahashent_t *), NULL); + } else { + /* + * If we've been explicitly passed a sorting function, + * we'll use that -- ignoring the values of the "aggsortrev", + * "aggsortkey" and "aggsortkeypos" options. + */ + qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); + } + + (void) pthread_mutex_unlock(&dt_qsort_lock); + + for (i = 0; i < nentries; i++) { + h = sorted[i]; + + if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) { + dt_free(dtp, sorted); + return (-1); + } + } + + dt_free(dtp, sorted); + return (0); +} + +int +dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); +} + +int +dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_varkeycmp)); +} + +int +dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_varvalcmp)); +} + +int +dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_keyvarcmp)); +} + +int +dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_valvarcmp)); +} + +int +dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_varkeyrevcmp)); +} + +int +dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_varvalrevcmp)); +} + +int +dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_keyvarrevcmp)); +} + +int +dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, + dtrace_aggregate_f *func, void *arg) +{ + return (dt_aggregate_walk_sorted(dtp, func, + arg, dt_aggregate_valvarrevcmp)); +} + +int +dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, + int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) +{ + dt_aggregate_t *agp = &dtp->dt_aggregate; + dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; + const dtrace_aggdata_t **data; + dt_ahashent_t *zaggdata = NULL; + dt_ahash_t *hash = &agp->dtat_hash; + size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; + dtrace_aggvarid_t max = 0, aggvar; + int rval = -1, *map, *remap = NULL; + int i, j; + dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; + + /* + * If the sorting position is greater than the number of aggregation + * variable IDs, we silently set it to 0. + */ + if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) + sortpos = 0; + + /* + * First we need to translate the specified aggregation variable IDs + * into a linear map that will allow us to translate an aggregation + * variable ID into its position in the specified aggvars. + */ + for (i = 0; i < naggvars; i++) { + if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) + return (dt_set_errno(dtp, EDT_BADAGGVAR)); + + if (aggvars[i] > max) + max = aggvars[i]; + } + + if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) + return (-1); + + zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); + + if (zaggdata == NULL) + goto out; + + for (i = 0; i < naggvars; i++) { + int ndx = i + sortpos; + + if (ndx >= naggvars) + ndx -= naggvars; + + aggvar = aggvars[ndx]; + assert(aggvar <= max); + + if (map[aggvar]) { + /* + * We have an aggregation variable that is present + * more than once in the array of aggregation + * variables. While it's unclear why one might want + * to do this, it's legal. To support this construct, + * we will allocate a remap that will indicate the + * position from which this aggregation variable + * should be pulled. (That is, where the remap will + * map from one position to another.) + */ + if (remap == NULL) { + remap = dt_zalloc(dtp, naggvars * sizeof (int)); + + if (remap == NULL) + goto out; + } + + /* + * Given that the variable is already present, assert + * that following through the mapping and adjusting + * for the sort position yields the same aggregation + * variable ID. + */ + assert(aggvars[(map[aggvar] - 1 + sortpos) % + naggvars] == aggvars[ndx]); + + remap[i] = map[aggvar]; + continue; + } + + map[aggvar] = i + 1; + } + + /* + * We need to take two passes over the data to size our allocation, so + * we'll use the first pass to also fill in the zero-filled data to be + * used to properly format a zero-valued aggregation. + */ + for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { + dtrace_aggvarid_t id; + int ndx; + + if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) + continue; + + if (zaggdata[ndx - 1].dtahe_size == 0) { + zaggdata[ndx - 1].dtahe_size = h->dtahe_size; + zaggdata[ndx - 1].dtahe_data = h->dtahe_data; + } + + nentries++; + } + + if (nentries == 0) { + /* + * We couldn't find any entries; there is nothing else to do. + */ + rval = 0; + goto out; + } + + /* + * Before we sort the data, we're going to look for any holes in our + * zero-filled data. This will occur if an aggregation variable that + * we are being asked to print has not yet been assigned the result of + * any aggregating action for _any_ tuple. The issue becomes that we + * would like a zero value to be printed for all columns for this + * aggregation, but without any record description, we don't know the + * aggregating action that corresponds to the aggregation variable. To + * try to find a match, we're simply going to lookup aggregation IDs + * (which are guaranteed to be contiguous and to start from 1), looking + * for the specified aggregation variable ID. If we find a match, + * we'll use that. If we iterate over all aggregation IDs and don't + * find a match, then we must be an anonymous enabling. (Anonymous + * enablings can't currently derive either aggregation variable IDs or + * aggregation variable names given only an aggregation ID.) In this + * obscure case (anonymous enabling, multiple aggregation printa() with + * some aggregations not represented for any tuple), our defined + * behavior is that the zero will be printed in the format of the first + * aggregation variable that contains any non-zero value. + */ + for (i = 0; i < naggvars; i++) { + if (zaggdata[i].dtahe_size == 0) { + dtrace_aggvarid_t aggvar; + + aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; + assert(zaggdata[i].dtahe_data.dtada_data == NULL); + + for (j = DTRACE_AGGIDNONE + 1; ; j++) { + dtrace_aggdesc_t *agg; + dtrace_aggdata_t *aggdata; + + if (dt_aggid_lookup(dtp, j, &agg) != 0) + break; + + if (agg->dtagd_varid != aggvar) + continue; + + /* + * We have our description -- now we need to + * cons up the zaggdata entry for it. + */ + aggdata = &zaggdata[i].dtahe_data; + aggdata->dtada_size = agg->dtagd_size; + aggdata->dtada_desc = agg; + aggdata->dtada_handle = dtp; + (void) dt_epid_lookup(dtp, agg->dtagd_epid, + &aggdata->dtada_edesc, + &aggdata->dtada_pdesc); + aggdata->dtada_normal = 1; + zaggdata[i].dtahe_hashval = 0; + zaggdata[i].dtahe_size = agg->dtagd_size; + break; + } + + if (zaggdata[i].dtahe_size == 0) { + caddr_t data; + + /* + * We couldn't find this aggregation, meaning + * that we have never seen it before for any + * tuple _and_ this is an anonymous enabling. + * That is, we're in the obscure case outlined + * above. In this case, our defined behavior + * is to format the data in the format of the + * first non-zero aggregation -- of which, of + * course, we know there to be at least one + * (or nentries would have been zero). + */ + for (j = 0; j < naggvars; j++) { + if (zaggdata[j].dtahe_size != 0) + break; + } + + assert(j < naggvars); + zaggdata[i] = zaggdata[j]; + + data = zaggdata[i].dtahe_data.dtada_data; + assert(data != NULL); + } + } + } + + /* + * Now we need to allocate our zero-filled data for use for + * aggregations that don't have a value corresponding to a given key. + */ + for (i = 0; i < naggvars; i++) { + dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; + dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; + dtrace_recdesc_t *rec; + uint64_t larg; + caddr_t zdata; + + zsize = zaggdata[i].dtahe_size; + assert(zsize != 0); + + if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { + /* + * If we failed to allocated some zero-filled data, we + * need to zero out the remaining dtada_data pointers + * to prevent the wrong data from being freed below. + */ + for (j = i; j < naggvars; j++) + zaggdata[j].dtahe_data.dtada_data = NULL; + goto out; + } + + aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; + + /* + * First, the easy bit. To maintain compatibility with + * consumers that pull the compiler-generated ID out of the + * data, we put that ID at the top of the zero-filled data. + */ + rec = &aggdesc->dtagd_rec[0]; + /* LINTED - alignment */ + *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; + + rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; + + /* + * Now for the more complicated part. If (and only if) this + * is an lquantize() aggregating action, zero-filled data is + * not equivalent to an empty record: we must also get the + * parameters for the lquantize(). + */ + if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { + if (aggdata->dtada_data != NULL) { + /* + * The easier case here is if we actually have + * some prototype data -- in which case we + * manually dig it out of the aggregation + * record. + */ + /* LINTED - alignment */ + larg = *((uint64_t *)(aggdata->dtada_data + + rec->dtrd_offset)); + } else { + /* + * We don't have any prototype data. As a + * result, we know that we _do_ have the + * compiler-generated information. (If this + * were an anonymous enabling, all of our + * zero-filled data would have prototype data + * -- either directly or indirectly.) So as + * gross as it is, we'll grovel around in the + * compiler-generated information to find the + * lquantize() parameters. + */ + dtrace_stmtdesc_t *sdp; + dt_ident_t *aid; + dt_idsig_t *isp; + + sdp = (dtrace_stmtdesc_t *)(uintptr_t) + aggdesc->dtagd_rec[0].dtrd_uarg; + aid = sdp->dtsd_aggdata; + isp = (dt_idsig_t *)aid->di_data; + assert(isp->dis_auxinfo != 0); + larg = isp->dis_auxinfo; + } + + /* LINTED - alignment */ + *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; + } + + aggdata->dtada_data = zdata; + } + + /* + * Now that we've dealt with setting up our zero-filled data, we can + * allocate our sorted array, and take another pass over the data to + * fill it. + */ + sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); + + if (sorted == NULL) + goto out; + + for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { + dtrace_aggvarid_t id; + + if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) + continue; + + sorted[i++] = h; + } + + assert(i == nentries); + + /* + * We've loaded our array; now we need to sort by value to allow us + * to create bundles of like value. We're going to acquire the + * dt_qsort_lock here, and hold it across all of our subsequent + * comparison and sorting. + */ + (void) pthread_mutex_lock(&dt_qsort_lock); + + qsort(sorted, nentries, sizeof (dt_ahashent_t *), + dt_aggregate_keyvarcmp); + + /* + * Now we need to go through and create bundles. Because the number + * of bundles is bounded by the size of the sorted array, we're going + * to reuse the underlying storage. And note that "bundle" is an + * array of pointers to arrays of pointers to dt_ahashent_t -- making + * its type (regrettably) "dt_ahashent_t ***". (Regrettable because + * '*' -- like '_' and 'X' -- should never appear in triplicate in + * an ideal world.) + */ + bundle = (dt_ahashent_t ***)sorted; + + for (i = 1, start = 0; i <= nentries; i++) { + if (i < nentries && + dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) + continue; + + /* + * We have a bundle boundary. Everything from start to + * (i - 1) belongs in one bundle. + */ + assert(i - start <= naggvars); + bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); + + if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { + (void) pthread_mutex_unlock(&dt_qsort_lock); + goto out; + } + + for (j = start; j < i; j++) { + dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); + + assert(id <= max); + assert(map[id] != 0); + assert(map[id] - 1 < naggvars); + assert(nbundle[map[id] - 1] == NULL); + nbundle[map[id] - 1] = sorted[j]; + + if (nbundle[naggvars] == NULL) + nbundle[naggvars] = sorted[j]; + } + + for (j = 0; j < naggvars; j++) { + if (nbundle[j] != NULL) + continue; + + /* + * Before we assume that this aggregation variable + * isn't present (and fall back to using the + * zero-filled data allocated earlier), check the + * remap. If we have a remapping, we'll drop it in + * here. Note that we might be remapping an + * aggregation variable that isn't present for this + * key; in this case, the aggregation data that we + * copy will point to the zeroed data. + */ + if (remap != NULL && remap[j]) { + assert(remap[j] - 1 < j); + assert(nbundle[remap[j] - 1] != NULL); + nbundle[j] = nbundle[remap[j] - 1]; + } else { + nbundle[j] = &zaggdata[j]; + } + } + + bundle[nbundles++] = nbundle; + start = i; + } + + /* + * Now we need to re-sort based on the first value. + */ + dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), + dt_aggregate_bundlecmp); + + (void) pthread_mutex_unlock(&dt_qsort_lock); + + /* + * We're done! Now we just need to go back over the sorted bundles, + * calling the function. + */ + data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); + + for (i = 0; i < nbundles; i++) { + for (j = 0; j < naggvars; j++) + data[j + 1] = NULL; + + for (j = 0; j < naggvars; j++) { + int ndx = j - sortpos; + + if (ndx < 0) + ndx += naggvars; + + assert(bundle[i][ndx] != NULL); + data[j + 1] = &bundle[i][ndx]->dtahe_data; + } + + for (j = 0; j < naggvars; j++) + assert(data[j + 1] != NULL); + + /* + * The representative key is the last element in the bundle. + * Assert that we have one, and then set it to be the first + * element of data. + */ + assert(bundle[i][j] != NULL); + data[0] = &bundle[i][j]->dtahe_data; + + if ((rval = func(data, naggvars + 1, arg)) == -1) + goto out; + } + + rval = 0; +out: + for (i = 0; i < nbundles; i++) + dt_free(dtp, bundle[i]); + + if (zaggdata != NULL) { + for (i = 0; i < naggvars; i++) + dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); + } + + dt_free(dtp, zaggdata); + dt_free(dtp, sorted); + dt_free(dtp, remap); + dt_free(dtp, map); + + return (rval); +} + +int +dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, + dtrace_aggregate_walk_f *func) +{ + dt_print_aggdata_t pd; + + pd.dtpa_dtp = dtp; + pd.dtpa_fp = fp; + pd.dtpa_allunprint = 1; + + if (func == NULL) + func = dtrace_aggregate_walk_sorted; + + if ((*func)(dtp, dt_print_agg, &pd) == -1) + return (dt_set_errno(dtp, dtp->dt_errno)); + + return (0); +} + +void +dtrace_aggregate_clear(dtrace_hdl_t *dtp) +{ + dt_aggregate_t *agp = &dtp->dt_aggregate; + dt_ahash_t *hash = &agp->dtat_hash; + dt_ahashent_t *h; + dtrace_aggdata_t *data; + dtrace_aggdesc_t *aggdesc; + dtrace_recdesc_t *rec; + int i, max_cpus = agp->dtat_maxcpu; + + for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { + aggdesc = h->dtahe_data.dtada_desc; + rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; + data = &h->dtahe_data; + + bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); + + if (data->dtada_percpu == NULL) + continue; + + for (i = 0; i < max_cpus; i++) + bzero(data->dtada_percpu[i], rec->dtrd_size); + } +} + +void +dt_aggregate_destroy(dtrace_hdl_t *dtp) +{ + dt_aggregate_t *agp = &dtp->dt_aggregate; + dt_ahash_t *hash = &agp->dtat_hash; + dt_ahashent_t *h, *next; + dtrace_aggdata_t *aggdata; + int i, max_cpus = agp->dtat_maxcpu; + + if (hash->dtah_hash == NULL) { + assert(hash->dtah_all == NULL); + } else { + free(hash->dtah_hash); + + for (h = hash->dtah_all; h != NULL; h = next) { + next = h->dtahe_nextall; + + aggdata = &h->dtahe_data; + + if (aggdata->dtada_percpu != NULL) { + for (i = 0; i < max_cpus; i++) + free(aggdata->dtada_percpu[i]); + free(aggdata->dtada_percpu); + } + + free(aggdata->dtada_data); + free(h); + } + + hash->dtah_hash = NULL; + hash->dtah_all = NULL; + hash->dtah_size = 0; + } + + free(agp->dtat_buf.dtbd_data); + free(agp->dtat_cpus); +} |