diff options
Diffstat (limited to 'lib/libdtrace/common/dt_parser.c')
-rw-r--r-- | lib/libdtrace/common/dt_parser.c | 4893 |
1 files changed, 4893 insertions, 0 deletions
diff --git a/lib/libdtrace/common/dt_parser.c b/lib/libdtrace/common/dt_parser.c new file mode 100644 index 000000000000..b1932866a8c4 --- /dev/null +++ b/lib/libdtrace/common/dt_parser.c @@ -0,0 +1,4893 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License, Version 1.0 only + * (the "License"). You may not use this file except in compliance + * with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +/* + * DTrace D Language Parser + * + * The D Parser is a lex/yacc parser consisting of the lexer dt_lex.l, the + * parsing grammar dt_grammar.y, and this file, dt_parser.c, which handles + * the construction of the parse tree nodes and their syntactic validation. + * The parse tree is constructed of dt_node_t structures (see <dt_parser.h>) + * that are built in two passes: (1) the "create" pass, where the parse tree + * nodes are allocated by calls from the grammar to dt_node_*() subroutines, + * and (2) the "cook" pass, where nodes are coalesced, assigned D types, and + * validated according to the syntactic rules of the language. + * + * All node allocations are performed using dt_node_alloc(). All node frees + * during the parsing phase are performed by dt_node_free(), which frees node- + * internal state but does not actually free the nodes. All final node frees + * are done as part of the end of dt_compile() or as part of destroying + * persistent identifiers or translators which have embedded nodes. + * + * The dt_node_* routines that implement pass (1) may allocate new nodes. The + * dt_cook_* routines that implement pass (2) may *not* allocate new nodes. + * They may free existing nodes using dt_node_free(), but they may not actually + * deallocate any dt_node_t's. Currently dt_cook_op2() is an exception to this + * rule: see the comments therein for how this issue is resolved. + * + * The dt_cook_* routines are responsible for (at minimum) setting the final + * node type (dn_ctfp/dn_type) and attributes (dn_attr). If dn_ctfp/dn_type + * are set manually (i.e. not by one of the type assignment functions), then + * the DT_NF_COOKED flag must be set manually on the node. + * + * The cooking pass can be applied to the same parse tree more than once (used + * in the case of a comma-separated list of probe descriptions). As such, the + * cook routines must not perform any parse tree transformations which would + * be invalid if the tree were subsequently cooked using a different context. + * + * The dn_ctfp and dn_type fields form the type of the node. This tuple can + * take on the following set of values, which form our type invariants: + * + * 1. dn_ctfp = NULL, dn_type = CTF_ERR + * + * In this state, the node has unknown type and is not yet cooked. The + * DT_NF_COOKED flag is not yet set on the node. + * + * 2. dn_ctfp = DT_DYN_CTFP(dtp), dn_type = DT_DYN_TYPE(dtp) + * + * In this state, the node is a dynamic D type. This means that generic + * operations are not valid on this node and only code that knows how to + * examine the inner details of the node can operate on it. A <DYN> node + * must have dn_ident set to point to an identifier describing the object + * and its type. The DT_NF_REF flag is set for all nodes of type <DYN>. + * At present, the D compiler uses the <DYN> type for: + * + * - associative arrays that do not yet have a value type defined + * - translated data (i.e. the result of the xlate operator) + * - aggregations + * + * 3. dn_ctfp = DT_STR_CTFP(dtp), dn_type = DT_STR_TYPE(dtp) + * + * In this state, the node is of type D string. The string type is really + * a char[0] typedef, but requires special handling throughout the compiler. + * + * 4. dn_ctfp != NULL, dn_type = any other type ID + * + * In this state, the node is of some known D/CTF type. The normal libctf + * APIs can be used to learn more about the type name or structure. When + * the type is assigned, the DT_NF_SIGNED, DT_NF_REF, and DT_NF_BITFIELD + * flags cache the corresponding attributes of the underlying CTF type. + */ + +#include <sys/param.h> +#include <limits.h> +#include <setjmp.h> +#include <strings.h> +#include <assert.h> +#if defined(sun) +#include <alloca.h> +#endif +#include <stdlib.h> +#include <stdarg.h> +#include <stdio.h> +#include <errno.h> +#include <ctype.h> + +#include <dt_impl.h> +#include <dt_grammar.h> +#include <dt_module.h> +#include <dt_provider.h> +#include <dt_string.h> +#include <dt_as.h> + +dt_pcb_t *yypcb; /* current control block for parser */ +dt_node_t *yypragma; /* lex token list for control lines */ +char yyintprefix; /* int token macro prefix (+/-) */ +char yyintsuffix[4]; /* int token suffix string [uU][lL] */ +int yyintdecimal; /* int token format flag (1=decimal, 0=octal/hex) */ + +static const char * +opstr(int op) +{ + switch (op) { + case DT_TOK_COMMA: return (","); + case DT_TOK_ELLIPSIS: return ("..."); + case DT_TOK_ASGN: return ("="); + case DT_TOK_ADD_EQ: return ("+="); + case DT_TOK_SUB_EQ: return ("-="); + case DT_TOK_MUL_EQ: return ("*="); + case DT_TOK_DIV_EQ: return ("/="); + case DT_TOK_MOD_EQ: return ("%="); + case DT_TOK_AND_EQ: return ("&="); + case DT_TOK_XOR_EQ: return ("^="); + case DT_TOK_OR_EQ: return ("|="); + case DT_TOK_LSH_EQ: return ("<<="); + case DT_TOK_RSH_EQ: return (">>="); + case DT_TOK_QUESTION: return ("?"); + case DT_TOK_COLON: return (":"); + case DT_TOK_LOR: return ("||"); + case DT_TOK_LXOR: return ("^^"); + case DT_TOK_LAND: return ("&&"); + case DT_TOK_BOR: return ("|"); + case DT_TOK_XOR: return ("^"); + case DT_TOK_BAND: return ("&"); + case DT_TOK_EQU: return ("=="); + case DT_TOK_NEQ: return ("!="); + case DT_TOK_LT: return ("<"); + case DT_TOK_LE: return ("<="); + case DT_TOK_GT: return (">"); + case DT_TOK_GE: return (">="); + case DT_TOK_LSH: return ("<<"); + case DT_TOK_RSH: return (">>"); + case DT_TOK_ADD: return ("+"); + case DT_TOK_SUB: return ("-"); + case DT_TOK_MUL: return ("*"); + case DT_TOK_DIV: return ("/"); + case DT_TOK_MOD: return ("%"); + case DT_TOK_LNEG: return ("!"); + case DT_TOK_BNEG: return ("~"); + case DT_TOK_ADDADD: return ("++"); + case DT_TOK_PREINC: return ("++"); + case DT_TOK_POSTINC: return ("++"); + case DT_TOK_SUBSUB: return ("--"); + case DT_TOK_PREDEC: return ("--"); + case DT_TOK_POSTDEC: return ("--"); + case DT_TOK_IPOS: return ("+"); + case DT_TOK_INEG: return ("-"); + case DT_TOK_DEREF: return ("*"); + case DT_TOK_ADDROF: return ("&"); + case DT_TOK_OFFSETOF: return ("offsetof"); + case DT_TOK_SIZEOF: return ("sizeof"); + case DT_TOK_STRINGOF: return ("stringof"); + case DT_TOK_XLATE: return ("xlate"); + case DT_TOK_LPAR: return ("("); + case DT_TOK_RPAR: return (")"); + case DT_TOK_LBRAC: return ("["); + case DT_TOK_RBRAC: return ("]"); + case DT_TOK_PTR: return ("->"); + case DT_TOK_DOT: return ("."); + case DT_TOK_STRING: return ("<string>"); + case DT_TOK_IDENT: return ("<ident>"); + case DT_TOK_TNAME: return ("<type>"); + case DT_TOK_INT: return ("<int>"); + default: return ("<?>"); + } +} + +int +dt_type_lookup(const char *s, dtrace_typeinfo_t *tip) +{ + static const char delimiters[] = " \t\n\r\v\f*`"; + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + const char *p, *q, *end, *obj; + + for (p = s, end = s + strlen(s); *p != '\0'; p = q) { + while (isspace(*p)) + p++; /* skip leading whitespace prior to token */ + + if (p == end || (q = strpbrk(p + 1, delimiters)) == NULL) + break; /* empty string or single token remaining */ + + if (*q == '`') { + char *object = alloca((size_t)(q - p) + 1); + char *type = alloca((size_t)(end - s) + 1); + + /* + * Copy from the start of the token (p) to the location + * backquote (q) to extract the nul-terminated object. + */ + bcopy(p, object, (size_t)(q - p)); + object[(size_t)(q - p)] = '\0'; + + /* + * Copy the original string up to the start of this + * token (p) into type, and then concatenate everything + * after q. This is the type name without the object. + */ + bcopy(s, type, (size_t)(p - s)); + bcopy(q + 1, type + (size_t)(p - s), strlen(q + 1) + 1); + + if (strchr(q + 1, '`') != NULL) + return (dt_set_errno(dtp, EDT_BADSCOPE)); + + return (dtrace_lookup_by_type(dtp, object, type, tip)); + } + } + + if (yypcb->pcb_idepth != 0) + obj = DTRACE_OBJ_CDEFS; + else + obj = DTRACE_OBJ_EVERY; + + return (dtrace_lookup_by_type(dtp, obj, s, tip)); +} + +/* + * When we parse type expressions or parse an expression with unary "&", we + * need to find a type that is a pointer to a previously known type. + * Unfortunately CTF is limited to a per-container view, so ctf_type_pointer() + * alone does not suffice for our needs. We provide a more intelligent wrapper + * for the compiler that attempts to compute a pointer to either the given type + * or its base (that is, we try both "foo_t *" and "struct foo *"), and also + * to potentially construct the required type on-the-fly. + */ +int +dt_type_pointer(dtrace_typeinfo_t *tip) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + ctf_file_t *ctfp = tip->dtt_ctfp; + ctf_id_t type = tip->dtt_type; + ctf_id_t base = ctf_type_resolve(ctfp, type); + + dt_module_t *dmp; + ctf_id_t ptr; + + if ((ptr = ctf_type_pointer(ctfp, type)) != CTF_ERR || + (ptr = ctf_type_pointer(ctfp, base)) != CTF_ERR) { + tip->dtt_type = ptr; + return (0); + } + + if (yypcb->pcb_idepth != 0) + dmp = dtp->dt_cdefs; + else + dmp = dtp->dt_ddefs; + + if (ctfp != dmp->dm_ctfp && ctfp != ctf_parent_file(dmp->dm_ctfp) && + (type = ctf_add_type(dmp->dm_ctfp, ctfp, type)) == CTF_ERR) { + dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp); + return (dt_set_errno(dtp, EDT_CTF)); + } + + ptr = ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, type); + + if (ptr == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) { + dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp); + return (dt_set_errno(dtp, EDT_CTF)); + } + + tip->dtt_object = dmp->dm_name; + tip->dtt_ctfp = dmp->dm_ctfp; + tip->dtt_type = ptr; + + return (0); +} + +const char * +dt_type_name(ctf_file_t *ctfp, ctf_id_t type, char *buf, size_t len) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + + if (ctfp == DT_FPTR_CTFP(dtp) && type == DT_FPTR_TYPE(dtp)) + (void) snprintf(buf, len, "function pointer"); + else if (ctfp == DT_FUNC_CTFP(dtp) && type == DT_FUNC_TYPE(dtp)) + (void) snprintf(buf, len, "function"); + else if (ctfp == DT_DYN_CTFP(dtp) && type == DT_DYN_TYPE(dtp)) + (void) snprintf(buf, len, "dynamic variable"); + else if (ctfp == NULL) + (void) snprintf(buf, len, "<none>"); + else if (ctf_type_name(ctfp, type, buf, len) == NULL) + (void) snprintf(buf, len, "unknown"); + + return (buf); +} + +/* + * Perform the "usual arithmetic conversions" to determine which of the two + * input operand types should be promoted and used as a result type. The + * rules for this are described in ISOC[6.3.1.8] and K&R[A6.5]. + */ +static void +dt_type_promote(dt_node_t *lp, dt_node_t *rp, ctf_file_t **ofp, ctf_id_t *otype) +{ + ctf_file_t *lfp = lp->dn_ctfp; + ctf_id_t ltype = lp->dn_type; + + ctf_file_t *rfp = rp->dn_ctfp; + ctf_id_t rtype = rp->dn_type; + + ctf_id_t lbase = ctf_type_resolve(lfp, ltype); + uint_t lkind = ctf_type_kind(lfp, lbase); + + ctf_id_t rbase = ctf_type_resolve(rfp, rtype); + uint_t rkind = ctf_type_kind(rfp, rbase); + + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + ctf_encoding_t le, re; + uint_t lrank, rrank; + + assert(lkind == CTF_K_INTEGER || lkind == CTF_K_ENUM); + assert(rkind == CTF_K_INTEGER || rkind == CTF_K_ENUM); + + if (lkind == CTF_K_ENUM) { + lfp = DT_INT_CTFP(dtp); + ltype = lbase = DT_INT_TYPE(dtp); + } + + if (rkind == CTF_K_ENUM) { + rfp = DT_INT_CTFP(dtp); + rtype = rbase = DT_INT_TYPE(dtp); + } + + if (ctf_type_encoding(lfp, lbase, &le) == CTF_ERR) { + yypcb->pcb_hdl->dt_ctferr = ctf_errno(lfp); + longjmp(yypcb->pcb_jmpbuf, EDT_CTF); + } + + if (ctf_type_encoding(rfp, rbase, &re) == CTF_ERR) { + yypcb->pcb_hdl->dt_ctferr = ctf_errno(rfp); + longjmp(yypcb->pcb_jmpbuf, EDT_CTF); + } + + /* + * Compute an integer rank based on the size and unsigned status. + * If rank is identical, pick the "larger" of the equivalent types + * which we define as having a larger base ctf_id_t. If rank is + * different, pick the type with the greater rank. + */ + lrank = le.cte_bits + ((le.cte_format & CTF_INT_SIGNED) == 0); + rrank = re.cte_bits + ((re.cte_format & CTF_INT_SIGNED) == 0); + + if (lrank == rrank) { + if (lbase - rbase < 0) + goto return_rtype; + else + goto return_ltype; + } else if (lrank > rrank) { + goto return_ltype; + } else + goto return_rtype; + +return_ltype: + *ofp = lfp; + *otype = ltype; + return; + +return_rtype: + *ofp = rfp; + *otype = rtype; +} + +void +dt_node_promote(dt_node_t *lp, dt_node_t *rp, dt_node_t *dnp) +{ + dt_type_promote(lp, rp, &dnp->dn_ctfp, &dnp->dn_type); + dt_node_type_assign(dnp, dnp->dn_ctfp, dnp->dn_type); + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); +} + +const char * +dt_node_name(const dt_node_t *dnp, char *buf, size_t len) +{ + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + const char *prefix = "", *suffix = ""; + const dtrace_syminfo_t *dts; + char *s; + + switch (dnp->dn_kind) { + case DT_NODE_INT: + (void) snprintf(buf, len, "integer constant 0x%llx", + (u_longlong_t)dnp->dn_value); + break; + case DT_NODE_STRING: + s = strchr2esc(dnp->dn_string, strlen(dnp->dn_string)); + (void) snprintf(buf, len, "string constant \"%s\"", + s != NULL ? s : dnp->dn_string); + free(s); + break; + case DT_NODE_IDENT: + (void) snprintf(buf, len, "identifier %s", dnp->dn_string); + break; + case DT_NODE_VAR: + case DT_NODE_FUNC: + case DT_NODE_AGG: + case DT_NODE_INLINE: + switch (dnp->dn_ident->di_kind) { + case DT_IDENT_FUNC: + case DT_IDENT_AGGFUNC: + case DT_IDENT_ACTFUNC: + suffix = "( )"; + break; + case DT_IDENT_AGG: + prefix = "@"; + break; + } + (void) snprintf(buf, len, "%s %s%s%s", + dt_idkind_name(dnp->dn_ident->di_kind), + prefix, dnp->dn_ident->di_name, suffix); + break; + case DT_NODE_SYM: + dts = dnp->dn_ident->di_data; + (void) snprintf(buf, len, "symbol %s`%s", + dts->dts_object, dts->dts_name); + break; + case DT_NODE_TYPE: + (void) snprintf(buf, len, "type %s", + dt_node_type_name(dnp, n1, sizeof (n1))); + break; + case DT_NODE_OP1: + case DT_NODE_OP2: + case DT_NODE_OP3: + (void) snprintf(buf, len, "operator %s", opstr(dnp->dn_op)); + break; + case DT_NODE_DEXPR: + case DT_NODE_DFUNC: + if (dnp->dn_expr) + return (dt_node_name(dnp->dn_expr, buf, len)); + (void) snprintf(buf, len, "%s", "statement"); + break; + case DT_NODE_PDESC: + if (dnp->dn_desc->dtpd_id == 0) { + (void) snprintf(buf, len, + "probe description %s:%s:%s:%s", + dnp->dn_desc->dtpd_provider, dnp->dn_desc->dtpd_mod, + dnp->dn_desc->dtpd_func, dnp->dn_desc->dtpd_name); + } else { + (void) snprintf(buf, len, "probe description %u", + dnp->dn_desc->dtpd_id); + } + break; + case DT_NODE_CLAUSE: + (void) snprintf(buf, len, "%s", "clause"); + break; + case DT_NODE_MEMBER: + (void) snprintf(buf, len, "member %s", dnp->dn_membname); + break; + case DT_NODE_XLATOR: + (void) snprintf(buf, len, "translator <%s> (%s)", + dt_type_name(dnp->dn_xlator->dx_dst_ctfp, + dnp->dn_xlator->dx_dst_type, n1, sizeof (n1)), + dt_type_name(dnp->dn_xlator->dx_src_ctfp, + dnp->dn_xlator->dx_src_type, n2, sizeof (n2))); + break; + case DT_NODE_PROG: + (void) snprintf(buf, len, "%s", "program"); + break; + default: + (void) snprintf(buf, len, "node <%u>", dnp->dn_kind); + break; + } + + return (buf); +} + +/* + * dt_node_xalloc() can be used to create new parse nodes from any libdtrace + * caller. The caller is responsible for assigning dn_link appropriately. + */ +dt_node_t * +dt_node_xalloc(dtrace_hdl_t *dtp, int kind) +{ + dt_node_t *dnp = dt_alloc(dtp, sizeof (dt_node_t)); + + if (dnp == NULL) + return (NULL); + + dnp->dn_ctfp = NULL; + dnp->dn_type = CTF_ERR; + dnp->dn_kind = (uchar_t)kind; + dnp->dn_flags = 0; + dnp->dn_op = 0; + dnp->dn_line = -1; + dnp->dn_reg = -1; + dnp->dn_attr = _dtrace_defattr; + dnp->dn_list = NULL; + dnp->dn_link = NULL; + bzero(&dnp->dn_u, sizeof (dnp->dn_u)); + + return (dnp); +} + +/* + * dt_node_alloc() is used to create new parse nodes from the parser. It + * assigns the node location based on the current lexer line number and places + * the new node on the default allocation list. If allocation fails, we + * automatically longjmp the caller back to the enclosing compilation call. + */ +static dt_node_t * +dt_node_alloc(int kind) +{ + dt_node_t *dnp = dt_node_xalloc(yypcb->pcb_hdl, kind); + + if (dnp == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + dnp->dn_line = yylineno; + dnp->dn_link = yypcb->pcb_list; + yypcb->pcb_list = dnp; + + return (dnp); +} + +void +dt_node_free(dt_node_t *dnp) +{ + uchar_t kind = dnp->dn_kind; + + dnp->dn_kind = DT_NODE_FREE; + + switch (kind) { + case DT_NODE_STRING: + case DT_NODE_IDENT: + case DT_NODE_TYPE: + free(dnp->dn_string); + dnp->dn_string = NULL; + break; + + case DT_NODE_VAR: + case DT_NODE_FUNC: + case DT_NODE_PROBE: + if (dnp->dn_ident != NULL) { + if (dnp->dn_ident->di_flags & DT_IDFLG_ORPHAN) + dt_ident_destroy(dnp->dn_ident); + dnp->dn_ident = NULL; + } + dt_node_list_free(&dnp->dn_args); + break; + + case DT_NODE_OP1: + if (dnp->dn_child != NULL) { + dt_node_free(dnp->dn_child); + dnp->dn_child = NULL; + } + break; + + case DT_NODE_OP3: + if (dnp->dn_expr != NULL) { + dt_node_free(dnp->dn_expr); + dnp->dn_expr = NULL; + } + /*FALLTHRU*/ + case DT_NODE_OP2: + if (dnp->dn_left != NULL) { + dt_node_free(dnp->dn_left); + dnp->dn_left = NULL; + } + if (dnp->dn_right != NULL) { + dt_node_free(dnp->dn_right); + dnp->dn_right = NULL; + } + break; + + case DT_NODE_DEXPR: + case DT_NODE_DFUNC: + if (dnp->dn_expr != NULL) { + dt_node_free(dnp->dn_expr); + dnp->dn_expr = NULL; + } + break; + + case DT_NODE_AGG: + if (dnp->dn_aggfun != NULL) { + dt_node_free(dnp->dn_aggfun); + dnp->dn_aggfun = NULL; + } + dt_node_list_free(&dnp->dn_aggtup); + break; + + case DT_NODE_PDESC: + free(dnp->dn_spec); + dnp->dn_spec = NULL; + free(dnp->dn_desc); + dnp->dn_desc = NULL; + break; + + case DT_NODE_CLAUSE: + if (dnp->dn_pred != NULL) + dt_node_free(dnp->dn_pred); + if (dnp->dn_locals != NULL) + dt_idhash_destroy(dnp->dn_locals); + dt_node_list_free(&dnp->dn_pdescs); + dt_node_list_free(&dnp->dn_acts); + break; + + case DT_NODE_MEMBER: + free(dnp->dn_membname); + dnp->dn_membname = NULL; + if (dnp->dn_membexpr != NULL) { + dt_node_free(dnp->dn_membexpr); + dnp->dn_membexpr = NULL; + } + break; + + case DT_NODE_PROVIDER: + dt_node_list_free(&dnp->dn_probes); + free(dnp->dn_provname); + dnp->dn_provname = NULL; + break; + + case DT_NODE_PROG: + dt_node_list_free(&dnp->dn_list); + break; + } +} + +void +dt_node_attr_assign(dt_node_t *dnp, dtrace_attribute_t attr) +{ + if ((yypcb->pcb_cflags & DTRACE_C_EATTR) && + (dt_attr_cmp(attr, yypcb->pcb_amin) < 0)) { + char a[DTRACE_ATTR2STR_MAX]; + char s[BUFSIZ]; + + dnerror(dnp, D_ATTR_MIN, "attributes for %s (%s) are less than " + "predefined minimum\n", dt_node_name(dnp, s, sizeof (s)), + dtrace_attr2str(attr, a, sizeof (a))); + } + + dnp->dn_attr = attr; +} + +void +dt_node_type_assign(dt_node_t *dnp, ctf_file_t *fp, ctf_id_t type) +{ + ctf_id_t base = ctf_type_resolve(fp, type); + uint_t kind = ctf_type_kind(fp, base); + ctf_encoding_t e; + + dnp->dn_flags &= + ~(DT_NF_SIGNED | DT_NF_REF | DT_NF_BITFIELD | DT_NF_USERLAND); + + if (kind == CTF_K_INTEGER && ctf_type_encoding(fp, base, &e) == 0) { + size_t size = e.cte_bits / NBBY; + + if (size > 8 || (e.cte_bits % NBBY) != 0 || (size & (size - 1))) + dnp->dn_flags |= DT_NF_BITFIELD; + + if (e.cte_format & CTF_INT_SIGNED) + dnp->dn_flags |= DT_NF_SIGNED; + } + + if (kind == CTF_K_FLOAT && ctf_type_encoding(fp, base, &e) == 0) { + if (e.cte_bits / NBBY > sizeof (uint64_t)) + dnp->dn_flags |= DT_NF_REF; + } + + if (kind == CTF_K_STRUCT || kind == CTF_K_UNION || + kind == CTF_K_FORWARD || + kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION) + dnp->dn_flags |= DT_NF_REF; + else if (yypcb != NULL && fp == DT_DYN_CTFP(yypcb->pcb_hdl) && + type == DT_DYN_TYPE(yypcb->pcb_hdl)) + dnp->dn_flags |= DT_NF_REF; + + dnp->dn_flags |= DT_NF_COOKED; + dnp->dn_ctfp = fp; + dnp->dn_type = type; +} + +void +dt_node_type_propagate(const dt_node_t *src, dt_node_t *dst) +{ + assert(src->dn_flags & DT_NF_COOKED); + dst->dn_flags = src->dn_flags & ~DT_NF_LVALUE; + dst->dn_ctfp = src->dn_ctfp; + dst->dn_type = src->dn_type; +} + +const char * +dt_node_type_name(const dt_node_t *dnp, char *buf, size_t len) +{ + if (dt_node_is_dynamic(dnp) && dnp->dn_ident != NULL) { + (void) snprintf(buf, len, "%s", + dt_idkind_name(dt_ident_resolve(dnp->dn_ident)->di_kind)); + return (buf); + } + + if (dnp->dn_flags & DT_NF_USERLAND) { + size_t n = snprintf(buf, len, "userland "); + len = len > n ? len - n : 0; + (void) dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf + n, len); + return (buf); + } + + return (dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf, len)); +} + +size_t +dt_node_type_size(const dt_node_t *dnp) +{ + if (dnp->dn_kind == DT_NODE_STRING) + return (strlen(dnp->dn_string) + 1); + + if (dt_node_is_dynamic(dnp) && dnp->dn_ident != NULL) + return (dt_ident_size(dnp->dn_ident)); + + return (ctf_type_size(dnp->dn_ctfp, dnp->dn_type)); +} + +/* + * Determine if the specified parse tree node references an identifier of the + * specified kind, and if so return a pointer to it; otherwise return NULL. + * This function resolves the identifier itself, following through any inlines. + */ +dt_ident_t * +dt_node_resolve(const dt_node_t *dnp, uint_t idkind) +{ + dt_ident_t *idp; + + switch (dnp->dn_kind) { + case DT_NODE_VAR: + case DT_NODE_SYM: + case DT_NODE_FUNC: + case DT_NODE_AGG: + case DT_NODE_INLINE: + case DT_NODE_PROBE: + idp = dt_ident_resolve(dnp->dn_ident); + return (idp->di_kind == idkind ? idp : NULL); + } + + if (dt_node_is_dynamic(dnp)) { + idp = dt_ident_resolve(dnp->dn_ident); + return (idp->di_kind == idkind ? idp : NULL); + } + + return (NULL); +} + +size_t +dt_node_sizeof(const dt_node_t *dnp) +{ + dtrace_syminfo_t *sip; + GElf_Sym sym; + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + + /* + * The size of the node as used for the sizeof() operator depends on + * the kind of the node. If the node is a SYM, the size is obtained + * from the symbol table; if it is not a SYM, the size is determined + * from the node's type. This is slightly different from C's sizeof() + * operator in that (for example) when applied to a function, sizeof() + * will evaluate to the length of the function rather than the size of + * the function type. + */ + if (dnp->dn_kind != DT_NODE_SYM) + return (dt_node_type_size(dnp)); + + sip = dnp->dn_ident->di_data; + + if (dtrace_lookup_by_name(dtp, sip->dts_object, + sip->dts_name, &sym, NULL) == -1) + return (0); + + return (sym.st_size); +} + +int +dt_node_is_integer(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_id_t type; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + type = ctf_type_resolve(fp, dnp->dn_type); + kind = ctf_type_kind(fp, type); + + if (kind == CTF_K_INTEGER && + ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)) + return (0); /* void integer */ + + return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM); +} + +int +dt_node_is_float(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_id_t type; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + type = ctf_type_resolve(fp, dnp->dn_type); + kind = ctf_type_kind(fp, type); + + return (kind == CTF_K_FLOAT && + ctf_type_encoding(dnp->dn_ctfp, type, &e) == 0 && ( + e.cte_format == CTF_FP_SINGLE || e.cte_format == CTF_FP_DOUBLE || + e.cte_format == CTF_FP_LDOUBLE)); +} + +int +dt_node_is_scalar(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_id_t type; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + type = ctf_type_resolve(fp, dnp->dn_type); + kind = ctf_type_kind(fp, type); + + if (kind == CTF_K_INTEGER && + ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)) + return (0); /* void cannot be used as a scalar */ + + return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM || + kind == CTF_K_POINTER); +} + +int +dt_node_is_arith(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_id_t type; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + type = ctf_type_resolve(fp, dnp->dn_type); + kind = ctf_type_kind(fp, type); + + if (kind == CTF_K_INTEGER) + return (ctf_type_encoding(fp, type, &e) == 0 && !IS_VOID(e)); + else + return (kind == CTF_K_ENUM); +} + +int +dt_node_is_vfptr(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_id_t type; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + type = ctf_type_resolve(fp, dnp->dn_type); + if (ctf_type_kind(fp, type) != CTF_K_POINTER) + return (0); /* type is not a pointer */ + + type = ctf_type_resolve(fp, ctf_type_reference(fp, type)); + kind = ctf_type_kind(fp, type); + + return (kind == CTF_K_FUNCTION || (kind == CTF_K_INTEGER && + ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e))); +} + +int +dt_node_is_dynamic(const dt_node_t *dnp) +{ + if (dnp->dn_kind == DT_NODE_VAR && + (dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) { + const dt_idnode_t *inp = dnp->dn_ident->di_iarg; + return (inp->din_root ? dt_node_is_dynamic(inp->din_root) : 0); + } + + return (dnp->dn_ctfp == DT_DYN_CTFP(yypcb->pcb_hdl) && + dnp->dn_type == DT_DYN_TYPE(yypcb->pcb_hdl)); +} + +int +dt_node_is_string(const dt_node_t *dnp) +{ + return (dnp->dn_ctfp == DT_STR_CTFP(yypcb->pcb_hdl) && + dnp->dn_type == DT_STR_TYPE(yypcb->pcb_hdl)); +} + +int +dt_node_is_stack(const dt_node_t *dnp) +{ + return (dnp->dn_ctfp == DT_STACK_CTFP(yypcb->pcb_hdl) && + dnp->dn_type == DT_STACK_TYPE(yypcb->pcb_hdl)); +} + +int +dt_node_is_symaddr(const dt_node_t *dnp) +{ + return (dnp->dn_ctfp == DT_SYMADDR_CTFP(yypcb->pcb_hdl) && + dnp->dn_type == DT_SYMADDR_TYPE(yypcb->pcb_hdl)); +} + +int +dt_node_is_usymaddr(const dt_node_t *dnp) +{ + return (dnp->dn_ctfp == DT_USYMADDR_CTFP(yypcb->pcb_hdl) && + dnp->dn_type == DT_USYMADDR_TYPE(yypcb->pcb_hdl)); +} + +int +dt_node_is_strcompat(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_arinfo_t r; + ctf_id_t base; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + base = ctf_type_resolve(fp, dnp->dn_type); + kind = ctf_type_kind(fp, base); + + if (kind == CTF_K_POINTER && + (base = ctf_type_reference(fp, base)) != CTF_ERR && + (base = ctf_type_resolve(fp, base)) != CTF_ERR && + ctf_type_encoding(fp, base, &e) == 0 && IS_CHAR(e)) + return (1); /* promote char pointer to string */ + + if (kind == CTF_K_ARRAY && ctf_array_info(fp, base, &r) == 0 && + (base = ctf_type_resolve(fp, r.ctr_contents)) != CTF_ERR && + ctf_type_encoding(fp, base, &e) == 0 && IS_CHAR(e)) + return (1); /* promote char array to string */ + + return (0); +} + +int +dt_node_is_pointer(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + uint_t kind; + + assert(dnp->dn_flags & DT_NF_COOKED); + + if (dt_node_is_string(dnp)) + return (0); /* string are pass-by-ref but act like structs */ + + kind = ctf_type_kind(fp, ctf_type_resolve(fp, dnp->dn_type)); + return (kind == CTF_K_POINTER || kind == CTF_K_ARRAY); +} + +int +dt_node_is_void(const dt_node_t *dnp) +{ + ctf_file_t *fp = dnp->dn_ctfp; + ctf_encoding_t e; + ctf_id_t type; + + if (dt_node_is_dynamic(dnp)) + return (0); /* <DYN> is an alias for void but not the same */ + + if (dt_node_is_stack(dnp)) + return (0); + + if (dt_node_is_symaddr(dnp) || dt_node_is_usymaddr(dnp)) + return (0); + + type = ctf_type_resolve(fp, dnp->dn_type); + + return (ctf_type_kind(fp, type) == CTF_K_INTEGER && + ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)); +} + +int +dt_node_is_ptrcompat(const dt_node_t *lp, const dt_node_t *rp, + ctf_file_t **fpp, ctf_id_t *tp) +{ + ctf_file_t *lfp = lp->dn_ctfp; + ctf_file_t *rfp = rp->dn_ctfp; + + ctf_id_t lbase = CTF_ERR, rbase = CTF_ERR; + ctf_id_t lref = CTF_ERR, rref = CTF_ERR; + + int lp_is_void, rp_is_void, lp_is_int, rp_is_int, compat; + uint_t lkind, rkind; + ctf_encoding_t e; + ctf_arinfo_t r; + + assert(lp->dn_flags & DT_NF_COOKED); + assert(rp->dn_flags & DT_NF_COOKED); + + if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) + return (0); /* fail if either node is a dynamic variable */ + + lp_is_int = dt_node_is_integer(lp); + rp_is_int = dt_node_is_integer(rp); + + if (lp_is_int && rp_is_int) + return (0); /* fail if both nodes are integers */ + + if (lp_is_int && (lp->dn_kind != DT_NODE_INT || lp->dn_value != 0)) + return (0); /* fail if lp is an integer that isn't 0 constant */ + + if (rp_is_int && (rp->dn_kind != DT_NODE_INT || rp->dn_value != 0)) + return (0); /* fail if rp is an integer that isn't 0 constant */ + + if ((lp_is_int == 0 && rp_is_int == 0) && ( + (lp->dn_flags & DT_NF_USERLAND) ^ (rp->dn_flags & DT_NF_USERLAND))) + return (0); /* fail if only one pointer is a userland address */ + + /* + * Resolve the left-hand and right-hand types to their base type, and + * then resolve the referenced type as well (assuming the base type + * is CTF_K_POINTER or CTF_K_ARRAY). Otherwise [lr]ref = CTF_ERR. + */ + if (!lp_is_int) { + lbase = ctf_type_resolve(lfp, lp->dn_type); + lkind = ctf_type_kind(lfp, lbase); + + if (lkind == CTF_K_POINTER) { + lref = ctf_type_resolve(lfp, + ctf_type_reference(lfp, lbase)); + } else if (lkind == CTF_K_ARRAY && + ctf_array_info(lfp, lbase, &r) == 0) { + lref = ctf_type_resolve(lfp, r.ctr_contents); + } + } + + if (!rp_is_int) { + rbase = ctf_type_resolve(rfp, rp->dn_type); + rkind = ctf_type_kind(rfp, rbase); + + if (rkind == CTF_K_POINTER) { + rref = ctf_type_resolve(rfp, + ctf_type_reference(rfp, rbase)); + } else if (rkind == CTF_K_ARRAY && + ctf_array_info(rfp, rbase, &r) == 0) { + rref = ctf_type_resolve(rfp, r.ctr_contents); + } + } + + /* + * We know that one or the other type may still be a zero-valued + * integer constant. To simplify the code below, set the integer + * type variables equal to the non-integer types and proceed. + */ + if (lp_is_int) { + lbase = rbase; + lkind = rkind; + lref = rref; + lfp = rfp; + } else if (rp_is_int) { + rbase = lbase; + rkind = lkind; + rref = lref; + rfp = lfp; + } + + lp_is_void = ctf_type_encoding(lfp, lref, &e) == 0 && IS_VOID(e); + rp_is_void = ctf_type_encoding(rfp, rref, &e) == 0 && IS_VOID(e); + + /* + * The types are compatible if both are pointers to the same type, or + * if either pointer is a void pointer. If they are compatible, set + * tp to point to the more specific pointer type and return it. + */ + compat = (lkind == CTF_K_POINTER || lkind == CTF_K_ARRAY) && + (rkind == CTF_K_POINTER || rkind == CTF_K_ARRAY) && + (lp_is_void || rp_is_void || ctf_type_compat(lfp, lref, rfp, rref)); + + if (compat) { + if (fpp != NULL) + *fpp = rp_is_void ? lfp : rfp; + if (tp != NULL) + *tp = rp_is_void ? lbase : rbase; + } + + return (compat); +} + +/* + * The rules for checking argument types against parameter types are described + * in the ANSI-C spec (see K&R[A7.3.2] and K&R[A7.17]). We use the same rule + * set to determine whether associative array arguments match the prototype. + */ +int +dt_node_is_argcompat(const dt_node_t *lp, const dt_node_t *rp) +{ + ctf_file_t *lfp = lp->dn_ctfp; + ctf_file_t *rfp = rp->dn_ctfp; + + assert(lp->dn_flags & DT_NF_COOKED); + assert(rp->dn_flags & DT_NF_COOKED); + + if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) + return (1); /* integer types are compatible */ + + if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp)) + return (1); /* string types are compatible */ + + if (dt_node_is_stack(lp) && dt_node_is_stack(rp)) + return (1); /* stack types are compatible */ + + if (dt_node_is_symaddr(lp) && dt_node_is_symaddr(rp)) + return (1); /* symaddr types are compatible */ + + if (dt_node_is_usymaddr(lp) && dt_node_is_usymaddr(rp)) + return (1); /* usymaddr types are compatible */ + + switch (ctf_type_kind(lfp, ctf_type_resolve(lfp, lp->dn_type))) { + case CTF_K_FUNCTION: + case CTF_K_STRUCT: + case CTF_K_UNION: + return (ctf_type_compat(lfp, lp->dn_type, rfp, rp->dn_type)); + default: + return (dt_node_is_ptrcompat(lp, rp, NULL, NULL)); + } +} + +/* + * We provide dt_node_is_posconst() as a convenience routine for callers who + * wish to verify that an argument is a positive non-zero integer constant. + */ +int +dt_node_is_posconst(const dt_node_t *dnp) +{ + return (dnp->dn_kind == DT_NODE_INT && dnp->dn_value != 0 && ( + (dnp->dn_flags & DT_NF_SIGNED) == 0 || (int64_t)dnp->dn_value > 0)); +} + +int +dt_node_is_actfunc(const dt_node_t *dnp) +{ + return (dnp->dn_kind == DT_NODE_FUNC && + dnp->dn_ident->di_kind == DT_IDENT_ACTFUNC); +} + +/* + * The original rules for integer constant typing are described in K&R[A2.5.1]. + * However, since we support long long, we instead use the rules from ISO C99 + * clause 6.4.4.1 since that is where long longs are formally described. The + * rules require us to know whether the constant was specified in decimal or + * in octal or hex, which we do by looking at our lexer's 'yyintdecimal' flag. + * The type of an integer constant is the first of the corresponding list in + * which its value can be represented: + * + * unsuffixed decimal: int, long, long long + * unsuffixed oct/hex: int, unsigned int, long, unsigned long, + * long long, unsigned long long + * suffix [uU]: unsigned int, unsigned long, unsigned long long + * suffix [lL] decimal: long, long long + * suffix [lL] oct/hex: long, unsigned long, long long, unsigned long long + * suffix [uU][Ll]: unsigned long, unsigned long long + * suffix ll/LL decimal: long long + * suffix ll/LL oct/hex: long long, unsigned long long + * suffix [uU][ll/LL]: unsigned long long + * + * Given that our lexer has already validated the suffixes by regexp matching, + * there is an obvious way to concisely encode these rules: construct an array + * of the types in the order int, unsigned int, long, unsigned long, long long, + * unsigned long long. Compute an integer array starting index based on the + * suffix (e.g. none = 0, u = 1, ull = 5), and compute an increment based on + * the specifier (dec/oct/hex) and suffix (u). Then iterate from the starting + * index to the end, advancing using the increment, and searching until we + * find a limit that matches or we run out of choices (overflow). To make it + * even faster, we precompute the table of type information in dtrace_open(). + */ +dt_node_t * +dt_node_int(uintmax_t value) +{ + dt_node_t *dnp = dt_node_alloc(DT_NODE_INT); + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + + int n = (yyintdecimal | (yyintsuffix[0] == 'u')) + 1; + int i = 0; + + const char *p; + char c; + + dnp->dn_op = DT_TOK_INT; + dnp->dn_value = value; + + for (p = yyintsuffix; (c = *p) != '\0'; p++) { + if (c == 'U' || c == 'u') + i += 1; + else if (c == 'L' || c == 'l') + i += 2; + } + + for (; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i += n) { + if (value <= dtp->dt_ints[i].did_limit) { + dt_node_type_assign(dnp, + dtp->dt_ints[i].did_ctfp, + dtp->dt_ints[i].did_type); + + /* + * If a prefix character is present in macro text, add + * in the corresponding operator node (see dt_lex.l). + */ + switch (yyintprefix) { + case '+': + return (dt_node_op1(DT_TOK_IPOS, dnp)); + case '-': + return (dt_node_op1(DT_TOK_INEG, dnp)); + default: + return (dnp); + } + } + } + + xyerror(D_INT_OFLOW, "integer constant 0x%llx cannot be represented " + "in any built-in integral type\n", (u_longlong_t)value); + /*NOTREACHED*/ + return (NULL); /* keep gcc happy */ +} + +dt_node_t * +dt_node_string(char *string) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *dnp; + + if (string == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + dnp = dt_node_alloc(DT_NODE_STRING); + dnp->dn_op = DT_TOK_STRING; + dnp->dn_string = string; + dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp)); + + return (dnp); +} + +dt_node_t * +dt_node_ident(char *name) +{ + dt_ident_t *idp; + dt_node_t *dnp; + + if (name == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + /* + * If the identifier is an inlined integer constant, then create an INT + * node that is a clone of the inline parse tree node and return that + * immediately, allowing this inline to be used in parsing contexts + * that require constant expressions (e.g. scalar array sizes). + */ + if ((idp = dt_idstack_lookup(&yypcb->pcb_globals, name)) != NULL && + (idp->di_flags & DT_IDFLG_INLINE)) { + dt_idnode_t *inp = idp->di_iarg; + + if (inp->din_root != NULL && + inp->din_root->dn_kind == DT_NODE_INT) { + free(name); + + dnp = dt_node_alloc(DT_NODE_INT); + dnp->dn_op = DT_TOK_INT; + dnp->dn_value = inp->din_root->dn_value; + dt_node_type_propagate(inp->din_root, dnp); + + return (dnp); + } + } + + dnp = dt_node_alloc(DT_NODE_IDENT); + dnp->dn_op = name[0] == '@' ? DT_TOK_AGG : DT_TOK_IDENT; + dnp->dn_string = name; + + return (dnp); +} + +/* + * Create an empty node of type corresponding to the given declaration. + * Explicit references to user types (C or D) are assigned the default + * stability; references to other types are _dtrace_typattr (Private). + */ +dt_node_t * +dt_node_type(dt_decl_t *ddp) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dtrace_typeinfo_t dtt; + dt_node_t *dnp; + char *name = NULL; + int err; + + /* + * If 'ddp' is NULL, we get a decl by popping the decl stack. This + * form of dt_node_type() is used by parameter rules in dt_grammar.y. + */ + if (ddp == NULL) + ddp = dt_decl_pop_param(&name); + + err = dt_decl_type(ddp, &dtt); + dt_decl_free(ddp); + + if (err != 0) { + free(name); + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + } + + dnp = dt_node_alloc(DT_NODE_TYPE); + dnp->dn_op = DT_TOK_IDENT; + dnp->dn_string = name; + dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type); + + if (dtt.dtt_ctfp == dtp->dt_cdefs->dm_ctfp || + dtt.dtt_ctfp == dtp->dt_ddefs->dm_ctfp) + dt_node_attr_assign(dnp, _dtrace_defattr); + else + dt_node_attr_assign(dnp, _dtrace_typattr); + + return (dnp); +} + +/* + * Create a type node corresponding to a varargs (...) parameter by just + * assigning it type CTF_ERR. The decl processing code will handle this. + */ +dt_node_t * +dt_node_vatype(void) +{ + dt_node_t *dnp = dt_node_alloc(DT_NODE_TYPE); + + dnp->dn_op = DT_TOK_IDENT; + dnp->dn_ctfp = yypcb->pcb_hdl->dt_cdefs->dm_ctfp; + dnp->dn_type = CTF_ERR; + dnp->dn_attr = _dtrace_defattr; + + return (dnp); +} + +/* + * Instantiate a decl using the contents of the current declaration stack. As + * we do not currently permit decls to be initialized, this function currently + * returns NULL and no parse node is created. When this function is called, + * the topmost scope's ds_ident pointer will be set to NULL (indicating no + * init_declarator rule was matched) or will point to the identifier to use. + */ +dt_node_t * +dt_node_decl(void) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_scope_t *dsp = &yypcb->pcb_dstack; + dt_dclass_t class = dsp->ds_class; + dt_decl_t *ddp = dt_decl_top(); + + dt_module_t *dmp; + dtrace_typeinfo_t dtt; + ctf_id_t type; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + if (dt_decl_type(ddp, &dtt) != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + + /* + * If we have no declaration identifier, then this is either a spurious + * declaration of an intrinsic type (e.g. "extern int;") or declaration + * or redeclaration of a struct, union, or enum type or tag. + */ + if (dsp->ds_ident == NULL) { + if (ddp->dd_kind != CTF_K_STRUCT && + ddp->dd_kind != CTF_K_UNION && ddp->dd_kind != CTF_K_ENUM) + xyerror(D_DECL_USELESS, "useless declaration\n"); + + dt_dprintf("type %s added as id %ld\n", dt_type_name( + ddp->dd_ctfp, ddp->dd_type, n1, sizeof (n1)), ddp->dd_type); + + return (NULL); + } + + if (strchr(dsp->ds_ident, '`') != NULL) { + xyerror(D_DECL_SCOPE, "D scoping operator may not be used in " + "a declaration name (%s)\n", dsp->ds_ident); + } + + /* + * If we are nested inside of a C include file, add the declaration to + * the C definition module; otherwise use the D definition module. + */ + if (yypcb->pcb_idepth != 0) + dmp = dtp->dt_cdefs; + else + dmp = dtp->dt_ddefs; + + /* + * If we see a global or static declaration of a function prototype, + * treat this as equivalent to a D extern declaration. + */ + if (ctf_type_kind(dtt.dtt_ctfp, dtt.dtt_type) == CTF_K_FUNCTION && + (class == DT_DC_DEFAULT || class == DT_DC_STATIC)) + class = DT_DC_EXTERN; + + switch (class) { + case DT_DC_AUTO: + case DT_DC_REGISTER: + case DT_DC_STATIC: + xyerror(D_DECL_BADCLASS, "specified storage class not " + "appropriate in D\n"); + /*NOTREACHED*/ + + case DT_DC_EXTERN: { + dtrace_typeinfo_t ott; + dtrace_syminfo_t dts; + GElf_Sym sym; + + int exists = dtrace_lookup_by_name(dtp, + dmp->dm_name, dsp->ds_ident, &sym, &dts) == 0; + + if (exists && (dtrace_symbol_type(dtp, &sym, &dts, &ott) != 0 || + ctf_type_cmp(dtt.dtt_ctfp, dtt.dtt_type, + ott.dtt_ctfp, ott.dtt_type) != 0)) { + xyerror(D_DECL_IDRED, "identifier redeclared: %s`%s\n" + "\t current: %s\n\tprevious: %s\n", + dmp->dm_name, dsp->ds_ident, + dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, + n1, sizeof (n1)), + dt_type_name(ott.dtt_ctfp, ott.dtt_type, + n2, sizeof (n2))); + } else if (!exists && dt_module_extern(dtp, dmp, + dsp->ds_ident, &dtt) == NULL) { + xyerror(D_UNKNOWN, + "failed to extern %s: %s\n", dsp->ds_ident, + dtrace_errmsg(dtp, dtrace_errno(dtp))); + } else { + dt_dprintf("extern %s`%s type=<%s>\n", + dmp->dm_name, dsp->ds_ident, + dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, + n1, sizeof (n1))); + } + break; + } + + case DT_DC_TYPEDEF: + if (dt_idstack_lookup(&yypcb->pcb_globals, dsp->ds_ident)) { + xyerror(D_DECL_IDRED, "global variable identifier " + "redeclared: %s\n", dsp->ds_ident); + } + + if (ctf_lookup_by_name(dmp->dm_ctfp, + dsp->ds_ident) != CTF_ERR) { + xyerror(D_DECL_IDRED, + "typedef redeclared: %s\n", dsp->ds_ident); + } + + /* + * If the source type for the typedef is not defined in the + * target container or its parent, copy the type to the target + * container and reset dtt_ctfp and dtt_type to the copy. + */ + if (dtt.dtt_ctfp != dmp->dm_ctfp && + dtt.dtt_ctfp != ctf_parent_file(dmp->dm_ctfp)) { + + dtt.dtt_type = ctf_add_type(dmp->dm_ctfp, + dtt.dtt_ctfp, dtt.dtt_type); + dtt.dtt_ctfp = dmp->dm_ctfp; + + if (dtt.dtt_type == CTF_ERR || + ctf_update(dtt.dtt_ctfp) == CTF_ERR) { + xyerror(D_UNKNOWN, "failed to copy typedef %s " + "source type: %s\n", dsp->ds_ident, + ctf_errmsg(ctf_errno(dtt.dtt_ctfp))); + } + } + + type = ctf_add_typedef(dmp->dm_ctfp, + CTF_ADD_ROOT, dsp->ds_ident, dtt.dtt_type); + + if (type == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) { + xyerror(D_UNKNOWN, "failed to typedef %s: %s\n", + dsp->ds_ident, ctf_errmsg(ctf_errno(dmp->dm_ctfp))); + } + + dt_dprintf("typedef %s added as id %ld\n", dsp->ds_ident, type); + break; + + default: { + ctf_encoding_t cte; + dt_idhash_t *dhp; + dt_ident_t *idp; + dt_node_t idn; + int assc, idkind; + uint_t id, kind; + ushort_t idflags; + + switch (class) { + case DT_DC_THIS: + dhp = yypcb->pcb_locals; + idflags = DT_IDFLG_LOCAL; + idp = dt_idhash_lookup(dhp, dsp->ds_ident); + break; + case DT_DC_SELF: + dhp = dtp->dt_tls; + idflags = DT_IDFLG_TLS; + idp = dt_idhash_lookup(dhp, dsp->ds_ident); + break; + default: + dhp = dtp->dt_globals; + idflags = 0; + idp = dt_idstack_lookup( + &yypcb->pcb_globals, dsp->ds_ident); + break; + } + + if (ddp->dd_kind == CTF_K_ARRAY && ddp->dd_node == NULL) { + xyerror(D_DECL_ARRNULL, + "array declaration requires array dimension or " + "tuple signature: %s\n", dsp->ds_ident); + } + + if (idp != NULL && idp->di_gen == 0) { + xyerror(D_DECL_IDRED, "built-in identifier " + "redeclared: %s\n", idp->di_name); + } + + if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_CDEFS, + dsp->ds_ident, NULL) == 0 || + dtrace_lookup_by_type(dtp, DTRACE_OBJ_DDEFS, + dsp->ds_ident, NULL) == 0) { + xyerror(D_DECL_IDRED, "typedef identifier " + "redeclared: %s\n", dsp->ds_ident); + } + + /* + * Cache some attributes of the decl to make the rest of this + * code simpler: if the decl is an array which is subscripted + * by a type rather than an integer, then it's an associative + * array (assc). We then expect to match either DT_IDENT_ARRAY + * for associative arrays or DT_IDENT_SCALAR for anything else. + */ + assc = ddp->dd_kind == CTF_K_ARRAY && + ddp->dd_node->dn_kind == DT_NODE_TYPE; + + idkind = assc ? DT_IDENT_ARRAY : DT_IDENT_SCALAR; + + /* + * Create a fake dt_node_t on the stack so we can determine the + * type of any matching identifier by assigning to this node. + * If the pre-existing ident has its di_type set, propagate + * the type by hand so as not to trigger a prototype check for + * arrays (yet); otherwise we use dt_ident_cook() on the ident + * to ensure it is fully initialized before looking at it. + */ + bzero(&idn, sizeof (dt_node_t)); + + if (idp != NULL && idp->di_type != CTF_ERR) + dt_node_type_assign(&idn, idp->di_ctfp, idp->di_type); + else if (idp != NULL) + (void) dt_ident_cook(&idn, idp, NULL); + + if (assc) { + if (class == DT_DC_THIS) { + xyerror(D_DECL_LOCASSC, "associative arrays " + "may not be declared as local variables:" + " %s\n", dsp->ds_ident); + } + + if (dt_decl_type(ddp->dd_next, &dtt) != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + } + + if (idp != NULL && (idp->di_kind != idkind || + ctf_type_cmp(dtt.dtt_ctfp, dtt.dtt_type, + idn.dn_ctfp, idn.dn_type) != 0)) { + xyerror(D_DECL_IDRED, "identifier redeclared: %s\n" + "\t current: %s %s\n\tprevious: %s %s\n", + dsp->ds_ident, dt_idkind_name(idkind), + dt_type_name(dtt.dtt_ctfp, + dtt.dtt_type, n1, sizeof (n1)), + dt_idkind_name(idp->di_kind), + dt_node_type_name(&idn, n2, sizeof (n2))); + + } else if (idp != NULL && assc) { + const dt_idsig_t *isp = idp->di_data; + dt_node_t *dnp = ddp->dd_node; + int argc = 0; + + for (; dnp != NULL; dnp = dnp->dn_list, argc++) { + const dt_node_t *pnp = &isp->dis_args[argc]; + + if (argc >= isp->dis_argc) + continue; /* tuple length mismatch */ + + if (ctf_type_cmp(dnp->dn_ctfp, dnp->dn_type, + pnp->dn_ctfp, pnp->dn_type) == 0) + continue; + + xyerror(D_DECL_IDRED, + "identifier redeclared: %s\n" + "\t current: %s, key #%d of type %s\n" + "\tprevious: %s, key #%d of type %s\n", + dsp->ds_ident, + dt_idkind_name(idkind), argc + 1, + dt_node_type_name(dnp, n1, sizeof (n1)), + dt_idkind_name(idp->di_kind), argc + 1, + dt_node_type_name(pnp, n2, sizeof (n2))); + } + + if (isp->dis_argc != argc) { + xyerror(D_DECL_IDRED, + "identifier redeclared: %s\n" + "\t current: %s of %s, tuple length %d\n" + "\tprevious: %s of %s, tuple length %d\n", + dsp->ds_ident, dt_idkind_name(idkind), + dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, + n1, sizeof (n1)), argc, + dt_idkind_name(idp->di_kind), + dt_node_type_name(&idn, n2, sizeof (n2)), + isp->dis_argc); + } + + } else if (idp == NULL) { + type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type); + kind = ctf_type_kind(dtt.dtt_ctfp, type); + + switch (kind) { + case CTF_K_INTEGER: + if (ctf_type_encoding(dtt.dtt_ctfp, type, + &cte) == 0 && IS_VOID(cte)) { + xyerror(D_DECL_VOIDOBJ, "cannot have " + "void object: %s\n", dsp->ds_ident); + } + break; + case CTF_K_STRUCT: + case CTF_K_UNION: + if (ctf_type_size(dtt.dtt_ctfp, type) != 0) + break; /* proceed to declaring */ + /*FALLTHRU*/ + case CTF_K_FORWARD: + xyerror(D_DECL_INCOMPLETE, + "incomplete struct/union/enum %s: %s\n", + dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, + n1, sizeof (n1)), dsp->ds_ident); + /*NOTREACHED*/ + } + + if (dt_idhash_nextid(dhp, &id) == -1) { + xyerror(D_ID_OFLOW, "cannot create %s: limit " + "on number of %s variables exceeded\n", + dsp->ds_ident, dt_idhash_name(dhp)); + } + + dt_dprintf("declare %s %s variable %s, id=%u\n", + dt_idhash_name(dhp), dt_idkind_name(idkind), + dsp->ds_ident, id); + + idp = dt_idhash_insert(dhp, dsp->ds_ident, idkind, + idflags | DT_IDFLG_WRITE | DT_IDFLG_DECL, id, + _dtrace_defattr, 0, assc ? &dt_idops_assc : + &dt_idops_thaw, NULL, dtp->dt_gen); + + if (idp == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + dt_ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type); + + /* + * If we are declaring an associative array, use our + * fake parse node to cook the new assoc identifier. + * This will force the ident code to instantiate the + * array type signature corresponding to the list of + * types pointed to by ddp->dd_node. We also reset + * the identifier's attributes based upon the result. + */ + if (assc) { + idp->di_attr = + dt_ident_cook(&idn, idp, &ddp->dd_node); + } + } + } + + } /* end of switch */ + + free(dsp->ds_ident); + dsp->ds_ident = NULL; + + return (NULL); +} + +dt_node_t * +dt_node_func(dt_node_t *dnp, dt_node_t *args) +{ + dt_ident_t *idp; + + if (dnp->dn_kind != DT_NODE_IDENT) { + xyerror(D_FUNC_IDENT, + "function designator is not of function type\n"); + } + + idp = dt_idstack_lookup(&yypcb->pcb_globals, dnp->dn_string); + + if (idp == NULL) { + xyerror(D_FUNC_UNDEF, + "undefined function name: %s\n", dnp->dn_string); + } + + if (idp->di_kind != DT_IDENT_FUNC && + idp->di_kind != DT_IDENT_AGGFUNC && + idp->di_kind != DT_IDENT_ACTFUNC) { + xyerror(D_FUNC_IDKIND, "%s '%s' may not be referenced as a " + "function\n", dt_idkind_name(idp->di_kind), idp->di_name); + } + + free(dnp->dn_string); + dnp->dn_string = NULL; + + dnp->dn_kind = DT_NODE_FUNC; + dnp->dn_flags &= ~DT_NF_COOKED; + dnp->dn_ident = idp; + dnp->dn_args = args; + dnp->dn_list = NULL; + + return (dnp); +} + +/* + * The offsetof() function is special because it takes a type name as an + * argument. It does not actually construct its own node; after looking up the + * structure or union offset, we just return an integer node with the offset. + */ +dt_node_t * +dt_node_offsetof(dt_decl_t *ddp, char *s) +{ + dtrace_typeinfo_t dtt; + dt_node_t dn; + char *name; + int err; + + ctf_membinfo_t ctm; + ctf_id_t type; + uint_t kind; + + name = alloca(strlen(s) + 1); + (void) strcpy(name, s); + free(s); + + err = dt_decl_type(ddp, &dtt); + dt_decl_free(ddp); + + if (err != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + + type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type); + kind = ctf_type_kind(dtt.dtt_ctfp, type); + + if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { + xyerror(D_OFFSETOF_TYPE, + "offsetof operand must be a struct or union type\n"); + } + + if (ctf_member_info(dtt.dtt_ctfp, type, name, &ctm) == CTF_ERR) { + xyerror(D_UNKNOWN, "failed to determine offset of %s: %s\n", + name, ctf_errmsg(ctf_errno(dtt.dtt_ctfp))); + } + + bzero(&dn, sizeof (dn)); + dt_node_type_assign(&dn, dtt.dtt_ctfp, ctm.ctm_type); + + if (dn.dn_flags & DT_NF_BITFIELD) { + xyerror(D_OFFSETOF_BITFIELD, + "cannot take offset of a bit-field: %s\n", name); + } + + return (dt_node_int(ctm.ctm_offset / NBBY)); +} + +dt_node_t * +dt_node_op1(int op, dt_node_t *cp) +{ + dt_node_t *dnp; + + if (cp->dn_kind == DT_NODE_INT) { + switch (op) { + case DT_TOK_INEG: + /* + * If we're negating an unsigned integer, zero out any + * extra top bits to truncate the value to the size of + * the effective type determined by dt_node_int(). + */ + cp->dn_value = -cp->dn_value; + if (!(cp->dn_flags & DT_NF_SIGNED)) { + cp->dn_value &= ~0ULL >> + (64 - dt_node_type_size(cp) * NBBY); + } + /*FALLTHRU*/ + case DT_TOK_IPOS: + return (cp); + case DT_TOK_BNEG: + cp->dn_value = ~cp->dn_value; + return (cp); + case DT_TOK_LNEG: + cp->dn_value = !cp->dn_value; + return (cp); + } + } + + /* + * If sizeof is applied to a type_name or string constant, we can + * transform 'cp' into an integer constant in the node construction + * pass so that it can then be used for arithmetic in this pass. + */ + if (op == DT_TOK_SIZEOF && + (cp->dn_kind == DT_NODE_STRING || cp->dn_kind == DT_NODE_TYPE)) { + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + size_t size = dt_node_type_size(cp); + + if (size == 0) { + xyerror(D_SIZEOF_TYPE, "cannot apply sizeof to an " + "operand of unknown size\n"); + } + + dt_node_type_assign(cp, dtp->dt_ddefs->dm_ctfp, + ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t")); + + cp->dn_kind = DT_NODE_INT; + cp->dn_op = DT_TOK_INT; + cp->dn_value = size; + + return (cp); + } + + dnp = dt_node_alloc(DT_NODE_OP1); + assert(op <= USHRT_MAX); + dnp->dn_op = (ushort_t)op; + dnp->dn_child = cp; + + return (dnp); +} + +dt_node_t * +dt_node_op2(int op, dt_node_t *lp, dt_node_t *rp) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *dnp; + + /* + * First we check for operations that are illegal -- namely those that + * might result in integer division by zero, and abort if one is found. + */ + if (rp->dn_kind == DT_NODE_INT && rp->dn_value == 0 && + (op == DT_TOK_MOD || op == DT_TOK_DIV || + op == DT_TOK_MOD_EQ || op == DT_TOK_DIV_EQ)) + xyerror(D_DIV_ZERO, "expression contains division by zero\n"); + + /* + * If both children are immediate values, we can just perform inline + * calculation and return a new immediate node with the result. + */ + if (lp->dn_kind == DT_NODE_INT && rp->dn_kind == DT_NODE_INT) { + uintmax_t l = lp->dn_value; + uintmax_t r = rp->dn_value; + + dnp = dt_node_int(0); /* allocate new integer node for result */ + + switch (op) { + case DT_TOK_LOR: + dnp->dn_value = l || r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_LXOR: + dnp->dn_value = (l != 0) ^ (r != 0); + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_LAND: + dnp->dn_value = l && r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_BOR: + dnp->dn_value = l | r; + dt_node_promote(lp, rp, dnp); + break; + case DT_TOK_XOR: + dnp->dn_value = l ^ r; + dt_node_promote(lp, rp, dnp); + break; + case DT_TOK_BAND: + dnp->dn_value = l & r; + dt_node_promote(lp, rp, dnp); + break; + case DT_TOK_EQU: + dnp->dn_value = l == r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_NEQ: + dnp->dn_value = l != r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_LT: + dt_node_promote(lp, rp, dnp); + if (dnp->dn_flags & DT_NF_SIGNED) + dnp->dn_value = (intmax_t)l < (intmax_t)r; + else + dnp->dn_value = l < r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_LE: + dt_node_promote(lp, rp, dnp); + if (dnp->dn_flags & DT_NF_SIGNED) + dnp->dn_value = (intmax_t)l <= (intmax_t)r; + else + dnp->dn_value = l <= r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_GT: + dt_node_promote(lp, rp, dnp); + if (dnp->dn_flags & DT_NF_SIGNED) + dnp->dn_value = (intmax_t)l > (intmax_t)r; + else + dnp->dn_value = l > r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_GE: + dt_node_promote(lp, rp, dnp); + if (dnp->dn_flags & DT_NF_SIGNED) + dnp->dn_value = (intmax_t)l >= (intmax_t)r; + else + dnp->dn_value = l >= r; + dt_node_type_assign(dnp, + DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + case DT_TOK_LSH: + dnp->dn_value = l << r; + dt_node_type_propagate(lp, dnp); + dt_node_attr_assign(rp, + dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + case DT_TOK_RSH: + dnp->dn_value = l >> r; + dt_node_type_propagate(lp, dnp); + dt_node_attr_assign(rp, + dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + case DT_TOK_ADD: + dnp->dn_value = l + r; + dt_node_promote(lp, rp, dnp); + break; + case DT_TOK_SUB: + dnp->dn_value = l - r; + dt_node_promote(lp, rp, dnp); + break; + case DT_TOK_MUL: + dnp->dn_value = l * r; + dt_node_promote(lp, rp, dnp); + break; + case DT_TOK_DIV: + dt_node_promote(lp, rp, dnp); + if (dnp->dn_flags & DT_NF_SIGNED) + dnp->dn_value = (intmax_t)l / (intmax_t)r; + else + dnp->dn_value = l / r; + break; + case DT_TOK_MOD: + dt_node_promote(lp, rp, dnp); + if (dnp->dn_flags & DT_NF_SIGNED) + dnp->dn_value = (intmax_t)l % (intmax_t)r; + else + dnp->dn_value = l % r; + break; + default: + dt_node_free(dnp); + dnp = NULL; + } + + if (dnp != NULL) { + dt_node_free(lp); + dt_node_free(rp); + return (dnp); + } + } + + /* + * If an integer constant is being cast to another integer type, we can + * perform the cast as part of integer constant folding in this pass. + * We must take action when the integer is being cast to a smaller type + * or if it is changing signed-ness. If so, we first shift rp's bits + * bits high (losing excess bits if narrowing) and then shift them down + * with either a logical shift (unsigned) or arithmetic shift (signed). + */ + if (op == DT_TOK_LPAR && rp->dn_kind == DT_NODE_INT && + dt_node_is_integer(lp)) { + size_t srcsize = dt_node_type_size(rp); + size_t dstsize = dt_node_type_size(lp); + + if ((dstsize < srcsize) || ((lp->dn_flags & DT_NF_SIGNED) ^ + (rp->dn_flags & DT_NF_SIGNED))) { + int n = dstsize < srcsize ? + (sizeof (uint64_t) * NBBY - dstsize * NBBY) : + (sizeof (uint64_t) * NBBY - srcsize * NBBY); + + rp->dn_value <<= n; + if (lp->dn_flags & DT_NF_SIGNED) + rp->dn_value = (intmax_t)rp->dn_value >> n; + else + rp->dn_value = rp->dn_value >> n; + } + + dt_node_type_propagate(lp, rp); + dt_node_attr_assign(rp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + dt_node_free(lp); + + return (rp); + } + + /* + * If no immediate optimizations are available, create an new OP2 node + * and glue the left and right children into place and return. + */ + dnp = dt_node_alloc(DT_NODE_OP2); + assert(op <= USHRT_MAX); + dnp->dn_op = (ushort_t)op; + dnp->dn_left = lp; + dnp->dn_right = rp; + + return (dnp); +} + +dt_node_t * +dt_node_op3(dt_node_t *expr, dt_node_t *lp, dt_node_t *rp) +{ + dt_node_t *dnp; + + if (expr->dn_kind == DT_NODE_INT) + return (expr->dn_value != 0 ? lp : rp); + + dnp = dt_node_alloc(DT_NODE_OP3); + dnp->dn_op = DT_TOK_QUESTION; + dnp->dn_expr = expr; + dnp->dn_left = lp; + dnp->dn_right = rp; + + return (dnp); +} + +dt_node_t * +dt_node_statement(dt_node_t *expr) +{ + dt_node_t *dnp; + + if (expr->dn_kind == DT_NODE_AGG) + return (expr); + + if (expr->dn_kind == DT_NODE_FUNC && + expr->dn_ident->di_kind == DT_IDENT_ACTFUNC) + dnp = dt_node_alloc(DT_NODE_DFUNC); + else + dnp = dt_node_alloc(DT_NODE_DEXPR); + + dnp->dn_expr = expr; + return (dnp); +} + +dt_node_t * +dt_node_pdesc_by_name(char *spec) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *dnp; + + if (spec == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + dnp = dt_node_alloc(DT_NODE_PDESC); + dnp->dn_spec = spec; + dnp->dn_desc = malloc(sizeof (dtrace_probedesc_t)); + + if (dnp->dn_desc == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + if (dtrace_xstr2desc(dtp, yypcb->pcb_pspec, dnp->dn_spec, + yypcb->pcb_sargc, yypcb->pcb_sargv, dnp->dn_desc) != 0) { + xyerror(D_PDESC_INVAL, "invalid probe description \"%s\": %s\n", + dnp->dn_spec, dtrace_errmsg(dtp, dtrace_errno(dtp))); + } + + free(dnp->dn_spec); + dnp->dn_spec = NULL; + + return (dnp); +} + +dt_node_t * +dt_node_pdesc_by_id(uintmax_t id) +{ + static const char *const names[] = { + "providers", "modules", "functions" + }; + + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *dnp = dt_node_alloc(DT_NODE_PDESC); + + if ((dnp->dn_desc = malloc(sizeof (dtrace_probedesc_t))) == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + if (id > UINT_MAX) { + xyerror(D_PDESC_INVAL, "identifier %llu exceeds maximum " + "probe id\n", (u_longlong_t)id); + } + + if (yypcb->pcb_pspec != DTRACE_PROBESPEC_NAME) { + xyerror(D_PDESC_INVAL, "probe identifier %llu not permitted " + "when specifying %s\n", (u_longlong_t)id, + names[yypcb->pcb_pspec]); + } + + if (dtrace_id2desc(dtp, (dtrace_id_t)id, dnp->dn_desc) != 0) { + xyerror(D_PDESC_INVAL, "invalid probe identifier %llu: %s\n", + (u_longlong_t)id, dtrace_errmsg(dtp, dtrace_errno(dtp))); + } + + return (dnp); +} + +dt_node_t * +dt_node_clause(dt_node_t *pdescs, dt_node_t *pred, dt_node_t *acts) +{ + dt_node_t *dnp = dt_node_alloc(DT_NODE_CLAUSE); + + dnp->dn_pdescs = pdescs; + dnp->dn_pred = pred; + dnp->dn_acts = acts; + + yybegin(YYS_CLAUSE); + return (dnp); +} + +dt_node_t * +dt_node_inline(dt_node_t *expr) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_scope_t *dsp = &yypcb->pcb_dstack; + dt_decl_t *ddp = dt_decl_top(); + + char n[DT_TYPE_NAMELEN]; + dtrace_typeinfo_t dtt; + + dt_ident_t *idp, *rdp; + dt_idnode_t *inp; + dt_node_t *dnp; + + if (dt_decl_type(ddp, &dtt) != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + + if (dsp->ds_class != DT_DC_DEFAULT) { + xyerror(D_DECL_BADCLASS, "specified storage class not " + "appropriate for inline declaration\n"); + } + + if (dsp->ds_ident == NULL) + xyerror(D_DECL_USELESS, "inline declaration requires a name\n"); + + if ((idp = dt_idstack_lookup( + &yypcb->pcb_globals, dsp->ds_ident)) != NULL) { + xyerror(D_DECL_IDRED, "identifier redefined: %s\n\t current: " + "inline definition\n\tprevious: %s %s\n", + idp->di_name, dt_idkind_name(idp->di_kind), + (idp->di_flags & DT_IDFLG_INLINE) ? "inline" : ""); + } + + /* + * If we are declaring an inlined array, verify that we have a tuple + * signature, and then recompute 'dtt' as the array's value type. + */ + if (ddp->dd_kind == CTF_K_ARRAY) { + if (ddp->dd_node == NULL) { + xyerror(D_DECL_ARRNULL, "inline declaration requires " + "array tuple signature: %s\n", dsp->ds_ident); + } + + if (ddp->dd_node->dn_kind != DT_NODE_TYPE) { + xyerror(D_DECL_ARRNULL, "inline declaration cannot be " + "of scalar array type: %s\n", dsp->ds_ident); + } + + if (dt_decl_type(ddp->dd_next, &dtt) != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + } + + /* + * If the inline identifier is not defined, then create it with the + * orphan flag set. We do not insert the identifier into dt_globals + * until we have successfully cooked the right-hand expression, below. + */ + dnp = dt_node_alloc(DT_NODE_INLINE); + dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type); + dt_node_attr_assign(dnp, _dtrace_defattr); + + if (dt_node_is_void(dnp)) { + xyerror(D_DECL_VOIDOBJ, + "cannot declare void inline: %s\n", dsp->ds_ident); + } + + if (ctf_type_kind(dnp->dn_ctfp, ctf_type_resolve( + dnp->dn_ctfp, dnp->dn_type)) == CTF_K_FORWARD) { + xyerror(D_DECL_INCOMPLETE, + "incomplete struct/union/enum %s: %s\n", + dt_node_type_name(dnp, n, sizeof (n)), dsp->ds_ident); + } + + if ((inp = malloc(sizeof (dt_idnode_t))) == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + bzero(inp, sizeof (dt_idnode_t)); + + idp = dnp->dn_ident = dt_ident_create(dsp->ds_ident, + ddp->dd_kind == CTF_K_ARRAY ? DT_IDENT_ARRAY : DT_IDENT_SCALAR, + DT_IDFLG_INLINE | DT_IDFLG_REF | DT_IDFLG_DECL | DT_IDFLG_ORPHAN, 0, + _dtrace_defattr, 0, &dt_idops_inline, inp, dtp->dt_gen); + + if (idp == NULL) { + free(inp); + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + } + + /* + * If we're inlining an associative array, create a private identifier + * hash containing the named parameters and store it in inp->din_hash. + * We then push this hash on to the top of the pcb_globals stack. + */ + if (ddp->dd_kind == CTF_K_ARRAY) { + dt_idnode_t *pinp; + dt_ident_t *pidp; + dt_node_t *pnp; + uint_t i = 0; + + for (pnp = ddp->dd_node; pnp != NULL; pnp = pnp->dn_list) + i++; /* count up parameters for din_argv[] */ + + inp->din_hash = dt_idhash_create("inline args", NULL, 0, 0); + inp->din_argv = calloc(i, sizeof (dt_ident_t *)); + + if (inp->din_hash == NULL || inp->din_argv == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + /* + * Create an identifier for each parameter as a scalar inline, + * and store it in din_hash and in position in din_argv[]. The + * parameter identifiers also use dt_idops_inline, but we leave + * the dt_idnode_t argument 'pinp' zeroed. This will be filled + * in by the code generation pass with references to the args. + */ + for (i = 0, pnp = ddp->dd_node; + pnp != NULL; pnp = pnp->dn_list, i++) { + + if (pnp->dn_string == NULL) + continue; /* ignore anonymous parameters */ + + if ((pinp = malloc(sizeof (dt_idnode_t))) == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + pidp = dt_idhash_insert(inp->din_hash, pnp->dn_string, + DT_IDENT_SCALAR, DT_IDFLG_DECL | DT_IDFLG_INLINE, 0, + _dtrace_defattr, 0, &dt_idops_inline, + pinp, dtp->dt_gen); + + if (pidp == NULL) { + free(pinp); + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + } + + inp->din_argv[i] = pidp; + bzero(pinp, sizeof (dt_idnode_t)); + dt_ident_type_assign(pidp, pnp->dn_ctfp, pnp->dn_type); + } + + dt_idstack_push(&yypcb->pcb_globals, inp->din_hash); + } + + /* + * Unlike most constructors, we need to explicitly cook the right-hand + * side of the inline definition immediately to prevent recursion. If + * the right-hand side uses the inline itself, the cook will fail. + */ + expr = dt_node_cook(expr, DT_IDFLG_REF); + + if (ddp->dd_kind == CTF_K_ARRAY) + dt_idstack_pop(&yypcb->pcb_globals, inp->din_hash); + + /* + * Set the type, attributes, and flags for the inline. If the right- + * hand expression has an identifier, propagate its flags. Then cook + * the identifier to fully initialize it: if we're declaring an inline + * associative array this will construct a type signature from 'ddp'. + */ + if (dt_node_is_dynamic(expr)) + rdp = dt_ident_resolve(expr->dn_ident); + else if (expr->dn_kind == DT_NODE_VAR || expr->dn_kind == DT_NODE_SYM) + rdp = expr->dn_ident; + else + rdp = NULL; + + if (rdp != NULL) { + idp->di_flags |= (rdp->di_flags & + (DT_IDFLG_WRITE | DT_IDFLG_USER | DT_IDFLG_PRIM)); + } + + idp->di_attr = dt_attr_min(_dtrace_defattr, expr->dn_attr); + dt_ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type); + (void) dt_ident_cook(dnp, idp, &ddp->dd_node); + + /* + * Store the parse tree nodes for 'expr' inside of idp->di_data ('inp') + * so that they will be preserved with this identifier. Then pop the + * inline declaration from the declaration stack and restore the lexer. + */ + inp->din_list = yypcb->pcb_list; + inp->din_root = expr; + + dt_decl_free(dt_decl_pop()); + yybegin(YYS_CLAUSE); + + /* + * Finally, insert the inline identifier into dt_globals to make it + * visible, and then cook 'dnp' to check its type against 'expr'. + */ + dt_idhash_xinsert(dtp->dt_globals, idp); + return (dt_node_cook(dnp, DT_IDFLG_REF)); +} + +dt_node_t * +dt_node_member(dt_decl_t *ddp, char *name, dt_node_t *expr) +{ + dtrace_typeinfo_t dtt; + dt_node_t *dnp; + int err; + + if (ddp != NULL) { + err = dt_decl_type(ddp, &dtt); + dt_decl_free(ddp); + + if (err != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + } + + dnp = dt_node_alloc(DT_NODE_MEMBER); + dnp->dn_membname = name; + dnp->dn_membexpr = expr; + + if (ddp != NULL) + dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type); + + return (dnp); +} + +dt_node_t * +dt_node_xlator(dt_decl_t *ddp, dt_decl_t *sdp, char *name, dt_node_t *members) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dtrace_typeinfo_t src, dst; + dt_node_t sn, dn; + dt_xlator_t *dxp; + dt_node_t *dnp; + int edst, esrc; + uint_t kind; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + edst = dt_decl_type(ddp, &dst); + dt_decl_free(ddp); + + esrc = dt_decl_type(sdp, &src); + dt_decl_free(sdp); + + if (edst != 0 || esrc != 0) { + free(name); + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); + } + + bzero(&sn, sizeof (sn)); + dt_node_type_assign(&sn, src.dtt_ctfp, src.dtt_type); + + bzero(&dn, sizeof (dn)); + dt_node_type_assign(&dn, dst.dtt_ctfp, dst.dtt_type); + + if (dt_xlator_lookup(dtp, &sn, &dn, DT_XLATE_EXACT) != NULL) { + xyerror(D_XLATE_REDECL, + "translator from %s to %s has already been declared\n", + dt_node_type_name(&sn, n1, sizeof (n1)), + dt_node_type_name(&dn, n2, sizeof (n2))); + } + + kind = ctf_type_kind(dst.dtt_ctfp, + ctf_type_resolve(dst.dtt_ctfp, dst.dtt_type)); + + if (kind == CTF_K_FORWARD) { + xyerror(D_XLATE_SOU, "incomplete struct/union/enum %s\n", + dt_type_name(dst.dtt_ctfp, dst.dtt_type, n1, sizeof (n1))); + } + + if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { + xyerror(D_XLATE_SOU, + "translator output type must be a struct or union\n"); + } + + dxp = dt_xlator_create(dtp, &src, &dst, name, members, yypcb->pcb_list); + yybegin(YYS_CLAUSE); + free(name); + + if (dxp == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + dnp = dt_node_alloc(DT_NODE_XLATOR); + dnp->dn_xlator = dxp; + dnp->dn_members = members; + + return (dt_node_cook(dnp, DT_IDFLG_REF)); +} + +dt_node_t * +dt_node_probe(char *s, int protoc, dt_node_t *nargs, dt_node_t *xargs) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + int nargc, xargc; + dt_node_t *dnp; + + size_t len = strlen(s) + 3; /* +3 for :: and \0 */ + char *name = alloca(len); + + (void) snprintf(name, len, "::%s", s); + (void) strhyphenate(name); + free(s); + + if (strchr(name, '`') != NULL) { + xyerror(D_PROV_BADNAME, "probe name may not " + "contain scoping operator: %s\n", name); + } + + if (strlen(name) - 2 >= DTRACE_NAMELEN) { + xyerror(D_PROV_BADNAME, "probe name may not exceed %d " + "characters: %s\n", DTRACE_NAMELEN - 1, name); + } + + dnp = dt_node_alloc(DT_NODE_PROBE); + + dnp->dn_ident = dt_ident_create(name, DT_IDENT_PROBE, + DT_IDFLG_ORPHAN, DTRACE_IDNONE, _dtrace_defattr, 0, + &dt_idops_probe, NULL, dtp->dt_gen); + + nargc = dt_decl_prototype(nargs, nargs, + "probe input", DT_DP_VOID | DT_DP_ANON); + + xargc = dt_decl_prototype(xargs, nargs, + "probe output", DT_DP_VOID); + + if (nargc > UINT8_MAX) { + xyerror(D_PROV_PRARGLEN, "probe %s input prototype exceeds %u " + "parameters: %d params used\n", name, UINT8_MAX, nargc); + } + + if (xargc > UINT8_MAX) { + xyerror(D_PROV_PRARGLEN, "probe %s output prototype exceeds %u " + "parameters: %d params used\n", name, UINT8_MAX, xargc); + } + + if (dnp->dn_ident == NULL || dt_probe_create(dtp, + dnp->dn_ident, protoc, nargs, nargc, xargs, xargc) == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + return (dnp); +} + +dt_node_t * +dt_node_provider(char *name, dt_node_t *probes) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *dnp = dt_node_alloc(DT_NODE_PROVIDER); + dt_node_t *lnp; + size_t len; + + dnp->dn_provname = name; + dnp->dn_probes = probes; + + if (strchr(name, '`') != NULL) { + dnerror(dnp, D_PROV_BADNAME, "provider name may not " + "contain scoping operator: %s\n", name); + } + + if ((len = strlen(name)) >= DTRACE_PROVNAMELEN) { + dnerror(dnp, D_PROV_BADNAME, "provider name may not exceed %d " + "characters: %s\n", DTRACE_PROVNAMELEN - 1, name); + } + + if (isdigit(name[len - 1])) { + dnerror(dnp, D_PROV_BADNAME, "provider name may not " + "end with a digit: %s\n", name); + } + + /* + * Check to see if the provider is already defined or visible through + * dtrace(7D). If so, set dn_provred to treat it as a re-declaration. + * If not, create a new provider and set its interface-only flag. This + * flag may be cleared later by calls made to dt_probe_declare(). + */ + if ((dnp->dn_provider = dt_provider_lookup(dtp, name)) != NULL) + dnp->dn_provred = B_TRUE; + else if ((dnp->dn_provider = dt_provider_create(dtp, name)) == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + else + dnp->dn_provider->pv_flags |= DT_PROVIDER_INTF; + + /* + * Store all parse nodes created since we consumed the DT_KEY_PROVIDER + * token with the provider and then restore our lexing state to CLAUSE. + * Note that if dnp->dn_provred is true, we may end up storing dups of + * a provider's interface and implementation: we eat this space because + * the implementation will likely need to redeclare probe members, and + * therefore may result in those member nodes becoming persistent. + */ + for (lnp = yypcb->pcb_list; lnp->dn_link != NULL; lnp = lnp->dn_link) + continue; /* skip to end of allocation list */ + + lnp->dn_link = dnp->dn_provider->pv_nodes; + dnp->dn_provider->pv_nodes = yypcb->pcb_list; + + yybegin(YYS_CLAUSE); + return (dnp); +} + +dt_node_t * +dt_node_program(dt_node_t *lnp) +{ + dt_node_t *dnp = dt_node_alloc(DT_NODE_PROG); + dnp->dn_list = lnp; + return (dnp); +} + +/* + * This function provides the underlying implementation of cooking an + * identifier given its node, a hash of dynamic identifiers, an identifier + * kind, and a boolean flag indicating whether we are allowed to instantiate + * a new identifier if the string is not found. This function is either + * called from dt_cook_ident(), below, or directly by the various cooking + * routines that are allowed to instantiate identifiers (e.g. op2 TOK_ASGN). + */ +static void +dt_xcook_ident(dt_node_t *dnp, dt_idhash_t *dhp, uint_t idkind, int create) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + const char *sname = dt_idhash_name(dhp); + int uref = 0; + + dtrace_attribute_t attr = _dtrace_defattr; + dt_ident_t *idp; + dtrace_syminfo_t dts; + GElf_Sym sym; + + const char *scope, *mark; + uchar_t dnkind; + char *name; + + /* + * Look for scoping marks in the identifier. If one is found, set our + * scope to either DTRACE_OBJ_KMODS or UMODS or to the first part of + * the string that specifies the scope using an explicit module name. + * If two marks in a row are found, set 'uref' (user symbol reference). + * Otherwise we set scope to DTRACE_OBJ_EXEC, indicating that normal + * scope is desired and we should search the specified idhash. + */ + if ((name = strrchr(dnp->dn_string, '`')) != NULL) { + if (name > dnp->dn_string && name[-1] == '`') { + uref++; + name[-1] = '\0'; + } + + if (name == dnp->dn_string + uref) + scope = uref ? DTRACE_OBJ_UMODS : DTRACE_OBJ_KMODS; + else + scope = dnp->dn_string; + + *name++ = '\0'; /* leave name pointing after scoping mark */ + dnkind = DT_NODE_VAR; + + } else if (idkind == DT_IDENT_AGG) { + scope = DTRACE_OBJ_EXEC; + name = dnp->dn_string + 1; + dnkind = DT_NODE_AGG; + } else { + scope = DTRACE_OBJ_EXEC; + name = dnp->dn_string; + dnkind = DT_NODE_VAR; + } + + /* + * If create is set to false, and we fail our idhash lookup, preset + * the errno code to EDT_NOVAR for our final error message below. + * If we end up calling dtrace_lookup_by_name(), it will reset the + * errno appropriately and that error will be reported instead. + */ + (void) dt_set_errno(dtp, EDT_NOVAR); + mark = uref ? "``" : "`"; + + if (scope == DTRACE_OBJ_EXEC && ( + (dhp != dtp->dt_globals && + (idp = dt_idhash_lookup(dhp, name)) != NULL) || + (dhp == dtp->dt_globals && + (idp = dt_idstack_lookup(&yypcb->pcb_globals, name)) != NULL))) { + /* + * Check that we are referencing the ident in the manner that + * matches its type if this is a global lookup. In the TLS or + * local case, we don't know how the ident will be used until + * the time operator -> is seen; more parsing is needed. + */ + if (idp->di_kind != idkind && dhp == dtp->dt_globals) { + xyerror(D_IDENT_BADREF, "%s '%s' may not be referenced " + "as %s\n", dt_idkind_name(idp->di_kind), + idp->di_name, dt_idkind_name(idkind)); + } + + /* + * Arrays and aggregations are not cooked individually. They + * have dynamic types and must be referenced using operator []. + * This is handled explicitly by the code for DT_TOK_LBRAC. + */ + if (idp->di_kind != DT_IDENT_ARRAY && + idp->di_kind != DT_IDENT_AGG) + attr = dt_ident_cook(dnp, idp, NULL); + else { + dt_node_type_assign(dnp, + DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); + attr = idp->di_attr; + } + + free(dnp->dn_string); + dnp->dn_string = NULL; + dnp->dn_kind = dnkind; + dnp->dn_ident = idp; + dnp->dn_flags |= DT_NF_LVALUE; + + if (idp->di_flags & DT_IDFLG_WRITE) + dnp->dn_flags |= DT_NF_WRITABLE; + + dt_node_attr_assign(dnp, attr); + + } else if (dhp == dtp->dt_globals && scope != DTRACE_OBJ_EXEC && + dtrace_lookup_by_name(dtp, scope, name, &sym, &dts) == 0) { + + dt_module_t *mp = dt_module_lookup_by_name(dtp, dts.dts_object); + int umod = (mp->dm_flags & DT_DM_KERNEL) == 0; + static const char *const kunames[] = { "kernel", "user" }; + + dtrace_typeinfo_t dtt; + dtrace_syminfo_t *sip; + + if (uref ^ umod) { + xyerror(D_SYM_BADREF, "%s module '%s' symbol '%s' may " + "not be referenced as a %s symbol\n", kunames[umod], + dts.dts_object, dts.dts_name, kunames[uref]); + } + + if (dtrace_symbol_type(dtp, &sym, &dts, &dtt) != 0) { + /* + * For now, we special-case EDT_DATAMODEL to clarify + * that mixed data models are not currently supported. + */ + if (dtp->dt_errno == EDT_DATAMODEL) { + xyerror(D_SYM_MODEL, "cannot use %s symbol " + "%s%s%s in a %s D program\n", + dt_module_modelname(mp), + dts.dts_object, mark, dts.dts_name, + dt_module_modelname(dtp->dt_ddefs)); + } + + xyerror(D_SYM_NOTYPES, + "no symbolic type information is available for " + "%s%s%s: %s\n", dts.dts_object, mark, dts.dts_name, + dtrace_errmsg(dtp, dtrace_errno(dtp))); + } + + idp = dt_ident_create(name, DT_IDENT_SYMBOL, 0, 0, + _dtrace_symattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); + + if (idp == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + if (mp->dm_flags & DT_DM_PRIMARY) + idp->di_flags |= DT_IDFLG_PRIM; + + idp->di_next = dtp->dt_externs; + dtp->dt_externs = idp; + + if ((sip = malloc(sizeof (dtrace_syminfo_t))) == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + bcopy(&dts, sip, sizeof (dtrace_syminfo_t)); + idp->di_data = sip; + idp->di_ctfp = dtt.dtt_ctfp; + idp->di_type = dtt.dtt_type; + + free(dnp->dn_string); + dnp->dn_string = NULL; + dnp->dn_kind = DT_NODE_SYM; + dnp->dn_ident = idp; + dnp->dn_flags |= DT_NF_LVALUE; + + dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type); + dt_node_attr_assign(dnp, _dtrace_symattr); + + if (uref) { + idp->di_flags |= DT_IDFLG_USER; + dnp->dn_flags |= DT_NF_USERLAND; + } + + } else if (scope == DTRACE_OBJ_EXEC && create == B_TRUE) { + uint_t flags = DT_IDFLG_WRITE; + uint_t id; + + if (dt_idhash_nextid(dhp, &id) == -1) { + xyerror(D_ID_OFLOW, "cannot create %s: limit on number " + "of %s variables exceeded\n", name, sname); + } + + if (dhp == yypcb->pcb_locals) + flags |= DT_IDFLG_LOCAL; + else if (dhp == dtp->dt_tls) + flags |= DT_IDFLG_TLS; + + dt_dprintf("create %s %s variable %s, id=%u\n", + sname, dt_idkind_name(idkind), name, id); + + if (idkind == DT_IDENT_ARRAY || idkind == DT_IDENT_AGG) { + idp = dt_idhash_insert(dhp, name, + idkind, flags, id, _dtrace_defattr, 0, + &dt_idops_assc, NULL, dtp->dt_gen); + } else { + idp = dt_idhash_insert(dhp, name, + idkind, flags, id, _dtrace_defattr, 0, + &dt_idops_thaw, NULL, dtp->dt_gen); + } + + if (idp == NULL) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + + /* + * Arrays and aggregations are not cooked individually. They + * have dynamic types and must be referenced using operator []. + * This is handled explicitly by the code for DT_TOK_LBRAC. + */ + if (idp->di_kind != DT_IDENT_ARRAY && + idp->di_kind != DT_IDENT_AGG) + attr = dt_ident_cook(dnp, idp, NULL); + else { + dt_node_type_assign(dnp, + DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); + attr = idp->di_attr; + } + + free(dnp->dn_string); + dnp->dn_string = NULL; + dnp->dn_kind = dnkind; + dnp->dn_ident = idp; + dnp->dn_flags |= DT_NF_LVALUE | DT_NF_WRITABLE; + + dt_node_attr_assign(dnp, attr); + + } else if (scope != DTRACE_OBJ_EXEC) { + xyerror(D_IDENT_UNDEF, "failed to resolve %s%s%s: %s\n", + dnp->dn_string, mark, name, + dtrace_errmsg(dtp, dtrace_errno(dtp))); + } else { + xyerror(D_IDENT_UNDEF, "failed to resolve %s: %s\n", + dnp->dn_string, dtrace_errmsg(dtp, dtrace_errno(dtp))); + } +} + +static dt_node_t * +dt_cook_ident(dt_node_t *dnp, uint_t idflags) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + + if (dnp->dn_op == DT_TOK_AGG) + dt_xcook_ident(dnp, dtp->dt_aggs, DT_IDENT_AGG, B_FALSE); + else + dt_xcook_ident(dnp, dtp->dt_globals, DT_IDENT_SCALAR, B_FALSE); + + return (dt_node_cook(dnp, idflags)); +} + +/* + * Since operators [ and -> can instantiate new variables before we know + * whether the reference is for a read or a write, we need to check read + * references to determine if the identifier is currently dt_ident_unref(). + * If so, we report that this first access was to an undefined variable. + */ +static dt_node_t * +dt_cook_var(dt_node_t *dnp, uint_t idflags) +{ + dt_ident_t *idp = dnp->dn_ident; + + if ((idflags & DT_IDFLG_REF) && dt_ident_unref(idp)) { + dnerror(dnp, D_VAR_UNDEF, + "%s%s has not yet been declared or assigned\n", + (idp->di_flags & DT_IDFLG_LOCAL) ? "this->" : + (idp->di_flags & DT_IDFLG_TLS) ? "self->" : "", + idp->di_name); + } + + dt_node_attr_assign(dnp, dt_ident_cook(dnp, idp, &dnp->dn_args)); + return (dnp); +} + +/*ARGSUSED*/ +static dt_node_t * +dt_cook_func(dt_node_t *dnp, uint_t idflags) +{ + dt_node_attr_assign(dnp, + dt_ident_cook(dnp, dnp->dn_ident, &dnp->dn_args)); + + return (dnp); +} + +static dt_node_t * +dt_cook_op1(dt_node_t *dnp, uint_t idflags) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *cp = dnp->dn_child; + + char n[DT_TYPE_NAMELEN]; + dtrace_typeinfo_t dtt; + dt_ident_t *idp; + + ctf_encoding_t e; + ctf_arinfo_t r; + ctf_id_t type, base; + uint_t kind; + + if (dnp->dn_op == DT_TOK_PREINC || dnp->dn_op == DT_TOK_POSTINC || + dnp->dn_op == DT_TOK_PREDEC || dnp->dn_op == DT_TOK_POSTDEC) + idflags = DT_IDFLG_REF | DT_IDFLG_MOD; + else + idflags = DT_IDFLG_REF; + + /* + * We allow the unary ++ and -- operators to instantiate new scalar + * variables if applied to an identifier; otherwise just cook as usual. + */ + if (cp->dn_kind == DT_NODE_IDENT && (idflags & DT_IDFLG_MOD)) + dt_xcook_ident(cp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE); + + cp = dnp->dn_child = dt_node_cook(cp, 0); /* don't set idflags yet */ + + if (cp->dn_kind == DT_NODE_VAR && dt_ident_unref(cp->dn_ident)) { + if (dt_type_lookup("int64_t", &dtt) != 0) + xyerror(D_TYPE_ERR, "failed to lookup int64_t\n"); + + dt_ident_type_assign(cp->dn_ident, dtt.dtt_ctfp, dtt.dtt_type); + dt_node_type_assign(cp, dtt.dtt_ctfp, dtt.dtt_type); + } + + if (cp->dn_kind == DT_NODE_VAR) + cp->dn_ident->di_flags |= idflags; + + switch (dnp->dn_op) { + case DT_TOK_DEREF: + /* + * If the deref operator is applied to a translated pointer, + * we can just set our output type to the base translation. + */ + if ((idp = dt_node_resolve(cp, DT_IDENT_XLPTR)) != NULL) { + dt_xlator_t *dxp = idp->di_data; + + dnp->dn_ident = &dxp->dx_souid; + dt_node_type_assign(dnp, + DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); + break; + } + + type = ctf_type_resolve(cp->dn_ctfp, cp->dn_type); + kind = ctf_type_kind(cp->dn_ctfp, type); + + if (kind == CTF_K_ARRAY) { + if (ctf_array_info(cp->dn_ctfp, type, &r) != 0) { + dtp->dt_ctferr = ctf_errno(cp->dn_ctfp); + longjmp(yypcb->pcb_jmpbuf, EDT_CTF); + } else + type = r.ctr_contents; + } else if (kind == CTF_K_POINTER) { + type = ctf_type_reference(cp->dn_ctfp, type); + } else { + xyerror(D_DEREF_NONPTR, + "cannot dereference non-pointer type\n"); + } + + dt_node_type_assign(dnp, cp->dn_ctfp, type); + base = ctf_type_resolve(cp->dn_ctfp, type); + kind = ctf_type_kind(cp->dn_ctfp, base); + + if (kind == CTF_K_INTEGER && ctf_type_encoding(cp->dn_ctfp, + base, &e) == 0 && IS_VOID(e)) { + xyerror(D_DEREF_VOID, + "cannot dereference pointer to void\n"); + } + + if (kind == CTF_K_FUNCTION) { + xyerror(D_DEREF_FUNC, + "cannot dereference pointer to function\n"); + } + + if (kind != CTF_K_ARRAY || dt_node_is_string(dnp)) + dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.4.3] */ + + /* + * If we propagated the l-value bit and the child operand was + * a writable D variable or a binary operation of the form + * a + b where a is writable, then propagate the writable bit. + * This is necessary to permit assignments to scalar arrays, + * which are converted to expressions of the form *(a + i). + */ + if ((cp->dn_flags & DT_NF_WRITABLE) || + (cp->dn_kind == DT_NODE_OP2 && cp->dn_op == DT_TOK_ADD && + (cp->dn_left->dn_flags & DT_NF_WRITABLE))) + dnp->dn_flags |= DT_NF_WRITABLE; + + if ((cp->dn_flags & DT_NF_USERLAND) && + (kind == CTF_K_POINTER || (dnp->dn_flags & DT_NF_REF))) + dnp->dn_flags |= DT_NF_USERLAND; + break; + + case DT_TOK_IPOS: + case DT_TOK_INEG: + if (!dt_node_is_arith(cp)) { + xyerror(D_OP_ARITH, "operator %s requires an operand " + "of arithmetic type\n", opstr(dnp->dn_op)); + } + dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.4-6] */ + break; + + case DT_TOK_BNEG: + if (!dt_node_is_integer(cp)) { + xyerror(D_OP_INT, "operator %s requires an operand of " + "integral type\n", opstr(dnp->dn_op)); + } + dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.4-6] */ + break; + + case DT_TOK_LNEG: + if (!dt_node_is_scalar(cp)) { + xyerror(D_OP_SCALAR, "operator %s requires an operand " + "of scalar type\n", opstr(dnp->dn_op)); + } + dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + break; + + case DT_TOK_ADDROF: + if (cp->dn_kind == DT_NODE_VAR || cp->dn_kind == DT_NODE_AGG) { + xyerror(D_ADDROF_VAR, + "cannot take address of dynamic variable\n"); + } + + if (dt_node_is_dynamic(cp)) { + xyerror(D_ADDROF_VAR, + "cannot take address of dynamic object\n"); + } + + if (!(cp->dn_flags & DT_NF_LVALUE)) { + xyerror(D_ADDROF_LVAL, /* see K&R[A7.4.2] */ + "unacceptable operand for unary & operator\n"); + } + + if (cp->dn_flags & DT_NF_BITFIELD) { + xyerror(D_ADDROF_BITFIELD, + "cannot take address of bit-field\n"); + } + + dtt.dtt_object = NULL; + dtt.dtt_ctfp = cp->dn_ctfp; + dtt.dtt_type = cp->dn_type; + + if (dt_type_pointer(&dtt) == -1) { + xyerror(D_TYPE_ERR, "cannot find type for \"&\": %s*\n", + dt_node_type_name(cp, n, sizeof (n))); + } + + dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type); + + if (cp->dn_flags & DT_NF_USERLAND) + dnp->dn_flags |= DT_NF_USERLAND; + break; + + case DT_TOK_SIZEOF: + if (cp->dn_flags & DT_NF_BITFIELD) { + xyerror(D_SIZEOF_BITFIELD, + "cannot apply sizeof to a bit-field\n"); + } + + if (dt_node_sizeof(cp) == 0) { + xyerror(D_SIZEOF_TYPE, "cannot apply sizeof to an " + "operand of unknown size\n"); + } + + dt_node_type_assign(dnp, dtp->dt_ddefs->dm_ctfp, + ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t")); + break; + + case DT_TOK_STRINGOF: + if (!dt_node_is_scalar(cp) && !dt_node_is_pointer(cp) && + !dt_node_is_strcompat(cp)) { + xyerror(D_STRINGOF_TYPE, + "cannot apply stringof to a value of type %s\n", + dt_node_type_name(cp, n, sizeof (n))); + } + dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp)); + break; + + case DT_TOK_PREINC: + case DT_TOK_POSTINC: + case DT_TOK_PREDEC: + case DT_TOK_POSTDEC: + if (dt_node_is_scalar(cp) == 0) { + xyerror(D_OP_SCALAR, "operator %s requires operand of " + "scalar type\n", opstr(dnp->dn_op)); + } + + if (dt_node_is_vfptr(cp)) { + xyerror(D_OP_VFPTR, "operator %s requires an operand " + "of known size\n", opstr(dnp->dn_op)); + } + + if (!(cp->dn_flags & DT_NF_LVALUE)) { + xyerror(D_OP_LVAL, "operator %s requires modifiable " + "lvalue as an operand\n", opstr(dnp->dn_op)); + } + + if (!(cp->dn_flags & DT_NF_WRITABLE)) { + xyerror(D_OP_WRITE, "operator %s can only be applied " + "to a writable variable\n", opstr(dnp->dn_op)); + } + + dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.1] */ + break; + + default: + xyerror(D_UNKNOWN, "invalid unary op %s\n", opstr(dnp->dn_op)); + } + + dt_node_attr_assign(dnp, cp->dn_attr); + return (dnp); +} + +static dt_node_t * +dt_cook_op2(dt_node_t *dnp, uint_t idflags) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_node_t *lp = dnp->dn_left; + dt_node_t *rp = dnp->dn_right; + int op = dnp->dn_op; + + ctf_membinfo_t m; + ctf_file_t *ctfp; + ctf_id_t type; + int kind, val, uref; + dt_ident_t *idp; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + /* + * The expression E1[E2] is identical by definition to *((E1)+(E2)) so + * we convert "[" to "+" and glue on "*" at the end (see K&R[A7.3.1]) + * unless the left-hand side is an untyped D scalar, associative array, + * or aggregation. In these cases, we proceed to case DT_TOK_LBRAC and + * handle associative array and aggregation references there. + */ + if (op == DT_TOK_LBRAC) { + if (lp->dn_kind == DT_NODE_IDENT) { + dt_idhash_t *dhp; + uint_t idkind; + + if (lp->dn_op == DT_TOK_AGG) { + dhp = dtp->dt_aggs; + idp = dt_idhash_lookup(dhp, lp->dn_string + 1); + idkind = DT_IDENT_AGG; + } else { + dhp = dtp->dt_globals; + idp = dt_idstack_lookup( + &yypcb->pcb_globals, lp->dn_string); + idkind = DT_IDENT_ARRAY; + } + + if (idp == NULL || dt_ident_unref(idp)) + dt_xcook_ident(lp, dhp, idkind, B_TRUE); + else + dt_xcook_ident(lp, dhp, idp->di_kind, B_FALSE); + } else + lp = dnp->dn_left = dt_node_cook(lp, 0); + + /* + * Switch op to '+' for *(E1 + E2) array mode in these cases: + * (a) lp is a DT_IDENT_ARRAY variable that has already been + * referenced using [] notation (dn_args != NULL). + * (b) lp is a non-ARRAY variable that has already been given + * a type by assignment or declaration (!dt_ident_unref()) + * (c) lp is neither a variable nor an aggregation + */ + if (lp->dn_kind == DT_NODE_VAR) { + if (lp->dn_ident->di_kind == DT_IDENT_ARRAY) { + if (lp->dn_args != NULL) + op = DT_TOK_ADD; + } else if (!dt_ident_unref(lp->dn_ident)) + op = DT_TOK_ADD; + } else if (lp->dn_kind != DT_NODE_AGG) + op = DT_TOK_ADD; + } + + switch (op) { + case DT_TOK_BAND: + case DT_TOK_XOR: + case DT_TOK_BOR: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { + xyerror(D_OP_INT, "operator %s requires operands of " + "integral type\n", opstr(op)); + } + + dt_node_promote(lp, rp, dnp); /* see K&R[A7.11-13] */ + break; + + case DT_TOK_LSH: + case DT_TOK_RSH: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { + xyerror(D_OP_INT, "operator %s requires operands of " + "integral type\n", opstr(op)); + } + + dt_node_type_propagate(lp, dnp); /* see K&R[A7.8] */ + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + + case DT_TOK_MOD: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { + xyerror(D_OP_INT, "operator %s requires operands of " + "integral type\n", opstr(op)); + } + + dt_node_promote(lp, rp, dnp); /* see K&R[A7.6] */ + break; + + case DT_TOK_MUL: + case DT_TOK_DIV: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + if (!dt_node_is_arith(lp) || !dt_node_is_arith(rp)) { + xyerror(D_OP_ARITH, "operator %s requires operands of " + "arithmetic type\n", opstr(op)); + } + + dt_node_promote(lp, rp, dnp); /* see K&R[A7.6] */ + break; + + case DT_TOK_LAND: + case DT_TOK_LXOR: + case DT_TOK_LOR: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + if (!dt_node_is_scalar(lp) || !dt_node_is_scalar(rp)) { + xyerror(D_OP_SCALAR, "operator %s requires operands " + "of scalar type\n", opstr(op)); + } + + dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + + case DT_TOK_LT: + case DT_TOK_LE: + case DT_TOK_GT: + case DT_TOK_GE: + case DT_TOK_EQU: + case DT_TOK_NEQ: + /* + * The D comparison operators provide the ability to transform + * a right-hand identifier into a corresponding enum tag value + * if the left-hand side is an enum type. To do this, we cook + * the left-hand side, and then see if the right-hand side is + * an unscoped identifier defined in the enum. If so, we + * convert into an integer constant node with the tag's value. + */ + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + + kind = ctf_type_kind(lp->dn_ctfp, + ctf_type_resolve(lp->dn_ctfp, lp->dn_type)); + + if (kind == CTF_K_ENUM && rp->dn_kind == DT_NODE_IDENT && + strchr(rp->dn_string, '`') == NULL && ctf_enum_value( + lp->dn_ctfp, lp->dn_type, rp->dn_string, &val) == 0) { + + if ((idp = dt_idstack_lookup(&yypcb->pcb_globals, + rp->dn_string)) != NULL) { + xyerror(D_IDENT_AMBIG, + "ambiguous use of operator %s: %s is " + "both a %s enum tag and a global %s\n", + opstr(op), rp->dn_string, + dt_node_type_name(lp, n1, sizeof (n1)), + dt_idkind_name(idp->di_kind)); + } + + free(rp->dn_string); + rp->dn_string = NULL; + rp->dn_kind = DT_NODE_INT; + rp->dn_flags |= DT_NF_COOKED; + rp->dn_op = DT_TOK_INT; + rp->dn_value = (intmax_t)val; + + dt_node_type_assign(rp, lp->dn_ctfp, lp->dn_type); + dt_node_attr_assign(rp, _dtrace_symattr); + } + + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + /* + * The rules for type checking for the relational operators are + * described in the ANSI-C spec (see K&R[A7.9-10]). We perform + * the various tests in order from least to most expensive. We + * also allow derived strings to be compared as a first-class + * type (resulting in a strcmp(3C)-style comparison), and we + * slightly relax the A7.9 rules to permit void pointer + * comparisons as in A7.10. Our users won't be confused by + * this since they understand pointers are just numbers, and + * relaxing this constraint simplifies the implementation. + */ + if (ctf_type_compat(lp->dn_ctfp, lp->dn_type, + rp->dn_ctfp, rp->dn_type)) + /*EMPTY*/; + else if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) + /*EMPTY*/; + else if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp) && + (dt_node_is_string(lp) || dt_node_is_string(rp))) + /*EMPTY*/; + else if (dt_node_is_ptrcompat(lp, rp, NULL, NULL) == 0) { + xyerror(D_OP_INCOMPAT, "operands have " + "incompatible types: \"%s\" %s \"%s\"\n", + dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), + dt_node_type_name(rp, n2, sizeof (n2))); + } + + dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp)); + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + + case DT_TOK_ADD: + case DT_TOK_SUB: { + /* + * The rules for type checking for the additive operators are + * described in the ANSI-C spec (see K&R[A7.7]). Pointers and + * integers may be manipulated according to specific rules. In + * these cases D permits strings to be treated as pointers. + */ + int lp_is_ptr, lp_is_int, rp_is_ptr, rp_is_int; + + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + lp_is_ptr = dt_node_is_string(lp) || + (dt_node_is_pointer(lp) && !dt_node_is_vfptr(lp)); + lp_is_int = dt_node_is_integer(lp); + + rp_is_ptr = dt_node_is_string(rp) || + (dt_node_is_pointer(rp) && !dt_node_is_vfptr(rp)); + rp_is_int = dt_node_is_integer(rp); + + if (lp_is_int && rp_is_int) { + dt_type_promote(lp, rp, &ctfp, &type); + uref = 0; + } else if (lp_is_ptr && rp_is_int) { + ctfp = lp->dn_ctfp; + type = lp->dn_type; + uref = lp->dn_flags & DT_NF_USERLAND; + } else if (lp_is_int && rp_is_ptr && op == DT_TOK_ADD) { + ctfp = rp->dn_ctfp; + type = rp->dn_type; + uref = rp->dn_flags & DT_NF_USERLAND; + } else if (lp_is_ptr && rp_is_ptr && op == DT_TOK_SUB && + dt_node_is_ptrcompat(lp, rp, NULL, NULL)) { + ctfp = dtp->dt_ddefs->dm_ctfp; + type = ctf_lookup_by_name(ctfp, "ptrdiff_t"); + uref = 0; + } else { + xyerror(D_OP_INCOMPAT, "operands have incompatible " + "types: \"%s\" %s \"%s\"\n", + dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), + dt_node_type_name(rp, n2, sizeof (n2))); + } + + dt_node_type_assign(dnp, ctfp, type); + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + + if (uref) + dnp->dn_flags |= DT_NF_USERLAND; + break; + } + + case DT_TOK_OR_EQ: + case DT_TOK_XOR_EQ: + case DT_TOK_AND_EQ: + case DT_TOK_LSH_EQ: + case DT_TOK_RSH_EQ: + case DT_TOK_MOD_EQ: + if (lp->dn_kind == DT_NODE_IDENT) { + dt_xcook_ident(lp, dtp->dt_globals, + DT_IDENT_SCALAR, B_TRUE); + } + + lp = dnp->dn_left = + dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD); + + rp = dnp->dn_right = + dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD); + + if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { + xyerror(D_OP_INT, "operator %s requires operands of " + "integral type\n", opstr(op)); + } + goto asgn_common; + + case DT_TOK_MUL_EQ: + case DT_TOK_DIV_EQ: + if (lp->dn_kind == DT_NODE_IDENT) { + dt_xcook_ident(lp, dtp->dt_globals, + DT_IDENT_SCALAR, B_TRUE); + } + + lp = dnp->dn_left = + dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD); + + rp = dnp->dn_right = + dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD); + + if (!dt_node_is_arith(lp) || !dt_node_is_arith(rp)) { + xyerror(D_OP_ARITH, "operator %s requires operands of " + "arithmetic type\n", opstr(op)); + } + goto asgn_common; + + case DT_TOK_ASGN: + /* + * If the left-hand side is an identifier, attempt to resolve + * it as either an aggregation or scalar variable. We pass + * B_TRUE to dt_xcook_ident to indicate that a new variable can + * be created if no matching variable exists in the namespace. + */ + if (lp->dn_kind == DT_NODE_IDENT) { + if (lp->dn_op == DT_TOK_AGG) { + dt_xcook_ident(lp, dtp->dt_aggs, + DT_IDENT_AGG, B_TRUE); + } else { + dt_xcook_ident(lp, dtp->dt_globals, + DT_IDENT_SCALAR, B_TRUE); + } + } + + lp = dnp->dn_left = dt_node_cook(lp, 0); /* don't set mod yet */ + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + /* + * If the left-hand side is an aggregation, verify that we are + * assigning it the result of an aggregating function. Once + * we've done so, hide the func node in the aggregation and + * return the aggregation itself up to the parse tree parent. + * This transformation is legal since the assigned function + * cannot change identity across disjoint cooking passes and + * the argument list subtree is retained for later cooking. + */ + if (lp->dn_kind == DT_NODE_AGG) { + const char *aname = lp->dn_ident->di_name; + dt_ident_t *oid = lp->dn_ident->di_iarg; + + if (rp->dn_kind != DT_NODE_FUNC || + rp->dn_ident->di_kind != DT_IDENT_AGGFUNC) { + xyerror(D_AGG_FUNC, + "@%s must be assigned the result of " + "an aggregating function\n", aname); + } + + if (oid != NULL && oid != rp->dn_ident) { + xyerror(D_AGG_REDEF, + "aggregation redefined: @%s\n\t " + "current: @%s = %s( )\n\tprevious: @%s = " + "%s( ) : line %d\n", aname, aname, + rp->dn_ident->di_name, aname, oid->di_name, + lp->dn_ident->di_lineno); + } else if (oid == NULL) + lp->dn_ident->di_iarg = rp->dn_ident; + + /* + * Do not allow multiple aggregation assignments in a + * single statement, e.g. (@a = count()) = count(); + * We produce a message as if the result of aggregating + * function does not propagate DT_NF_LVALUE. + */ + if (lp->dn_aggfun != NULL) { + xyerror(D_OP_LVAL, "operator = requires " + "modifiable lvalue as an operand\n"); + } + + lp->dn_aggfun = rp; + lp = dt_node_cook(lp, DT_IDFLG_MOD); + + dnp->dn_left = dnp->dn_right = NULL; + dt_node_free(dnp); + + return (lp); + } + + /* + * If the right-hand side is a dynamic variable that is the + * output of a translator, our result is the translated type. + */ + if ((idp = dt_node_resolve(rp, DT_IDENT_XLSOU)) != NULL) { + ctfp = idp->di_ctfp; + type = idp->di_type; + uref = idp->di_flags & DT_IDFLG_USER; + } else { + ctfp = rp->dn_ctfp; + type = rp->dn_type; + uref = rp->dn_flags & DT_NF_USERLAND; + } + + /* + * If the left-hand side of an assignment statement is a virgin + * variable created by this compilation pass, reset the type of + * this variable to the type of the right-hand side. + */ + if (lp->dn_kind == DT_NODE_VAR && + dt_ident_unref(lp->dn_ident)) { + dt_node_type_assign(lp, ctfp, type); + dt_ident_type_assign(lp->dn_ident, ctfp, type); + + if (uref) { + lp->dn_flags |= DT_NF_USERLAND; + lp->dn_ident->di_flags |= DT_IDFLG_USER; + } + } + + if (lp->dn_kind == DT_NODE_VAR) + lp->dn_ident->di_flags |= DT_IDFLG_MOD; + + /* + * The rules for type checking for the assignment operators are + * described in the ANSI-C spec (see K&R[A7.17]). We share + * most of this code with the argument list checking code. + */ + if (!dt_node_is_string(lp)) { + kind = ctf_type_kind(lp->dn_ctfp, + ctf_type_resolve(lp->dn_ctfp, lp->dn_type)); + + if (kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION) { + xyerror(D_OP_ARRFUN, "operator %s may not be " + "applied to operand of type \"%s\"\n", + opstr(op), + dt_node_type_name(lp, n1, sizeof (n1))); + } + } + + if (idp != NULL && idp->di_kind == DT_IDENT_XLSOU && + ctf_type_compat(lp->dn_ctfp, lp->dn_type, ctfp, type)) + goto asgn_common; + + if (dt_node_is_argcompat(lp, rp)) + goto asgn_common; + + xyerror(D_OP_INCOMPAT, + "operands have incompatible types: \"%s\" %s \"%s\"\n", + dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), + dt_node_type_name(rp, n2, sizeof (n2))); + /*NOTREACHED*/ + + case DT_TOK_ADD_EQ: + case DT_TOK_SUB_EQ: + if (lp->dn_kind == DT_NODE_IDENT) { + dt_xcook_ident(lp, dtp->dt_globals, + DT_IDENT_SCALAR, B_TRUE); + } + + lp = dnp->dn_left = + dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD); + + rp = dnp->dn_right = + dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD); + + if (dt_node_is_string(lp) || dt_node_is_string(rp)) { + xyerror(D_OP_INCOMPAT, "operands have " + "incompatible types: \"%s\" %s \"%s\"\n", + dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), + dt_node_type_name(rp, n2, sizeof (n2))); + } + + /* + * The rules for type checking for the assignment operators are + * described in the ANSI-C spec (see K&R[A7.17]). To these + * rules we add that only writable D nodes can be modified. + */ + if (dt_node_is_integer(lp) == 0 || + dt_node_is_integer(rp) == 0) { + if (!dt_node_is_pointer(lp) || dt_node_is_vfptr(lp)) { + xyerror(D_OP_VFPTR, + "operator %s requires left-hand scalar " + "operand of known size\n", opstr(op)); + } else if (dt_node_is_integer(rp) == 0 && + dt_node_is_ptrcompat(lp, rp, NULL, NULL) == 0) { + xyerror(D_OP_INCOMPAT, "operands have " + "incompatible types: \"%s\" %s \"%s\"\n", + dt_node_type_name(lp, n1, sizeof (n1)), + opstr(op), + dt_node_type_name(rp, n2, sizeof (n2))); + } + } +asgn_common: + if (!(lp->dn_flags & DT_NF_LVALUE)) { + xyerror(D_OP_LVAL, "operator %s requires modifiable " + "lvalue as an operand\n", opstr(op)); + /* see K&R[A7.17] */ + } + + if (!(lp->dn_flags & DT_NF_WRITABLE)) { + xyerror(D_OP_WRITE, "operator %s can only be applied " + "to a writable variable\n", opstr(op)); + } + + dt_node_type_propagate(lp, dnp); /* see K&R[A7.17] */ + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + + case DT_TOK_PTR: + /* + * If the left-hand side of operator -> is the name "self", + * then we permit a TLS variable to be created or referenced. + */ + if (lp->dn_kind == DT_NODE_IDENT && + strcmp(lp->dn_string, "self") == 0) { + if (rp->dn_kind != DT_NODE_VAR) { + dt_xcook_ident(rp, dtp->dt_tls, + DT_IDENT_SCALAR, B_TRUE); + } + + if (idflags != 0) + rp = dt_node_cook(rp, idflags); + + dnp->dn_right = dnp->dn_left; /* avoid freeing rp */ + dt_node_free(dnp); + return (rp); + } + + /* + * If the left-hand side of operator -> is the name "this", + * then we permit a local variable to be created or referenced. + */ + if (lp->dn_kind == DT_NODE_IDENT && + strcmp(lp->dn_string, "this") == 0) { + if (rp->dn_kind != DT_NODE_VAR) { + dt_xcook_ident(rp, yypcb->pcb_locals, + DT_IDENT_SCALAR, B_TRUE); + } + + if (idflags != 0) + rp = dt_node_cook(rp, idflags); + + dnp->dn_right = dnp->dn_left; /* avoid freeing rp */ + dt_node_free(dnp); + return (rp); + } + + /*FALLTHRU*/ + + case DT_TOK_DOT: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + + if (rp->dn_kind != DT_NODE_IDENT) { + xyerror(D_OP_IDENT, "operator %s must be followed by " + "an identifier\n", opstr(op)); + } + + if ((idp = dt_node_resolve(lp, DT_IDENT_XLSOU)) != NULL || + (idp = dt_node_resolve(lp, DT_IDENT_XLPTR)) != NULL) { + /* + * If the left-hand side is a translated struct or ptr, + * the type of the left is the translation output type. + */ + dt_xlator_t *dxp = idp->di_data; + + if (dt_xlator_member(dxp, rp->dn_string) == NULL) { + xyerror(D_XLATE_NOCONV, + "translator does not define conversion " + "for member: %s\n", rp->dn_string); + } + + ctfp = idp->di_ctfp; + type = ctf_type_resolve(ctfp, idp->di_type); + uref = idp->di_flags & DT_IDFLG_USER; + } else { + ctfp = lp->dn_ctfp; + type = ctf_type_resolve(ctfp, lp->dn_type); + uref = lp->dn_flags & DT_NF_USERLAND; + } + + kind = ctf_type_kind(ctfp, type); + + if (op == DT_TOK_PTR) { + if (kind != CTF_K_POINTER) { + xyerror(D_OP_PTR, "operator %s must be " + "applied to a pointer\n", opstr(op)); + } + type = ctf_type_reference(ctfp, type); + type = ctf_type_resolve(ctfp, type); + kind = ctf_type_kind(ctfp, type); + } + + /* + * If we follow a reference to a forward declaration tag, + * search the entire type space for the actual definition. + */ + while (kind == CTF_K_FORWARD) { + char *tag = ctf_type_name(ctfp, type, n1, sizeof (n1)); + dtrace_typeinfo_t dtt; + + if (tag != NULL && dt_type_lookup(tag, &dtt) == 0 && + (dtt.dtt_ctfp != ctfp || dtt.dtt_type != type)) { + ctfp = dtt.dtt_ctfp; + type = ctf_type_resolve(ctfp, dtt.dtt_type); + kind = ctf_type_kind(ctfp, type); + } else { + xyerror(D_OP_INCOMPLETE, + "operator %s cannot be applied to a " + "forward declaration: no %s definition " + "is available\n", opstr(op), tag); + } + } + + if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { + if (op == DT_TOK_PTR) { + xyerror(D_OP_SOU, "operator -> cannot be " + "applied to pointer to type \"%s\"; must " + "be applied to a struct or union pointer\n", + ctf_type_name(ctfp, type, n1, sizeof (n1))); + } else { + xyerror(D_OP_SOU, "operator %s cannot be " + "applied to type \"%s\"; must be applied " + "to a struct or union\n", opstr(op), + ctf_type_name(ctfp, type, n1, sizeof (n1))); + } + } + + if (ctf_member_info(ctfp, type, rp->dn_string, &m) == CTF_ERR) { + xyerror(D_TYPE_MEMBER, + "%s is not a member of %s\n", rp->dn_string, + ctf_type_name(ctfp, type, n1, sizeof (n1))); + } + + type = ctf_type_resolve(ctfp, m.ctm_type); + kind = ctf_type_kind(ctfp, type); + + dt_node_type_assign(dnp, ctfp, m.ctm_type); + dt_node_attr_assign(dnp, lp->dn_attr); + + if (op == DT_TOK_PTR && (kind != CTF_K_ARRAY || + dt_node_is_string(dnp))) + dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.3.3] */ + + if (op == DT_TOK_DOT && (lp->dn_flags & DT_NF_LVALUE) && + (kind != CTF_K_ARRAY || dt_node_is_string(dnp))) + dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.3.3] */ + + if (lp->dn_flags & DT_NF_WRITABLE) + dnp->dn_flags |= DT_NF_WRITABLE; + + if (uref && (kind == CTF_K_POINTER || + (dnp->dn_flags & DT_NF_REF))) + dnp->dn_flags |= DT_NF_USERLAND; + break; + + case DT_TOK_LBRAC: { + /* + * If op is DT_TOK_LBRAC, we know from the special-case code at + * the top that lp is either a D variable or an aggregation. + */ + dt_node_t *lnp; + + /* + * If the left-hand side is an aggregation, just set dn_aggtup + * to the right-hand side and return the cooked aggregation. + * This transformation is legal since we are just collapsing + * nodes to simplify later processing, and the entire aggtup + * parse subtree is retained for subsequent cooking passes. + */ + if (lp->dn_kind == DT_NODE_AGG) { + if (lp->dn_aggtup != NULL) { + xyerror(D_AGG_MDIM, "improper attempt to " + "reference @%s as a multi-dimensional " + "array\n", lp->dn_ident->di_name); + } + + lp->dn_aggtup = rp; + lp = dt_node_cook(lp, 0); + + dnp->dn_left = dnp->dn_right = NULL; + dt_node_free(dnp); + + return (lp); + } + + assert(lp->dn_kind == DT_NODE_VAR); + idp = lp->dn_ident; + + /* + * If the left-hand side is a non-global scalar that hasn't yet + * been referenced or modified, it was just created by self-> + * or this-> and we can convert it from scalar to assoc array. + */ + if (idp->di_kind == DT_IDENT_SCALAR && dt_ident_unref(idp) && + (idp->di_flags & (DT_IDFLG_LOCAL | DT_IDFLG_TLS)) != 0) { + + if (idp->di_flags & DT_IDFLG_LOCAL) { + xyerror(D_ARR_LOCAL, + "local variables may not be used as " + "associative arrays: %s\n", idp->di_name); + } + + dt_dprintf("morph variable %s (id %u) from scalar to " + "array\n", idp->di_name, idp->di_id); + + dt_ident_morph(idp, DT_IDENT_ARRAY, + &dt_idops_assc, NULL); + } + + if (idp->di_kind != DT_IDENT_ARRAY) { + xyerror(D_IDENT_BADREF, "%s '%s' may not be referenced " + "as %s\n", dt_idkind_name(idp->di_kind), + idp->di_name, dt_idkind_name(DT_IDENT_ARRAY)); + } + + /* + * Now that we've confirmed our left-hand side is a DT_NODE_VAR + * of idkind DT_IDENT_ARRAY, we need to splice the [ node from + * the parse tree and leave a cooked DT_NODE_VAR in its place + * where dn_args for the VAR node is the right-hand 'rp' tree, + * as shown in the parse tree diagram below: + * + * / / + * [ OP2 "[" ]=dnp [ VAR ]=dnp + * / \ => | + * / \ +- dn_args -> [ ??? ]=rp + * [ VAR ]=lp [ ??? ]=rp + * + * Since the final dt_node_cook(dnp) can fail using longjmp we + * must perform the transformations as a group first by over- + * writing 'dnp' to become the VAR node, so that the parse tree + * is guaranteed to be in a consistent state if the cook fails. + */ + assert(lp->dn_kind == DT_NODE_VAR); + assert(lp->dn_args == NULL); + + lnp = dnp->dn_link; + bcopy(lp, dnp, sizeof (dt_node_t)); + dnp->dn_link = lnp; + + dnp->dn_args = rp; + dnp->dn_list = NULL; + + dt_node_free(lp); + return (dt_node_cook(dnp, idflags)); + } + + case DT_TOK_XLATE: { + dt_xlator_t *dxp; + + assert(lp->dn_kind == DT_NODE_TYPE); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + dxp = dt_xlator_lookup(dtp, rp, lp, DT_XLATE_FUZZY); + + if (dxp == NULL) { + xyerror(D_XLATE_NONE, + "cannot translate from \"%s\" to \"%s\"\n", + dt_node_type_name(rp, n1, sizeof (n1)), + dt_node_type_name(lp, n2, sizeof (n2))); + } + + dnp->dn_ident = dt_xlator_ident(dxp, lp->dn_ctfp, lp->dn_type); + dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); + dt_node_attr_assign(dnp, + dt_attr_min(rp->dn_attr, dnp->dn_ident->di_attr)); + break; + } + + case DT_TOK_LPAR: { + ctf_id_t ltype, rtype; + uint_t lkind, rkind; + + assert(lp->dn_kind == DT_NODE_TYPE); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + ltype = ctf_type_resolve(lp->dn_ctfp, lp->dn_type); + lkind = ctf_type_kind(lp->dn_ctfp, ltype); + + rtype = ctf_type_resolve(rp->dn_ctfp, rp->dn_type); + rkind = ctf_type_kind(rp->dn_ctfp, rtype); + + /* + * The rules for casting are loosely explained in K&R[A7.5] + * and K&R[A6]. Basically, we can cast to the same type or + * same base type, between any kind of scalar values, from + * arrays to pointers, and we can cast anything to void. + * To these rules D adds casts from scalars to strings. + */ + if (ctf_type_compat(lp->dn_ctfp, lp->dn_type, + rp->dn_ctfp, rp->dn_type)) + /*EMPTY*/; + else if (dt_node_is_scalar(lp) && + (dt_node_is_scalar(rp) || rkind == CTF_K_FUNCTION)) + /*EMPTY*/; + else if (dt_node_is_void(lp)) + /*EMPTY*/; + else if (lkind == CTF_K_POINTER && dt_node_is_pointer(rp)) + /*EMPTY*/; + else if (dt_node_is_string(lp) && (dt_node_is_scalar(rp) || + dt_node_is_pointer(rp) || dt_node_is_strcompat(rp))) + /*EMPTY*/; + else { + xyerror(D_CAST_INVAL, + "invalid cast expression: \"%s\" to \"%s\"\n", + dt_node_type_name(rp, n1, sizeof (n1)), + dt_node_type_name(lp, n2, sizeof (n2))); + } + + dt_node_type_propagate(lp, dnp); /* see K&R[A7.5] */ + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + } + + case DT_TOK_COMMA: + lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); + + if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) { + xyerror(D_OP_DYN, "operator %s operands " + "cannot be of dynamic type\n", opstr(op)); + } + + if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) { + xyerror(D_OP_ACT, "operator %s operands " + "cannot be actions\n", opstr(op)); + } + + dt_node_type_propagate(rp, dnp); /* see K&R[A7.18] */ + dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); + break; + + default: + xyerror(D_UNKNOWN, "invalid binary op %s\n", opstr(op)); + } + + /* + * Complete the conversion of E1[E2] to *((E1)+(E2)) that we started + * at the top of our switch() above (see K&R[A7.3.1]). Since E2 is + * parsed as an argument_expression_list by dt_grammar.y, we can + * end up with a comma-separated list inside of a non-associative + * array reference. We check for this and report an appropriate error. + */ + if (dnp->dn_op == DT_TOK_LBRAC && op == DT_TOK_ADD) { + dt_node_t *pnp; + + if (rp->dn_list != NULL) { + xyerror(D_ARR_BADREF, + "cannot access %s as an associative array\n", + dt_node_name(lp, n1, sizeof (n1))); + } + + dnp->dn_op = DT_TOK_ADD; + pnp = dt_node_op1(DT_TOK_DEREF, dnp); + + /* + * Cook callbacks are not typically permitted to allocate nodes. + * When we do, we must insert them in the middle of an existing + * allocation list rather than having them appended to the pcb + * list because the sub-expression may be part of a definition. + */ + assert(yypcb->pcb_list == pnp); + yypcb->pcb_list = pnp->dn_link; + + pnp->dn_link = dnp->dn_link; + dnp->dn_link = pnp; + + return (dt_node_cook(pnp, DT_IDFLG_REF)); + } + + return (dnp); +} + +/*ARGSUSED*/ +static dt_node_t * +dt_cook_op3(dt_node_t *dnp, uint_t idflags) +{ + dt_node_t *lp, *rp; + ctf_file_t *ctfp; + ctf_id_t type; + + dnp->dn_expr = dt_node_cook(dnp->dn_expr, DT_IDFLG_REF); + lp = dnp->dn_left = dt_node_cook(dnp->dn_left, DT_IDFLG_REF); + rp = dnp->dn_right = dt_node_cook(dnp->dn_right, DT_IDFLG_REF); + + if (!dt_node_is_scalar(dnp->dn_expr)) { + xyerror(D_OP_SCALAR, + "operator ?: expression must be of scalar type\n"); + } + + if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) { + xyerror(D_OP_DYN, + "operator ?: operands cannot be of dynamic type\n"); + } + + /* + * The rules for type checking for the ternary operator are complex and + * are described in the ANSI-C spec (see K&R[A7.16]). We implement + * the various tests in order from least to most expensive. + */ + if (ctf_type_compat(lp->dn_ctfp, lp->dn_type, + rp->dn_ctfp, rp->dn_type)) { + ctfp = lp->dn_ctfp; + type = lp->dn_type; + } else if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) { + dt_type_promote(lp, rp, &ctfp, &type); + } else if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp) && + (dt_node_is_string(lp) || dt_node_is_string(rp))) { + ctfp = DT_STR_CTFP(yypcb->pcb_hdl); + type = DT_STR_TYPE(yypcb->pcb_hdl); + } else if (dt_node_is_ptrcompat(lp, rp, &ctfp, &type) == 0) { + xyerror(D_OP_INCOMPAT, + "operator ?: operands must have compatible types\n"); + } + + if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) { + xyerror(D_OP_ACT, "action cannot be " + "used in a conditional context\n"); + } + + dt_node_type_assign(dnp, ctfp, type); + dt_node_attr_assign(dnp, dt_attr_min(dnp->dn_expr->dn_attr, + dt_attr_min(lp->dn_attr, rp->dn_attr))); + + return (dnp); +} + +static dt_node_t * +dt_cook_statement(dt_node_t *dnp, uint_t idflags) +{ + dnp->dn_expr = dt_node_cook(dnp->dn_expr, idflags); + dt_node_attr_assign(dnp, dnp->dn_expr->dn_attr); + + return (dnp); +} + +/* + * If dn_aggfun is set, this node is a collapsed aggregation assignment (see + * the special case code for DT_TOK_ASGN in dt_cook_op2() above), in which + * case we cook both the tuple and the function call. If dn_aggfun is NULL, + * this node is just a reference to the aggregation's type and attributes. + */ +/*ARGSUSED*/ +static dt_node_t * +dt_cook_aggregation(dt_node_t *dnp, uint_t idflags) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + + if (dnp->dn_aggfun != NULL) { + dnp->dn_aggfun = dt_node_cook(dnp->dn_aggfun, DT_IDFLG_REF); + dt_node_attr_assign(dnp, dt_ident_cook(dnp, + dnp->dn_ident, &dnp->dn_aggtup)); + } else { + dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); + dt_node_attr_assign(dnp, dnp->dn_ident->di_attr); + } + + return (dnp); +} + +/* + * Since D permits new variable identifiers to be instantiated in any program + * expression, we may need to cook a clause's predicate either before or after + * the action list depending on the program code in question. Consider: + * + * probe-description-list probe-description-list + * /x++/ /x == 0/ + * { { + * trace(x); trace(x++); + * } } + * + * In the left-hand example, the predicate uses operator ++ to instantiate 'x' + * as a variable of type int64_t. The predicate must be cooked first because + * otherwise the statement trace(x) refers to an unknown identifier. In the + * right-hand example, the action list uses ++ to instantiate 'x'; the action + * list must be cooked first because otherwise the predicate x == 0 refers to + * an unknown identifier. In order to simplify programming, we support both. + * + * When cooking a clause, we cook the action statements before the predicate by + * default, since it seems more common to create or modify identifiers in the + * action list. If cooking fails due to an unknown identifier, we attempt to + * cook the predicate (i.e. do it first) and then go back and cook the actions. + * If this, too, fails (or if we get an error other than D_IDENT_UNDEF) we give + * up and report failure back to the user. There are five possible paths: + * + * cook actions = OK, cook predicate = OK -> OK + * cook actions = OK, cook predicate = ERR -> ERR + * cook actions = ERR, cook predicate = ERR -> ERR + * cook actions = ERR, cook predicate = OK, cook actions = OK -> OK + * cook actions = ERR, cook predicate = OK, cook actions = ERR -> ERR + * + * The programmer can still defeat our scheme by creating circular definition + * dependencies between predicates and actions, as in this example clause: + * + * probe-description-list + * /x++ && y == 0/ + * { + * trace(x + y++); + * } + * + * but it doesn't seem worth the complexity to handle such rare cases. The + * user can simply use the D variable declaration syntax to work around them. + */ +static dt_node_t * +dt_cook_clause(dt_node_t *dnp, uint_t idflags) +{ + volatile int err, tries; + jmp_buf ojb; + + /* + * Before assigning dn_ctxattr, temporarily assign the probe attribute + * to 'dnp' itself to force an attribute check and minimum violation. + */ + dt_node_attr_assign(dnp, yypcb->pcb_pinfo.dtp_attr); + dnp->dn_ctxattr = yypcb->pcb_pinfo.dtp_attr; + + bcopy(yypcb->pcb_jmpbuf, ojb, sizeof (jmp_buf)); + tries = 0; + + if (dnp->dn_pred != NULL && (err = setjmp(yypcb->pcb_jmpbuf)) != 0) { + bcopy(ojb, yypcb->pcb_jmpbuf, sizeof (jmp_buf)); + if (tries++ != 0 || err != EDT_COMPILER || ( + yypcb->pcb_hdl->dt_errtag != dt_errtag(D_IDENT_UNDEF) && + yypcb->pcb_hdl->dt_errtag != dt_errtag(D_VAR_UNDEF))) + longjmp(yypcb->pcb_jmpbuf, err); + } + + if (tries == 0) { + yylabel("action list"); + + dt_node_attr_assign(dnp, + dt_node_list_cook(&dnp->dn_acts, idflags)); + + bcopy(ojb, yypcb->pcb_jmpbuf, sizeof (jmp_buf)); + yylabel(NULL); + } + + if (dnp->dn_pred != NULL) { + yylabel("predicate"); + + dnp->dn_pred = dt_node_cook(dnp->dn_pred, idflags); + dt_node_attr_assign(dnp, + dt_attr_min(dnp->dn_attr, dnp->dn_pred->dn_attr)); + + if (!dt_node_is_scalar(dnp->dn_pred)) { + xyerror(D_PRED_SCALAR, + "predicate result must be of scalar type\n"); + } + + yylabel(NULL); + } + + if (tries != 0) { + yylabel("action list"); + + dt_node_attr_assign(dnp, + dt_node_list_cook(&dnp->dn_acts, idflags)); + + yylabel(NULL); + } + + return (dnp); +} + +/*ARGSUSED*/ +static dt_node_t * +dt_cook_inline(dt_node_t *dnp, uint_t idflags) +{ + dt_idnode_t *inp = dnp->dn_ident->di_iarg; + dt_ident_t *rdp; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + assert(dnp->dn_ident->di_flags & DT_IDFLG_INLINE); + assert(inp->din_root->dn_flags & DT_NF_COOKED); + + /* + * If we are inlining a translation, verify that the inline declaration + * type exactly matches the type that is returned by the translation. + * Otherwise just use dt_node_is_argcompat() to check the types. + */ + if ((rdp = dt_node_resolve(inp->din_root, DT_IDENT_XLSOU)) != NULL || + (rdp = dt_node_resolve(inp->din_root, DT_IDENT_XLPTR)) != NULL) { + + ctf_file_t *lctfp = dnp->dn_ctfp; + ctf_id_t ltype = ctf_type_resolve(lctfp, dnp->dn_type); + + dt_xlator_t *dxp = rdp->di_data; + ctf_file_t *rctfp = dxp->dx_dst_ctfp; + ctf_id_t rtype = dxp->dx_dst_base; + + if (ctf_type_kind(lctfp, ltype) == CTF_K_POINTER) { + ltype = ctf_type_reference(lctfp, ltype); + ltype = ctf_type_resolve(lctfp, ltype); + } + + if (ctf_type_compat(lctfp, ltype, rctfp, rtype) == 0) { + dnerror(dnp, D_OP_INCOMPAT, + "inline %s definition uses incompatible types: " + "\"%s\" = \"%s\"\n", dnp->dn_ident->di_name, + dt_type_name(lctfp, ltype, n1, sizeof (n1)), + dt_type_name(rctfp, rtype, n2, sizeof (n2))); + } + + } else if (dt_node_is_argcompat(dnp, inp->din_root) == 0) { + dnerror(dnp, D_OP_INCOMPAT, + "inline %s definition uses incompatible types: " + "\"%s\" = \"%s\"\n", dnp->dn_ident->di_name, + dt_node_type_name(dnp, n1, sizeof (n1)), + dt_node_type_name(inp->din_root, n2, sizeof (n2))); + } + + return (dnp); +} + +static dt_node_t * +dt_cook_member(dt_node_t *dnp, uint_t idflags) +{ + dnp->dn_membexpr = dt_node_cook(dnp->dn_membexpr, idflags); + dt_node_attr_assign(dnp, dnp->dn_membexpr->dn_attr); + return (dnp); +} + +/*ARGSUSED*/ +static dt_node_t * +dt_cook_xlator(dt_node_t *dnp, uint_t idflags) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_xlator_t *dxp = dnp->dn_xlator; + dt_node_t *mnp; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + dtrace_attribute_t attr = _dtrace_maxattr; + ctf_membinfo_t ctm; + + /* + * Before cooking each translator member, we push a reference to the + * hash containing translator-local identifiers on to pcb_globals to + * temporarily interpose these identifiers in front of other globals. + */ + dt_idstack_push(&yypcb->pcb_globals, dxp->dx_locals); + + for (mnp = dnp->dn_members; mnp != NULL; mnp = mnp->dn_list) { + if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_type, + mnp->dn_membname, &ctm) == CTF_ERR) { + xyerror(D_XLATE_MEMB, + "translator member %s is not a member of %s\n", + mnp->dn_membname, ctf_type_name(dxp->dx_dst_ctfp, + dxp->dx_dst_type, n1, sizeof (n1))); + } + + (void) dt_node_cook(mnp, DT_IDFLG_REF); + dt_node_type_assign(mnp, dxp->dx_dst_ctfp, ctm.ctm_type); + attr = dt_attr_min(attr, mnp->dn_attr); + + if (dt_node_is_argcompat(mnp, mnp->dn_membexpr) == 0) { + xyerror(D_XLATE_INCOMPAT, + "translator member %s definition uses " + "incompatible types: \"%s\" = \"%s\"\n", + mnp->dn_membname, + dt_node_type_name(mnp, n1, sizeof (n1)), + dt_node_type_name(mnp->dn_membexpr, + n2, sizeof (n2))); + } + } + + dt_idstack_pop(&yypcb->pcb_globals, dxp->dx_locals); + + dxp->dx_souid.di_attr = attr; + dxp->dx_ptrid.di_attr = attr; + + dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); + dt_node_attr_assign(dnp, _dtrace_defattr); + + return (dnp); +} + +static void +dt_node_provider_cmp_argv(dt_provider_t *pvp, dt_node_t *pnp, const char *kind, + uint_t old_argc, dt_node_t *old_argv, uint_t new_argc, dt_node_t *new_argv) +{ + dt_probe_t *prp = pnp->dn_ident->di_data; + uint_t i; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + if (old_argc != new_argc) { + dnerror(pnp, D_PROV_INCOMPAT, + "probe %s:%s %s prototype mismatch:\n" + "\t current: %u arg%s\n\tprevious: %u arg%s\n", + pvp->pv_desc.dtvd_name, prp->pr_ident->di_name, kind, + new_argc, new_argc != 1 ? "s" : "", + old_argc, old_argc != 1 ? "s" : ""); + } + + for (i = 0; i < old_argc; i++, + old_argv = old_argv->dn_list, new_argv = new_argv->dn_list) { + if (ctf_type_cmp(old_argv->dn_ctfp, old_argv->dn_type, + new_argv->dn_ctfp, new_argv->dn_type) == 0) + continue; + + dnerror(pnp, D_PROV_INCOMPAT, + "probe %s:%s %s prototype argument #%u mismatch:\n" + "\t current: %s\n\tprevious: %s\n", + pvp->pv_desc.dtvd_name, prp->pr_ident->di_name, kind, i + 1, + dt_node_type_name(new_argv, n1, sizeof (n1)), + dt_node_type_name(old_argv, n2, sizeof (n2))); + } +} + +/* + * Compare a new probe declaration with an existing probe definition (either + * from a previous declaration or cached from the kernel). If the existing + * definition and declaration both have an input and output parameter list, + * compare both lists. Otherwise compare only the output parameter lists. + */ +static void +dt_node_provider_cmp(dt_provider_t *pvp, dt_node_t *pnp, + dt_probe_t *old, dt_probe_t *new) +{ + dt_node_provider_cmp_argv(pvp, pnp, "output", + old->pr_xargc, old->pr_xargs, new->pr_xargc, new->pr_xargs); + + if (old->pr_nargs != old->pr_xargs && new->pr_nargs != new->pr_xargs) { + dt_node_provider_cmp_argv(pvp, pnp, "input", + old->pr_nargc, old->pr_nargs, new->pr_nargc, new->pr_nargs); + } + + if (old->pr_nargs == old->pr_xargs && new->pr_nargs != new->pr_xargs) { + if (pvp->pv_flags & DT_PROVIDER_IMPL) { + dnerror(pnp, D_PROV_INCOMPAT, + "provider interface mismatch: %s\n" + "\t current: probe %s:%s has an output prototype\n" + "\tprevious: probe %s:%s has no output prototype\n", + pvp->pv_desc.dtvd_name, pvp->pv_desc.dtvd_name, + new->pr_ident->di_name, pvp->pv_desc.dtvd_name, + old->pr_ident->di_name); + } + + if (old->pr_ident->di_gen == yypcb->pcb_hdl->dt_gen) + old->pr_ident->di_flags |= DT_IDFLG_ORPHAN; + + dt_idhash_delete(pvp->pv_probes, old->pr_ident); + dt_probe_declare(pvp, new); + } +} + +static void +dt_cook_probe(dt_node_t *dnp, dt_provider_t *pvp) +{ + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + dt_probe_t *prp = dnp->dn_ident->di_data; + + dt_xlator_t *dxp; + uint_t i; + + char n1[DT_TYPE_NAMELEN]; + char n2[DT_TYPE_NAMELEN]; + + if (prp->pr_nargs == prp->pr_xargs) + return; + + for (i = 0; i < prp->pr_xargc; i++) { + dt_node_t *xnp = prp->pr_xargv[i]; + dt_node_t *nnp = prp->pr_nargv[prp->pr_mapping[i]]; + + if ((dxp = dt_xlator_lookup(dtp, + nnp, xnp, DT_XLATE_FUZZY)) != NULL) { + if (dt_provider_xref(dtp, pvp, dxp->dx_id) != 0) + longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); + continue; + } + + if (dt_node_is_argcompat(nnp, xnp)) + continue; /* no translator defined and none required */ + + dnerror(dnp, D_PROV_PRXLATOR, "translator for %s:%s output " + "argument #%u from %s to %s is not defined\n", + pvp->pv_desc.dtvd_name, dnp->dn_ident->di_name, i + 1, + dt_node_type_name(nnp, n1, sizeof (n1)), + dt_node_type_name(xnp, n2, sizeof (n2))); + } +} + +/*ARGSUSED*/ +static dt_node_t * +dt_cook_provider(dt_node_t *dnp, uint_t idflags) +{ + dt_provider_t *pvp = dnp->dn_provider; + dt_node_t *pnp; + + /* + * If we're declaring a provider for the first time and it is unknown + * to dtrace(7D), insert the probe definitions into the provider's hash. + * If we're redeclaring a known provider, verify the interface matches. + */ + for (pnp = dnp->dn_probes; pnp != NULL; pnp = pnp->dn_list) { + const char *probename = pnp->dn_ident->di_name; + dt_probe_t *prp = dt_probe_lookup(pvp, probename); + + assert(pnp->dn_kind == DT_NODE_PROBE); + + if (prp != NULL && dnp->dn_provred) { + dt_node_provider_cmp(pvp, pnp, + prp, pnp->dn_ident->di_data); + } else if (prp == NULL && dnp->dn_provred) { + dnerror(pnp, D_PROV_INCOMPAT, + "provider interface mismatch: %s\n" + "\t current: probe %s:%s defined\n" + "\tprevious: probe %s:%s not defined\n", + dnp->dn_provname, dnp->dn_provname, + probename, dnp->dn_provname, probename); + } else if (prp != NULL) { + dnerror(pnp, D_PROV_PRDUP, "probe redeclared: %s:%s\n", + dnp->dn_provname, probename); + } else + dt_probe_declare(pvp, pnp->dn_ident->di_data); + + dt_cook_probe(pnp, pvp); + } + + return (dnp); +} + +/*ARGSUSED*/ +static dt_node_t * +dt_cook_none(dt_node_t *dnp, uint_t idflags) +{ + return (dnp); +} + +static dt_node_t *(*dt_cook_funcs[])(dt_node_t *, uint_t) = { + dt_cook_none, /* DT_NODE_FREE */ + dt_cook_none, /* DT_NODE_INT */ + dt_cook_none, /* DT_NODE_STRING */ + dt_cook_ident, /* DT_NODE_IDENT */ + dt_cook_var, /* DT_NODE_VAR */ + dt_cook_none, /* DT_NODE_SYM */ + dt_cook_none, /* DT_NODE_TYPE */ + dt_cook_func, /* DT_NODE_FUNC */ + dt_cook_op1, /* DT_NODE_OP1 */ + dt_cook_op2, /* DT_NODE_OP2 */ + dt_cook_op3, /* DT_NODE_OP3 */ + dt_cook_statement, /* DT_NODE_DEXPR */ + dt_cook_statement, /* DT_NODE_DFUNC */ + dt_cook_aggregation, /* DT_NODE_AGG */ + dt_cook_none, /* DT_NODE_PDESC */ + dt_cook_clause, /* DT_NODE_CLAUSE */ + dt_cook_inline, /* DT_NODE_INLINE */ + dt_cook_member, /* DT_NODE_MEMBER */ + dt_cook_xlator, /* DT_NODE_XLATOR */ + dt_cook_none, /* DT_NODE_PROBE */ + dt_cook_provider, /* DT_NODE_PROVIDER */ + dt_cook_none /* DT_NODE_PROG */ +}; + +/* + * Recursively cook the parse tree starting at the specified node. The idflags + * parameter is used to indicate the type of reference (r/w) and is applied to + * the resulting identifier if it is a D variable or D aggregation. + */ +dt_node_t * +dt_node_cook(dt_node_t *dnp, uint_t idflags) +{ + int oldlineno = yylineno; + + yylineno = dnp->dn_line; + + dnp = dt_cook_funcs[dnp->dn_kind](dnp, idflags); + dnp->dn_flags |= DT_NF_COOKED; + + if (dnp->dn_kind == DT_NODE_VAR || dnp->dn_kind == DT_NODE_AGG) + dnp->dn_ident->di_flags |= idflags; + + yylineno = oldlineno; + return (dnp); +} + +dtrace_attribute_t +dt_node_list_cook(dt_node_t **pnp, uint_t idflags) +{ + dtrace_attribute_t attr = _dtrace_defattr; + dt_node_t *dnp, *nnp; + + for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { + nnp = dnp->dn_list; + dnp = *pnp = dt_node_cook(dnp, idflags); + attr = dt_attr_min(attr, dnp->dn_attr); + dnp->dn_list = nnp; + pnp = &dnp->dn_list; + } + + return (attr); +} + +void +dt_node_list_free(dt_node_t **pnp) +{ + dt_node_t *dnp, *nnp; + + for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { + nnp = dnp->dn_list; + dt_node_free(dnp); + } + + if (pnp != NULL) + *pnp = NULL; +} + +void +dt_node_link_free(dt_node_t **pnp) +{ + dt_node_t *dnp, *nnp; + + for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { + nnp = dnp->dn_link; + dt_node_free(dnp); + } + + for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { + nnp = dnp->dn_link; + free(dnp); + } + + if (pnp != NULL) + *pnp = NULL; +} + +dt_node_t * +dt_node_link(dt_node_t *lp, dt_node_t *rp) +{ + dt_node_t *dnp; + + if (lp == NULL) + return (rp); + else if (rp == NULL) + return (lp); + + for (dnp = lp; dnp->dn_list != NULL; dnp = dnp->dn_list) + continue; + + dnp->dn_list = rp; + return (lp); +} + +/* + * Compute the DOF dtrace_diftype_t representation of a node's type. This is + * called from a variety of places in the library so it cannot assume yypcb + * is valid: any references to handle-specific data must be made through 'dtp'. + */ +void +dt_node_diftype(dtrace_hdl_t *dtp, const dt_node_t *dnp, dtrace_diftype_t *tp) +{ + if (dnp->dn_ctfp == DT_STR_CTFP(dtp) && + dnp->dn_type == DT_STR_TYPE(dtp)) { + tp->dtdt_kind = DIF_TYPE_STRING; + tp->dtdt_ckind = CTF_K_UNKNOWN; + } else { + tp->dtdt_kind = DIF_TYPE_CTF; + tp->dtdt_ckind = ctf_type_kind(dnp->dn_ctfp, + ctf_type_resolve(dnp->dn_ctfp, dnp->dn_type)); + } + + tp->dtdt_flags = (dnp->dn_flags & DT_NF_REF) ? DIF_TF_BYREF : 0; + tp->dtdt_pad = 0; + tp->dtdt_size = ctf_type_size(dnp->dn_ctfp, dnp->dn_type); +} + +void +dt_node_printr(dt_node_t *dnp, FILE *fp, int depth) +{ + char n[DT_TYPE_NAMELEN], buf[BUFSIZ], a[8]; + const dtrace_syminfo_t *dts; + const dt_idnode_t *inp; + dt_node_t *arg; + + (void) fprintf(fp, "%*s", depth * 2, ""); + (void) dt_attr_str(dnp->dn_attr, a, sizeof (a)); + + if (dnp->dn_ctfp != NULL && dnp->dn_type != CTF_ERR && + ctf_type_name(dnp->dn_ctfp, dnp->dn_type, n, sizeof (n)) != NULL) { + (void) snprintf(buf, BUFSIZ, "type=<%s> attr=%s flags=", n, a); + } else { + (void) snprintf(buf, BUFSIZ, "type=<%ld> attr=%s flags=", + dnp->dn_type, a); + } + + if (dnp->dn_flags != 0) { + n[0] = '\0'; + if (dnp->dn_flags & DT_NF_SIGNED) + (void) strcat(n, ",SIGN"); + if (dnp->dn_flags & DT_NF_COOKED) + (void) strcat(n, ",COOK"); + if (dnp->dn_flags & DT_NF_REF) + (void) strcat(n, ",REF"); + if (dnp->dn_flags & DT_NF_LVALUE) + (void) strcat(n, ",LVAL"); + if (dnp->dn_flags & DT_NF_WRITABLE) + (void) strcat(n, ",WRITE"); + if (dnp->dn_flags & DT_NF_BITFIELD) + (void) strcat(n, ",BITF"); + if (dnp->dn_flags & DT_NF_USERLAND) + (void) strcat(n, ",USER"); + (void) strcat(buf, n + 1); + } else + (void) strcat(buf, "0"); + + switch (dnp->dn_kind) { + case DT_NODE_FREE: + (void) fprintf(fp, "FREE <node %p>\n", (void *)dnp); + break; + + case DT_NODE_INT: + (void) fprintf(fp, "INT 0x%llx (%s)\n", + (u_longlong_t)dnp->dn_value, buf); + break; + + case DT_NODE_STRING: + (void) fprintf(fp, "STRING \"%s\" (%s)\n", dnp->dn_string, buf); + break; + + case DT_NODE_IDENT: + (void) fprintf(fp, "IDENT %s (%s)\n", dnp->dn_string, buf); + break; + + case DT_NODE_VAR: + (void) fprintf(fp, "VARIABLE %s%s (%s)\n", + (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL) ? "this->" : + (dnp->dn_ident->di_flags & DT_IDFLG_TLS) ? "self->" : "", + dnp->dn_ident->di_name, buf); + + if (dnp->dn_args != NULL) + (void) fprintf(fp, "%*s[\n", depth * 2, ""); + + for (arg = dnp->dn_args; arg != NULL; arg = arg->dn_list) { + dt_node_printr(arg, fp, depth + 1); + if (arg->dn_list != NULL) + (void) fprintf(fp, "%*s,\n", depth * 2, ""); + } + + if (dnp->dn_args != NULL) + (void) fprintf(fp, "%*s]\n", depth * 2, ""); + break; + + case DT_NODE_SYM: + dts = dnp->dn_ident->di_data; + (void) fprintf(fp, "SYMBOL %s`%s (%s)\n", + dts->dts_object, dts->dts_name, buf); + break; + + case DT_NODE_TYPE: + if (dnp->dn_string != NULL) { + (void) fprintf(fp, "TYPE (%s) %s\n", + buf, dnp->dn_string); + } else + (void) fprintf(fp, "TYPE (%s)\n", buf); + break; + + case DT_NODE_FUNC: + (void) fprintf(fp, "FUNC %s (%s)\n", + dnp->dn_ident->di_name, buf); + + for (arg = dnp->dn_args; arg != NULL; arg = arg->dn_list) { + dt_node_printr(arg, fp, depth + 1); + if (arg->dn_list != NULL) + (void) fprintf(fp, "%*s,\n", depth * 2, ""); + } + break; + + case DT_NODE_OP1: + (void) fprintf(fp, "OP1 %s (%s)\n", opstr(dnp->dn_op), buf); + dt_node_printr(dnp->dn_child, fp, depth + 1); + break; + + case DT_NODE_OP2: + (void) fprintf(fp, "OP2 %s (%s)\n", opstr(dnp->dn_op), buf); + dt_node_printr(dnp->dn_left, fp, depth + 1); + dt_node_printr(dnp->dn_right, fp, depth + 1); + break; + + case DT_NODE_OP3: + (void) fprintf(fp, "OP3 (%s)\n", buf); + dt_node_printr(dnp->dn_expr, fp, depth + 1); + (void) fprintf(fp, "%*s?\n", depth * 2, ""); + dt_node_printr(dnp->dn_left, fp, depth + 1); + (void) fprintf(fp, "%*s:\n", depth * 2, ""); + dt_node_printr(dnp->dn_right, fp, depth + 1); + break; + + case DT_NODE_DEXPR: + case DT_NODE_DFUNC: + (void) fprintf(fp, "D EXPRESSION attr=%s\n", a); + dt_node_printr(dnp->dn_expr, fp, depth + 1); + break; + + case DT_NODE_AGG: + (void) fprintf(fp, "AGGREGATE @%s attr=%s [\n", + dnp->dn_ident->di_name, a); + + for (arg = dnp->dn_aggtup; arg != NULL; arg = arg->dn_list) { + dt_node_printr(arg, fp, depth + 1); + if (arg->dn_list != NULL) + (void) fprintf(fp, "%*s,\n", depth * 2, ""); + } + + if (dnp->dn_aggfun) { + (void) fprintf(fp, "%*s] = ", depth * 2, ""); + dt_node_printr(dnp->dn_aggfun, fp, depth + 1); + } else + (void) fprintf(fp, "%*s]\n", depth * 2, ""); + + if (dnp->dn_aggfun) + (void) fprintf(fp, "%*s)\n", depth * 2, ""); + break; + + case DT_NODE_PDESC: + (void) fprintf(fp, "PDESC %s:%s:%s:%s [%u]\n", + dnp->dn_desc->dtpd_provider, dnp->dn_desc->dtpd_mod, + dnp->dn_desc->dtpd_func, dnp->dn_desc->dtpd_name, + dnp->dn_desc->dtpd_id); + break; + + case DT_NODE_CLAUSE: + (void) fprintf(fp, "CLAUSE attr=%s\n", a); + + for (arg = dnp->dn_pdescs; arg != NULL; arg = arg->dn_list) + dt_node_printr(arg, fp, depth + 1); + + (void) fprintf(fp, "%*sCTXATTR %s\n", depth * 2, "", + dt_attr_str(dnp->dn_ctxattr, a, sizeof (a))); + + if (dnp->dn_pred != NULL) { + (void) fprintf(fp, "%*sPREDICATE /\n", depth * 2, ""); + dt_node_printr(dnp->dn_pred, fp, depth + 1); + (void) fprintf(fp, "%*s/\n", depth * 2, ""); + } + + for (arg = dnp->dn_acts; arg != NULL; arg = arg->dn_list) + dt_node_printr(arg, fp, depth + 1); + break; + + case DT_NODE_INLINE: + inp = dnp->dn_ident->di_iarg; + + (void) fprintf(fp, "INLINE %s (%s)\n", + dnp->dn_ident->di_name, buf); + dt_node_printr(inp->din_root, fp, depth + 1); + break; + + case DT_NODE_MEMBER: + (void) fprintf(fp, "MEMBER %s (%s)\n", dnp->dn_membname, buf); + if (dnp->dn_membexpr) + dt_node_printr(dnp->dn_membexpr, fp, depth + 1); + break; + + case DT_NODE_XLATOR: + (void) fprintf(fp, "XLATOR (%s)", buf); + + if (ctf_type_name(dnp->dn_xlator->dx_src_ctfp, + dnp->dn_xlator->dx_src_type, n, sizeof (n)) != NULL) + (void) fprintf(fp, " from <%s>", n); + + if (ctf_type_name(dnp->dn_xlator->dx_dst_ctfp, + dnp->dn_xlator->dx_dst_type, n, sizeof (n)) != NULL) + (void) fprintf(fp, " to <%s>", n); + + (void) fprintf(fp, "\n"); + + for (arg = dnp->dn_members; arg != NULL; arg = arg->dn_list) + dt_node_printr(arg, fp, depth + 1); + break; + + case DT_NODE_PROBE: + (void) fprintf(fp, "PROBE %s\n", dnp->dn_ident->di_name); + break; + + case DT_NODE_PROVIDER: + (void) fprintf(fp, "PROVIDER %s (%s)\n", + dnp->dn_provname, dnp->dn_provred ? "redecl" : "decl"); + for (arg = dnp->dn_probes; arg != NULL; arg = arg->dn_list) + dt_node_printr(arg, fp, depth + 1); + break; + + case DT_NODE_PROG: + (void) fprintf(fp, "PROGRAM attr=%s\n", a); + for (arg = dnp->dn_list; arg != NULL; arg = arg->dn_list) + dt_node_printr(arg, fp, depth + 1); + break; + + default: + (void) fprintf(fp, "<bad node %p, kind %d>\n", + (void *)dnp, dnp->dn_kind); + } +} + +int +dt_node_root(dt_node_t *dnp) +{ + yypcb->pcb_root = dnp; + return (0); +} + +/*PRINTFLIKE3*/ +void +dnerror(const dt_node_t *dnp, dt_errtag_t tag, const char *format, ...) +{ + int oldlineno = yylineno; + va_list ap; + + yylineno = dnp->dn_line; + + va_start(ap, format); + xyvwarn(tag, format, ap); + va_end(ap); + + yylineno = oldlineno; + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); +} + +/*PRINTFLIKE3*/ +void +dnwarn(const dt_node_t *dnp, dt_errtag_t tag, const char *format, ...) +{ + int oldlineno = yylineno; + va_list ap; + + yylineno = dnp->dn_line; + + va_start(ap, format); + xyvwarn(tag, format, ap); + va_end(ap); + + yylineno = oldlineno; +} + +/*PRINTFLIKE2*/ +void +xyerror(dt_errtag_t tag, const char *format, ...) +{ + va_list ap; + + va_start(ap, format); + xyvwarn(tag, format, ap); + va_end(ap); + + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); +} + +/*PRINTFLIKE2*/ +void +xywarn(dt_errtag_t tag, const char *format, ...) +{ + va_list ap; + + va_start(ap, format); + xyvwarn(tag, format, ap); + va_end(ap); +} + +void +xyvwarn(dt_errtag_t tag, const char *format, va_list ap) +{ + if (yypcb == NULL) + return; /* compiler is not currently active: act as a no-op */ + + dt_set_errmsg(yypcb->pcb_hdl, dt_errtag(tag), yypcb->pcb_region, + yypcb->pcb_filetag, yypcb->pcb_fileptr ? yylineno : 0, format, ap); +} + +/*PRINTFLIKE1*/ +void +yyerror(const char *format, ...) +{ + va_list ap; + + va_start(ap, format); + yyvwarn(format, ap); + va_end(ap); + + longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); +} + +/*PRINTFLIKE1*/ +void +yywarn(const char *format, ...) +{ + va_list ap; + + va_start(ap, format); + yyvwarn(format, ap); + va_end(ap); +} + +void +yyvwarn(const char *format, va_list ap) +{ + if (yypcb == NULL) + return; /* compiler is not currently active: act as a no-op */ + + dt_set_errmsg(yypcb->pcb_hdl, dt_errtag(D_SYNTAX), yypcb->pcb_region, + yypcb->pcb_filetag, yypcb->pcb_fileptr ? yylineno : 0, format, ap); + + if (strchr(format, '\n') == NULL) { + dtrace_hdl_t *dtp = yypcb->pcb_hdl; + size_t len = strlen(dtp->dt_errmsg); + char *p, *s = dtp->dt_errmsg + len; + size_t n = sizeof (dtp->dt_errmsg) - len; + + if (yytext[0] == '\0') + (void) snprintf(s, n, " near end of input"); + else if (yytext[0] == '\n') + (void) snprintf(s, n, " near end of line"); + else { + if ((p = strchr(yytext, '\n')) != NULL) + *p = '\0'; /* crop at newline */ + (void) snprintf(s, n, " near \"%s\"", yytext); + } + } +} + +void +yylabel(const char *label) +{ + dt_dprintf("set label to <%s>\n", label ? label : "NULL"); + yypcb->pcb_region = label; +} + +int +yywrap(void) +{ + return (1); /* indicate that lex should return a zero token for EOF */ +} |