aboutsummaryrefslogtreecommitdiff
path: root/lld/MachO/UnwindInfoSection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lld/MachO/UnwindInfoSection.cpp')
-rw-r--r--lld/MachO/UnwindInfoSection.cpp416
1 files changed, 370 insertions, 46 deletions
diff --git a/lld/MachO/UnwindInfoSection.cpp b/lld/MachO/UnwindInfoSection.cpp
index afaa69dac8dc..3efc646c2ad2 100644
--- a/lld/MachO/UnwindInfoSection.cpp
+++ b/lld/MachO/UnwindInfoSection.cpp
@@ -7,16 +7,19 @@
//===----------------------------------------------------------------------===//
#include "UnwindInfoSection.h"
+#include "ConcatOutputSection.h"
#include "Config.h"
#include "InputSection.h"
-#include "MergedOutputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
+#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
+#include "lld/Common/Memory.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/BinaryFormat/MachO.h"
@@ -81,23 +84,292 @@ using namespace lld::macho;
// all sizes. Therefore, we don't even bother implementing the regular
// non-compressed format. Time will tell if anyone in the field ever
// overflows the 127-encodings limit.
+//
+// Refer to the definition of unwind_info_section_header in
+// compact_unwind_encoding.h for an overview of the format we are encoding
+// here.
-// TODO(gkm): prune __eh_frame entries superseded by __unwind_info
+// TODO(gkm): prune __eh_frame entries superseded by __unwind_info, PR50410
// TODO(gkm): how do we align the 2nd-level pages?
+using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
+
+struct SecondLevelPage {
+ uint32_t kind;
+ size_t entryIndex;
+ size_t entryCount;
+ size_t byteCount;
+ std::vector<compact_unwind_encoding_t> localEncodings;
+ EncodingMap localEncodingIndexes;
+};
+
+template <class Ptr>
+class UnwindInfoSectionImpl final : public UnwindInfoSection {
+public:
+ void prepareRelocations(ConcatInputSection *) override;
+ void addInput(ConcatInputSection *) override;
+ void finalize() override;
+ void writeTo(uint8_t *buf) const override;
+
+private:
+ std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
+ EncodingMap commonEncodingIndexes;
+ // Indices of personality functions within the GOT.
+ std::vector<uint32_t> personalities;
+ SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
+ personalityTable;
+ std::vector<unwind_info_section_header_lsda_index_entry> lsdaEntries;
+ // Map of function offset (from the image base) to an index within the LSDA
+ // array.
+ DenseMap<uint32_t, uint32_t> functionToLsdaIndex;
+ std::vector<CompactUnwindEntry<Ptr>> cuVector;
+ std::vector<CompactUnwindEntry<Ptr> *> cuPtrVector;
+ std::vector<SecondLevelPage> secondLevelPages;
+ uint64_t level2PagesOffset = 0;
+};
+
UnwindInfoSection::UnwindInfoSection()
: SyntheticSection(segment_names::text, section_names::unwindInfo) {
- align = WordSize; // TODO(gkm): make this 4 KiB ?
+ align = 4;
+ compactUnwindSection =
+ make<ConcatOutputSection>(section_names::compactUnwind);
+}
+
+void UnwindInfoSection::prepareRelocations() {
+ for (ConcatInputSection *isec : compactUnwindSection->inputs)
+ prepareRelocations(isec);
+}
+
+template <class Ptr>
+void UnwindInfoSectionImpl<Ptr>::addInput(ConcatInputSection *isec) {
+ assert(isec->getSegName() == segment_names::ld &&
+ isec->getName() == section_names::compactUnwind);
+ isec->parent = compactUnwindSection;
+ compactUnwindSection->addInput(isec);
+}
+
+// Compact unwind relocations have different semantics, so we handle them in a
+// separate code path from regular relocations. First, we do not wish to add
+// rebase opcodes for __LD,__compact_unwind, because that section doesn't
+// actually end up in the final binary. Second, personality pointers always
+// reside in the GOT and must be treated specially.
+template <class Ptr>
+void UnwindInfoSectionImpl<Ptr>::prepareRelocations(ConcatInputSection *isec) {
+ assert(!isec->shouldOmitFromOutput() &&
+ "__compact_unwind section should not be omitted");
+
+ // FIXME: Make this skip relocations for CompactUnwindEntries that
+ // point to dead-stripped functions. That might save some amount of
+ // work. But since there are usually just few personality functions
+ // that are referenced from many places, at least some of them likely
+ // live, it wouldn't reduce number of got entries.
+ for (size_t i = 0; i < isec->relocs.size(); ++i) {
+ Reloc &r = isec->relocs[i];
+ assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
+
+ if (r.offset % sizeof(CompactUnwindEntry<Ptr>) == 0) {
+ InputSection *referentIsec;
+ if (auto *isec = r.referent.dyn_cast<InputSection *>())
+ referentIsec = isec;
+ else
+ referentIsec = cast<Defined>(r.referent.dyn_cast<Symbol *>())->isec;
+
+ if (!cast<ConcatInputSection>(referentIsec)->shouldOmitFromOutput())
+ allEntriesAreOmitted = false;
+ continue;
+ }
+
+ if (r.offset % sizeof(CompactUnwindEntry<Ptr>) !=
+ offsetof(CompactUnwindEntry<Ptr>, personality))
+ continue;
+
+ if (auto *s = r.referent.dyn_cast<Symbol *>()) {
+ if (auto *undefined = dyn_cast<Undefined>(s)) {
+ treatUndefinedSymbol(*undefined);
+ // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
+ if (isa<Undefined>(s))
+ continue;
+ }
+ if (auto *defined = dyn_cast<Defined>(s)) {
+ // Check if we have created a synthetic symbol at the same address.
+ Symbol *&personality =
+ personalityTable[{defined->isec, defined->value}];
+ if (personality == nullptr) {
+ personality = defined;
+ in.got->addEntry(defined);
+ } else if (personality != defined) {
+ r.referent = personality;
+ }
+ continue;
+ }
+ assert(isa<DylibSymbol>(s));
+ in.got->addEntry(s);
+ continue;
+ }
+
+ if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
+ assert(!isCoalescedWeak(referentIsec));
+ // Personality functions can be referenced via section relocations
+ // if they live in the same object file. Create placeholder synthetic
+ // symbols for them in the GOT.
+ Symbol *&s = personalityTable[{referentIsec, r.addend}];
+ if (s == nullptr) {
+ // This runs after dead stripping, so the noDeadStrip argument does not
+ // matter.
+ s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
+ r.addend, /*size=*/0, /*isWeakDef=*/false,
+ /*isExternal=*/false, /*isPrivateExtern=*/false,
+ /*isThumb=*/false, /*isReferencedDynamically=*/false,
+ /*noDeadStrip=*/false);
+ in.got->addEntry(s);
+ }
+ r.referent = s;
+ r.addend = 0;
+ }
+ }
}
-bool UnwindInfoSection::isNeeded() const {
- return (compactUnwindSection != nullptr);
+// Unwind info lives in __DATA, and finalization of __TEXT will occur before
+// finalization of __DATA. Moreover, the finalization of unwind info depends on
+// the exact addresses that it references. So it is safe for compact unwind to
+// reference addresses in __TEXT, but not addresses in any other segment.
+static ConcatInputSection *checkTextSegment(InputSection *isec) {
+ if (isec->getSegName() != segment_names::text)
+ error("compact unwind references address in " + toString(isec) +
+ " which is not in segment __TEXT");
+ // __text should always be a ConcatInputSection.
+ return cast<ConcatInputSection>(isec);
+}
+
+template <class Ptr>
+constexpr Ptr TombstoneValue = std::numeric_limits<Ptr>::max();
+
+// We need to apply the relocations to the pre-link compact unwind section
+// before converting it to post-link form. There should only be absolute
+// relocations here: since we are not emitting the pre-link CU section, there
+// is no source address to make a relative location meaningful.
+template <class Ptr>
+static void
+relocateCompactUnwind(ConcatOutputSection *compactUnwindSection,
+ std::vector<CompactUnwindEntry<Ptr>> &cuVector) {
+ for (const ConcatInputSection *isec : compactUnwindSection->inputs) {
+ assert(isec->parent == compactUnwindSection);
+
+ uint8_t *buf =
+ reinterpret_cast<uint8_t *>(cuVector.data()) + isec->outSecOff;
+ memcpy(buf, isec->data.data(), isec->data.size());
+
+ for (const Reloc &r : isec->relocs) {
+ uint64_t referentVA = TombstoneValue<Ptr>;
+ if (auto *referentSym = r.referent.dyn_cast<Symbol *>()) {
+ if (!isa<Undefined>(referentSym)) {
+ if (auto *defined = dyn_cast<Defined>(referentSym))
+ checkTextSegment(defined->isec);
+ // At this point in the link, we may not yet know the final address of
+ // the GOT, so we just encode the index. We make it a 1-based index so
+ // that we can distinguish the null pointer case.
+ referentVA = referentSym->gotIndex + 1;
+ }
+ } else {
+ auto *referentIsec = r.referent.get<InputSection *>();
+ ConcatInputSection *concatIsec = checkTextSegment(referentIsec);
+ if (!concatIsec->shouldOmitFromOutput())
+ referentVA = referentIsec->getVA(r.addend);
+ }
+ writeAddress(buf + r.offset, referentVA, r.length);
+ }
+ }
+}
+
+// There should only be a handful of unique personality pointers, so we can
+// encode them as 2-bit indices into a small array.
+template <class Ptr>
+static void
+encodePersonalities(const std::vector<CompactUnwindEntry<Ptr> *> &cuPtrVector,
+ std::vector<uint32_t> &personalities) {
+ for (CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
+ if (cu->personality == 0)
+ continue;
+ // Linear search is fast enough for a small array.
+ auto it = find(personalities, cu->personality);
+ uint32_t personalityIndex; // 1-based index
+ if (it != personalities.end()) {
+ personalityIndex = std::distance(personalities.begin(), it) + 1;
+ } else {
+ personalities.push_back(cu->personality);
+ personalityIndex = personalities.size();
+ }
+ cu->encoding |=
+ personalityIndex << countTrailingZeros(
+ static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
+ }
+ if (personalities.size() > 3)
+ error("too many personalities (" + std::to_string(personalities.size()) +
+ ") for compact unwind to encode");
+}
+
+// __unwind_info stores unwind data for address ranges. If several
+// adjacent functions have the same unwind encoding, LSDA, and personality
+// function, they share one unwind entry. For this to work, functions without
+// unwind info need explicit "no unwind info" unwind entries -- else the
+// unwinder would think they have the unwind info of the closest function
+// with unwind info right before in the image.
+template <class Ptr>
+static void addEntriesForFunctionsWithoutUnwindInfo(
+ std::vector<CompactUnwindEntry<Ptr>> &cuVector) {
+ DenseSet<Ptr> hasUnwindInfo;
+ for (CompactUnwindEntry<Ptr> &cuEntry : cuVector)
+ if (cuEntry.functionAddress != TombstoneValue<Ptr>)
+ hasUnwindInfo.insert(cuEntry.functionAddress);
+
+ // Add explicit "has no unwind info" entries for all global and local symbols
+ // without unwind info.
+ auto markNoUnwindInfo = [&cuVector, &hasUnwindInfo](const Defined *d) {
+ if (d->isLive() && d->isec && isCodeSection(d->isec)) {
+ Ptr ptr = d->getVA();
+ if (!hasUnwindInfo.count(ptr))
+ cuVector.push_back({ptr, 0, 0, 0, 0});
+ }
+ };
+ for (Symbol *sym : symtab->getSymbols())
+ if (auto *d = dyn_cast<Defined>(sym))
+ markNoUnwindInfo(d);
+ for (const InputFile *file : inputFiles)
+ if (auto *objFile = dyn_cast<ObjFile>(file))
+ for (Symbol *sym : objFile->symbols)
+ if (auto *d = dyn_cast_or_null<Defined>(sym))
+ if (!d->isExternal())
+ markNoUnwindInfo(d);
+}
+
+static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
+ // From compact_unwind_encoding.h:
+ // UNWIND_X86_64_MODE_STACK_IND:
+ // A "frameless" (RBP not used as frame pointer) function large constant
+ // stack size. This case is like the previous, except the stack size is too
+ // large to encode in the compact unwind encoding. Instead it requires that
+ // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
+ // encoding contains the offset to the nnnnnnnn value in the function in
+ // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
+ // Since this means the unwinder has to look at the `subq` in the function
+ // of the unwind info's unwind address, two functions that have identical
+ // unwind info can't be folded if it's using this encoding since both
+ // entries need unique addresses.
+ static_assert(UNWIND_X86_64_MODE_MASK == UNWIND_X86_MODE_MASK, "");
+ static_assert(UNWIND_X86_64_MODE_STACK_IND == UNWIND_X86_MODE_STACK_IND, "");
+ if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
+ (encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
+ // FIXME: Consider passing in the two function addresses and getting
+ // their two stack sizes off the `subq` and only returning false if they're
+ // actually different.
+ return false;
+ }
+ return true;
}
// Scan the __LD,__compact_unwind entries and compute the space needs of
// __TEXT,__unwind_info and __TEXT,__eh_frame
-
-void UnwindInfoSection::finalize() {
+template <class Ptr> void UnwindInfoSectionImpl<Ptr>::finalize() {
if (compactUnwindSection == nullptr)
return;
@@ -109,22 +381,46 @@ void UnwindInfoSection::finalize() {
// encoding+personality+lsda. Folding is necessary because it reduces
// the number of CU entries by as much as 3 orders of magnitude!
compactUnwindSection->finalize();
- assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry64) == 0);
+ assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry<Ptr>) ==
+ 0);
size_t cuCount =
- compactUnwindSection->getSize() / sizeof(CompactUnwindEntry64);
+ compactUnwindSection->getSize() / sizeof(CompactUnwindEntry<Ptr>);
cuVector.resize(cuCount);
- // Relocate all __LD,__compact_unwind entries
- compactUnwindSection->writeTo(reinterpret_cast<uint8_t *>(cuVector.data()));
+ relocateCompactUnwind(compactUnwindSection, cuVector);
+
+ addEntriesForFunctionsWithoutUnwindInfo(cuVector);
// Rather than sort & fold the 32-byte entries directly, we create a
// vector of pointers to entries and sort & fold that instead.
- cuPtrVector.reserve(cuCount);
- for (const CompactUnwindEntry64 &cuEntry : cuVector)
+ cuPtrVector.reserve(cuVector.size());
+ for (CompactUnwindEntry<Ptr> &cuEntry : cuVector)
cuPtrVector.emplace_back(&cuEntry);
- std::sort(cuPtrVector.begin(), cuPtrVector.end(),
- [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
- return a->functionAddress < b->functionAddress;
- });
+ llvm::sort(cuPtrVector, [](const CompactUnwindEntry<Ptr> *a,
+ const CompactUnwindEntry<Ptr> *b) {
+ return a->functionAddress < b->functionAddress;
+ });
+
+ // Dead-stripped functions get a functionAddress of TombstoneValue in
+ // relocateCompactUnwind(). Filter them out here.
+ // FIXME: This doesn't yet collect associated data like LSDAs kept
+ // alive only by a now-removed CompactUnwindEntry or other comdat-like
+ // data (`kindNoneGroupSubordinate*` in ld64).
+ CompactUnwindEntry<Ptr> tombstone;
+ tombstone.functionAddress = TombstoneValue<Ptr>;
+ cuPtrVector.erase(
+ std::lower_bound(cuPtrVector.begin(), cuPtrVector.end(), &tombstone,
+ [](const CompactUnwindEntry<Ptr> *a,
+ const CompactUnwindEntry<Ptr> *b) {
+ return a->functionAddress < b->functionAddress;
+ }),
+ cuPtrVector.end());
+
+ // If there are no entries left after adding explicit "no unwind info"
+ // entries and removing entries for dead-stripped functions, don't write
+ // an __unwind_info section at all.
+ assert(allEntriesAreOmitted == cuPtrVector.empty());
+ if (cuPtrVector.empty())
+ return;
// Fold adjacent entries with matching encoding+personality+lsda
// We use three iterators on the same cuPtrVector to fold in-situ:
@@ -139,30 +435,33 @@ void UnwindInfoSection::finalize() {
while (++foldEnd < cuPtrVector.end() &&
(*foldBegin)->encoding == (*foldEnd)->encoding &&
(*foldBegin)->personality == (*foldEnd)->personality &&
- (*foldBegin)->lsda == (*foldEnd)->lsda)
+ (*foldBegin)->lsda == (*foldEnd)->lsda &&
+ canFoldEncoding((*foldEnd)->encoding))
;
*foldWrite++ = *foldBegin;
foldBegin = foldEnd;
}
cuPtrVector.erase(foldWrite, cuPtrVector.end());
+ encodePersonalities(cuPtrVector, personalities);
+
// Count frequencies of the folded encodings
EncodingMap encodingFrequencies;
- for (auto cuPtrEntry : cuPtrVector)
+ for (const CompactUnwindEntry<Ptr> *cuPtrEntry : cuPtrVector)
encodingFrequencies[cuPtrEntry->encoding]++;
// Make a vector of encodings, sorted by descending frequency
for (const auto &frequency : encodingFrequencies)
commonEncodings.emplace_back(frequency);
- std::sort(commonEncodings.begin(), commonEncodings.end(),
- [](const std::pair<compact_unwind_encoding_t, size_t> &a,
- const std::pair<compact_unwind_encoding_t, size_t> &b) {
- if (a.second == b.second)
- // When frequencies match, secondarily sort on encoding
- // to maintain parity with validate-unwind-info.py
- return a.first > b.first;
- return a.second > b.second;
- });
+ llvm::sort(commonEncodings,
+ [](const std::pair<compact_unwind_encoding_t, size_t> &a,
+ const std::pair<compact_unwind_encoding_t, size_t> &b) {
+ if (a.second == b.second)
+ // When frequencies match, secondarily sort on encoding
+ // to maintain parity with validate-unwind-info.py
+ return a.first > b.first;
+ return a.second > b.second;
+ });
// Truncate the vector to 127 elements.
// Common encoding indexes are limited to 0..126, while encoding
@@ -184,7 +483,7 @@ void UnwindInfoSection::finalize() {
// If more entries fit in the regular format, we use that.
for (size_t i = 0; i < cuPtrVector.size();) {
secondLevelPages.emplace_back();
- auto &page = secondLevelPages.back();
+ SecondLevelPage &page = secondLevelPages.back();
page.entryIndex = i;
uintptr_t functionAddressMax =
cuPtrVector[i]->functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
@@ -194,7 +493,7 @@ void UnwindInfoSection::finalize() {
sizeof(unwind_info_compressed_second_level_page_header) /
sizeof(uint32_t);
while (wordsRemaining >= 1 && i < cuPtrVector.size()) {
- const auto *cuPtr = cuPtrVector[i];
+ const CompactUnwindEntry<Ptr> *cuPtr = cuPtrVector[i];
if (cuPtr->functionAddress >= functionAddressMax) {
break;
} else if (commonEncodingIndexes.count(cuPtr->encoding) ||
@@ -227,6 +526,14 @@ void UnwindInfoSection::finalize() {
}
}
+ for (const CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
+ uint32_t functionOffset = cu->functionAddress - in.header->addr;
+ functionToLsdaIndex[functionOffset] = lsdaEntries.size();
+ if (cu->lsda != 0)
+ lsdaEntries.push_back(
+ {functionOffset, static_cast<uint32_t>(cu->lsda - in.header->addr)});
+ }
+
// compute size of __TEXT,__unwind_info section
level2PagesOffset =
sizeof(unwind_info_section_header) +
@@ -242,7 +549,10 @@ void UnwindInfoSection::finalize() {
// All inputs are relocated and output addresses are known, so write!
-void UnwindInfoSection::writeTo(uint8_t *buf) const {
+template <class Ptr>
+void UnwindInfoSectionImpl<Ptr>::writeTo(uint8_t *buf) const {
+ assert(!cuPtrVector.empty() && "call only if there is unwind info");
+
// section header
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
uip->version = 1;
@@ -263,7 +573,8 @@ void UnwindInfoSection::writeTo(uint8_t *buf) const {
// Personalities
for (const uint32_t &personality : personalities)
- *i32p++ = personality;
+ *i32p++ =
+ in.got->addr + (personality - 1) * target->wordSize - in.header->addr;
// Level-1 index
uint32_t lsdaOffset =
@@ -272,29 +583,35 @@ void UnwindInfoSection::writeTo(uint8_t *buf) const {
uint64_t l2PagesOffset = level2PagesOffset;
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
for (const SecondLevelPage &page : secondLevelPages) {
- iep->functionOffset = cuPtrVector[page.entryIndex]->functionAddress;
+ iep->functionOffset =
+ cuPtrVector[page.entryIndex]->functionAddress - in.header->addr;
iep->secondLevelPagesSectionOffset = l2PagesOffset;
- iep->lsdaIndexArraySectionOffset = lsdaOffset;
+ iep->lsdaIndexArraySectionOffset =
+ lsdaOffset + functionToLsdaIndex.lookup(iep->functionOffset) *
+ sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
}
// Level-1 sentinel
- const CompactUnwindEntry64 &cuEnd = cuVector.back();
- iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
+ const CompactUnwindEntry<Ptr> &cuEnd = *cuPtrVector.back();
+ assert(cuEnd.functionAddress != TombstoneValue<Ptr>);
+ iep->functionOffset =
+ cuEnd.functionAddress - in.header->addr + cuEnd.functionLength;
iep->secondLevelPagesSectionOffset = 0;
- iep->lsdaIndexArraySectionOffset = lsdaOffset;
+ iep->lsdaIndexArraySectionOffset =
+ lsdaOffset +
+ lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
// LSDAs
- auto *lep =
- reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
- for (const unwind_info_section_header_lsda_index_entry &lsda : lsdaEntries) {
- lep->functionOffset = lsda.functionOffset;
- lep->lsdaOffset = lsda.lsdaOffset;
- }
+ size_t lsdaBytes =
+ lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
+ if (lsdaBytes > 0)
+ memcpy(iep, lsdaEntries.data(), lsdaBytes);
// Level-2 pages
- auto *pp = reinterpret_cast<uint32_t *>(lep);
+ auto *pp = reinterpret_cast<uint32_t *>(reinterpret_cast<uint8_t *>(iep) +
+ lsdaBytes);
for (const SecondLevelPage &page : secondLevelPages) {
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
uintptr_t functionAddressBase =
@@ -311,7 +628,7 @@ void UnwindInfoSection::writeTo(uint8_t *buf) const {
p2p->encodingsCount = page.localEncodings.size();
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
- const CompactUnwindEntry64 *cuep = cuPtrVector[page.entryIndex + i];
+ const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
auto it = commonEncodingIndexes.find(cuep->encoding);
if (it == commonEncodingIndexes.end())
it = page.localEncodingIndexes.find(cuep->encoding);
@@ -330,7 +647,7 @@ void UnwindInfoSection::writeTo(uint8_t *buf) const {
p2p->entryCount = page.entryCount;
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
- const CompactUnwindEntry64 *cuep = cuPtrVector[page.entryIndex + i];
+ const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
*ep++ = cuep->functionAddress;
*ep++ = cuep->encoding;
}
@@ -338,3 +655,10 @@ void UnwindInfoSection::writeTo(uint8_t *buf) const {
pp += SECOND_LEVEL_PAGE_WORDS;
}
}
+
+UnwindInfoSection *macho::makeUnwindInfoSection() {
+ if (target->wordSize == 8)
+ return make<UnwindInfoSectionImpl<uint64_t>>();
+ else
+ return make<UnwindInfoSectionImpl<uint32_t>>();
+}