diff options
Diffstat (limited to 'lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp')
-rw-r--r-- | lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp | 964 |
1 files changed, 964 insertions, 0 deletions
diff --git a/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp b/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp new file mode 100644 index 000000000000..7729e58f8580 --- /dev/null +++ b/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp @@ -0,0 +1,964 @@ +//===-- ABISysV_x86_64.cpp ------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "ABISysV_x86_64.h" + +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Triple.h" + +#include "lldb/Core/Module.h" +#include "lldb/Core/PluginManager.h" +#include "lldb/Core/Value.h" +#include "lldb/Core/ValueObjectConstResult.h" +#include "lldb/Core/ValueObjectMemory.h" +#include "lldb/Core/ValueObjectRegister.h" +#include "lldb/Symbol/UnwindPlan.h" +#include "lldb/Target/Process.h" +#include "lldb/Target/RegisterContext.h" +#include "lldb/Target/StackFrame.h" +#include "lldb/Target/Target.h" +#include "lldb/Target/Thread.h" +#include "lldb/Utility/ConstString.h" +#include "lldb/Utility/DataExtractor.h" +#include "lldb/Utility/Log.h" +#include "lldb/Utility/RegisterValue.h" +#include "lldb/Utility/Status.h" + +#include <vector> + +using namespace lldb; +using namespace lldb_private; + +LLDB_PLUGIN_DEFINE(ABISysV_x86_64) + +enum dwarf_regnums { + dwarf_rax = 0, + dwarf_rdx, + dwarf_rcx, + dwarf_rbx, + dwarf_rsi, + dwarf_rdi, + dwarf_rbp, + dwarf_rsp, + dwarf_r8, + dwarf_r9, + dwarf_r10, + dwarf_r11, + dwarf_r12, + dwarf_r13, + dwarf_r14, + dwarf_r15, + dwarf_rip, +}; + +bool ABISysV_x86_64::GetPointerReturnRegister(const char *&name) { + name = "rax"; + return true; +} + +size_t ABISysV_x86_64::GetRedZoneSize() const { return 128; } + +// Static Functions + +ABISP +ABISysV_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { + const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); + const llvm::Triple::OSType os_type = arch.GetTriple().getOS(); + const llvm::Triple::EnvironmentType os_env = + arch.GetTriple().getEnvironment(); + if (arch_type == llvm::Triple::x86_64) { + switch(os_type) { + case llvm::Triple::OSType::IOS: + case llvm::Triple::OSType::TvOS: + case llvm::Triple::OSType::WatchOS: + switch (os_env) { + case llvm::Triple::EnvironmentType::MacABI: + case llvm::Triple::EnvironmentType::Simulator: + case llvm::Triple::EnvironmentType::UnknownEnvironment: + // UnknownEnvironment is needed for older compilers that don't + // support the simulator environment. + return ABISP(new ABISysV_x86_64(std::move(process_sp), + MakeMCRegisterInfo(arch))); + default: + return ABISP(); + } + case llvm::Triple::OSType::Darwin: + case llvm::Triple::OSType::FreeBSD: + case llvm::Triple::OSType::Linux: + case llvm::Triple::OSType::MacOSX: + case llvm::Triple::OSType::NetBSD: + case llvm::Triple::OSType::Solaris: + case llvm::Triple::OSType::UnknownOS: + return ABISP( + new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch))); + default: + return ABISP(); + } + } + return ABISP(); +} + +bool ABISysV_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp, + addr_t func_addr, addr_t return_addr, + llvm::ArrayRef<addr_t> args) const { + Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); + + if (log) { + StreamString s; + s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 + ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 + ", return_addr = 0x%" PRIx64, + thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, + (uint64_t)return_addr); + + for (size_t i = 0; i < args.size(); ++i) + s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), + args[i]); + s.PutCString(")"); + log->PutString(s.GetString()); + } + + RegisterContext *reg_ctx = thread.GetRegisterContext().get(); + if (!reg_ctx) + return false; + + const RegisterInfo *reg_info = nullptr; + + if (args.size() > 6) // TODO handle more than 6 arguments + return false; + + for (size_t i = 0; i < args.size(); ++i) { + reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, + LLDB_REGNUM_GENERIC_ARG1 + i); + LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s", + static_cast<uint64_t>(i + 1), args[i], reg_info->name); + if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i])) + return false; + } + + // First, align the SP + + LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, + (uint64_t)sp, (uint64_t)(sp & ~0xfull)); + + sp &= ~(0xfull); // 16-byte alignment + + sp -= 8; + + Status error; + const RegisterInfo *pc_reg_info = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); + const RegisterInfo *sp_reg_info = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); + ProcessSP process_sp(thread.GetProcess()); + + RegisterValue reg_value; + LLDB_LOGF(log, + "Pushing the return address onto the stack: 0x%" PRIx64 + ": 0x%" PRIx64, + (uint64_t)sp, (uint64_t)return_addr); + + // Save return address onto the stack + if (!process_sp->WritePointerToMemory(sp, return_addr, error)) + return false; + + // %rsp is set to the actual stack value. + + LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); + + if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp)) + return false; + + // %rip is set to the address of the called function. + + LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); + + if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr)) + return false; + + return true; +} + +static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, + bool is_signed, Thread &thread, + uint32_t *argument_register_ids, + unsigned int ¤t_argument_register, + addr_t ¤t_stack_argument) { + if (bit_width > 64) + return false; // Scalar can't hold large integer arguments + + if (current_argument_register < 6) { + scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( + argument_register_ids[current_argument_register], 0); + current_argument_register++; + if (is_signed) + scalar.SignExtend(bit_width); + } else { + uint32_t byte_size = (bit_width + (8 - 1)) / 8; + Status error; + if (thread.GetProcess()->ReadScalarIntegerFromMemory( + current_stack_argument, byte_size, is_signed, scalar, error)) { + current_stack_argument += byte_size; + return true; + } + return false; + } + return true; +} + +bool ABISysV_x86_64::GetArgumentValues(Thread &thread, + ValueList &values) const { + unsigned int num_values = values.GetSize(); + unsigned int value_index; + + // Extract the register context so we can read arguments from registers + + RegisterContext *reg_ctx = thread.GetRegisterContext().get(); + + if (!reg_ctx) + return false; + + // Get the pointer to the first stack argument so we have a place to start + // when reading data + + addr_t sp = reg_ctx->GetSP(0); + + if (!sp) + return false; + + addr_t current_stack_argument = sp + 8; // jump over return address + + uint32_t argument_register_ids[6]; + + argument_register_ids[0] = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) + ->kinds[eRegisterKindLLDB]; + argument_register_ids[1] = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) + ->kinds[eRegisterKindLLDB]; + argument_register_ids[2] = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) + ->kinds[eRegisterKindLLDB]; + argument_register_ids[3] = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) + ->kinds[eRegisterKindLLDB]; + argument_register_ids[4] = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5) + ->kinds[eRegisterKindLLDB]; + argument_register_ids[5] = + reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6) + ->kinds[eRegisterKindLLDB]; + + unsigned int current_argument_register = 0; + + for (value_index = 0; value_index < num_values; ++value_index) { + Value *value = values.GetValueAtIndex(value_index); + + if (!value) + return false; + + // We currently only support extracting values with Clang QualTypes. Do we + // care about others? + CompilerType compiler_type = value->GetCompilerType(); + llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread); + if (!bit_size) + return false; + bool is_signed; + + if (compiler_type.IsIntegerOrEnumerationType(is_signed)) { + ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread, + argument_register_ids, current_argument_register, + current_stack_argument); + } else if (compiler_type.IsPointerType()) { + ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread, + argument_register_ids, current_argument_register, + current_stack_argument); + } + } + + return true; +} + +Status ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, + lldb::ValueObjectSP &new_value_sp) { + Status error; + if (!new_value_sp) { + error.SetErrorString("Empty value object for return value."); + return error; + } + + CompilerType compiler_type = new_value_sp->GetCompilerType(); + if (!compiler_type) { + error.SetErrorString("Null clang type for return value."); + return error; + } + + Thread *thread = frame_sp->GetThread().get(); + + bool is_signed; + uint32_t count; + bool is_complex; + + RegisterContext *reg_ctx = thread->GetRegisterContext().get(); + + bool set_it_simple = false; + if (compiler_type.IsIntegerOrEnumerationType(is_signed) || + compiler_type.IsPointerType()) { + const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0); + + DataExtractor data; + Status data_error; + size_t num_bytes = new_value_sp->GetData(data, data_error); + if (data_error.Fail()) { + error.SetErrorStringWithFormat( + "Couldn't convert return value to raw data: %s", + data_error.AsCString()); + return error; + } + lldb::offset_t offset = 0; + if (num_bytes <= 8) { + uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); + + if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value)) + set_it_simple = true; + } else { + error.SetErrorString("We don't support returning longer than 64 bit " + "integer values at present."); + } + } else if (compiler_type.IsFloatingPointType(count, is_complex)) { + if (is_complex) + error.SetErrorString( + "We don't support returning complex values at present"); + else { + llvm::Optional<uint64_t> bit_width = + compiler_type.GetBitSize(frame_sp.get()); + if (!bit_width) { + error.SetErrorString("can't get type size"); + return error; + } + if (*bit_width <= 64) { + const RegisterInfo *xmm0_info = + reg_ctx->GetRegisterInfoByName("xmm0", 0); + RegisterValue xmm0_value; + DataExtractor data; + Status data_error; + size_t num_bytes = new_value_sp->GetData(data, data_error); + if (data_error.Fail()) { + error.SetErrorStringWithFormat( + "Couldn't convert return value to raw data: %s", + data_error.AsCString()); + return error; + } + + unsigned char buffer[16]; + ByteOrder byte_order = data.GetByteOrder(); + + data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order); + xmm0_value.SetBytes(buffer, 16, byte_order); + reg_ctx->WriteRegister(xmm0_info, xmm0_value); + set_it_simple = true; + } else { + // FIXME - don't know how to do 80 bit long doubles yet. + error.SetErrorString( + "We don't support returning float values > 64 bits at present"); + } + } + } + + if (!set_it_simple) { + // Okay we've got a structure or something that doesn't fit in a simple + // register. We should figure out where it really goes, but we don't + // support this yet. + error.SetErrorString("We only support setting simple integer and float " + "return types at present."); + } + + return error; +} + +ValueObjectSP ABISysV_x86_64::GetReturnValueObjectSimple( + Thread &thread, CompilerType &return_compiler_type) const { + ValueObjectSP return_valobj_sp; + Value value; + + if (!return_compiler_type) + return return_valobj_sp; + + // value.SetContext (Value::eContextTypeClangType, return_value_type); + value.SetCompilerType(return_compiler_type); + + RegisterContext *reg_ctx = thread.GetRegisterContext().get(); + if (!reg_ctx) + return return_valobj_sp; + + const uint32_t type_flags = return_compiler_type.GetTypeInfo(); + if (type_flags & eTypeIsScalar) { + value.SetValueType(Value::eValueTypeScalar); + + bool success = false; + if (type_flags & eTypeIsInteger) { + // Extract the register context so we can read arguments from registers + + llvm::Optional<uint64_t> byte_size = + return_compiler_type.GetByteSize(nullptr); + if (!byte_size) + return return_valobj_sp; + uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( + reg_ctx->GetRegisterInfoByName("rax", 0), 0); + const bool is_signed = (type_flags & eTypeIsSigned) != 0; + switch (*byte_size) { + default: + break; + + case sizeof(uint64_t): + if (is_signed) + value.GetScalar() = (int64_t)(raw_value); + else + value.GetScalar() = (uint64_t)(raw_value); + success = true; + break; + + case sizeof(uint32_t): + if (is_signed) + value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); + else + value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); + success = true; + break; + + case sizeof(uint16_t): + if (is_signed) + value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); + else + value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); + success = true; + break; + + case sizeof(uint8_t): + if (is_signed) + value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); + else + value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); + success = true; + break; + } + } else if (type_flags & eTypeIsFloat) { + if (type_flags & eTypeIsComplex) { + // Don't handle complex yet. + } else { + llvm::Optional<uint64_t> byte_size = + return_compiler_type.GetByteSize(nullptr); + if (byte_size && *byte_size <= sizeof(long double)) { + const RegisterInfo *xmm0_info = + reg_ctx->GetRegisterInfoByName("xmm0", 0); + RegisterValue xmm0_value; + if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) { + DataExtractor data; + if (xmm0_value.GetData(data)) { + lldb::offset_t offset = 0; + if (*byte_size == sizeof(float)) { + value.GetScalar() = (float)data.GetFloat(&offset); + success = true; + } else if (*byte_size == sizeof(double)) { + value.GetScalar() = (double)data.GetDouble(&offset); + success = true; + } else if (*byte_size == sizeof(long double)) { + // Don't handle long double since that can be encoded as 80 bit + // floats... + } + } + } + } + } + } + + if (success) + return_valobj_sp = ValueObjectConstResult::Create( + thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); + } else if (type_flags & eTypeIsPointer) { + unsigned rax_id = + reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB]; + value.GetScalar() = + (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, + 0); + value.SetValueType(Value::eValueTypeScalar); + return_valobj_sp = ValueObjectConstResult::Create( + thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); + } else if (type_flags & eTypeIsVector) { + llvm::Optional<uint64_t> byte_size = + return_compiler_type.GetByteSize(nullptr); + if (byte_size && *byte_size > 0) { + const RegisterInfo *altivec_reg = + reg_ctx->GetRegisterInfoByName("xmm0", 0); + if (altivec_reg == nullptr) + altivec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0); + + if (altivec_reg) { + if (*byte_size <= altivec_reg->byte_size) { + ProcessSP process_sp(thread.GetProcess()); + if (process_sp) { + std::unique_ptr<DataBufferHeap> heap_data_up( + new DataBufferHeap(*byte_size, 0)); + const ByteOrder byte_order = process_sp->GetByteOrder(); + RegisterValue reg_value; + if (reg_ctx->ReadRegister(altivec_reg, reg_value)) { + Status error; + if (reg_value.GetAsMemoryData( + altivec_reg, heap_data_up->GetBytes(), + heap_data_up->GetByteSize(), byte_order, error)) { + DataExtractor data(DataBufferSP(heap_data_up.release()), + byte_order, + process_sp->GetTarget() + .GetArchitecture() + .GetAddressByteSize()); + return_valobj_sp = ValueObjectConstResult::Create( + &thread, return_compiler_type, ConstString(""), data); + } + } + } + } else if (*byte_size <= altivec_reg->byte_size * 2) { + const RegisterInfo *altivec_reg2 = + reg_ctx->GetRegisterInfoByName("xmm1", 0); + if (altivec_reg2) { + ProcessSP process_sp(thread.GetProcess()); + if (process_sp) { + std::unique_ptr<DataBufferHeap> heap_data_up( + new DataBufferHeap(*byte_size, 0)); + const ByteOrder byte_order = process_sp->GetByteOrder(); + RegisterValue reg_value; + RegisterValue reg_value2; + if (reg_ctx->ReadRegister(altivec_reg, reg_value) && + reg_ctx->ReadRegister(altivec_reg2, reg_value2)) { + + Status error; + if (reg_value.GetAsMemoryData( + altivec_reg, heap_data_up->GetBytes(), + altivec_reg->byte_size, byte_order, error) && + reg_value2.GetAsMemoryData( + altivec_reg2, + heap_data_up->GetBytes() + altivec_reg->byte_size, + heap_data_up->GetByteSize() - altivec_reg->byte_size, + byte_order, error)) { + DataExtractor data(DataBufferSP(heap_data_up.release()), + byte_order, + process_sp->GetTarget() + .GetArchitecture() + .GetAddressByteSize()); + return_valobj_sp = ValueObjectConstResult::Create( + &thread, return_compiler_type, ConstString(""), data); + } + } + } + } + } + } + } + } + + return return_valobj_sp; +} + +// The compiler will flatten the nested aggregate type into single +// layer and push the value to stack +// This helper function will flatten an aggregate type +// and return true if it can be returned in register(s) by value +// return false if the aggregate is in memory +static bool FlattenAggregateType( + Thread &thread, ExecutionContext &exe_ctx, + CompilerType &return_compiler_type, + uint32_t data_byte_offset, + std::vector<uint32_t> &aggregate_field_offsets, + std::vector<CompilerType> &aggregate_compiler_types) { + + const uint32_t num_children = return_compiler_type.GetNumFields(); + for (uint32_t idx = 0; idx < num_children; ++idx) { + std::string name; + bool is_signed; + uint32_t count; + bool is_complex; + + uint64_t field_bit_offset = 0; + CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( + idx, name, &field_bit_offset, nullptr, nullptr); + llvm::Optional<uint64_t> field_bit_width = + field_compiler_type.GetBitSize(&thread); + + // if we don't know the size of the field (e.g. invalid type), exit + if (!field_bit_width || *field_bit_width == 0) { + return false; + } + + uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset; + + const uint32_t field_type_flags = field_compiler_type.GetTypeInfo(); + if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || + field_compiler_type.IsPointerType() || + field_compiler_type.IsFloatingPointType(count, is_complex)) { + aggregate_field_offsets.push_back(field_byte_offset); + aggregate_compiler_types.push_back(field_compiler_type); + } else if (field_type_flags & eTypeHasChildren) { + if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type, + field_byte_offset, aggregate_field_offsets, + aggregate_compiler_types)) { + return false; + } + } + } + return true; +} + +ValueObjectSP ABISysV_x86_64::GetReturnValueObjectImpl( + Thread &thread, CompilerType &return_compiler_type) const { + ValueObjectSP return_valobj_sp; + + if (!return_compiler_type) + return return_valobj_sp; + + ExecutionContext exe_ctx(thread.shared_from_this()); + return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); + if (return_valobj_sp) + return return_valobj_sp; + + RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); + if (!reg_ctx_sp) + return return_valobj_sp; + + llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread); + if (!bit_width) + return return_valobj_sp; + if (return_compiler_type.IsAggregateType()) { + Target *target = exe_ctx.GetTargetPtr(); + bool is_memory = true; + std::vector<uint32_t> aggregate_field_offsets; + std::vector<CompilerType> aggregate_compiler_types; + if (return_compiler_type.GetTypeSystem()->CanPassInRegisters( + return_compiler_type) && + *bit_width <= 128 && + FlattenAggregateType(thread, exe_ctx, return_compiler_type, + 0, aggregate_field_offsets, + aggregate_compiler_types)) { + ByteOrder byte_order = target->GetArchitecture().GetByteOrder(); + DataBufferSP data_sp(new DataBufferHeap(16, 0)); + DataExtractor return_ext(data_sp, byte_order, + target->GetArchitecture().GetAddressByteSize()); + + const RegisterInfo *rax_info = + reg_ctx_sp->GetRegisterInfoByName("rax", 0); + const RegisterInfo *rdx_info = + reg_ctx_sp->GetRegisterInfoByName("rdx", 0); + const RegisterInfo *xmm0_info = + reg_ctx_sp->GetRegisterInfoByName("xmm0", 0); + const RegisterInfo *xmm1_info = + reg_ctx_sp->GetRegisterInfoByName("xmm1", 0); + + RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value; + reg_ctx_sp->ReadRegister(rax_info, rax_value); + reg_ctx_sp->ReadRegister(rdx_info, rdx_value); + reg_ctx_sp->ReadRegister(xmm0_info, xmm0_value); + reg_ctx_sp->ReadRegister(xmm1_info, xmm1_value); + + DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data; + + rax_value.GetData(rax_data); + rdx_value.GetData(rdx_data); + xmm0_value.GetData(xmm0_data); + xmm1_value.GetData(xmm1_data); + + uint32_t fp_bytes = + 0; // Tracks how much of the xmm registers we've consumed so far + uint32_t integer_bytes = + 0; // Tracks how much of the rax/rds registers we've consumed so far + + // in case of the returned type is a subclass of non-abstract-base class + // it will have a padding to skip the base content + if (aggregate_field_offsets.size()) { + fp_bytes = aggregate_field_offsets[0]; + integer_bytes = aggregate_field_offsets[0]; + } + + const uint32_t num_children = aggregate_compiler_types.size(); + + // Since we are in the small struct regime, assume we are not in memory. + is_memory = false; + for (uint32_t idx = 0; idx < num_children; idx++) { + bool is_signed; + uint32_t count; + bool is_complex; + + CompilerType field_compiler_type = aggregate_compiler_types[idx]; + uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread)); + uint32_t field_byte_offset = aggregate_field_offsets[idx]; + + uint32_t field_bit_width = field_byte_width * 8; + + DataExtractor *copy_from_extractor = nullptr; + uint32_t copy_from_offset = 0; + + if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || + field_compiler_type.IsPointerType()) { + if (integer_bytes < 8) { + if (integer_bytes + field_byte_width <= 8) { + // This is in RAX, copy from register to our result structure: + copy_from_extractor = &rax_data; + copy_from_offset = integer_bytes; + integer_bytes += field_byte_width; + } else { + // The next field wouldn't fit in the remaining space, so we + // pushed it to rdx. + copy_from_extractor = &rdx_data; + copy_from_offset = 0; + integer_bytes = 8 + field_byte_width; + } + } else if (integer_bytes + field_byte_width <= 16) { + copy_from_extractor = &rdx_data; + copy_from_offset = integer_bytes - 8; + integer_bytes += field_byte_width; + } else { + // The last field didn't fit. I can't see how that would happen + // w/o the overall size being greater than 16 bytes. For now, + // return a nullptr return value object. + return return_valobj_sp; + } + } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) { + // Structs with long doubles are always passed in memory. + if (field_bit_width == 128) { + is_memory = true; + break; + } else if (field_bit_width == 64) { + // These have to be in a single xmm register. + if (fp_bytes == 0) + copy_from_extractor = &xmm0_data; + else + copy_from_extractor = &xmm1_data; + + copy_from_offset = 0; + fp_bytes += field_byte_width; + } else if (field_bit_width == 32) { + // This one is kind of complicated. If we are in an "eightbyte" + // with another float, we'll be stuffed into an xmm register with + // it. If we are in an "eightbyte" with one or more ints, then we + // will be stuffed into the appropriate GPR with them. + bool in_gpr; + if (field_byte_offset % 8 == 0) { + // We are at the beginning of one of the eightbytes, so check the + // next element (if any) + if (idx == num_children - 1) { + in_gpr = false; + } else { + CompilerType next_field_compiler_type = + aggregate_compiler_types[idx + 1]; + if (next_field_compiler_type.IsIntegerOrEnumerationType( + is_signed)) { + in_gpr = true; + } else { + copy_from_offset = 0; + in_gpr = false; + } + } + } else if (field_byte_offset % 4 == 0) { + // We are inside of an eightbyte, so see if the field before us + // is floating point: This could happen if somebody put padding + // in the structure. + if (idx == 0) { + in_gpr = false; + } else { + CompilerType prev_field_compiler_type = + aggregate_compiler_types[idx - 1]; + if (prev_field_compiler_type.IsIntegerOrEnumerationType( + is_signed)) { + in_gpr = true; + } else { + copy_from_offset = 4; + in_gpr = false; + } + } + } else { + is_memory = true; + continue; + } + + // Okay, we've figured out whether we are in GPR or XMM, now figure + // out which one. + if (in_gpr) { + if (integer_bytes < 8) { + // This is in RAX, copy from register to our result structure: + copy_from_extractor = &rax_data; + copy_from_offset = integer_bytes; + integer_bytes += field_byte_width; + } else { + copy_from_extractor = &rdx_data; + copy_from_offset = integer_bytes - 8; + integer_bytes += field_byte_width; + } + } else { + if (fp_bytes < 8) + copy_from_extractor = &xmm0_data; + else + copy_from_extractor = &xmm1_data; + + fp_bytes += field_byte_width; + } + } + } + // These two tests are just sanity checks. If I somehow get the type + // calculation wrong above it is better to just return nothing than to + // assert or crash. + if (!copy_from_extractor) + return return_valobj_sp; + if (copy_from_offset + field_byte_width > + copy_from_extractor->GetByteSize()) + return return_valobj_sp; + copy_from_extractor->CopyByteOrderedData( + copy_from_offset, field_byte_width, + data_sp->GetBytes() + field_byte_offset, field_byte_width, + byte_order); + } + if (!is_memory) { + // The result is in our data buffer. Let's make a variable object out + // of it: + return_valobj_sp = ValueObjectConstResult::Create( + &thread, return_compiler_type, ConstString(""), return_ext); + } + } + + // FIXME: This is just taking a guess, rax may very well no longer hold the + // return storage location. + // If we are going to do this right, when we make a new frame we should + // check to see if it uses a memory return, and if we are at the first + // instruction and if so stash away the return location. Then we would + // only return the memory return value if we know it is valid. + + if (is_memory) { + unsigned rax_id = + reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB]; + lldb::addr_t storage_addr = + (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, + 0); + return_valobj_sp = ValueObjectMemory::Create( + &thread, "", Address(storage_addr, nullptr), return_compiler_type); + } + } + + return return_valobj_sp; +} + +// This defines the CFA as rsp+8 +// the saved pc is at CFA-8 (i.e. rsp+0) +// The saved rsp is CFA+0 + +bool ABISysV_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { + unwind_plan.Clear(); + unwind_plan.SetRegisterKind(eRegisterKindDWARF); + + uint32_t sp_reg_num = dwarf_rsp; + uint32_t pc_reg_num = dwarf_rip; + + UnwindPlan::RowSP row(new UnwindPlan::Row); + row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8); + row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false); + row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); + unwind_plan.AppendRow(row); + unwind_plan.SetSourceName("x86_64 at-func-entry default"); + unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); + return true; +} + +// This defines the CFA as rbp+16 +// The saved pc is at CFA-8 (i.e. rbp+8) +// The saved rbp is at CFA-16 (i.e. rbp+0) +// The saved rsp is CFA+0 + +bool ABISysV_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { + unwind_plan.Clear(); + unwind_plan.SetRegisterKind(eRegisterKindDWARF); + + uint32_t fp_reg_num = dwarf_rbp; + uint32_t sp_reg_num = dwarf_rsp; + uint32_t pc_reg_num = dwarf_rip; + + UnwindPlan::RowSP row(new UnwindPlan::Row); + + const int32_t ptr_size = 8; + row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size); + row->SetOffset(0); + + row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true); + row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true); + row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); + + unwind_plan.AppendRow(row); + unwind_plan.SetSourceName("x86_64 default unwind plan"); + unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); + unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); + unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); + return true; +} + +bool ABISysV_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) { + return !RegisterIsCalleeSaved(reg_info); +} + +// See "Register Usage" in the +// "System V Application Binary Interface" +// "AMD64 Architecture Processor Supplement" (or "x86-64(tm) Architecture +// Processor Supplement" in earlier revisions) (this doc is also commonly +// referred to as the x86-64/AMD64 psABI) Edited by Michael Matz, Jan Hubicka, +// Andreas Jaeger, and Mark Mitchell current version is 0.99.6 released +// 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf +// It's being revised & updated at https://github.com/hjl-tools/x86-psABI/ + +bool ABISysV_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { + if (!reg_info) + return false; + assert(reg_info->name != nullptr && "unnamed register?"); + std::string Name = std::string(reg_info->name); + bool IsCalleeSaved = + llvm::StringSwitch<bool>(Name) + .Cases("r12", "r13", "r14", "r15", "rbp", "ebp", "rbx", "ebx", true) + .Cases("rip", "eip", "rsp", "esp", "sp", "fp", "pc", true) + .Default(false); + return IsCalleeSaved; +} + +uint32_t ABISysV_x86_64::GetGenericNum(llvm::StringRef name) { + return llvm::StringSwitch<uint32_t>(name) + .Case("rip", LLDB_REGNUM_GENERIC_PC) + .Case("rsp", LLDB_REGNUM_GENERIC_SP) + .Case("rbp", LLDB_REGNUM_GENERIC_FP) + .Case("rflags", LLDB_REGNUM_GENERIC_FLAGS) + .Case("rdi", LLDB_REGNUM_GENERIC_ARG1) + .Case("rsi", LLDB_REGNUM_GENERIC_ARG2) + .Case("rdx", LLDB_REGNUM_GENERIC_ARG3) + .Case("rcx", LLDB_REGNUM_GENERIC_ARG4) + .Case("r8", LLDB_REGNUM_GENERIC_ARG5) + .Case("r9", LLDB_REGNUM_GENERIC_ARG6) + .Default(LLDB_INVALID_REGNUM); +} + +void ABISysV_x86_64::Initialize() { + PluginManager::RegisterPlugin( + GetPluginNameStatic(), "System V ABI for x86_64 targets", CreateInstance); +} + +void ABISysV_x86_64::Terminate() { + PluginManager::UnregisterPlugin(CreateInstance); +} + +lldb_private::ConstString ABISysV_x86_64::GetPluginNameStatic() { + static ConstString g_name("sysv-x86_64"); + return g_name; +} + +// PluginInterface protocol + +lldb_private::ConstString ABISysV_x86_64::GetPluginName() { + return GetPluginNameStatic(); +} + +uint32_t ABISysV_x86_64::GetPluginVersion() { return 1; } |