aboutsummaryrefslogtreecommitdiff
path: root/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp')
-rw-r--r--lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp964
1 files changed, 964 insertions, 0 deletions
diff --git a/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp b/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp
new file mode 100644
index 000000000000..7729e58f8580
--- /dev/null
+++ b/lldb/source/Plugins/ABI/X86/ABISysV_x86_64.cpp
@@ -0,0 +1,964 @@
+//===-- ABISysV_x86_64.cpp ------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABISysV_x86_64.h"
+
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+
+#include "lldb/Core/Module.h"
+#include "lldb/Core/PluginManager.h"
+#include "lldb/Core/Value.h"
+#include "lldb/Core/ValueObjectConstResult.h"
+#include "lldb/Core/ValueObjectMemory.h"
+#include "lldb/Core/ValueObjectRegister.h"
+#include "lldb/Symbol/UnwindPlan.h"
+#include "lldb/Target/Process.h"
+#include "lldb/Target/RegisterContext.h"
+#include "lldb/Target/StackFrame.h"
+#include "lldb/Target/Target.h"
+#include "lldb/Target/Thread.h"
+#include "lldb/Utility/ConstString.h"
+#include "lldb/Utility/DataExtractor.h"
+#include "lldb/Utility/Log.h"
+#include "lldb/Utility/RegisterValue.h"
+#include "lldb/Utility/Status.h"
+
+#include <vector>
+
+using namespace lldb;
+using namespace lldb_private;
+
+LLDB_PLUGIN_DEFINE(ABISysV_x86_64)
+
+enum dwarf_regnums {
+ dwarf_rax = 0,
+ dwarf_rdx,
+ dwarf_rcx,
+ dwarf_rbx,
+ dwarf_rsi,
+ dwarf_rdi,
+ dwarf_rbp,
+ dwarf_rsp,
+ dwarf_r8,
+ dwarf_r9,
+ dwarf_r10,
+ dwarf_r11,
+ dwarf_r12,
+ dwarf_r13,
+ dwarf_r14,
+ dwarf_r15,
+ dwarf_rip,
+};
+
+bool ABISysV_x86_64::GetPointerReturnRegister(const char *&name) {
+ name = "rax";
+ return true;
+}
+
+size_t ABISysV_x86_64::GetRedZoneSize() const { return 128; }
+
+// Static Functions
+
+ABISP
+ABISysV_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
+ const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
+ const llvm::Triple::OSType os_type = arch.GetTriple().getOS();
+ const llvm::Triple::EnvironmentType os_env =
+ arch.GetTriple().getEnvironment();
+ if (arch_type == llvm::Triple::x86_64) {
+ switch(os_type) {
+ case llvm::Triple::OSType::IOS:
+ case llvm::Triple::OSType::TvOS:
+ case llvm::Triple::OSType::WatchOS:
+ switch (os_env) {
+ case llvm::Triple::EnvironmentType::MacABI:
+ case llvm::Triple::EnvironmentType::Simulator:
+ case llvm::Triple::EnvironmentType::UnknownEnvironment:
+ // UnknownEnvironment is needed for older compilers that don't
+ // support the simulator environment.
+ return ABISP(new ABISysV_x86_64(std::move(process_sp),
+ MakeMCRegisterInfo(arch)));
+ default:
+ return ABISP();
+ }
+ case llvm::Triple::OSType::Darwin:
+ case llvm::Triple::OSType::FreeBSD:
+ case llvm::Triple::OSType::Linux:
+ case llvm::Triple::OSType::MacOSX:
+ case llvm::Triple::OSType::NetBSD:
+ case llvm::Triple::OSType::Solaris:
+ case llvm::Triple::OSType::UnknownOS:
+ return ABISP(
+ new ABISysV_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch)));
+ default:
+ return ABISP();
+ }
+ }
+ return ABISP();
+}
+
+bool ABISysV_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp,
+ addr_t func_addr, addr_t return_addr,
+ llvm::ArrayRef<addr_t> args) const {
+ Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
+
+ if (log) {
+ StreamString s;
+ s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
+ ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
+ ", return_addr = 0x%" PRIx64,
+ thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
+ (uint64_t)return_addr);
+
+ for (size_t i = 0; i < args.size(); ++i)
+ s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
+ args[i]);
+ s.PutCString(")");
+ log->PutString(s.GetString());
+ }
+
+ RegisterContext *reg_ctx = thread.GetRegisterContext().get();
+ if (!reg_ctx)
+ return false;
+
+ const RegisterInfo *reg_info = nullptr;
+
+ if (args.size() > 6) // TODO handle more than 6 arguments
+ return false;
+
+ for (size_t i = 0; i < args.size(); ++i) {
+ reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_ARG1 + i);
+ LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
+ static_cast<uint64_t>(i + 1), args[i], reg_info->name);
+ if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
+ return false;
+ }
+
+ // First, align the SP
+
+ LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
+ (uint64_t)sp, (uint64_t)(sp & ~0xfull));
+
+ sp &= ~(0xfull); // 16-byte alignment
+
+ sp -= 8;
+
+ Status error;
+ const RegisterInfo *pc_reg_info =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
+ const RegisterInfo *sp_reg_info =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
+ ProcessSP process_sp(thread.GetProcess());
+
+ RegisterValue reg_value;
+ LLDB_LOGF(log,
+ "Pushing the return address onto the stack: 0x%" PRIx64
+ ": 0x%" PRIx64,
+ (uint64_t)sp, (uint64_t)return_addr);
+
+ // Save return address onto the stack
+ if (!process_sp->WritePointerToMemory(sp, return_addr, error))
+ return false;
+
+ // %rsp is set to the actual stack value.
+
+ LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
+
+ if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
+ return false;
+
+ // %rip is set to the address of the called function.
+
+ LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
+
+ if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
+ return false;
+
+ return true;
+}
+
+static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
+ bool is_signed, Thread &thread,
+ uint32_t *argument_register_ids,
+ unsigned int &current_argument_register,
+ addr_t &current_stack_argument) {
+ if (bit_width > 64)
+ return false; // Scalar can't hold large integer arguments
+
+ if (current_argument_register < 6) {
+ scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
+ argument_register_ids[current_argument_register], 0);
+ current_argument_register++;
+ if (is_signed)
+ scalar.SignExtend(bit_width);
+ } else {
+ uint32_t byte_size = (bit_width + (8 - 1)) / 8;
+ Status error;
+ if (thread.GetProcess()->ReadScalarIntegerFromMemory(
+ current_stack_argument, byte_size, is_signed, scalar, error)) {
+ current_stack_argument += byte_size;
+ return true;
+ }
+ return false;
+ }
+ return true;
+}
+
+bool ABISysV_x86_64::GetArgumentValues(Thread &thread,
+ ValueList &values) const {
+ unsigned int num_values = values.GetSize();
+ unsigned int value_index;
+
+ // Extract the register context so we can read arguments from registers
+
+ RegisterContext *reg_ctx = thread.GetRegisterContext().get();
+
+ if (!reg_ctx)
+ return false;
+
+ // Get the pointer to the first stack argument so we have a place to start
+ // when reading data
+
+ addr_t sp = reg_ctx->GetSP(0);
+
+ if (!sp)
+ return false;
+
+ addr_t current_stack_argument = sp + 8; // jump over return address
+
+ uint32_t argument_register_ids[6];
+
+ argument_register_ids[0] =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
+ ->kinds[eRegisterKindLLDB];
+ argument_register_ids[1] =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
+ ->kinds[eRegisterKindLLDB];
+ argument_register_ids[2] =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
+ ->kinds[eRegisterKindLLDB];
+ argument_register_ids[3] =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
+ ->kinds[eRegisterKindLLDB];
+ argument_register_ids[4] =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
+ ->kinds[eRegisterKindLLDB];
+ argument_register_ids[5] =
+ reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
+ ->kinds[eRegisterKindLLDB];
+
+ unsigned int current_argument_register = 0;
+
+ for (value_index = 0; value_index < num_values; ++value_index) {
+ Value *value = values.GetValueAtIndex(value_index);
+
+ if (!value)
+ return false;
+
+ // We currently only support extracting values with Clang QualTypes. Do we
+ // care about others?
+ CompilerType compiler_type = value->GetCompilerType();
+ llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
+ if (!bit_size)
+ return false;
+ bool is_signed;
+
+ if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
+ ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
+ argument_register_ids, current_argument_register,
+ current_stack_argument);
+ } else if (compiler_type.IsPointerType()) {
+ ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
+ argument_register_ids, current_argument_register,
+ current_stack_argument);
+ }
+ }
+
+ return true;
+}
+
+Status ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
+ lldb::ValueObjectSP &new_value_sp) {
+ Status error;
+ if (!new_value_sp) {
+ error.SetErrorString("Empty value object for return value.");
+ return error;
+ }
+
+ CompilerType compiler_type = new_value_sp->GetCompilerType();
+ if (!compiler_type) {
+ error.SetErrorString("Null clang type for return value.");
+ return error;
+ }
+
+ Thread *thread = frame_sp->GetThread().get();
+
+ bool is_signed;
+ uint32_t count;
+ bool is_complex;
+
+ RegisterContext *reg_ctx = thread->GetRegisterContext().get();
+
+ bool set_it_simple = false;
+ if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
+ compiler_type.IsPointerType()) {
+ const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);
+
+ DataExtractor data;
+ Status data_error;
+ size_t num_bytes = new_value_sp->GetData(data, data_error);
+ if (data_error.Fail()) {
+ error.SetErrorStringWithFormat(
+ "Couldn't convert return value to raw data: %s",
+ data_error.AsCString());
+ return error;
+ }
+ lldb::offset_t offset = 0;
+ if (num_bytes <= 8) {
+ uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
+
+ if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
+ set_it_simple = true;
+ } else {
+ error.SetErrorString("We don't support returning longer than 64 bit "
+ "integer values at present.");
+ }
+ } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
+ if (is_complex)
+ error.SetErrorString(
+ "We don't support returning complex values at present");
+ else {
+ llvm::Optional<uint64_t> bit_width =
+ compiler_type.GetBitSize(frame_sp.get());
+ if (!bit_width) {
+ error.SetErrorString("can't get type size");
+ return error;
+ }
+ if (*bit_width <= 64) {
+ const RegisterInfo *xmm0_info =
+ reg_ctx->GetRegisterInfoByName("xmm0", 0);
+ RegisterValue xmm0_value;
+ DataExtractor data;
+ Status data_error;
+ size_t num_bytes = new_value_sp->GetData(data, data_error);
+ if (data_error.Fail()) {
+ error.SetErrorStringWithFormat(
+ "Couldn't convert return value to raw data: %s",
+ data_error.AsCString());
+ return error;
+ }
+
+ unsigned char buffer[16];
+ ByteOrder byte_order = data.GetByteOrder();
+
+ data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
+ xmm0_value.SetBytes(buffer, 16, byte_order);
+ reg_ctx->WriteRegister(xmm0_info, xmm0_value);
+ set_it_simple = true;
+ } else {
+ // FIXME - don't know how to do 80 bit long doubles yet.
+ error.SetErrorString(
+ "We don't support returning float values > 64 bits at present");
+ }
+ }
+ }
+
+ if (!set_it_simple) {
+ // Okay we've got a structure or something that doesn't fit in a simple
+ // register. We should figure out where it really goes, but we don't
+ // support this yet.
+ error.SetErrorString("We only support setting simple integer and float "
+ "return types at present.");
+ }
+
+ return error;
+}
+
+ValueObjectSP ABISysV_x86_64::GetReturnValueObjectSimple(
+ Thread &thread, CompilerType &return_compiler_type) const {
+ ValueObjectSP return_valobj_sp;
+ Value value;
+
+ if (!return_compiler_type)
+ return return_valobj_sp;
+
+ // value.SetContext (Value::eContextTypeClangType, return_value_type);
+ value.SetCompilerType(return_compiler_type);
+
+ RegisterContext *reg_ctx = thread.GetRegisterContext().get();
+ if (!reg_ctx)
+ return return_valobj_sp;
+
+ const uint32_t type_flags = return_compiler_type.GetTypeInfo();
+ if (type_flags & eTypeIsScalar) {
+ value.SetValueType(Value::eValueTypeScalar);
+
+ bool success = false;
+ if (type_flags & eTypeIsInteger) {
+ // Extract the register context so we can read arguments from registers
+
+ llvm::Optional<uint64_t> byte_size =
+ return_compiler_type.GetByteSize(nullptr);
+ if (!byte_size)
+ return return_valobj_sp;
+ uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
+ reg_ctx->GetRegisterInfoByName("rax", 0), 0);
+ const bool is_signed = (type_flags & eTypeIsSigned) != 0;
+ switch (*byte_size) {
+ default:
+ break;
+
+ case sizeof(uint64_t):
+ if (is_signed)
+ value.GetScalar() = (int64_t)(raw_value);
+ else
+ value.GetScalar() = (uint64_t)(raw_value);
+ success = true;
+ break;
+
+ case sizeof(uint32_t):
+ if (is_signed)
+ value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
+ else
+ value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
+ success = true;
+ break;
+
+ case sizeof(uint16_t):
+ if (is_signed)
+ value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
+ else
+ value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
+ success = true;
+ break;
+
+ case sizeof(uint8_t):
+ if (is_signed)
+ value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
+ else
+ value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
+ success = true;
+ break;
+ }
+ } else if (type_flags & eTypeIsFloat) {
+ if (type_flags & eTypeIsComplex) {
+ // Don't handle complex yet.
+ } else {
+ llvm::Optional<uint64_t> byte_size =
+ return_compiler_type.GetByteSize(nullptr);
+ if (byte_size && *byte_size <= sizeof(long double)) {
+ const RegisterInfo *xmm0_info =
+ reg_ctx->GetRegisterInfoByName("xmm0", 0);
+ RegisterValue xmm0_value;
+ if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) {
+ DataExtractor data;
+ if (xmm0_value.GetData(data)) {
+ lldb::offset_t offset = 0;
+ if (*byte_size == sizeof(float)) {
+ value.GetScalar() = (float)data.GetFloat(&offset);
+ success = true;
+ } else if (*byte_size == sizeof(double)) {
+ value.GetScalar() = (double)data.GetDouble(&offset);
+ success = true;
+ } else if (*byte_size == sizeof(long double)) {
+ // Don't handle long double since that can be encoded as 80 bit
+ // floats...
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (success)
+ return_valobj_sp = ValueObjectConstResult::Create(
+ thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
+ } else if (type_flags & eTypeIsPointer) {
+ unsigned rax_id =
+ reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
+ value.GetScalar() =
+ (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
+ 0);
+ value.SetValueType(Value::eValueTypeScalar);
+ return_valobj_sp = ValueObjectConstResult::Create(
+ thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
+ } else if (type_flags & eTypeIsVector) {
+ llvm::Optional<uint64_t> byte_size =
+ return_compiler_type.GetByteSize(nullptr);
+ if (byte_size && *byte_size > 0) {
+ const RegisterInfo *altivec_reg =
+ reg_ctx->GetRegisterInfoByName("xmm0", 0);
+ if (altivec_reg == nullptr)
+ altivec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
+
+ if (altivec_reg) {
+ if (*byte_size <= altivec_reg->byte_size) {
+ ProcessSP process_sp(thread.GetProcess());
+ if (process_sp) {
+ std::unique_ptr<DataBufferHeap> heap_data_up(
+ new DataBufferHeap(*byte_size, 0));
+ const ByteOrder byte_order = process_sp->GetByteOrder();
+ RegisterValue reg_value;
+ if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
+ Status error;
+ if (reg_value.GetAsMemoryData(
+ altivec_reg, heap_data_up->GetBytes(),
+ heap_data_up->GetByteSize(), byte_order, error)) {
+ DataExtractor data(DataBufferSP(heap_data_up.release()),
+ byte_order,
+ process_sp->GetTarget()
+ .GetArchitecture()
+ .GetAddressByteSize());
+ return_valobj_sp = ValueObjectConstResult::Create(
+ &thread, return_compiler_type, ConstString(""), data);
+ }
+ }
+ }
+ } else if (*byte_size <= altivec_reg->byte_size * 2) {
+ const RegisterInfo *altivec_reg2 =
+ reg_ctx->GetRegisterInfoByName("xmm1", 0);
+ if (altivec_reg2) {
+ ProcessSP process_sp(thread.GetProcess());
+ if (process_sp) {
+ std::unique_ptr<DataBufferHeap> heap_data_up(
+ new DataBufferHeap(*byte_size, 0));
+ const ByteOrder byte_order = process_sp->GetByteOrder();
+ RegisterValue reg_value;
+ RegisterValue reg_value2;
+ if (reg_ctx->ReadRegister(altivec_reg, reg_value) &&
+ reg_ctx->ReadRegister(altivec_reg2, reg_value2)) {
+
+ Status error;
+ if (reg_value.GetAsMemoryData(
+ altivec_reg, heap_data_up->GetBytes(),
+ altivec_reg->byte_size, byte_order, error) &&
+ reg_value2.GetAsMemoryData(
+ altivec_reg2,
+ heap_data_up->GetBytes() + altivec_reg->byte_size,
+ heap_data_up->GetByteSize() - altivec_reg->byte_size,
+ byte_order, error)) {
+ DataExtractor data(DataBufferSP(heap_data_up.release()),
+ byte_order,
+ process_sp->GetTarget()
+ .GetArchitecture()
+ .GetAddressByteSize());
+ return_valobj_sp = ValueObjectConstResult::Create(
+ &thread, return_compiler_type, ConstString(""), data);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return return_valobj_sp;
+}
+
+// The compiler will flatten the nested aggregate type into single
+// layer and push the value to stack
+// This helper function will flatten an aggregate type
+// and return true if it can be returned in register(s) by value
+// return false if the aggregate is in memory
+static bool FlattenAggregateType(
+ Thread &thread, ExecutionContext &exe_ctx,
+ CompilerType &return_compiler_type,
+ uint32_t data_byte_offset,
+ std::vector<uint32_t> &aggregate_field_offsets,
+ std::vector<CompilerType> &aggregate_compiler_types) {
+
+ const uint32_t num_children = return_compiler_type.GetNumFields();
+ for (uint32_t idx = 0; idx < num_children; ++idx) {
+ std::string name;
+ bool is_signed;
+ uint32_t count;
+ bool is_complex;
+
+ uint64_t field_bit_offset = 0;
+ CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
+ idx, name, &field_bit_offset, nullptr, nullptr);
+ llvm::Optional<uint64_t> field_bit_width =
+ field_compiler_type.GetBitSize(&thread);
+
+ // if we don't know the size of the field (e.g. invalid type), exit
+ if (!field_bit_width || *field_bit_width == 0) {
+ return false;
+ }
+
+ uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset;
+
+ const uint32_t field_type_flags = field_compiler_type.GetTypeInfo();
+ if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
+ field_compiler_type.IsPointerType() ||
+ field_compiler_type.IsFloatingPointType(count, is_complex)) {
+ aggregate_field_offsets.push_back(field_byte_offset);
+ aggregate_compiler_types.push_back(field_compiler_type);
+ } else if (field_type_flags & eTypeHasChildren) {
+ if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type,
+ field_byte_offset, aggregate_field_offsets,
+ aggregate_compiler_types)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+ValueObjectSP ABISysV_x86_64::GetReturnValueObjectImpl(
+ Thread &thread, CompilerType &return_compiler_type) const {
+ ValueObjectSP return_valobj_sp;
+
+ if (!return_compiler_type)
+ return return_valobj_sp;
+
+ ExecutionContext exe_ctx(thread.shared_from_this());
+ return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
+ if (return_valobj_sp)
+ return return_valobj_sp;
+
+ RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
+ if (!reg_ctx_sp)
+ return return_valobj_sp;
+
+ llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
+ if (!bit_width)
+ return return_valobj_sp;
+ if (return_compiler_type.IsAggregateType()) {
+ Target *target = exe_ctx.GetTargetPtr();
+ bool is_memory = true;
+ std::vector<uint32_t> aggregate_field_offsets;
+ std::vector<CompilerType> aggregate_compiler_types;
+ if (return_compiler_type.GetTypeSystem()->CanPassInRegisters(
+ return_compiler_type) &&
+ *bit_width <= 128 &&
+ FlattenAggregateType(thread, exe_ctx, return_compiler_type,
+ 0, aggregate_field_offsets,
+ aggregate_compiler_types)) {
+ ByteOrder byte_order = target->GetArchitecture().GetByteOrder();
+ DataBufferSP data_sp(new DataBufferHeap(16, 0));
+ DataExtractor return_ext(data_sp, byte_order,
+ target->GetArchitecture().GetAddressByteSize());
+
+ const RegisterInfo *rax_info =
+ reg_ctx_sp->GetRegisterInfoByName("rax", 0);
+ const RegisterInfo *rdx_info =
+ reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
+ const RegisterInfo *xmm0_info =
+ reg_ctx_sp->GetRegisterInfoByName("xmm0", 0);
+ const RegisterInfo *xmm1_info =
+ reg_ctx_sp->GetRegisterInfoByName("xmm1", 0);
+
+ RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value;
+ reg_ctx_sp->ReadRegister(rax_info, rax_value);
+ reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
+ reg_ctx_sp->ReadRegister(xmm0_info, xmm0_value);
+ reg_ctx_sp->ReadRegister(xmm1_info, xmm1_value);
+
+ DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data;
+
+ rax_value.GetData(rax_data);
+ rdx_value.GetData(rdx_data);
+ xmm0_value.GetData(xmm0_data);
+ xmm1_value.GetData(xmm1_data);
+
+ uint32_t fp_bytes =
+ 0; // Tracks how much of the xmm registers we've consumed so far
+ uint32_t integer_bytes =
+ 0; // Tracks how much of the rax/rds registers we've consumed so far
+
+ // in case of the returned type is a subclass of non-abstract-base class
+ // it will have a padding to skip the base content
+ if (aggregate_field_offsets.size()) {
+ fp_bytes = aggregate_field_offsets[0];
+ integer_bytes = aggregate_field_offsets[0];
+ }
+
+ const uint32_t num_children = aggregate_compiler_types.size();
+
+ // Since we are in the small struct regime, assume we are not in memory.
+ is_memory = false;
+ for (uint32_t idx = 0; idx < num_children; idx++) {
+ bool is_signed;
+ uint32_t count;
+ bool is_complex;
+
+ CompilerType field_compiler_type = aggregate_compiler_types[idx];
+ uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread));
+ uint32_t field_byte_offset = aggregate_field_offsets[idx];
+
+ uint32_t field_bit_width = field_byte_width * 8;
+
+ DataExtractor *copy_from_extractor = nullptr;
+ uint32_t copy_from_offset = 0;
+
+ if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
+ field_compiler_type.IsPointerType()) {
+ if (integer_bytes < 8) {
+ if (integer_bytes + field_byte_width <= 8) {
+ // This is in RAX, copy from register to our result structure:
+ copy_from_extractor = &rax_data;
+ copy_from_offset = integer_bytes;
+ integer_bytes += field_byte_width;
+ } else {
+ // The next field wouldn't fit in the remaining space, so we
+ // pushed it to rdx.
+ copy_from_extractor = &rdx_data;
+ copy_from_offset = 0;
+ integer_bytes = 8 + field_byte_width;
+ }
+ } else if (integer_bytes + field_byte_width <= 16) {
+ copy_from_extractor = &rdx_data;
+ copy_from_offset = integer_bytes - 8;
+ integer_bytes += field_byte_width;
+ } else {
+ // The last field didn't fit. I can't see how that would happen
+ // w/o the overall size being greater than 16 bytes. For now,
+ // return a nullptr return value object.
+ return return_valobj_sp;
+ }
+ } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
+ // Structs with long doubles are always passed in memory.
+ if (field_bit_width == 128) {
+ is_memory = true;
+ break;
+ } else if (field_bit_width == 64) {
+ // These have to be in a single xmm register.
+ if (fp_bytes == 0)
+ copy_from_extractor = &xmm0_data;
+ else
+ copy_from_extractor = &xmm1_data;
+
+ copy_from_offset = 0;
+ fp_bytes += field_byte_width;
+ } else if (field_bit_width == 32) {
+ // This one is kind of complicated. If we are in an "eightbyte"
+ // with another float, we'll be stuffed into an xmm register with
+ // it. If we are in an "eightbyte" with one or more ints, then we
+ // will be stuffed into the appropriate GPR with them.
+ bool in_gpr;
+ if (field_byte_offset % 8 == 0) {
+ // We are at the beginning of one of the eightbytes, so check the
+ // next element (if any)
+ if (idx == num_children - 1) {
+ in_gpr = false;
+ } else {
+ CompilerType next_field_compiler_type =
+ aggregate_compiler_types[idx + 1];
+ if (next_field_compiler_type.IsIntegerOrEnumerationType(
+ is_signed)) {
+ in_gpr = true;
+ } else {
+ copy_from_offset = 0;
+ in_gpr = false;
+ }
+ }
+ } else if (field_byte_offset % 4 == 0) {
+ // We are inside of an eightbyte, so see if the field before us
+ // is floating point: This could happen if somebody put padding
+ // in the structure.
+ if (idx == 0) {
+ in_gpr = false;
+ } else {
+ CompilerType prev_field_compiler_type =
+ aggregate_compiler_types[idx - 1];
+ if (prev_field_compiler_type.IsIntegerOrEnumerationType(
+ is_signed)) {
+ in_gpr = true;
+ } else {
+ copy_from_offset = 4;
+ in_gpr = false;
+ }
+ }
+ } else {
+ is_memory = true;
+ continue;
+ }
+
+ // Okay, we've figured out whether we are in GPR or XMM, now figure
+ // out which one.
+ if (in_gpr) {
+ if (integer_bytes < 8) {
+ // This is in RAX, copy from register to our result structure:
+ copy_from_extractor = &rax_data;
+ copy_from_offset = integer_bytes;
+ integer_bytes += field_byte_width;
+ } else {
+ copy_from_extractor = &rdx_data;
+ copy_from_offset = integer_bytes - 8;
+ integer_bytes += field_byte_width;
+ }
+ } else {
+ if (fp_bytes < 8)
+ copy_from_extractor = &xmm0_data;
+ else
+ copy_from_extractor = &xmm1_data;
+
+ fp_bytes += field_byte_width;
+ }
+ }
+ }
+ // These two tests are just sanity checks. If I somehow get the type
+ // calculation wrong above it is better to just return nothing than to
+ // assert or crash.
+ if (!copy_from_extractor)
+ return return_valobj_sp;
+ if (copy_from_offset + field_byte_width >
+ copy_from_extractor->GetByteSize())
+ return return_valobj_sp;
+ copy_from_extractor->CopyByteOrderedData(
+ copy_from_offset, field_byte_width,
+ data_sp->GetBytes() + field_byte_offset, field_byte_width,
+ byte_order);
+ }
+ if (!is_memory) {
+ // The result is in our data buffer. Let's make a variable object out
+ // of it:
+ return_valobj_sp = ValueObjectConstResult::Create(
+ &thread, return_compiler_type, ConstString(""), return_ext);
+ }
+ }
+
+ // FIXME: This is just taking a guess, rax may very well no longer hold the
+ // return storage location.
+ // If we are going to do this right, when we make a new frame we should
+ // check to see if it uses a memory return, and if we are at the first
+ // instruction and if so stash away the return location. Then we would
+ // only return the memory return value if we know it is valid.
+
+ if (is_memory) {
+ unsigned rax_id =
+ reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
+ lldb::addr_t storage_addr =
+ (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
+ 0);
+ return_valobj_sp = ValueObjectMemory::Create(
+ &thread, "", Address(storage_addr, nullptr), return_compiler_type);
+ }
+ }
+
+ return return_valobj_sp;
+}
+
+// This defines the CFA as rsp+8
+// the saved pc is at CFA-8 (i.e. rsp+0)
+// The saved rsp is CFA+0
+
+bool ABISysV_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
+ unwind_plan.Clear();
+ unwind_plan.SetRegisterKind(eRegisterKindDWARF);
+
+ uint32_t sp_reg_num = dwarf_rsp;
+ uint32_t pc_reg_num = dwarf_rip;
+
+ UnwindPlan::RowSP row(new UnwindPlan::Row);
+ row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8);
+ row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
+ row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
+ unwind_plan.AppendRow(row);
+ unwind_plan.SetSourceName("x86_64 at-func-entry default");
+ unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
+ return true;
+}
+
+// This defines the CFA as rbp+16
+// The saved pc is at CFA-8 (i.e. rbp+8)
+// The saved rbp is at CFA-16 (i.e. rbp+0)
+// The saved rsp is CFA+0
+
+bool ABISysV_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
+ unwind_plan.Clear();
+ unwind_plan.SetRegisterKind(eRegisterKindDWARF);
+
+ uint32_t fp_reg_num = dwarf_rbp;
+ uint32_t sp_reg_num = dwarf_rsp;
+ uint32_t pc_reg_num = dwarf_rip;
+
+ UnwindPlan::RowSP row(new UnwindPlan::Row);
+
+ const int32_t ptr_size = 8;
+ row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size);
+ row->SetOffset(0);
+
+ row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
+ row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
+ row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
+
+ unwind_plan.AppendRow(row);
+ unwind_plan.SetSourceName("x86_64 default unwind plan");
+ unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
+ unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
+ unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
+ return true;
+}
+
+bool ABISysV_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) {
+ return !RegisterIsCalleeSaved(reg_info);
+}
+
+// See "Register Usage" in the
+// "System V Application Binary Interface"
+// "AMD64 Architecture Processor Supplement" (or "x86-64(tm) Architecture
+// Processor Supplement" in earlier revisions) (this doc is also commonly
+// referred to as the x86-64/AMD64 psABI) Edited by Michael Matz, Jan Hubicka,
+// Andreas Jaeger, and Mark Mitchell current version is 0.99.6 released
+// 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
+// It's being revised & updated at https://github.com/hjl-tools/x86-psABI/
+
+bool ABISysV_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
+ if (!reg_info)
+ return false;
+ assert(reg_info->name != nullptr && "unnamed register?");
+ std::string Name = std::string(reg_info->name);
+ bool IsCalleeSaved =
+ llvm::StringSwitch<bool>(Name)
+ .Cases("r12", "r13", "r14", "r15", "rbp", "ebp", "rbx", "ebx", true)
+ .Cases("rip", "eip", "rsp", "esp", "sp", "fp", "pc", true)
+ .Default(false);
+ return IsCalleeSaved;
+}
+
+uint32_t ABISysV_x86_64::GetGenericNum(llvm::StringRef name) {
+ return llvm::StringSwitch<uint32_t>(name)
+ .Case("rip", LLDB_REGNUM_GENERIC_PC)
+ .Case("rsp", LLDB_REGNUM_GENERIC_SP)
+ .Case("rbp", LLDB_REGNUM_GENERIC_FP)
+ .Case("rflags", LLDB_REGNUM_GENERIC_FLAGS)
+ .Case("rdi", LLDB_REGNUM_GENERIC_ARG1)
+ .Case("rsi", LLDB_REGNUM_GENERIC_ARG2)
+ .Case("rdx", LLDB_REGNUM_GENERIC_ARG3)
+ .Case("rcx", LLDB_REGNUM_GENERIC_ARG4)
+ .Case("r8", LLDB_REGNUM_GENERIC_ARG5)
+ .Case("r9", LLDB_REGNUM_GENERIC_ARG6)
+ .Default(LLDB_INVALID_REGNUM);
+}
+
+void ABISysV_x86_64::Initialize() {
+ PluginManager::RegisterPlugin(
+ GetPluginNameStatic(), "System V ABI for x86_64 targets", CreateInstance);
+}
+
+void ABISysV_x86_64::Terminate() {
+ PluginManager::UnregisterPlugin(CreateInstance);
+}
+
+lldb_private::ConstString ABISysV_x86_64::GetPluginNameStatic() {
+ static ConstString g_name("sysv-x86_64");
+ return g_name;
+}
+
+// PluginInterface protocol
+
+lldb_private::ConstString ABISysV_x86_64::GetPluginName() {
+ return GetPluginNameStatic();
+}
+
+uint32_t ABISysV_x86_64::GetPluginVersion() { return 1; }