aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/BasicAliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/BasicAliasAnalysis.cpp866
1 files changed, 411 insertions, 455 deletions
diff --git a/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
index 97d0cb63ef99..357772c9c4f2 100644
--- a/llvm/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
@@ -23,7 +23,6 @@
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PhiValues.h"
@@ -104,7 +103,6 @@ bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
// depend on them.
if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
(DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
- (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
(PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
return true;
@@ -131,6 +129,14 @@ static bool isEscapeSource(const Value *V) {
if (isa<LoadInst>(V))
return true;
+ // The inttoptr case works because isNonEscapingLocalObject considers all
+ // means of converting or equating a pointer to an int (ptrtoint, ptr store
+ // which could be followed by an integer load, ptr<->int compare) as
+ // escaping, and objects located at well-known addresses via platform-specific
+ // means cannot be considered non-escaping local objects.
+ if (isa<IntToPtrInst>(V))
+ return true;
+
return false;
}
@@ -201,9 +207,11 @@ static uint64_t getMinimalExtentFrom(const Value &V,
// If we have dereferenceability information we know a lower bound for the
// extent as accesses for a lower offset would be valid. We need to exclude
// the "or null" part if null is a valid pointer.
- bool CanBeNull;
- uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
+ bool CanBeNull, CanBeFreed;
+ uint64_t DerefBytes =
+ V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
+ DerefBytes = CanBeFreed ? 0 : DerefBytes;
// If queried with a precise location size, we assume that location size to be
// accessed, thus valid.
if (LocSize.isPrecise())
@@ -222,167 +230,168 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//
-/// Analyzes the specified value as a linear expression: "A*V + B", where A and
-/// B are constant integers.
-///
-/// Returns the scale and offset values as APInts and return V as a Value*, and
-/// return whether we looked through any sign or zero extends. The incoming
-/// Value is known to have IntegerType, and it may already be sign or zero
-/// extended.
-///
-/// Note that this looks through extends, so the high bits may not be
-/// represented in the result.
-/*static*/ const Value *BasicAAResult::GetLinearExpression(
- const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
- unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
- assert(V->getType()->isIntegerTy() && "Not an integer value");
+namespace {
+/// Represents zext(sext(V)).
+struct ExtendedValue {
+ const Value *V;
+ unsigned ZExtBits;
+ unsigned SExtBits;
- // Limit our recursion depth.
- if (Depth == 6) {
- Scale = 1;
- Offset = 0;
- return V;
+ explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0,
+ unsigned SExtBits = 0)
+ : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {}
+
+ unsigned getBitWidth() const {
+ return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits;
+ }
+
+ ExtendedValue withValue(const Value *NewV) const {
+ return ExtendedValue(NewV, ZExtBits, SExtBits);
+ }
+
+ ExtendedValue withZExtOfValue(const Value *NewV) const {
+ unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
+ NewV->getType()->getPrimitiveSizeInBits();
+ // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
+ return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0);
+ }
+
+ ExtendedValue withSExtOfValue(const Value *NewV) const {
+ unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
+ NewV->getType()->getPrimitiveSizeInBits();
+ // zext(sext(sext(NewV)))
+ return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy);
+ }
+
+ APInt evaluateWith(APInt N) const {
+ assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
+ "Incompatible bit width");
+ if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
+ if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
+ return N;
+ }
+
+ bool canDistributeOver(bool NUW, bool NSW) const {
+ // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
+ // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
+ return (!ZExtBits || NUW) && (!SExtBits || NSW);
}
+};
+
+/// Represents zext(sext(V)) * Scale + Offset.
+struct LinearExpression {
+ ExtendedValue Val;
+ APInt Scale;
+ APInt Offset;
- if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
- // If it's a constant, just convert it to an offset and remove the variable.
- // If we've been called recursively, the Offset bit width will be greater
- // than the constant's (the Offset's always as wide as the outermost call),
- // so we'll zext here and process any extension in the isa<SExtInst> &
- // isa<ZExtInst> cases below.
- Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
- assert(Scale == 0 && "Constant values don't have a scale");
- return V;
+ /// True if all operations in this expression are NSW.
+ bool IsNSW;
+
+ LinearExpression(const ExtendedValue &Val, const APInt &Scale,
+ const APInt &Offset, bool IsNSW)
+ : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
+
+ LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) {
+ unsigned BitWidth = Val.getBitWidth();
+ Scale = APInt(BitWidth, 1);
+ Offset = APInt(BitWidth, 0);
}
+};
+}
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
+/// Analyzes the specified value as a linear expression: "A*V + B", where A and
+/// B are constant integers.
+static LinearExpression GetLinearExpression(
+ const ExtendedValue &Val, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, DominatorTree *DT) {
+ // Limit our recursion depth.
+ if (Depth == 6)
+ return Val;
+
+ if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
+ return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
+ Val.evaluateWith(Const->getValue()), true);
+
+ if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- // If we've been called recursively, then Offset and Scale will be wider
- // than the BOp operands. We'll always zext it here as we'll process sign
- // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
- APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
+ APInt RHS = Val.evaluateWith(RHSC->getValue());
+ // The only non-OBO case we deal with is or, and only limited to the
+ // case where it is both nuw and nsw.
+ bool NUW = true, NSW = true;
+ if (isa<OverflowingBinaryOperator>(BOp)) {
+ NUW &= BOp->hasNoUnsignedWrap();
+ NSW &= BOp->hasNoSignedWrap();
+ }
+ if (!Val.canDistributeOver(NUW, NSW))
+ return Val;
+ LinearExpression E(Val);
switch (BOp->getOpcode()) {
default:
// We don't understand this instruction, so we can't decompose it any
// further.
- Scale = 1;
- Offset = 0;
- return V;
+ return Val;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
- BOp, DT)) {
- Scale = 1;
- Offset = 0;
- return V;
- }
+ BOp, DT))
+ return Val;
+
LLVM_FALLTHROUGH;
- case Instruction::Add:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset += RHS;
+ case Instruction::Add: {
+ E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
+ Depth + 1, AC, DT);
+ E.Offset += RHS;
+ E.IsNSW &= NSW;
break;
- case Instruction::Sub:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset -= RHS;
+ }
+ case Instruction::Sub: {
+ E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
+ Depth + 1, AC, DT);
+ E.Offset -= RHS;
+ E.IsNSW &= NSW;
break;
- case Instruction::Mul:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset *= RHS;
- Scale *= RHS;
+ }
+ case Instruction::Mul: {
+ E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
+ Depth + 1, AC, DT);
+ E.Offset *= RHS;
+ E.Scale *= RHS;
+ E.IsNSW &= NSW;
break;
+ }
case Instruction::Shl:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
-
// We're trying to linearize an expression of the kind:
// shl i8 -128, 36
// where the shift count exceeds the bitwidth of the type.
// We can't decompose this further (the expression would return
// a poison value).
- if (Offset.getBitWidth() < RHS.getLimitedValue() ||
- Scale.getBitWidth() < RHS.getLimitedValue()) {
- Scale = 1;
- Offset = 0;
- return V;
- }
-
- Offset <<= RHS.getLimitedValue();
- Scale <<= RHS.getLimitedValue();
- // the semantics of nsw and nuw for left shifts don't match those of
- // multiplications, so we won't propagate them.
- NSW = NUW = false;
- return V;
- }
-
- if (isa<OverflowingBinaryOperator>(BOp)) {
- NUW &= BOp->hasNoUnsignedWrap();
- NSW &= BOp->hasNoSignedWrap();
+ if (RHS.getLimitedValue() > Val.getBitWidth())
+ return Val;
+
+ E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
+ Depth + 1, AC, DT);
+ E.Offset <<= RHS.getLimitedValue();
+ E.Scale <<= RHS.getLimitedValue();
+ E.IsNSW &= NSW;
+ break;
}
- return V;
+ return E;
}
}
- // Since GEP indices are sign extended anyway, we don't care about the high
- // bits of a sign or zero extended value - just scales and offsets. The
- // extensions have to be consistent though.
- if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
- Value *CastOp = cast<CastInst>(V)->getOperand(0);
- unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
- unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
- unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
- const Value *Result =
- GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
- Depth + 1, AC, DT, NSW, NUW);
-
- // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
- // by just incrementing the number of bits we've extended by.
- unsigned ExtendedBy = NewWidth - SmallWidth;
-
- if (isa<SExtInst>(V) && ZExtBits == 0) {
- // sext(sext(%x, a), b) == sext(%x, a + b)
-
- if (NSW) {
- // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
- // into sext(%x) + sext(c). We'll sext the Offset ourselves:
- unsigned OldWidth = Offset.getBitWidth();
- Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
- } else {
- // We may have signed-wrapped, so don't decompose sext(%x + c) into
- // sext(%x) + sext(c)
- Scale = 1;
- Offset = 0;
- Result = CastOp;
- ZExtBits = OldZExtBits;
- SExtBits = OldSExtBits;
- }
- SExtBits += ExtendedBy;
- } else {
- // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
-
- if (!NUW) {
- // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
- // zext(%x) + zext(c)
- Scale = 1;
- Offset = 0;
- Result = CastOp;
- ZExtBits = OldZExtBits;
- SExtBits = OldSExtBits;
- }
- ZExtBits += ExtendedBy;
- }
+ if (isa<ZExtInst>(Val.V))
+ return GetLinearExpression(
+ Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
+ DL, Depth + 1, AC, DT);
- return Result;
- }
+ if (isa<SExtInst>(Val.V))
+ return GetLinearExpression(
+ Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
+ DL, Depth + 1, AC, DT);
- Scale = 1;
- Offset = 0;
- return V;
+ return Val;
}
/// To ensure a pointer offset fits in an integer of size PointerSize
@@ -477,6 +486,13 @@ BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
return Decomposed;
}
+ // Track whether we've seen at least one in bounds gep, and if so, whether
+ // all geps parsed were in bounds.
+ if (Decomposed.InBounds == None)
+ Decomposed.InBounds = GEPOp->isInBounds();
+ else if (!GEPOp->isInBounds())
+ Decomposed.InBounds = false;
+
// Don't attempt to analyze GEPs over unsized objects.
if (!GEPOp->getSourceElementType()->isSized()) {
Decomposed.Base = V;
@@ -525,20 +541,12 @@ BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
APInt Scale(MaxPointerSize,
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
- unsigned ZExtBits = 0, SExtBits = 0;
-
// If the integer type is smaller than the pointer size, it is implicitly
// sign extended to pointer size.
unsigned Width = Index->getType()->getIntegerBitWidth();
- if (PointerSize > Width)
- SExtBits += PointerSize - Width;
-
- // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
- APInt IndexScale(Width, 0), IndexOffset(Width, 0);
- bool NSW = true, NUW = true;
- const Value *OrigIndex = Index;
- Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
- SExtBits, DL, 0, AC, DT, NSW, NUW);
+ unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
+ LinearExpression LE = GetLinearExpression(
+ ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
@@ -551,19 +559,13 @@ BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
// (C1*Scale)*V+C2*Scale can also overflow. We should check for this
// possibility.
bool Overflow;
- APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
+ APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize)
.smul_ov(Scale, Overflow);
if (Overflow) {
- Index = OrigIndex;
- IndexScale = 1;
- IndexOffset = 0;
-
- ZExtBits = SExtBits = 0;
- if (PointerSize > Width)
- SExtBits += PointerSize - Width;
+ LE = LinearExpression(ExtendedValue(Index, 0, SExtBits));
} else {
Decomposed.Offset += ScaledOffset;
- Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
+ Scale *= LE.Scale.sextOrTrunc(MaxPointerSize);
}
// If we already had an occurrence of this index variable, merge this
@@ -571,9 +573,9 @@ BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
- if (Decomposed.VarIndices[i].V == Index &&
- Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
- Decomposed.VarIndices[i].SExtBits == SExtBits) {
+ if (Decomposed.VarIndices[i].V == LE.Val.V &&
+ Decomposed.VarIndices[i].ZExtBits == LE.Val.ZExtBits &&
+ Decomposed.VarIndices[i].SExtBits == LE.Val.SExtBits) {
Scale += Decomposed.VarIndices[i].Scale;
Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
break;
@@ -585,7 +587,8 @@ BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
Scale = adjustToPointerSize(Scale, PointerSize);
if (!!Scale) {
- VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
+ VariableGEPIndex Entry = {
+ LE.Val.V, LE.Val.ZExtBits, LE.Val.SExtBits, Scale, CxtI, LE.IsNSW};
Decomposed.VarIndices.push_back(Entry);
}
}
@@ -665,6 +668,11 @@ bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
return Worklist.empty();
}
+static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
+ return II && II->getIntrinsicID() == IID;
+}
+
/// Returns the behavior when calling the given call site.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
if (Call->doesNotAccessMemory())
@@ -764,11 +772,6 @@ ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
return AAResultBase::getArgModRefInfo(Call, ArgIdx);
}
-static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
- return II && II->getIntrinsicID() == IID;
-}
-
#ifndef NDEBUG
static const Function *getParent(const Value *V) {
if (const Instruction *inst = dyn_cast<Instruction>(V)) {
@@ -797,8 +800,7 @@ AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
AAQueryInfo &AAQI) {
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
- return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
- LocB.AATags, AAQI);
+ return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
}
/// Checks to see if the specified callsite can clobber the specified memory
@@ -865,10 +867,10 @@ ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
AliasResult AR = getBestAAResults().alias(
MemoryLocation::getBeforeOrAfter(*CI),
MemoryLocation::getBeforeOrAfter(Object), AAQI);
- if (AR != MustAlias)
+ if (AR != AliasResult::MustAlias)
IsMustAlias = false;
// Operand doesn't alias 'Object', continue looking for other aliases
- if (AR == NoAlias)
+ if (AR == AliasResult::NoAlias)
continue;
// Operand aliases 'Object', but call doesn't modify it. Strengthen
// initial assumption and keep looking in case if there are more aliases.
@@ -910,8 +912,8 @@ ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
if (isMallocOrCallocLikeFn(Call, &TLI)) {
// Be conservative if the accessed pointer may alias the allocation -
// fallback to the generic handling below.
- if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
- Loc, AAQI) == NoAlias)
+ if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
+ AAQI) == AliasResult::NoAlias)
return ModRefInfo::NoModRef;
}
@@ -925,22 +927,16 @@ ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
// It's also possible for Loc to alias both src and dest, or neither.
ModRefInfo rv = ModRefInfo::NoModRef;
- if (SrcAA != NoAlias)
+ if (SrcAA != AliasResult::NoAlias)
rv = setRef(rv);
- if (DestAA != NoAlias)
+ if (DestAA != AliasResult::NoAlias)
rv = setMod(rv);
return rv;
}
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isIntrinsicCall(Call, Intrinsic::assume))
- return ModRefInfo::NoModRef;
-
- // Like assumes, guard intrinsics are also marked as arbitrarily writing so
- // that proper control dependencies are maintained but they never mods any
- // particular memory location.
+ // Guard intrinsics are marked as arbitrarily writing so that proper control
+ // dependencies are maintained but they never mods any particular memory
+ // location.
//
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
// heap state at the point the guard is issued needs to be consistent in case
@@ -984,16 +980,9 @@ ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
const CallBase *Call2,
AAQueryInfo &AAQI) {
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isIntrinsicCall(Call1, Intrinsic::assume) ||
- isIntrinsicCall(Call2, Intrinsic::assume))
- return ModRefInfo::NoModRef;
-
- // Like assumes, guard intrinsics are also marked as arbitrarily writing so
- // that proper control dependencies are maintained but they never mod any
- // particular memory location.
+ // Guard intrinsics are marked as arbitrarily writing so that proper control
+ // dependencies are maintained but they never mods any particular memory
+ // location.
//
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
// heap state at the point the guard is issued needs to be consistent in case
@@ -1016,62 +1005,17 @@ ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
}
-// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
-// beginning of the object the GEP points would have a negative offset with
-// repsect to the alloca, that means the GEP can not alias pointer (b).
-// Note that the pointer based on the alloca may not be a GEP. For
-// example, it may be the alloca itself.
-// The same applies if (b) is based on a GlobalVariable. Note that just being
-// based on isIdentifiedObject() is not enough - we need an identified object
-// that does not permit access to negative offsets. For example, a negative
-// offset from a noalias argument or call can be inbounds w.r.t the actual
-// underlying object.
-//
-// For example, consider:
-//
-// struct { int f0, int f1, ...} foo;
-// foo alloca;
-// foo* random = bar(alloca);
-// int *f0 = &alloca.f0
-// int *f1 = &random->f1;
-//
-// Which is lowered, approximately, to:
-//
-// %alloca = alloca %struct.foo
-// %random = call %struct.foo* @random(%struct.foo* %alloca)
-// %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
-// %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
-//
-// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
-// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
-// point into the same object. But since %f0 points to the beginning of %alloca,
-// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
-// than (%alloca - 1), and so is not inbounds, a contradiction.
-bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
- const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
- LocationSize MaybeObjectAccessSize) {
- // If the object access size is unknown, or the GEP isn't inbounds, bail.
- if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds())
- return false;
-
- const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
-
- // We need the object to be an alloca or a globalvariable, and want to know
- // the offset of the pointer from the object precisely, so no variable
- // indices are allowed.
- if (!(isa<AllocaInst>(DecompObject.Base) ||
- isa<GlobalVariable>(DecompObject.Base)) ||
- !DecompObject.VarIndices.empty())
- return false;
-
- // If the GEP has no variable indices, we know the precise offset
- // from the base, then use it. If the GEP has variable indices,
- // we can't get exact GEP offset to identify pointer alias. So return
- // false in that case.
- if (!DecompGEP.VarIndices.empty())
- return false;
-
- return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
+/// Return true if we know V to the base address of the corresponding memory
+/// object. This implies that any address less than V must be out of bounds
+/// for the underlying object. Note that just being isIdentifiedObject() is
+/// not enough - For example, a negative offset from a noalias argument or call
+/// can be inbounds w.r.t the actual underlying object.
+static bool isBaseOfObject(const Value *V) {
+ // TODO: We can handle other cases here
+ // 1) For GC languages, arguments to functions are often required to be
+ // base pointers.
+ // 2) Result of allocation routines are often base pointers. Leverage TLI.
+ return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
}
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
@@ -1081,9 +1025,24 @@ bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(
- const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
- const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
+ const GEPOperator *GEP1, LocationSize V1Size,
+ const Value *V2, LocationSize V2Size,
const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
+ if (!V1Size.hasValue() && !V2Size.hasValue()) {
+ // TODO: This limitation exists for compile-time reasons. Relax it if we
+ // can avoid exponential pathological cases.
+ if (!isa<GEPOperator>(V2))
+ return AliasResult::MayAlias;
+
+ // If both accesses have unknown size, we can only check whether the base
+ // objects don't alias.
+ AliasResult BaseAlias = getBestAAResults().alias(
+ MemoryLocation::getBeforeOrAfter(UnderlyingV1),
+ MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
+ return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
+ : AliasResult::MayAlias;
+ }
+
DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
@@ -1091,108 +1050,95 @@ AliasResult BasicAAResult::aliasGEP(
// compile-time constant.
if (!DecompGEP1.HasCompileTimeConstantScale ||
!DecompGEP2.HasCompileTimeConstantScale)
- return MayAlias;
+ return AliasResult::MayAlias;
assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
"DecomposeGEPExpression returned a result different from "
"getUnderlyingObject");
- // If the GEP's offset relative to its base is such that the base would
- // fall below the start of the object underlying V2, then the GEP and V2
- // cannot alias.
- if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
- return NoAlias;
- // If we have two gep instructions with must-alias or not-alias'ing base
- // pointers, figure out if the indexes to the GEP tell us anything about the
- // derived pointer.
- if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
- // Check for the GEP base being at a negative offset, this time in the other
- // direction.
- if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
- return NoAlias;
- // Do the base pointers alias?
- AliasResult BaseAlias = getBestAAResults().alias(
- MemoryLocation::getBeforeOrAfter(UnderlyingV1),
- MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
-
- // For GEPs with identical offsets, we can preserve the size and AAInfo
- // when performing the alias check on the underlying objects.
- if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset &&
- DecompGEP1.VarIndices == DecompGEP2.VarIndices) {
- AliasResult PreciseBaseAlias = getBestAAResults().alias(
- MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
- MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
- if (PreciseBaseAlias == NoAlias)
- return NoAlias;
- }
-
- // If we get a No or May, then return it immediately, no amount of analysis
- // will improve this situation.
- if (BaseAlias != MustAlias) {
- assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
- return BaseAlias;
- }
-
- // Subtract the GEP2 pointer from the GEP1 pointer to find out their
- // symbolic difference.
- DecompGEP1.Offset -= DecompGEP2.Offset;
- GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
-
- } else {
- // Check to see if these two pointers are related by the getelementptr
- // instruction. If one pointer is a GEP with a non-zero index of the other
- // pointer, we know they cannot alias.
-
- // If both accesses are unknown size, we can't do anything useful here.
- if (!V1Size.hasValue() && !V2Size.hasValue())
- return MayAlias;
-
- AliasResult R = getBestAAResults().alias(
- MemoryLocation::getBeforeOrAfter(UnderlyingV1),
- MemoryLocation(V2, V2Size, V2AAInfo), AAQI);
- if (R != MustAlias) {
- // If V2 may alias GEP base pointer, conservatively returns MayAlias.
- // If V2 is known not to alias GEP base pointer, then the two values
- // cannot alias per GEP semantics: "Any memory access must be done through
- // a pointer value associated with an address range of the memory access,
- // otherwise the behavior is undefined.".
- assert(R == NoAlias || R == MayAlias);
- return R;
- }
+ // Subtract the GEP2 pointer from the GEP1 pointer to find out their
+ // symbolic difference.
+ DecompGEP1.Offset -= DecompGEP2.Offset;
+ GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
+
+ // If an inbounds GEP would have to start from an out of bounds address
+ // for the two to alias, then we can assume noalias.
+ if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
+ V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
+ isBaseOfObject(DecompGEP2.Base))
+ return AliasResult::NoAlias;
+
+ if (isa<GEPOperator>(V2)) {
+ // Symmetric case to above.
+ if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
+ V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
+ isBaseOfObject(DecompGEP1.Base))
+ return AliasResult::NoAlias;
}
- // In the two GEP Case, if there is no difference in the offsets of the
- // computed pointers, the resultant pointers are a must alias. This
- // happens when we have two lexically identical GEP's (for example).
- //
- // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
- // must aliases the GEP, the end result is a must alias also.
+ // For GEPs with identical offsets, we can preserve the size and AAInfo
+ // when performing the alias check on the underlying objects.
if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
- return MustAlias;
+ return getBestAAResults().alias(
+ MemoryLocation(UnderlyingV1, V1Size),
+ MemoryLocation(UnderlyingV2, V2Size), AAQI);
+
+ // Do the base pointers alias?
+ AliasResult BaseAlias = getBestAAResults().alias(
+ MemoryLocation::getBeforeOrAfter(UnderlyingV1),
+ MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
+
+ // If we get a No or May, then return it immediately, no amount of analysis
+ // will improve this situation.
+ if (BaseAlias != AliasResult::MustAlias) {
+ assert(BaseAlias == AliasResult::NoAlias ||
+ BaseAlias == AliasResult::MayAlias);
+ return BaseAlias;
+ }
// If there is a constant difference between the pointers, but the difference
// is less than the size of the associated memory object, then we know
// that the objects are partially overlapping. If the difference is
// greater, we know they do not overlap.
if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
- if (DecompGEP1.Offset.sge(0)) {
- if (V2Size.hasValue()) {
- if (DecompGEP1.Offset.ult(V2Size.getValue()))
- return PartialAlias;
- return NoAlias;
- }
- } else {
- // We have the situation where:
+ APInt &Off = DecompGEP1.Offset;
+
+ // Initialize for Off >= 0 (V2 <= GEP1) case.
+ const Value *LeftPtr = V2;
+ const Value *RightPtr = GEP1;
+ LocationSize VLeftSize = V2Size;
+ LocationSize VRightSize = V1Size;
+ const bool Swapped = Off.isNegative();
+
+ if (Swapped) {
+ // Swap if we have the situation where:
// + +
// | BaseOffset |
// ---------------->|
// |-->V1Size |-------> V2Size
// GEP1 V2
- if (V1Size.hasValue()) {
- if ((-DecompGEP1.Offset).ult(V1Size.getValue()))
- return PartialAlias;
- return NoAlias;
+ std::swap(LeftPtr, RightPtr);
+ std::swap(VLeftSize, VRightSize);
+ Off = -Off;
+ }
+
+ if (VLeftSize.hasValue()) {
+ const uint64_t LSize = VLeftSize.getValue();
+ if (Off.ult(LSize)) {
+ // Conservatively drop processing if a phi was visited and/or offset is
+ // too big.
+ AliasResult AR = AliasResult::PartialAlias;
+ if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
+ (Off + VRightSize.getValue()).ule(LSize)) {
+ // Memory referenced by right pointer is nested. Save the offset in
+ // cache. Note that originally offset estimated as GEP1-V2, but
+ // AliasResult contains the shift that represents GEP1+Offset=V2.
+ AR.setOffset(-Off.getSExtValue());
+ AR.swap(Swapped);
+ }
+ return AR;
}
+ return AliasResult::NoAlias;
}
}
@@ -1201,11 +1147,16 @@ AliasResult BasicAAResult::aliasGEP(
bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
- const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
+ APInt Scale = DecompGEP1.VarIndices[i].Scale;
+ APInt ScaleForGCD = DecompGEP1.VarIndices[i].Scale;
+ if (!DecompGEP1.VarIndices[i].IsNSW)
+ ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
+ Scale.countTrailingZeros());
+
if (i == 0)
- GCD = Scale.abs();
+ GCD = ScaleForGCD.abs();
else
- GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
+ GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
if (AllNonNegative || AllNonPositive) {
// If the Value could change between cycles, then any reasoning about
@@ -1243,7 +1194,7 @@ AliasResult BasicAAResult::aliasGEP(
if (V1Size.hasValue() && V2Size.hasValue() &&
ModOffset.uge(V2Size.getValue()) &&
(GCD - ModOffset).uge(V1Size.getValue()))
- return NoAlias;
+ return AliasResult::NoAlias;
// If we know all the variables are non-negative, then the total offset is
// also non-negative and >= DecompGEP1.Offset. We have the following layout:
@@ -1251,14 +1202,14 @@ AliasResult BasicAAResult::aliasGEP(
// If DecompGEP1.Offset >= V2Size, the accesses don't alias.
if (AllNonNegative && V2Size.hasValue() &&
DecompGEP1.Offset.uge(V2Size.getValue()))
- return NoAlias;
+ return AliasResult::NoAlias;
// Similarly, if the variables are non-positive, then the total offset is
// also non-positive and <= DecompGEP1.Offset. We have the following layout:
// [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
// If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
if (AllNonPositive && V1Size.hasValue() &&
(-DecompGEP1.Offset).uge(V1Size.getValue()))
- return NoAlias;
+ return AliasResult::NoAlias;
if (V1Size.hasValue() && V2Size.hasValue()) {
// Try to determine whether abs(VarIndex) > 0.
@@ -1289,19 +1240,19 @@ AliasResult BasicAAResult::aliasGEP(
// or higher both do not alias.
if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
- return NoAlias;
+ return AliasResult::NoAlias;
}
}
if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
DecompGEP1.Offset, &AC, DT))
- return NoAlias;
+ return AliasResult::NoAlias;
}
// Statically, we can see that the base objects are the same, but the
// pointers have dynamic offsets which we can't resolve. And none of our
// little tricks above worked.
- return MayAlias;
+ return AliasResult::MayAlias;
}
static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
@@ -1309,56 +1260,55 @@ static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
if (A == B)
return A;
// A mix of PartialAlias and MustAlias is PartialAlias.
- if ((A == PartialAlias && B == MustAlias) ||
- (B == PartialAlias && A == MustAlias))
- return PartialAlias;
+ if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
+ (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
+ return AliasResult::PartialAlias;
// Otherwise, we don't know anything.
- return MayAlias;
+ return AliasResult::MayAlias;
}
/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
/// against another.
AliasResult
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
- const AAMDNodes &SIAAInfo, const Value *V2,
- LocationSize V2Size, const AAMDNodes &V2AAInfo,
+ const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
// If the values are Selects with the same condition, we can do a more precise
// check: just check for aliases between the values on corresponding arms.
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
if (SI->getCondition() == SI2->getCondition()) {
AliasResult Alias = getBestAAResults().alias(
- MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
- MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
- if (Alias == MayAlias)
- return MayAlias;
+ MemoryLocation(SI->getTrueValue(), SISize),
+ MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
+ if (Alias == AliasResult::MayAlias)
+ return AliasResult::MayAlias;
AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
- MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
+ MemoryLocation(SI->getFalseValue(), SISize),
+ MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
return MergeAliasResults(ThisAlias, Alias);
}
// If both arms of the Select node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
AliasResult Alias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size, V2AAInfo),
- MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
- if (Alias == MayAlias)
- return MayAlias;
+ MemoryLocation(V2, V2Size),
+ MemoryLocation(SI->getTrueValue(), SISize), AAQI);
+ if (Alias == AliasResult::MayAlias)
+ return AliasResult::MayAlias;
AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size, V2AAInfo),
- MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
+ MemoryLocation(V2, V2Size),
+ MemoryLocation(SI->getFalseValue(), SISize), AAQI);
return MergeAliasResults(ThisAlias, Alias);
}
/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
/// another.
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
- const AAMDNodes &PNAAInfo, const Value *V2,
- LocationSize V2Size,
- const AAMDNodes &V2AAInfo,
+ const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
+ if (!PN->getNumIncomingValues())
+ return AliasResult::NoAlias;
// If the values are PHIs in the same block, we can do a more precise
// as well as efficient check: just check for aliases between the values
// on corresponding edges.
@@ -1367,16 +1317,15 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
Optional<AliasResult> Alias;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
+ MemoryLocation(PN->getIncomingValue(i), PNSize),
MemoryLocation(
- PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
- V2AAInfo),
+ PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
AAQI);
if (Alias)
*Alias = MergeAliasResults(*Alias, ThisAlias);
else
Alias = ThisAlias;
- if (*Alias == MayAlias)
+ if (*Alias == AliasResult::MayAlias)
break;
}
return *Alias;
@@ -1405,7 +1354,7 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
// is if both sides are PHI nodes. In which case, this is O(m x n) time
// where 'm' and 'n' are the number of PHI sources.
if (PhiValueSet.size() > MaxLookupSearchDepth)
- return MayAlias;
+ return AliasResult::MayAlias;
// Add the values to V1Srcs
for (Value *PV1 : PhiValueSet) {
if (CheckForRecPhi(PV1))
@@ -1416,13 +1365,19 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
// If we don't have PhiInfo then just look at the operands of the phi itself
// FIXME: Remove this once we can guarantee that we have PhiInfo always
SmallPtrSet<Value *, 4> UniqueSrc;
+ Value *OnePhi = nullptr;
for (Value *PV1 : PN->incoming_values()) {
- if (isa<PHINode>(PV1))
- // If any of the source itself is a PHI, return MayAlias conservatively
- // to avoid compile time explosion. The worst possible case is if both
- // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
- // and 'n' are the number of PHI sources.
- return MayAlias;
+ if (isa<PHINode>(PV1)) {
+ if (OnePhi && OnePhi != PV1) {
+ // To control potential compile time explosion, we choose to be
+ // conserviate when we have more than one Phi input. It is important
+ // that we handle the single phi case as that lets us handle LCSSA
+ // phi nodes and (combined with the recursive phi handling) simple
+ // pointer induction variable patterns.
+ return AliasResult::MayAlias;
+ }
+ OnePhi = PV1;
+ }
if (CheckForRecPhi(PV1))
continue;
@@ -1430,13 +1385,18 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
if (UniqueSrc.insert(PV1).second)
V1Srcs.push_back(PV1);
}
+
+ if (OnePhi && UniqueSrc.size() > 1)
+ // Out of an abundance of caution, allow only the trivial lcssa and
+ // recursive phi cases.
+ return AliasResult::MayAlias;
}
// If V1Srcs is empty then that means that the phi has no underlying non-phi
// value. This should only be possible in blocks unreachable from the entry
// block, but return MayAlias just in case.
if (V1Srcs.empty())
- return MayAlias;
+ return AliasResult::MayAlias;
// If this PHI node is recursive, indicate that the pointer may be moved
// across iterations. We can only prove NoAlias if different underlying
@@ -1456,21 +1416,21 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
// If we inserted a block into VisitedPhiBBs, alias analysis results that
// have been cached earlier may no longer be valid. Perform recursive queries
// with a new AAQueryInfo.
- AAQueryInfo NewAAQI;
+ AAQueryInfo NewAAQI = AAQI.withEmptyCache();
AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
AliasResult Alias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size, V2AAInfo),
- MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
+ MemoryLocation(V2, V2Size),
+ MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
// Early exit if the check of the first PHI source against V2 is MayAlias.
// Other results are not possible.
- if (Alias == MayAlias)
- return MayAlias;
+ if (Alias == AliasResult::MayAlias)
+ return AliasResult::MayAlias;
// With recursive phis we cannot guarantee that MustAlias/PartialAlias will
// remain valid to all elements and needs to conservatively return MayAlias.
- if (isRecursive && Alias != NoAlias)
- return MayAlias;
+ if (isRecursive && Alias != AliasResult::NoAlias)
+ return AliasResult::MayAlias;
// If all sources of the PHI node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
@@ -1478,10 +1438,9 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
Value *V = V1Srcs[i];
AliasResult ThisAlias = getBestAAResults().alias(
- MemoryLocation(V2, V2Size, V2AAInfo),
- MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
+ MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
+ if (Alias == AliasResult::MayAlias)
break;
}
@@ -1491,23 +1450,21 @@ AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
/// array references.
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
- const AAMDNodes &V1AAInfo,
const Value *V2, LocationSize V2Size,
- const AAMDNodes &V2AAInfo,
AAQueryInfo &AAQI) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are.
if (V1Size.isZero() || V2Size.isZero())
- return NoAlias;
+ return AliasResult::NoAlias;
// Strip off any casts if they exist.
- V1 = V1->stripPointerCastsAndInvariantGroups();
- V2 = V2->stripPointerCastsAndInvariantGroups();
+ V1 = V1->stripPointerCastsForAliasAnalysis();
+ V2 = V2->stripPointerCastsForAliasAnalysis();
// If V1 or V2 is undef, the result is NoAlias because we can always pick a
// value for undef that aliases nothing in the program.
if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return NoAlias;
+ return AliasResult::NoAlias;
// Are we checking for alias of the same value?
// Because we look 'through' phi nodes, we could look at "Value" pointers from
@@ -1516,10 +1473,10 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
// happen by looking at the visited phi nodes and making sure they cannot
// reach the value.
if (isValueEqualInPotentialCycles(V1, V2))
- return MustAlias;
+ return AliasResult::MustAlias;
if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
- return NoAlias; // Scalars cannot alias each other
+ return AliasResult::NoAlias; // Scalars cannot alias each other
// Figure out what objects these things are pointing to if we can.
const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
@@ -1529,26 +1486,26 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
// don't alias any other pointer.
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
- return NoAlias;
+ return AliasResult::NoAlias;
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
- return NoAlias;
+ return AliasResult::NoAlias;
if (O1 != O2) {
// If V1/V2 point to two different objects, we know that we have no alias.
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return NoAlias;
+ return AliasResult::NoAlias;
// Constant pointers can't alias with non-const isIdentifiedObject objects.
if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
(isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
- return NoAlias;
+ return AliasResult::NoAlias;
// Function arguments can't alias with things that are known to be
// unambigously identified at the function level.
if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
(isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
- return NoAlias;
+ return AliasResult::NoAlias;
// If one pointer is the result of a call/invoke or load and the other is a
// non-escaping local object within the same function, then we know the
@@ -1561,10 +1518,10 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
// nocapture value to other functions as long as they don't capture it.
if (isEscapeSource(O1) &&
isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
- return NoAlias;
+ return AliasResult::NoAlias;
if (isEscapeSource(O2) &&
isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
- return NoAlias;
+ return AliasResult::NoAlias;
}
// If the size of one access is larger than the entire object on the other
@@ -1576,7 +1533,7 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
(isObjectSmallerThan(
O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
TLI, NullIsValidLocation)))
- return NoAlias;
+ return AliasResult::NoAlias;
// If one the accesses may be before the accessed pointer, canonicalize this
// by using unknown after-pointer sizes for both accesses. This is
@@ -1590,14 +1547,21 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
V2Size = LocationSize::afterPointer();
}
+ // FIXME: If this depth limit is hit, then we may cache sub-optimal results
+ // for recursive queries. For this reason, this limit is chosen to be large
+ // enough to be very rarely hit, while still being small enough to avoid
+ // stack overflows.
+ if (AAQI.Depth >= 512)
+ return AliasResult::MayAlias;
+
// Check the cache before climbing up use-def chains. This also terminates
// otherwise infinitely recursive queries.
- AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (V1 > V2)
+ AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
+ const bool Swapped = V1 > V2;
+ if (Swapped)
std::swap(Locs.first, Locs.second);
const auto &Pair = AAQI.AliasCache.try_emplace(
- Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
+ Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
if (!Pair.second) {
auto &Entry = Pair.first->second;
if (!Entry.isDefinitive()) {
@@ -1605,26 +1569,32 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
++Entry.NumAssumptionUses;
++AAQI.NumAssumptionUses;
}
- return Entry.Result;
+ // Cache contains sorted {V1,V2} pairs but we should return original order.
+ auto Result = Entry.Result;
+ Result.swap(Swapped);
+ return Result;
}
int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
- AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
- V2AAInfo, AAQI, O1, O2);
+ AliasResult Result =
+ aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
auto It = AAQI.AliasCache.find(Locs);
assert(It != AAQI.AliasCache.end() && "Must be in cache");
auto &Entry = It->second;
// Check whether a NoAlias assumption has been used, but disproven.
- bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
+ bool AssumptionDisproven =
+ Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
if (AssumptionDisproven)
- Result = MayAlias;
+ Result = AliasResult::MayAlias;
// This is a definitive result now, when considered as a root query.
AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
Entry.Result = Result;
+ // Cache contains sorted {V1,V2} pairs.
+ Entry.Result.swap(Swapped);
Entry.NumAssumptionUses = -1;
// If the assumption has been disproven, remove any results that may have
@@ -1636,48 +1606,43 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
// The result may still be based on assumptions higher up in the chain.
// Remember it, so it can be purged from the cache later.
- if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
+ if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
+ Result != AliasResult::MayAlias)
AAQI.AssumptionBasedResults.push_back(Locs);
return Result;
}
AliasResult BasicAAResult::aliasCheckRecursive(
- const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
- const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
+ const Value *V1, LocationSize V1Size,
+ const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
- AliasResult Result =
- aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
- if (Result != MayAlias)
+ AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
+ if (Result != AliasResult::MayAlias)
return Result;
} else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
- AliasResult Result =
- aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
- if (Result != MayAlias)
+ AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
+ if (Result != AliasResult::MayAlias)
return Result;
}
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
- AliasResult Result =
- aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
- if (Result != MayAlias)
+ AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
+ if (Result != AliasResult::MayAlias)
return Result;
} else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
- AliasResult Result =
- aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
- if (Result != MayAlias)
+ AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
+ if (Result != AliasResult::MayAlias)
return Result;
}
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
- AliasResult Result =
- aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
- if (Result != MayAlias)
+ AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
+ if (Result != AliasResult::MayAlias)
return Result;
} else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
- AliasResult Result =
- aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
- if (Result != MayAlias)
+ AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
+ if (Result != AliasResult::MayAlias)
return Result;
}
@@ -1688,10 +1653,10 @@ AliasResult BasicAAResult::aliasCheckRecursive(
if (V1Size.isPrecise() && V2Size.isPrecise() &&
(isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
- return PartialAlias;
+ return AliasResult::PartialAlias;
}
- return MayAlias;
+ return AliasResult::MayAlias;
}
/// Check whether two Values can be considered equivalent.
@@ -1720,7 +1685,7 @@ bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
// the Values cannot come from different iterations of a potential cycle the
// phi nodes could be involved in.
for (auto *P : VisitedPhiBBs)
- if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
+ if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
return false;
return true;
@@ -1750,9 +1715,10 @@ void BasicAAResult::GetIndexDifference(
// If we found it, subtract off Scale V's from the entry in Dest. If it
// goes to zero, remove the entry.
- if (Dest[j].Scale != Scale)
+ if (Dest[j].Scale != Scale) {
Dest[j].Scale -= Scale;
- else
+ Dest[j].IsNSW = false;
+ } else
Dest.erase(Dest.begin() + j);
Scale = 0;
break;
@@ -1760,7 +1726,8 @@ void BasicAAResult::GetIndexDifference(
// If we didn't consume this entry, add it to the end of the Dest list.
if (!!Scale) {
- VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
+ VariableGEPIndex Entry = {V, ZExtBits, SExtBits,
+ -Scale, Src[i].CxtI, Src[i].IsNSW};
Dest.push_back(Entry);
}
}
@@ -1780,28 +1747,20 @@ bool BasicAAResult::constantOffsetHeuristic(
const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
- Var0.Scale != -Var1.Scale)
+ Var0.Scale != -Var1.Scale || Var0.V->getType() != Var1.V->getType())
return false;
- unsigned Width = Var1.V->getType()->getIntegerBitWidth();
-
// We'll strip off the Extensions of Var0 and Var1 and do another round
// of GetLinearExpression decomposition. In the example above, if Var0
// is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
- APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
- V1Offset(Width, 0);
- bool NSW = true, NUW = true;
- unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
- const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
- V0SExtBits, DL, 0, AC, DT, NSW, NUW);
- NSW = true;
- NUW = true;
- const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
- V1SExtBits, DL, 0, AC, DT, NSW, NUW);
-
- if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
- V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
+ LinearExpression E0 =
+ GetLinearExpression(ExtendedValue(Var0.V), DL, 0, AC, DT);
+ LinearExpression E1 =
+ GetLinearExpression(ExtendedValue(Var1.V), DL, 0, AC, DT);
+ if (E0.Scale != E1.Scale || E0.Val.ZExtBits != E1.Val.ZExtBits ||
+ E0.Val.SExtBits != E1.Val.SExtBits ||
+ !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
return false;
// We have a hit - Var0 and Var1 only differ by a constant offset!
@@ -1811,7 +1770,7 @@ bool BasicAAResult::constantOffsetHeuristic(
// minimum difference between the two. The minimum distance may occur due to
// wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
// the minimum distance between %i and %i + 5 is 3.
- APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
+ APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
MinDiff = APIntOps::umin(MinDiff, Wrapped);
APInt MinDiffBytes =
MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
@@ -1834,9 +1793,8 @@ BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *LI = AM.getCachedResult<LoopAnalysis>(F);
auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
- return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, LI, PV);
+ return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
}
BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
@@ -1864,13 +1822,11 @@ bool BasicAAWrapperPass::runOnFunction(Function &F) {
auto &ACT = getAnalysis<AssumptionCacheTracker>();
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
TLIWP.getTLI(F), ACT.getAssumptionCache(F),
&DTWP.getDomTree(),
- LIWP ? &LIWP->getLoopInfo() : nullptr,
PVWP ? &PVWP->getResult() : nullptr));
return false;