aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/M68k/M68kInstrFormats.td
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/M68k/M68kInstrFormats.td')
-rw-r--r--llvm/lib/Target/M68k/M68kInstrFormats.td371
1 files changed, 371 insertions, 0 deletions
diff --git a/llvm/lib/Target/M68k/M68kInstrFormats.td b/llvm/lib/Target/M68k/M68kInstrFormats.td
new file mode 100644
index 000000000000..1d950bd0377a
--- /dev/null
+++ b/llvm/lib/Target/M68k/M68kInstrFormats.td
@@ -0,0 +1,371 @@
+//=== M68kInstrFormats.td - M68k Instruction Formats ---*- tablegen -*-===//
+// The LLVM Compiler Infrastructure
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file contains M68k instruction formats.
+///
+/// Since M68k has quite a lot memory addressing modes there are more
+/// instruction prefixes than just i, r and m:
+/// TSF Since Form Letter Description
+/// 00 M68000 Dn or An r any register
+/// 01 M68000 Dn d data register direct
+/// 02 M68000 An a address register direct
+/// 03 M68000 (An) j address register indirect
+/// 04 M68000 (An)+ o address register indirect with postincrement
+/// 05 M68000 -(An) e address register indirect with predecrement
+/// 06 M68000 (i,An) p address register indirect with displacement
+/// 10 M68000 (i,An,Xn.L) f address register indirect with index and scale = 1
+/// 07 M68000 (i,An,Xn.W) F address register indirect with index and scale = 1
+/// 12 M68020 (i,An,Xn.L,SCALE) g address register indirect with index
+/// 11 M68020 (i,An,Xn.W,SCALE) G address register indirect with index
+/// 14 M68020 ([bd,An],Xn.L,SCALE,od) u memory indirect postindexed mode
+/// 13 M68020 ([bd,An],Xn.W,SCALE,od) U memory indirect postindexed mode
+/// 16 M68020 ([bd,An,Xn.L,SCALE],od) v memory indirect preindexed mode
+/// 15 M68020 ([bd,An,Xn.W,SCALE],od) V memory indirect preindexed mode
+/// 20 M68000 abs.L b absolute long address
+/// 17 M68000 abs.W B absolute short address
+/// 21 M68000 (i,PC) q program counter with displacement
+/// 23 M68000 (i,PC,Xn.L) k program counter with index and scale = 1
+/// 22 M68000 (i,PC,Xn.W) K program counter with index and scale = 1
+/// 25 M68020 (i,PC,Xn.L,SCALE) l program counter with index
+/// 24 M68020 (i,PC,Xn.W,SCALE) L program counter with index
+/// 27 M68020 ([bd,PC],Xn.L,SCALE,od) x program counter memory indirect postindexed mode
+/// 26 M68020 ([bd,PC],Xn.W,SCALE,od) X program counter memory indirect postindexed mode
+/// 31 M68020 ([bd,PC,Xn.L,SCALE],od) y program counter memory indirect preindexed mode
+/// 30 M68020 ([bd,PC,Xn.W,SCALE],od) Y program counter memory indirect preindexed mode
+/// 32 M68000 #immediate i immediate data
+///
+/// NOTE that long form is always lowercase, word variants are capitalized
+///
+/// Operand can be qualified with size where appropriate to force a particular
+/// instruction encoding, e.g.:
+/// (i8,An,Xn.W) f8 1 extension word
+/// (i16,An,Xn.W) f16 2 extension words
+/// (i32,An,Xn.W) f32 3 extension words
+///
+/// Form without size qualifier will adapt to operand size automatically, e.g.:
+/// (i,An,Xn.W) f 1, 2 or 3 extension words
+///
+/// Some forms already imply a particular size of their operands, e.g.:
+/// (i,An) p 1 extension word and i is 16bit
+///
+/// Operand order follows x86 Intel order(destination before source), e.g.:
+/// MOV8df MOVE (4,A0,D0), D1
+///
+/// Number after instruction mnemonics determines the size of the data
+///
+//===----------------------------------------------------------------------===//
+
+/// ??? Is it possible to use this stuff for disassembling?
+/// NOTE 1: In case of conditional beads(DA, DAReg), cond part is able to
+/// consume any bit, though a more general instructions must be chosen, e.g.
+/// d -> r, a -> r
+
+//===----------------------------------------------------------------------===//
+// Encoding primitives
+//===----------------------------------------------------------------------===//
+
+class MxBead<bits<4> type, bit b4 = 0, bit b5 = 0, bit b6 = 0, bit b7 = 0> {
+ bits<8> Value = 0b00000000;
+ let Value{3-0} = type;
+ let Value{4} = b4;
+ let Value{5} = b5;
+ let Value{6} = b6;
+ let Value{7} = b7;
+}
+
+/// System beads, allow to control beading flow
+def MxBeadTerm : MxBead<0x0, 0, 0, 0, 0>;
+def MxBeadIgnore : MxBead<0x0, 1, 0, 0, 0>;
+
+/// Add plain bit to the instruction
+class MxBead1Bit <bits<1> b> : MxBead<0x1, b>;
+class MxBead2Bits <bits<2> b> : MxBead<0x2, b{0}, b{1}>;
+class MxBead3Bits <bits<3> b> : MxBead<0x3, b{0}, b{1}, b{2}>;
+class MxBead4Bits <bits<4> b> : MxBead<0x4, b{0}, b{1}, b{2}, b{3}>;
+
+/// bits<3> o - operand number
+/// bit a - use alternative, used to select index register or
+/// outer displacement/immediate
+/// suffix NP means non-padded
+class MxBeadDAReg <bits<3> o, bit a = 0> : MxBead<0x5, o{0}, o{1}, o{2}, a>;
+class MxBeadDA <bits<3> o, bit a = 0> : MxBead<0x6, o{0}, o{1}, o{2}, a>;
+class MxBeadReg <bits<3> o, bit a = 0> : MxBead<0x7, o{0}, o{1}, o{2}, a>;
+class MxBeadDReg <bits<3> o, bit a = 0> : MxBead<0x8, o{0}, o{1}, o{2}, a>;
+class MxBead8Disp <bits<3> o, bit a = 0> : MxBead<0x9, o{0}, o{1}, o{2}, a>;
+
+/// Add Immediate to the instruction. 8-bit version is padded with zeros to fit
+/// the word.
+class MxBead8Imm <bits<3> o, bit a = 0> : MxBead<0xA, o{0}, o{1}, o{2}, a>;
+class MxBead16Imm <bits<3> o, bit a = 0> : MxBead<0xB, o{0}, o{1}, o{2}, a>;
+class MxBead32Imm <bits<3> o, bit a = 0> : MxBead<0xC, o{0}, o{1}, o{2}, a>;
+
+/// Encodes an immediate 0-7(alt. 1-8) into 3 bit field
+class MxBead3Imm <bits<3> o, bit a = 0> : MxBead<0xD, o{0}, o{1}, o{2}, a>;
+
+
+class MxEncoding<MxBead n0 = MxBeadTerm, MxBead n1 = MxBeadTerm,
+ MxBead n2 = MxBeadTerm, MxBead n3 = MxBeadTerm,
+ MxBead n4 = MxBeadTerm, MxBead n5 = MxBeadTerm,
+ MxBead n6 = MxBeadTerm, MxBead n7 = MxBeadTerm,
+ MxBead n8 = MxBeadTerm, MxBead n9 = MxBeadTerm,
+ MxBead n10 = MxBeadTerm, MxBead n11 = MxBeadTerm,
+ MxBead n12 = MxBeadTerm, MxBead n13 = MxBeadTerm,
+ MxBead n14 = MxBeadTerm, MxBead n15 = MxBeadTerm,
+ MxBead n16 = MxBeadTerm, MxBead n17 = MxBeadTerm,
+ MxBead n18 = MxBeadTerm, MxBead n19 = MxBeadTerm,
+ MxBead n20 = MxBeadTerm, MxBead n21 = MxBeadTerm,
+ MxBead n22 = MxBeadTerm, MxBead n23 = MxBeadTerm> {
+ bits <192> Value;
+ let Value{7-0} = n0.Value;
+ let Value{15-8} = n1.Value;
+ let Value{23-16} = n2.Value;
+ let Value{31-24} = n3.Value;
+ let Value{39-32} = n4.Value;
+ let Value{47-40} = n5.Value;
+ let Value{55-48} = n6.Value;
+ let Value{63-56} = n7.Value;
+ let Value{71-64} = n8.Value;
+ let Value{79-72} = n9.Value;
+ let Value{87-80} = n10.Value;
+ let Value{95-88} = n11.Value;
+ let Value{103-96} = n12.Value;
+ let Value{111-104} = n13.Value;
+ let Value{119-112} = n14.Value;
+ let Value{127-120} = n15.Value;
+ let Value{135-128} = n16.Value;
+ let Value{143-136} = n17.Value;
+ let Value{151-144} = n18.Value;
+ let Value{159-152} = n19.Value;
+ let Value{167-160} = n20.Value;
+ let Value{175-168} = n21.Value;
+ let Value{183-176} = n22.Value;
+ let Value{191-184} = n23.Value;
+}
+
+class MxEncFixed<bits<16> value> : MxEncoding {
+ let Value{7-0} = MxBead4Bits<value{3-0}>.Value;
+ let Value{15-8} = MxBead4Bits<value{7-4}>.Value;
+ let Value{23-16} = MxBead4Bits<value{11-8}>.Value;
+ let Value{31-24} = MxBead4Bits<value{15-12}>.Value;
+}
+
+//===----------------------------------------------------------------------===//
+// Encoding composites
+//
+// These must be lowered to MxEncoding by instr specific wrappers
+//
+// HERE BE DRAGONS...
+//===----------------------------------------------------------------------===//
+
+class MxEncByte<bits<8> value> : MxEncoding {
+ MxBead4Bits LO = MxBead4Bits<value{3-0}>;
+ MxBead4Bits HI = MxBead4Bits<value{7-4}>;
+}
+
+def MxEncEmpty : MxEncoding;
+
+
+/// M68k Standard Effective Address layout:
+///
+/// :-------------------:
+/// | 5 4 3 | 2 1 0 |
+/// | mode | reg |
+/// :-------------------:
+///
+/// If the EA is a direct register mode, bits 4 and 5 are 0, and the register
+/// number will be encoded in bit 0 - 3. Since the first address register's
+/// (A0) register number is 8, we can easily tell data registers from
+/// address registers by only inspecting bit 3 (i.e. if bit 3 is set, it's an
+/// address register).
+///
+///
+/// But MOVE instruction uses reversed layout for destination EA:
+///
+/// :-------------------:
+/// | 5 4 3 | 2 1 0 |
+/// | reg | mode |
+/// :-------------------:
+///
+/// And this complicates things a bit because the DA bit is now separated from
+/// the register and we have to encode those separately using MxBeadDA<opN>
+///
+class MxEncEA<MxBead reg, MxBead mode, MxBead da = MxBeadIgnore> {
+ MxBead Reg = reg;
+ MxBead Mode = mode;
+ MxBead DA = da;
+}
+
+// FIXME: Is there a way to factorize the addressing mode suffix (i.e.
+// 'r', 'd', 'a' etc.) and use something like multiclass to replace?
+def MxEncEAr_0: MxEncEA<MxBeadDAReg<0>, MxBead2Bits<0b00>>;
+def MxEncEAd_0: MxEncEA<MxBeadDReg<0>, MxBead2Bits<0b00>, MxBead1Bit<0>>;
+def MxEncEAa_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b00>, MxBead1Bit<1>>;
+def MxEncEAj_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b01>, MxBead1Bit<0>>;
+def MxEncEAo_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b01>, MxBead1Bit<1>>;
+def MxEncEAe_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b10>, MxBead1Bit<0>>;
+def MxEncEAp_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b10>, MxBead1Bit<1>>;
+def MxEncEAf_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b11>, MxBead1Bit<0>>;
+
+def MxEncEAa_0_reflected : MxEncEA<MxBeadReg<0>, MxBead3Bits<0b001>>;
+def MxEncEAr_0_reflected : MxEncEA<MxBeadReg<0>, MxBead2Bits<0b00>, MxBeadDA<0>>;
+
+def MxEncEAr_1: MxEncEA<MxBeadDAReg<1>, MxBead2Bits<0b00>>;
+def MxEncEAd_1: MxEncEA<MxBeadDReg<1>, MxBead2Bits<0b00>, MxBead1Bit<0>>;
+def MxEncEAa_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b00>, MxBead1Bit<1>>;
+def MxEncEAj_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b01>, MxBead1Bit<0>>;
+def MxEncEAo_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b01>, MxBead1Bit<1>>;
+def MxEncEAe_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b10>, MxBead1Bit<0>>;
+def MxEncEAp_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b10>, MxBead1Bit<1>>;
+def MxEncEAf_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b11>, MxBead1Bit<0>>;
+
+def MxEncEAr_2: MxEncEA<MxBeadDAReg<2>, MxBead2Bits<0b00>>;
+def MxEncEAd_2: MxEncEA<MxBeadDReg<2>, MxBead2Bits<0b00>, MxBead1Bit<0>>;
+def MxEncEAa_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b00>, MxBead1Bit<1>>;
+def MxEncEAj_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b01>, MxBead1Bit<0>>;
+def MxEncEAo_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b01>, MxBead1Bit<1>>;
+def MxEncEAe_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b10>, MxBead1Bit<0>>;
+def MxEncEAp_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b10>, MxBead1Bit<1>>;
+def MxEncEAf_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b11>, MxBead1Bit<0>>;
+
+def MxEncEAb : MxEncEA<MxBead3Bits<0b001>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
+def MxEncEAq : MxEncEA<MxBead3Bits<0b010>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
+def MxEncEAk : MxEncEA<MxBead3Bits<0b011>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
+def MxEncEAi : MxEncEA<MxBead3Bits<0b100>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
+
+// Allows you to specify each bit of opcode
+class MxEncOpMode<MxBead b0, MxBead b1 = MxBeadIgnore, MxBead b2 = MxBeadIgnore> {
+ MxBead B0 = b0;
+ MxBead B1 = b1;
+ MxBead B2 = b2;
+}
+
+// op EA, Dn
+def MxOpMode8dEA : MxEncOpMode<MxBead3Bits<0b000>>;
+def MxOpMode16dEA : MxEncOpMode<MxBead3Bits<0b001>>;
+def MxOpMode32dEA : MxEncOpMode<MxBead3Bits<0b010>>;
+
+// op EA, An
+def MxOpMode16aEA : MxEncOpMode<MxBead3Bits<0b110>>;
+def MxOpMode32aEA : MxEncOpMode<MxBead3Bits<0b111>>;
+
+// op EA, Rn
+// As you might noticed this guy is special... Since M68k differentiates
+// between Data and Address registers we required to use different OPMODE codes
+// for Address registers DST operands. One way of dealing with it is to use
+// separate tablegen instructions, but in this case it would force Register
+// Allocator to use specific Register Classes and eventually will lead to
+// superfluous moves. Another approach is to use reg-variadic encoding which will
+// change OPMODE base on Register Class used. Luckily, all the bits that differ go
+// from 0 to 1 and can be encoded with MxBeadDA.
+// Basically, if the register used is of Data type these encodings will be
+// the same as MxOpMode{16,32}dEA above and used with regular instructions(e.g. ADD,
+// SUB), but if the register is of Address type the appropriate bits will flip and
+// the instructions become of *A type(e.g ADDA, SUBA).
+def MxOpMode16rEA : MxEncOpMode<MxBead1Bit<1>, MxBeadDA<0>, MxBead1Bit<0>>;
+def MxOpMode32rEA : MxEncOpMode<MxBeadDA<0>, MxBead1Bit<1>, MxBeadDA<0>>;
+
+// op Dn, EA
+def MxOpMode8EAd : MxEncOpMode<MxBead3Bits<0b100>>;
+def MxOpMode16EAd : MxEncOpMode<MxBead3Bits<0b101>>;
+def MxOpMode32EAd : MxEncOpMode<MxBead3Bits<0b110>>;
+
+
+// Represents two types of extension word:
+// - Imm extension word
+// - Brief extension word
+class MxEncExt<MxBead imm = MxBeadIgnore, MxBead b8 = MxBeadIgnore,
+ MxBead scale = MxBeadIgnore, MxBead wl = MxBeadIgnore,
+ MxBead daReg = MxBeadIgnore> {
+ MxBead Imm = imm;
+ MxBead B8 = b8;
+ MxBead Scale = scale;
+ MxBead WL = wl;
+ MxBead DAReg = daReg;
+}
+
+def MxExtEmpty : MxEncExt;
+
+// These handle encoding of displacement fields, absolute addresses and
+// immediate values, since encoding for these categories is mainly the same,
+// with exception of some weird immediates.
+def MxExtI8_0 : MxEncExt<MxBead8Imm<0>>;
+def MxExtI16_0 : MxEncExt<MxBead16Imm<0>>;
+def MxExtI32_0 : MxEncExt<MxBead32Imm<0>>;
+
+def MxExtI8_1 : MxEncExt<MxBead8Imm<1>>;
+def MxExtI16_1 : MxEncExt<MxBead16Imm<1>>;
+def MxExtI32_1 : MxEncExt<MxBead32Imm<1>>;
+
+def MxExtI8_2 : MxEncExt<MxBead8Imm<2>>;
+def MxExtI16_2 : MxEncExt<MxBead16Imm<2>>;
+def MxExtI32_2 : MxEncExt<MxBead32Imm<2>>;
+
+// NOTE They are all using Long Xn
+def MxExtBrief_0 : MxEncExt<MxBead8Disp<0>, MxBead1Bit<0b0>,
+ MxBead2Bits<0b00>, MxBead1Bit<1>,
+ MxBeadDAReg<0, 1>>;
+
+def MxExtBrief_1 : MxEncExt<MxBead8Disp<1>, MxBead1Bit<0b0>,
+ MxBead2Bits<0b00>, MxBead1Bit<1>,
+ MxBeadDAReg<1, 1>>;
+
+def MxExtBrief_2 : MxEncExt<MxBead8Disp<2>, MxBead1Bit<0b0>,
+ MxBead2Bits<0b00>, MxBead1Bit<1>,
+ MxBeadDAReg<2, 1>>;
+
+def MxExtBrief_3 : MxEncExt<MxBead8Disp<3>, MxBead1Bit<0b0>,
+ MxBead2Bits<0b00>, MxBead1Bit<1>,
+ MxBeadDAReg<3, 1>>;
+
+def MxExtBrief_4 : MxEncExt<MxBead8Disp<4>, MxBead1Bit<0b0>,
+ MxBead2Bits<0b00>, MxBead1Bit<1>,
+ MxBeadDAReg<4, 1>>;
+
+class MxEncSize<bits<2> value> : MxBead2Bits<value>;
+def MxEncSize8 : MxEncSize<0b00>;
+def MxEncSize16 : MxEncSize<0b01>;
+def MxEncSize32 : MxEncSize<0b10>;
+def MxEncSize64 : MxEncSize<0b11>;
+
+// M68k INSTRUCTION. Most instructions specify the location of an operand by
+// using the effective address field in the operation word. The effective address
+// is composed of two 3-bit fields: the mode field and the register field. The
+// value in the mode field selects the different address modes. The register
+// field contains the number of a register. The effective address field may
+// require additional information to fully specify the operand. This additional
+// information, called the effective address extension, is contained in the
+// following word or words and is considered part of the instruction. The
+// effective address modes are grouped into three categories: register direct,
+// memory addressing, and special.
+class MxInst<dag outs, dag ins,
+ string asmStr = "",
+ list<dag> pattern = [],
+ MxEncoding beads = MxEncEmpty,
+ InstrItinClass itin = NoItinerary>
+ : Instruction {
+ let Namespace = "M68k";
+ let OutOperandList = outs;
+ let InOperandList = ins;
+ let AsmString = asmStr;
+ let Pattern = pattern;
+ let Itinerary = itin;
+
+ // Byte stream
+ field bits<192> Beads = beads.Value;
+
+ // Number of bytes
+ let Size = 0;
+
+ let UseLogicalOperandMappings = 1;
+}
+
+// M68k PSEUDO INSTRUCTION
+class MxPseudo<dag outs, dag ins, list<dag> pattern = []>
+ : MxInst<outs, ins, "; error: this should not be emitted", pattern> {
+ let isPseudo = 1;
+}