diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86SelectionDAGInfo.cpp')
| -rw-r--r-- | llvm/lib/Target/X86/X86SelectionDAGInfo.cpp | 265 |
1 files changed, 162 insertions, 103 deletions
diff --git a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp index 055466ac660c..aba62c36546f 100644 --- a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp +++ b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp @@ -18,7 +18,6 @@ #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" -#include "llvm/IR/DerivedTypes.h" using namespace llvm; @@ -28,6 +27,33 @@ static cl::opt<bool> UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false), cl::desc("Use fast short rep mov in memcpy lowering")); +bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const { + return Opcode >= X86ISD::FIRST_MEMORY_OPCODE && + Opcode <= X86ISD::LAST_MEMORY_OPCODE; +} + +bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const { + return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE && + Opcode <= X86ISD::LAST_STRICTFP_OPCODE; +} + +/// Returns the best type to use with repmovs/repstos depending on alignment. +static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) { + uint64_t Align = Alignment.value(); + assert((Align != 0) && "Align is normalized"); + assert(isPowerOf2_64(Align) && "Align is a power of 2"); + switch (Align) { + case 1: + return MVT::i8; + case 2: + return MVT::i16; + case 4: + return MVT::i32; + default: + return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; + } +} + bool X86SelectionDAGInfo::isBaseRegConflictPossible( SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { // We cannot use TRI->hasBasePointer() until *after* we select all basic @@ -44,92 +70,120 @@ bool X86SelectionDAGInfo::isBaseRegConflictPossible( return llvm::is_contained(ClobberSet, TRI->getBaseRegister()); } -SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( - SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, - SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, - MachinePointerInfo DstPtrInfo) const { - // If to a segment-relative address space, use the default lowering. - if (DstPtrInfo.getAddrSpace() >= 256) - return SDValue(); +/// Emit a single REP STOSB instruction for a particular constant size. +static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG, + const SDLoc &dl, SDValue Chain, SDValue Dst, + SDValue Val, SDValue Size, MVT AVT) { + const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); + unsigned AX = X86::AL; + switch (AVT.getSizeInBits()) { + case 8: + AX = X86::AL; + break; + case 16: + AX = X86::AX; + break; + case 32: + AX = X86::EAX; + break; + default: + AX = X86::RAX; + break; + } - // If the base register might conflict with our physical registers, bail out. - const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, - X86::ECX, X86::EAX, X86::EDI}; - if (isBaseRegConflictPossible(DAG, ClobberSet)) - return SDValue(); + const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; + const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; - ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); - const X86Subtarget &Subtarget = - DAG.getMachineFunction().getSubtarget<X86Subtarget>(); + SDValue InGlue; + Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue); + InGlue = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue); + InGlue = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue); + InGlue = Chain.getValue(1); + + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; + return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); +} + +/// Emit a single REP STOSB instruction for a particular constant size. +static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG, + const SDLoc &dl, SDValue Chain, SDValue Dst, + SDValue Val, uint64_t Size) { + return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, + DAG.getIntPtrConstant(Size, dl), MVT::i8); +} + +/// Returns a REP STOS instruction, possibly with a few load/stores to implement +/// a constant size memory set. In some cases where we know REP MOVS is +/// inefficient we return an empty SDValue so the calling code can either +/// generate a store sequence or call the runtime memset function. +static SDValue emitConstantSizeRepstos(SelectionDAG &DAG, + const X86Subtarget &Subtarget, + const SDLoc &dl, SDValue Chain, + SDValue Dst, SDValue Val, uint64_t Size, + EVT SizeVT, Align Alignment, + bool isVolatile, bool AlwaysInline, + MachinePointerInfo DstPtrInfo) { + /// In case we optimize for size, we use repstosb even if it's less efficient + /// so we can save the loads/stores of the leftover. + if (DAG.getMachineFunction().getFunction().hasMinSize()) { + if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { + // Special case 0 because otherwise we get large literals, + // which causes larger encoding. + if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) { + MVT BlockType = MVT::i32; + const uint64_t BlockBits = BlockType.getSizeInBits(); + const uint64_t BlockBytes = BlockBits / 8; + const uint64_t BlockCount = Size / BlockBytes; + + Val = DAG.getConstant(0, dl, BlockType); + // repstosd is same size as repstosb + return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, + DAG.getIntPtrConstant(BlockCount, dl), BlockType); + } + } + return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size); + } + + if (Size > Subtarget.getMaxInlineSizeThreshold()) + return SDValue(); // If not DWORD aligned or size is more than the threshold, call the library. // The libc version is likely to be faster for these cases. It can use the // address value and run time information about the CPU. - if (Alignment < Align(4) || !ConstantSize || - ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) + if (Alignment < Align(4)) return SDValue(); - uint64_t SizeVal = ConstantSize->getZExtValue(); - SDValue InGlue; - EVT AVT; - SDValue Count; - unsigned BytesLeft = 0; + MVT BlockType = MVT::i8; + uint64_t BlockCount = Size; + uint64_t BytesLeft = 0; + + SDValue OriginalVal = Val; if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { - unsigned ValReg; - uint64_t Val = ValC->getZExtValue() & 255; - - // If the value is a constant, then we can potentially use larger sets. - if (Alignment >= Align(4)) { - // DWORD aligned - AVT = MVT::i32; - ValReg = X86::EAX; - Val = (Val << 8) | Val; - Val = (Val << 16) | Val; - if (Subtarget.is64Bit() && Alignment >= Align(8)) { // QWORD aligned - AVT = MVT::i64; - ValReg = X86::RAX; - Val = (Val << 32) | Val; - } - } else if (Alignment == Align(2)) { - // WORD aligned - AVT = MVT::i16; - ValReg = X86::AX; - Val = (Val << 8) | Val; - } else { - // Byte aligned - AVT = MVT::i8; - ValReg = X86::AL; - Count = DAG.getIntPtrConstant(SizeVal, dl); - } + BlockType = getOptimalRepType(Subtarget, Alignment); + uint64_t Value = ValC->getZExtValue() & 255; + const uint64_t BlockBits = BlockType.getSizeInBits(); - if (AVT.bitsGT(MVT::i8)) { - unsigned UBytes = AVT.getSizeInBits() / 8; - Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); - BytesLeft = SizeVal % UBytes; - } + if (BlockBits >= 16) + Value = (Value << 8) | Value; - Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), - InGlue); - InGlue = Chain.getValue(1); - } else { - AVT = MVT::i8; - Count = DAG.getIntPtrConstant(SizeVal, dl); - Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InGlue); - InGlue = Chain.getValue(1); - } + if (BlockBits >= 32) + Value = (Value << 16) | Value; - bool Use64BitRegs = Subtarget.isTarget64BitLP64(); - Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, - Count, InGlue); - InGlue = Chain.getValue(1); - Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, - Dst, InGlue); - InGlue = Chain.getValue(1); + if (BlockBits >= 64) + Value = (Value << 32) | Value; - SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); - SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; - SDValue RepStos = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); + const uint64_t BlockBytes = BlockBits / 8; + BlockCount = Size / BlockBytes; + BytesLeft = Size % BlockBytes; + Val = DAG.getConstant(Value, dl, BlockType); + } + SDValue RepStos = + emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, + DAG.getIntPtrConstant(BlockCount, dl), BlockType); /// RepStos can process the whole length. if (BytesLeft == 0) return RepStos; @@ -137,21 +191,45 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( // Handle the last 1 - 7 bytes. SmallVector<SDValue, 4> Results; Results.push_back(RepStos); - unsigned Offset = SizeVal - BytesLeft; + unsigned Offset = Size - BytesLeft; EVT AddrVT = Dst.getValueType(); - EVT SizeVT = Size.getValueType(); Results.push_back( DAG.getMemset(Chain, dl, DAG.getNode(ISD::ADD, dl, AddrVT, Dst, DAG.getConstant(Offset, dl, AddrVT)), - Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, - isVolatile, AlwaysInline, + OriginalVal, DAG.getConstant(BytesLeft, dl, SizeVT), + Alignment, isVolatile, AlwaysInline, /* CI */ nullptr, DstPtrInfo.getWithOffset(Offset))); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); } +SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( + SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, + SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, + MachinePointerInfo DstPtrInfo) const { + // If to a segment-relative address space, use the default lowering. + if (DstPtrInfo.getAddrSpace() >= 256) + return SDValue(); + + // If the base register might conflict with our physical registers, bail out. + const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, + X86::ECX, X86::EAX, X86::EDI}; + if (isBaseRegConflictPossible(DAG, ClobberSet)) + return SDValue(); + + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (!ConstantSize) + return SDValue(); + + const X86Subtarget &Subtarget = + DAG.getMachineFunction().getSubtarget<X86Subtarget>(); + return emitConstantSizeRepstos( + DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(), + Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo); +} + /// Emit a single REP MOVS{B,W,D,Q} instruction. static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, @@ -182,24 +260,6 @@ static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, DAG.getIntPtrConstant(Size, dl), MVT::i8); } -/// Returns the best type to use with repmovs depending on alignment. -static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget, - Align Alignment) { - uint64_t Align = Alignment.value(); - assert((Align != 0) && "Align is normalized"); - assert(isPowerOf2_64(Align) && "Align is a power of 2"); - switch (Align) { - case 1: - return MVT::i8; - case 2: - return MVT::i16; - case 4: - return MVT::i32; - default: - return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; - } -} - /// Returns a REP MOVS instruction, possibly with a few load/stores to implement /// a constant size memory copy. In some cases where we know REP MOVS is /// inefficient we return an empty SDValue so the calling code can either @@ -209,6 +269,10 @@ static SDValue emitConstantSizeRepmov( SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { + /// In case we optimize for size, we use repmovsb even if it's less efficient + /// so we can save the loads/stores of the leftover. + if (DAG.getMachineFunction().getFunction().hasMinSize()) + return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very /// efficient. @@ -222,10 +286,10 @@ static SDValue emitConstantSizeRepmov( assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); /// We assume runtime memcpy will do a better job for unaligned copies when /// ERMS is not present. - if (!AlwaysInline && (Alignment.value() & 3) != 0) + if (!AlwaysInline && (Alignment < Align(4))) return SDValue(); - const MVT BlockType = getOptimalRepmovsType(Subtarget, Alignment); + const MVT BlockType = getOptimalRepType(Subtarget, Alignment); const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; const uint64_t BlockCount = Size / BlockBytes; const uint64_t BytesLeft = Size % BlockBytes; @@ -239,11 +303,6 @@ static SDValue emitConstantSizeRepmov( assert(BytesLeft && "We have leftover at this point"); - /// In case we optimize for size we use repmovsb even if it's less efficient - /// so we can save the loads/stores of the leftover. - if (DAG.getMachineFunction().getFunction().hasMinSize()) - return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); - // Handle the last 1 - 7 bytes. SmallVector<SDValue, 4> Results; Results.push_back(RepMovs); @@ -282,7 +341,7 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( if (UseFSRMForMemcpy && Subtarget.hasFSRM()) return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8); - /// Handle constant sizes, + /// Handle constant sizes if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size)) return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), |
