aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/X86/X86SelectionDAGInfo.cpp')
-rw-r--r--llvm/lib/Target/X86/X86SelectionDAGInfo.cpp265
1 files changed, 162 insertions, 103 deletions
diff --git a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
index 055466ac660c..aba62c36546f 100644
--- a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
+++ b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
@@ -18,7 +18,6 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
@@ -28,6 +27,33 @@ static cl::opt<bool>
UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
cl::desc("Use fast short rep mov in memcpy lowering"));
+bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const {
+ return Opcode >= X86ISD::FIRST_MEMORY_OPCODE &&
+ Opcode <= X86ISD::LAST_MEMORY_OPCODE;
+}
+
+bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const {
+ return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE &&
+ Opcode <= X86ISD::LAST_STRICTFP_OPCODE;
+}
+
+/// Returns the best type to use with repmovs/repstos depending on alignment.
+static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) {
+ uint64_t Align = Alignment.value();
+ assert((Align != 0) && "Align is normalized");
+ assert(isPowerOf2_64(Align) && "Align is a power of 2");
+ switch (Align) {
+ case 1:
+ return MVT::i8;
+ case 2:
+ return MVT::i16;
+ case 4:
+ return MVT::i32;
+ default:
+ return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
+ }
+}
+
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
@@ -44,92 +70,120 @@ bool X86SelectionDAGInfo::isBaseRegConflictPossible(
return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
}
-SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
- SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
- SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo) const {
- // If to a segment-relative address space, use the default lowering.
- if (DstPtrInfo.getAddrSpace() >= 256)
- return SDValue();
+/// Emit a single REP STOSB instruction for a particular constant size.
+static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ const SDLoc &dl, SDValue Chain, SDValue Dst,
+ SDValue Val, SDValue Size, MVT AVT) {
+ const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
+ unsigned AX = X86::AL;
+ switch (AVT.getSizeInBits()) {
+ case 8:
+ AX = X86::AL;
+ break;
+ case 16:
+ AX = X86::AX;
+ break;
+ case 32:
+ AX = X86::EAX;
+ break;
+ default:
+ AX = X86::RAX;
+ break;
+ }
- // If the base register might conflict with our physical registers, bail out.
- const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
- X86::ECX, X86::EAX, X86::EDI};
- if (isBaseRegConflictPossible(DAG, ClobberSet))
- return SDValue();
+ const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
+ const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- const X86Subtarget &Subtarget =
- DAG.getMachineFunction().getSubtarget<X86Subtarget>();
+ SDValue InGlue;
+ Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue);
+ InGlue = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
+ InGlue = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
+ InGlue = Chain.getValue(1);
+
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
+ return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
+}
+
+/// Emit a single REP STOSB instruction for a particular constant size.
+static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ const SDLoc &dl, SDValue Chain, SDValue Dst,
+ SDValue Val, uint64_t Size) {
+ return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
+ DAG.getIntPtrConstant(Size, dl), MVT::i8);
+}
+
+/// Returns a REP STOS instruction, possibly with a few load/stores to implement
+/// a constant size memory set. In some cases where we know REP MOVS is
+/// inefficient we return an empty SDValue so the calling code can either
+/// generate a store sequence or call the runtime memset function.
+static SDValue emitConstantSizeRepstos(SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ const SDLoc &dl, SDValue Chain,
+ SDValue Dst, SDValue Val, uint64_t Size,
+ EVT SizeVT, Align Alignment,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo) {
+ /// In case we optimize for size, we use repstosb even if it's less efficient
+ /// so we can save the loads/stores of the leftover.
+ if (DAG.getMachineFunction().getFunction().hasMinSize()) {
+ if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
+ // Special case 0 because otherwise we get large literals,
+ // which causes larger encoding.
+ if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) {
+ MVT BlockType = MVT::i32;
+ const uint64_t BlockBits = BlockType.getSizeInBits();
+ const uint64_t BlockBytes = BlockBits / 8;
+ const uint64_t BlockCount = Size / BlockBytes;
+
+ Val = DAG.getConstant(0, dl, BlockType);
+ // repstosd is same size as repstosb
+ return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
+ DAG.getIntPtrConstant(BlockCount, dl), BlockType);
+ }
+ }
+ return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size);
+ }
+
+ if (Size > Subtarget.getMaxInlineSizeThreshold())
+ return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
- if (Alignment < Align(4) || !ConstantSize ||
- ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold())
+ if (Alignment < Align(4))
return SDValue();
- uint64_t SizeVal = ConstantSize->getZExtValue();
- SDValue InGlue;
- EVT AVT;
- SDValue Count;
- unsigned BytesLeft = 0;
+ MVT BlockType = MVT::i8;
+ uint64_t BlockCount = Size;
+ uint64_t BytesLeft = 0;
+
+ SDValue OriginalVal = Val;
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
- unsigned ValReg;
- uint64_t Val = ValC->getZExtValue() & 255;
-
- // If the value is a constant, then we can potentially use larger sets.
- if (Alignment >= Align(4)) {
- // DWORD aligned
- AVT = MVT::i32;
- ValReg = X86::EAX;
- Val = (Val << 8) | Val;
- Val = (Val << 16) | Val;
- if (Subtarget.is64Bit() && Alignment >= Align(8)) { // QWORD aligned
- AVT = MVT::i64;
- ValReg = X86::RAX;
- Val = (Val << 32) | Val;
- }
- } else if (Alignment == Align(2)) {
- // WORD aligned
- AVT = MVT::i16;
- ValReg = X86::AX;
- Val = (Val << 8) | Val;
- } else {
- // Byte aligned
- AVT = MVT::i8;
- ValReg = X86::AL;
- Count = DAG.getIntPtrConstant(SizeVal, dl);
- }
+ BlockType = getOptimalRepType(Subtarget, Alignment);
+ uint64_t Value = ValC->getZExtValue() & 255;
+ const uint64_t BlockBits = BlockType.getSizeInBits();
- if (AVT.bitsGT(MVT::i8)) {
- unsigned UBytes = AVT.getSizeInBits() / 8;
- Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
- BytesLeft = SizeVal % UBytes;
- }
+ if (BlockBits >= 16)
+ Value = (Value << 8) | Value;
- Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
- InGlue);
- InGlue = Chain.getValue(1);
- } else {
- AVT = MVT::i8;
- Count = DAG.getIntPtrConstant(SizeVal, dl);
- Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InGlue);
- InGlue = Chain.getValue(1);
- }
+ if (BlockBits >= 32)
+ Value = (Value << 16) | Value;
- bool Use64BitRegs = Subtarget.isTarget64BitLP64();
- Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
- Count, InGlue);
- InGlue = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
- Dst, InGlue);
- InGlue = Chain.getValue(1);
+ if (BlockBits >= 64)
+ Value = (Value << 32) | Value;
- SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
- SDValue RepStos = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
+ const uint64_t BlockBytes = BlockBits / 8;
+ BlockCount = Size / BlockBytes;
+ BytesLeft = Size % BlockBytes;
+ Val = DAG.getConstant(Value, dl, BlockType);
+ }
+ SDValue RepStos =
+ emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
+ DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepStos can process the whole length.
if (BytesLeft == 0)
return RepStos;
@@ -137,21 +191,45 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepStos);
- unsigned Offset = SizeVal - BytesLeft;
+ unsigned Offset = Size - BytesLeft;
EVT AddrVT = Dst.getValueType();
- EVT SizeVT = Size.getValueType();
Results.push_back(
DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
- Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
- isVolatile, AlwaysInline,
+ OriginalVal, DAG.getConstant(BytesLeft, dl, SizeVT),
+ Alignment, isVolatile, AlwaysInline,
/* CI */ nullptr, DstPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
+SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
+ SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
+ SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo) const {
+ // If to a segment-relative address space, use the default lowering.
+ if (DstPtrInfo.getAddrSpace() >= 256)
+ return SDValue();
+
+ // If the base register might conflict with our physical registers, bail out.
+ const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
+ X86::ECX, X86::EAX, X86::EDI};
+ if (isBaseRegConflictPossible(DAG, ClobberSet))
+ return SDValue();
+
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (!ConstantSize)
+ return SDValue();
+
+ const X86Subtarget &Subtarget =
+ DAG.getMachineFunction().getSubtarget<X86Subtarget>();
+ return emitConstantSizeRepstos(
+ DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(),
+ Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo);
+}
+
/// Emit a single REP MOVS{B,W,D,Q} instruction.
static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
@@ -182,24 +260,6 @@ static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
-/// Returns the best type to use with repmovs depending on alignment.
-static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
- Align Alignment) {
- uint64_t Align = Alignment.value();
- assert((Align != 0) && "Align is normalized");
- assert(isPowerOf2_64(Align) && "Align is a power of 2");
- switch (Align) {
- case 1:
- return MVT::i8;
- case 2:
- return MVT::i16;
- case 4:
- return MVT::i32;
- default:
- return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
- }
-}
-
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
/// a constant size memory copy. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
@@ -209,6 +269,10 @@ static SDValue emitConstantSizeRepmov(
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
+ /// In case we optimize for size, we use repmovsb even if it's less efficient
+ /// so we can save the loads/stores of the leftover.
+ if (DAG.getMachineFunction().getFunction().hasMinSize())
+ return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
/// efficient.
@@ -222,10 +286,10 @@ static SDValue emitConstantSizeRepmov(
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
/// We assume runtime memcpy will do a better job for unaligned copies when
/// ERMS is not present.
- if (!AlwaysInline && (Alignment.value() & 3) != 0)
+ if (!AlwaysInline && (Alignment < Align(4)))
return SDValue();
- const MVT BlockType = getOptimalRepmovsType(Subtarget, Alignment);
+ const MVT BlockType = getOptimalRepType(Subtarget, Alignment);
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
const uint64_t BlockCount = Size / BlockBytes;
const uint64_t BytesLeft = Size % BlockBytes;
@@ -239,11 +303,6 @@ static SDValue emitConstantSizeRepmov(
assert(BytesLeft && "We have leftover at this point");
- /// In case we optimize for size we use repmovsb even if it's less efficient
- /// so we can save the loads/stores of the leftover.
- if (DAG.getMachineFunction().getFunction().hasMinSize())
- return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
-
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
@@ -282,7 +341,7 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
if (UseFSRMForMemcpy && Subtarget.hasFSRM())
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
- /// Handle constant sizes,
+ /// Handle constant sizes
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),