aboutsummaryrefslogtreecommitdiff
path: root/module/os/linux/zfs/zpl_file.c
diff options
context:
space:
mode:
Diffstat (limited to 'module/os/linux/zfs/zpl_file.c')
-rw-r--r--module/os/linux/zfs/zpl_file.c1079
1 files changed, 1079 insertions, 0 deletions
diff --git a/module/os/linux/zfs/zpl_file.c b/module/os/linux/zfs/zpl_file.c
new file mode 100644
index 000000000000..51e189a87272
--- /dev/null
+++ b/module/os/linux/zfs/zpl_file.c
@@ -0,0 +1,1079 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
+ * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
+ */
+
+
+#ifdef CONFIG_COMPAT
+#include <linux/compat.h>
+#endif
+#include <sys/file.h>
+#include <sys/dmu_objset.h>
+#include <sys/zfs_znode.h>
+#include <sys/zfs_vfsops.h>
+#include <sys/zfs_vnops.h>
+#include <sys/zfs_project.h>
+
+/*
+ * When using fallocate(2) to preallocate space, inflate the requested
+ * capacity check by 10% to account for the required metadata blocks.
+ */
+unsigned int zfs_fallocate_reserve_percent = 110;
+
+static int
+zpl_open(struct inode *ip, struct file *filp)
+{
+ cred_t *cr = CRED();
+ int error;
+ fstrans_cookie_t cookie;
+
+ error = generic_file_open(ip, filp);
+ if (error)
+ return (error);
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+ ASSERT3S(error, <=, 0);
+
+ return (error);
+}
+
+static int
+zpl_release(struct inode *ip, struct file *filp)
+{
+ cred_t *cr = CRED();
+ int error;
+ fstrans_cookie_t cookie;
+
+ cookie = spl_fstrans_mark();
+ if (ITOZ(ip)->z_atime_dirty)
+ zfs_mark_inode_dirty(ip);
+
+ crhold(cr);
+ error = -zfs_close(ip, filp->f_flags, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+ ASSERT3S(error, <=, 0);
+
+ return (error);
+}
+
+static int
+zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
+{
+ cred_t *cr = CRED();
+ int error;
+ fstrans_cookie_t cookie;
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ error = -zfs_readdir(file_inode(filp), ctx, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+ ASSERT3S(error, <=, 0);
+
+ return (error);
+}
+
+#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
+static int
+zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
+{
+ zpl_dir_context_t ctx =
+ ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
+ int error;
+
+ error = zpl_iterate(filp, &ctx);
+ filp->f_pos = ctx.pos;
+
+ return (error);
+}
+#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
+
+#if defined(HAVE_FSYNC_WITHOUT_DENTRY)
+/*
+ * Linux 2.6.35 - 3.0 API,
+ * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
+ * redundant. The dentry is still accessible via filp->f_path.dentry,
+ * and we are guaranteed that filp will never be NULL.
+ */
+static int
+zpl_fsync(struct file *filp, int datasync)
+{
+ struct inode *inode = filp->f_mapping->host;
+ cred_t *cr = CRED();
+ int error;
+ fstrans_cookie_t cookie;
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ error = -zfs_fsync(ITOZ(inode), datasync, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+ ASSERT3S(error, <=, 0);
+
+ return (error);
+}
+
+#ifdef HAVE_FILE_AIO_FSYNC
+static int
+zpl_aio_fsync(struct kiocb *kiocb, int datasync)
+{
+ return (zpl_fsync(kiocb->ki_filp, datasync));
+}
+#endif
+
+#elif defined(HAVE_FSYNC_RANGE)
+/*
+ * Linux 3.1 - 3.x API,
+ * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
+ * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
+ * lock is no longer held by the caller, for zfs we don't require the lock
+ * to be held so we don't acquire it.
+ */
+static int
+zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
+{
+ struct inode *inode = filp->f_mapping->host;
+ cred_t *cr = CRED();
+ int error;
+ fstrans_cookie_t cookie;
+
+ error = filemap_write_and_wait_range(inode->i_mapping, start, end);
+ if (error)
+ return (error);
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ error = -zfs_fsync(ITOZ(inode), datasync, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+ ASSERT3S(error, <=, 0);
+
+ return (error);
+}
+
+#ifdef HAVE_FILE_AIO_FSYNC
+static int
+zpl_aio_fsync(struct kiocb *kiocb, int datasync)
+{
+ return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
+}
+#endif
+
+#else
+#error "Unsupported fops->fsync() implementation"
+#endif
+
+static inline int
+zfs_io_flags(struct kiocb *kiocb)
+{
+ int flags = 0;
+
+#if defined(IOCB_DSYNC)
+ if (kiocb->ki_flags & IOCB_DSYNC)
+ flags |= O_DSYNC;
+#endif
+#if defined(IOCB_SYNC)
+ if (kiocb->ki_flags & IOCB_SYNC)
+ flags |= O_SYNC;
+#endif
+#if defined(IOCB_APPEND)
+ if (kiocb->ki_flags & IOCB_APPEND)
+ flags |= O_APPEND;
+#endif
+#if defined(IOCB_DIRECT)
+ if (kiocb->ki_flags & IOCB_DIRECT)
+ flags |= O_DIRECT;
+#endif
+ return (flags);
+}
+
+static ssize_t
+zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
+ unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
+ cred_t *cr, size_t skip)
+{
+ ssize_t read;
+ uio_t uio = { { 0 }, 0 };
+ int error;
+ fstrans_cookie_t cookie;
+
+ uio.uio_iov = iovp;
+ uio.uio_iovcnt = nr_segs;
+ uio.uio_loffset = *ppos;
+ uio.uio_segflg = segment;
+ uio.uio_limit = MAXOFFSET_T;
+ uio.uio_resid = count;
+ uio.uio_skip = skip;
+
+ cookie = spl_fstrans_mark();
+ error = -zfs_read(ip, &uio, flags, cr);
+ spl_fstrans_unmark(cookie);
+ if (error < 0)
+ return (error);
+
+ read = count - uio.uio_resid;
+ *ppos += read;
+
+ return (read);
+}
+
+inline ssize_t
+zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
+ uio_seg_t segment, int flags, cred_t *cr)
+{
+ struct iovec iov;
+
+ iov.iov_base = (void *)buf;
+ iov.iov_len = len;
+
+ return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
+ flags, cr, 0));
+}
+
+static ssize_t
+zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
+ unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
+{
+ cred_t *cr = CRED();
+ struct file *filp = kiocb->ki_filp;
+ struct inode *ip = filp->f_mapping->host;
+ zfsvfs_t *zfsvfs = ZTOZSB(ITOZ(ip));
+ ssize_t read;
+ unsigned int f_flags = filp->f_flags;
+
+ f_flags |= zfs_io_flags(kiocb);
+ crhold(cr);
+ read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
+ nr_segs, &kiocb->ki_pos, seg, f_flags, cr, skip);
+ crfree(cr);
+
+ /*
+ * If relatime is enabled, call file_accessed() only if
+ * zfs_relatime_need_update() is true. This is needed since datasets
+ * with inherited "relatime" property aren't necessarily mounted with
+ * MNT_RELATIME flag (e.g. after `zfs set relatime=...`), which is what
+ * relatime test in VFS by relatime_need_update() is based on.
+ */
+ if (!IS_NOATIME(ip) && zfsvfs->z_relatime) {
+ if (zfs_relatime_need_update(ip))
+ file_accessed(filp);
+ } else {
+ file_accessed(filp);
+ }
+
+ return (read);
+}
+
+#if defined(HAVE_VFS_RW_ITERATE)
+static ssize_t
+zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
+{
+ ssize_t ret;
+ uio_seg_t seg = UIO_USERSPACE;
+ if (to->type & ITER_KVEC)
+ seg = UIO_SYSSPACE;
+ if (to->type & ITER_BVEC)
+ seg = UIO_BVEC;
+ ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
+ iov_iter_count(to), seg, to->iov_offset);
+ if (ret > 0)
+ iov_iter_advance(to, ret);
+ return (ret);
+}
+#else
+static ssize_t
+zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
+ unsigned long nr_segs, loff_t pos)
+{
+ ssize_t ret;
+ size_t count;
+
+ ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_WRITE);
+ if (ret)
+ return (ret);
+
+ return (zpl_iter_read_common(kiocb, iovp, nr_segs, count,
+ UIO_USERSPACE, 0));
+}
+#endif /* HAVE_VFS_RW_ITERATE */
+
+static ssize_t
+zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
+ unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
+ cred_t *cr, size_t skip)
+{
+ ssize_t wrote;
+ uio_t uio = { { 0 }, 0 };
+ int error;
+ fstrans_cookie_t cookie;
+
+ if (flags & O_APPEND)
+ *ppos = i_size_read(ip);
+
+ uio.uio_iov = iovp;
+ uio.uio_iovcnt = nr_segs;
+ uio.uio_loffset = *ppos;
+ uio.uio_segflg = segment;
+ uio.uio_limit = MAXOFFSET_T;
+ uio.uio_resid = count;
+ uio.uio_skip = skip;
+
+ cookie = spl_fstrans_mark();
+ error = -zfs_write(ip, &uio, flags, cr);
+ spl_fstrans_unmark(cookie);
+ if (error < 0)
+ return (error);
+
+ wrote = count - uio.uio_resid;
+ *ppos += wrote;
+
+ return (wrote);
+}
+
+inline ssize_t
+zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
+ uio_seg_t segment, int flags, cred_t *cr)
+{
+ struct iovec iov;
+
+ iov.iov_base = (void *)buf;
+ iov.iov_len = len;
+
+ return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
+ flags, cr, 0));
+}
+
+static ssize_t
+zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
+ unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
+{
+ cred_t *cr = CRED();
+ struct file *filp = kiocb->ki_filp;
+ ssize_t wrote;
+ unsigned int f_flags = filp->f_flags;
+
+ f_flags |= zfs_io_flags(kiocb);
+ crhold(cr);
+ wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
+ nr_segs, &kiocb->ki_pos, seg, f_flags, cr, skip);
+ crfree(cr);
+
+ return (wrote);
+}
+
+#if defined(HAVE_VFS_RW_ITERATE)
+static ssize_t
+zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
+{
+ size_t count;
+ ssize_t ret;
+ uio_seg_t seg = UIO_USERSPACE;
+
+#ifndef HAVE_GENERIC_WRITE_CHECKS_KIOCB
+ struct file *file = kiocb->ki_filp;
+ struct address_space *mapping = file->f_mapping;
+ struct inode *ip = mapping->host;
+ int isblk = S_ISBLK(ip->i_mode);
+
+ count = iov_iter_count(from);
+ ret = generic_write_checks(file, &kiocb->ki_pos, &count, isblk);
+ if (ret)
+ return (ret);
+#else
+ /*
+ * XXX - ideally this check should be in the same lock region with
+ * write operations, so that there's no TOCTTOU race when doing
+ * append and someone else grow the file.
+ */
+ ret = generic_write_checks(kiocb, from);
+ if (ret <= 0)
+ return (ret);
+ count = ret;
+#endif
+
+ if (from->type & ITER_KVEC)
+ seg = UIO_SYSSPACE;
+ if (from->type & ITER_BVEC)
+ seg = UIO_BVEC;
+
+ ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
+ count, seg, from->iov_offset);
+ if (ret > 0)
+ iov_iter_advance(from, ret);
+
+ return (ret);
+}
+#else
+static ssize_t
+zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
+ unsigned long nr_segs, loff_t pos)
+{
+ struct file *file = kiocb->ki_filp;
+ struct address_space *mapping = file->f_mapping;
+ struct inode *ip = mapping->host;
+ int isblk = S_ISBLK(ip->i_mode);
+ size_t count;
+ ssize_t ret;
+
+ ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_READ);
+ if (ret)
+ return (ret);
+
+ ret = generic_write_checks(file, &pos, &count, isblk);
+ if (ret)
+ return (ret);
+
+ return (zpl_iter_write_common(kiocb, iovp, nr_segs, count,
+ UIO_USERSPACE, 0));
+}
+#endif /* HAVE_VFS_RW_ITERATE */
+
+#if defined(HAVE_VFS_RW_ITERATE)
+static ssize_t
+zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
+{
+ if (rw == WRITE)
+ return (zpl_iter_write(kiocb, iter));
+ else
+ return (zpl_iter_read(kiocb, iter));
+}
+#if defined(HAVE_VFS_DIRECT_IO_ITER)
+static ssize_t
+zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
+{
+ return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
+}
+#elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
+static ssize_t
+zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
+{
+ ASSERT3S(pos, ==, kiocb->ki_pos);
+ return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
+}
+#elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
+static ssize_t
+zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
+{
+ ASSERT3S(pos, ==, kiocb->ki_pos);
+ return (zpl_direct_IO_impl(rw, kiocb, iter));
+}
+#else
+#error "Unknown direct IO interface"
+#endif
+
+#else
+
+#if defined(HAVE_VFS_DIRECT_IO_IOVEC)
+static ssize_t
+zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iovp,
+ loff_t pos, unsigned long nr_segs)
+{
+ if (rw == WRITE)
+ return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
+ else
+ return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
+}
+#else
+#error "Unknown direct IO interface"
+#endif
+
+#endif /* HAVE_VFS_RW_ITERATE */
+
+static loff_t
+zpl_llseek(struct file *filp, loff_t offset, int whence)
+{
+#if defined(SEEK_HOLE) && defined(SEEK_DATA)
+ fstrans_cookie_t cookie;
+
+ if (whence == SEEK_DATA || whence == SEEK_HOLE) {
+ struct inode *ip = filp->f_mapping->host;
+ loff_t maxbytes = ip->i_sb->s_maxbytes;
+ loff_t error;
+
+ spl_inode_lock_shared(ip);
+ cookie = spl_fstrans_mark();
+ error = -zfs_holey(ip, whence, &offset);
+ spl_fstrans_unmark(cookie);
+ if (error == 0)
+ error = lseek_execute(filp, ip, offset, maxbytes);
+ spl_inode_unlock_shared(ip);
+
+ return (error);
+ }
+#endif /* SEEK_HOLE && SEEK_DATA */
+
+ return (generic_file_llseek(filp, offset, whence));
+}
+
+/*
+ * It's worth taking a moment to describe how mmap is implemented
+ * for zfs because it differs considerably from other Linux filesystems.
+ * However, this issue is handled the same way under OpenSolaris.
+ *
+ * The issue is that by design zfs bypasses the Linux page cache and
+ * leaves all caching up to the ARC. This has been shown to work
+ * well for the common read(2)/write(2) case. However, mmap(2)
+ * is problem because it relies on being tightly integrated with the
+ * page cache. To handle this we cache mmap'ed files twice, once in
+ * the ARC and a second time in the page cache. The code is careful
+ * to keep both copies synchronized.
+ *
+ * When a file with an mmap'ed region is written to using write(2)
+ * both the data in the ARC and existing pages in the page cache
+ * are updated. For a read(2) data will be read first from the page
+ * cache then the ARC if needed. Neither a write(2) or read(2) will
+ * will ever result in new pages being added to the page cache.
+ *
+ * New pages are added to the page cache only via .readpage() which
+ * is called when the vfs needs to read a page off disk to back the
+ * virtual memory region. These pages may be modified without
+ * notifying the ARC and will be written out periodically via
+ * .writepage(). This will occur due to either a sync or the usual
+ * page aging behavior. Note because a read(2) of a mmap'ed file
+ * will always check the page cache first even when the ARC is out
+ * of date correct data will still be returned.
+ *
+ * While this implementation ensures correct behavior it does have
+ * have some drawbacks. The most obvious of which is that it
+ * increases the required memory footprint when access mmap'ed
+ * files. It also adds additional complexity to the code keeping
+ * both caches synchronized.
+ *
+ * Longer term it may be possible to cleanly resolve this wart by
+ * mapping page cache pages directly on to the ARC buffers. The
+ * Linux address space operations are flexible enough to allow
+ * selection of which pages back a particular index. The trick
+ * would be working out the details of which subsystem is in
+ * charge, the ARC, the page cache, or both. It may also prove
+ * helpful to move the ARC buffers to a scatter-gather lists
+ * rather than a vmalloc'ed region.
+ */
+static int
+zpl_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct inode *ip = filp->f_mapping->host;
+ znode_t *zp = ITOZ(ip);
+ int error;
+ fstrans_cookie_t cookie;
+
+ cookie = spl_fstrans_mark();
+ error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
+ (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
+ spl_fstrans_unmark(cookie);
+ if (error)
+ return (error);
+
+ error = generic_file_mmap(filp, vma);
+ if (error)
+ return (error);
+
+ mutex_enter(&zp->z_lock);
+ zp->z_is_mapped = B_TRUE;
+ mutex_exit(&zp->z_lock);
+
+ return (error);
+}
+
+/*
+ * Populate a page with data for the Linux page cache. This function is
+ * only used to support mmap(2). There will be an identical copy of the
+ * data in the ARC which is kept up to date via .write() and .writepage().
+ *
+ * Current this function relies on zpl_read_common() and the O_DIRECT
+ * flag to read in a page. This works but the more correct way is to
+ * update zfs_fillpage() to be Linux friendly and use that interface.
+ */
+static int
+zpl_readpage(struct file *filp, struct page *pp)
+{
+ struct inode *ip;
+ struct page *pl[1];
+ int error = 0;
+ fstrans_cookie_t cookie;
+
+ ASSERT(PageLocked(pp));
+ ip = pp->mapping->host;
+ pl[0] = pp;
+
+ cookie = spl_fstrans_mark();
+ error = -zfs_getpage(ip, pl, 1);
+ spl_fstrans_unmark(cookie);
+
+ if (error) {
+ SetPageError(pp);
+ ClearPageUptodate(pp);
+ } else {
+ ClearPageError(pp);
+ SetPageUptodate(pp);
+ flush_dcache_page(pp);
+ }
+
+ unlock_page(pp);
+ return (error);
+}
+
+/*
+ * Populate a set of pages with data for the Linux page cache. This
+ * function will only be called for read ahead and never for demand
+ * paging. For simplicity, the code relies on read_cache_pages() to
+ * correctly lock each page for IO and call zpl_readpage().
+ */
+static int
+zpl_readpages(struct file *filp, struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages)
+{
+ return (read_cache_pages(mapping, pages,
+ (filler_t *)zpl_readpage, filp));
+}
+
+static int
+zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
+{
+ struct address_space *mapping = data;
+ fstrans_cookie_t cookie;
+
+ ASSERT(PageLocked(pp));
+ ASSERT(!PageWriteback(pp));
+
+ cookie = spl_fstrans_mark();
+ (void) zfs_putpage(mapping->host, pp, wbc);
+ spl_fstrans_unmark(cookie);
+
+ return (0);
+}
+
+static int
+zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
+{
+ znode_t *zp = ITOZ(mapping->host);
+ zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
+ enum writeback_sync_modes sync_mode;
+ int result;
+
+ ZFS_ENTER(zfsvfs);
+ if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
+ wbc->sync_mode = WB_SYNC_ALL;
+ ZFS_EXIT(zfsvfs);
+ sync_mode = wbc->sync_mode;
+
+ /*
+ * We don't want to run write_cache_pages() in SYNC mode here, because
+ * that would make putpage() wait for a single page to be committed to
+ * disk every single time, resulting in atrocious performance. Instead
+ * we run it once in non-SYNC mode so that the ZIL gets all the data,
+ * and then we commit it all in one go.
+ */
+ wbc->sync_mode = WB_SYNC_NONE;
+ result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
+ if (sync_mode != wbc->sync_mode) {
+ ZFS_ENTER(zfsvfs);
+ ZFS_VERIFY_ZP(zp);
+ if (zfsvfs->z_log != NULL)
+ zil_commit(zfsvfs->z_log, zp->z_id);
+ ZFS_EXIT(zfsvfs);
+
+ /*
+ * We need to call write_cache_pages() again (we can't just
+ * return after the commit) because the previous call in
+ * non-SYNC mode does not guarantee that we got all the dirty
+ * pages (see the implementation of write_cache_pages() for
+ * details). That being said, this is a no-op in most cases.
+ */
+ wbc->sync_mode = sync_mode;
+ result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
+ }
+ return (result);
+}
+
+/*
+ * Write out dirty pages to the ARC, this function is only required to
+ * support mmap(2). Mapped pages may be dirtied by memory operations
+ * which never call .write(). These dirty pages are kept in sync with
+ * the ARC buffers via this hook.
+ */
+static int
+zpl_writepage(struct page *pp, struct writeback_control *wbc)
+{
+ if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
+ wbc->sync_mode = WB_SYNC_ALL;
+
+ return (zpl_putpage(pp, wbc, pp->mapping));
+}
+
+/*
+ * The flag combination which matches the behavior of zfs_space() is
+ * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
+ * flag was introduced in the 2.6.38 kernel.
+ *
+ * The original mode=0 (allocate space) behavior can be reasonably emulated
+ * by checking if enough space exists and creating a sparse file, as real
+ * persistent space reservation is not possible due to COW, snapshots, etc.
+ */
+static long
+zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
+{
+ cred_t *cr = CRED();
+ loff_t olen;
+ fstrans_cookie_t cookie;
+ int error = 0;
+
+ if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0)
+ return (-EOPNOTSUPP);
+
+ if (offset < 0 || len <= 0)
+ return (-EINVAL);
+
+ spl_inode_lock(ip);
+ olen = i_size_read(ip);
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ if (mode & FALLOC_FL_PUNCH_HOLE) {
+ flock64_t bf;
+
+ if (offset > olen)
+ goto out_unmark;
+
+ if (offset + len > olen)
+ len = olen - offset;
+ bf.l_type = F_WRLCK;
+ bf.l_whence = SEEK_SET;
+ bf.l_start = offset;
+ bf.l_len = len;
+ bf.l_pid = 0;
+
+ error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
+ } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
+ unsigned int percent = zfs_fallocate_reserve_percent;
+ struct kstatfs statfs;
+
+ /* Legacy mode, disable fallocate compatibility. */
+ if (percent == 0) {
+ error = -EOPNOTSUPP;
+ goto out_unmark;
+ }
+
+ /*
+ * Use zfs_statvfs() instead of dmu_objset_space() since it
+ * also checks project quota limits, which are relevant here.
+ */
+ error = zfs_statvfs(ip, &statfs);
+ if (error)
+ goto out_unmark;
+
+ /*
+ * Shrink available space a bit to account for overhead/races.
+ * We know the product previously fit into availbytes from
+ * dmu_objset_space(), so the smaller product will also fit.
+ */
+ if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
+ error = -ENOSPC;
+ goto out_unmark;
+ }
+ if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
+ error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
+ }
+out_unmark:
+ spl_fstrans_unmark(cookie);
+ spl_inode_unlock(ip);
+
+ crfree(cr);
+
+ return (error);
+}
+
+static long
+zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
+{
+ return zpl_fallocate_common(file_inode(filp),
+ mode, offset, len);
+}
+
+#define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
+#define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
+
+static uint32_t
+__zpl_ioctl_getflags(struct inode *ip)
+{
+ uint64_t zfs_flags = ITOZ(ip)->z_pflags;
+ uint32_t ioctl_flags = 0;
+
+ if (zfs_flags & ZFS_IMMUTABLE)
+ ioctl_flags |= FS_IMMUTABLE_FL;
+
+ if (zfs_flags & ZFS_APPENDONLY)
+ ioctl_flags |= FS_APPEND_FL;
+
+ if (zfs_flags & ZFS_NODUMP)
+ ioctl_flags |= FS_NODUMP_FL;
+
+ if (zfs_flags & ZFS_PROJINHERIT)
+ ioctl_flags |= ZFS_PROJINHERIT_FL;
+
+ return (ioctl_flags & ZFS_FL_USER_VISIBLE);
+}
+
+/*
+ * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
+ * attributes common to both Linux and Solaris are mapped.
+ */
+static int
+zpl_ioctl_getflags(struct file *filp, void __user *arg)
+{
+ uint32_t flags;
+ int err;
+
+ flags = __zpl_ioctl_getflags(file_inode(filp));
+ err = copy_to_user(arg, &flags, sizeof (flags));
+
+ return (err);
+}
+
+/*
+ * fchange() is a helper macro to detect if we have been asked to change a
+ * flag. This is ugly, but the requirement that we do this is a consequence of
+ * how the Linux file attribute interface was designed. Another consequence is
+ * that concurrent modification of files suffers from a TOCTOU race. Neither
+ * are things we can fix without modifying the kernel-userland interface, which
+ * is outside of our jurisdiction.
+ */
+
+#define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
+
+static int
+__zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
+{
+ uint64_t zfs_flags = ITOZ(ip)->z_pflags;
+ xoptattr_t *xoap;
+
+ if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
+ ZFS_PROJINHERIT_FL))
+ return (-EOPNOTSUPP);
+
+ if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
+ return (-EACCES);
+
+ if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
+ fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
+ !capable(CAP_LINUX_IMMUTABLE))
+ return (-EACCES);
+
+ if (!inode_owner_or_capable(ip))
+ return (-EACCES);
+
+ xva_init(xva);
+ xoap = xva_getxoptattr(xva);
+
+ XVA_SET_REQ(xva, XAT_IMMUTABLE);
+ if (ioctl_flags & FS_IMMUTABLE_FL)
+ xoap->xoa_immutable = B_TRUE;
+
+ XVA_SET_REQ(xva, XAT_APPENDONLY);
+ if (ioctl_flags & FS_APPEND_FL)
+ xoap->xoa_appendonly = B_TRUE;
+
+ XVA_SET_REQ(xva, XAT_NODUMP);
+ if (ioctl_flags & FS_NODUMP_FL)
+ xoap->xoa_nodump = B_TRUE;
+
+ XVA_SET_REQ(xva, XAT_PROJINHERIT);
+ if (ioctl_flags & ZFS_PROJINHERIT_FL)
+ xoap->xoa_projinherit = B_TRUE;
+
+ return (0);
+}
+
+static int
+zpl_ioctl_setflags(struct file *filp, void __user *arg)
+{
+ struct inode *ip = file_inode(filp);
+ uint32_t flags;
+ cred_t *cr = CRED();
+ xvattr_t xva;
+ int err;
+ fstrans_cookie_t cookie;
+
+ if (copy_from_user(&flags, arg, sizeof (flags)))
+ return (-EFAULT);
+
+ err = __zpl_ioctl_setflags(ip, flags, &xva);
+ if (err)
+ return (err);
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+
+ return (err);
+}
+
+static int
+zpl_ioctl_getxattr(struct file *filp, void __user *arg)
+{
+ zfsxattr_t fsx = { 0 };
+ struct inode *ip = file_inode(filp);
+ int err;
+
+ fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
+ fsx.fsx_projid = ITOZ(ip)->z_projid;
+ err = copy_to_user(arg, &fsx, sizeof (fsx));
+
+ return (err);
+}
+
+static int
+zpl_ioctl_setxattr(struct file *filp, void __user *arg)
+{
+ struct inode *ip = file_inode(filp);
+ zfsxattr_t fsx;
+ cred_t *cr = CRED();
+ xvattr_t xva;
+ xoptattr_t *xoap;
+ int err;
+ fstrans_cookie_t cookie;
+
+ if (copy_from_user(&fsx, arg, sizeof (fsx)))
+ return (-EFAULT);
+
+ if (!zpl_is_valid_projid(fsx.fsx_projid))
+ return (-EINVAL);
+
+ err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
+ if (err)
+ return (err);
+
+ xoap = xva_getxoptattr(&xva);
+ XVA_SET_REQ(&xva, XAT_PROJID);
+ xoap->xoa_projid = fsx.fsx_projid;
+
+ crhold(cr);
+ cookie = spl_fstrans_mark();
+ err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
+ spl_fstrans_unmark(cookie);
+ crfree(cr);
+
+ return (err);
+}
+
+static long
+zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case FS_IOC_GETFLAGS:
+ return (zpl_ioctl_getflags(filp, (void *)arg));
+ case FS_IOC_SETFLAGS:
+ return (zpl_ioctl_setflags(filp, (void *)arg));
+ case ZFS_IOC_FSGETXATTR:
+ return (zpl_ioctl_getxattr(filp, (void *)arg));
+ case ZFS_IOC_FSSETXATTR:
+ return (zpl_ioctl_setxattr(filp, (void *)arg));
+ default:
+ return (-ENOTTY);
+ }
+}
+
+#ifdef CONFIG_COMPAT
+static long
+zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case FS_IOC32_GETFLAGS:
+ cmd = FS_IOC_GETFLAGS;
+ break;
+ case FS_IOC32_SETFLAGS:
+ cmd = FS_IOC_SETFLAGS;
+ break;
+ default:
+ return (-ENOTTY);
+ }
+ return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
+}
+#endif /* CONFIG_COMPAT */
+
+
+const struct address_space_operations zpl_address_space_operations = {
+ .readpages = zpl_readpages,
+ .readpage = zpl_readpage,
+ .writepage = zpl_writepage,
+ .writepages = zpl_writepages,
+ .direct_IO = zpl_direct_IO,
+};
+
+const struct file_operations zpl_file_operations = {
+ .open = zpl_open,
+ .release = zpl_release,
+ .llseek = zpl_llseek,
+#ifdef HAVE_VFS_RW_ITERATE
+#ifdef HAVE_NEW_SYNC_READ
+ .read = new_sync_read,
+ .write = new_sync_write,
+#endif
+ .read_iter = zpl_iter_read,
+ .write_iter = zpl_iter_write,
+#else
+ .read = do_sync_read,
+ .write = do_sync_write,
+ .aio_read = zpl_aio_read,
+ .aio_write = zpl_aio_write,
+#endif
+ .mmap = zpl_mmap,
+ .fsync = zpl_fsync,
+#ifdef HAVE_FILE_AIO_FSYNC
+ .aio_fsync = zpl_aio_fsync,
+#endif
+ .fallocate = zpl_fallocate,
+ .unlocked_ioctl = zpl_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = zpl_compat_ioctl,
+#endif
+};
+
+const struct file_operations zpl_dir_file_operations = {
+ .llseek = generic_file_llseek,
+ .read = generic_read_dir,
+#if defined(HAVE_VFS_ITERATE_SHARED)
+ .iterate_shared = zpl_iterate,
+#elif defined(HAVE_VFS_ITERATE)
+ .iterate = zpl_iterate,
+#else
+ .readdir = zpl_readdir,
+#endif
+ .fsync = zpl_fsync,
+ .unlocked_ioctl = zpl_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = zpl_compat_ioctl,
+#endif
+};
+
+/* BEGIN CSTYLED */
+module_param(zfs_fallocate_reserve_percent, uint, 0644);
+MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
+ "Percentage of length to use for the available capacity check");
+/* END CSTYLED */