aboutsummaryrefslogtreecommitdiff
path: root/pl/math/acos_2u.c
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/acos_2u.c')
-rw-r--r--pl/math/acos_2u.c100
1 files changed, 0 insertions, 100 deletions
diff --git a/pl/math/acos_2u.c b/pl/math/acos_2u.c
deleted file mode 100644
index 9ec6894f1d81..000000000000
--- a/pl/math/acos_2u.c
+++ /dev/null
@@ -1,100 +0,0 @@
-/*
- * Double-precision acos(x) function.
- *
- * Copyright (c) 2023, Arm Limited.
- * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
- */
-
-#include "math_config.h"
-#include "poly_scalar_f64.h"
-#include "pl_sig.h"
-#include "pl_test.h"
-
-#define AbsMask (0x7fffffffffffffff)
-#define Half (0x3fe0000000000000)
-#define One (0x3ff0000000000000)
-#define PiOver2 (0x1.921fb54442d18p+0)
-#define Pi (0x1.921fb54442d18p+1)
-#define Small (0x3c90000000000000) /* 2^-53. */
-#define Small16 (0x3c90)
-#define QNaN (0x7ff8)
-
-/* Fast implementation of double-precision acos(x) based on polynomial
- approximation of double-precision asin(x).
-
- For x < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct
- rounding.
-
- For |x| in [Small, 0.5], use the trigonometric identity
-
- acos(x) = pi/2 - asin(x)
-
- and use an order 11 polynomial P such that the final approximation of asin is
- an odd polynomial: asin(x) ~ x + x^3 * P(x^2).
-
- The largest observed error in this region is 1.18 ulps,
- acos(0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0
- want 0x1.0d54d1985c069p+0.
-
- For |x| in [0.5, 1.0], use the following development of acos(x) near x = 1
-
- acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z))
-
- where z = (1-x)/2, z is near 0 when x approaches 1, and P contributes to the
- approximation of asin near 0.
-
- The largest observed error in this region is 1.52 ulps,
- acos(0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1
- want 0x1.edbbedf8a7d6cp-1.
-
- For x in [-1.0, -0.5], use this other identity to deduce the negative inputs
- from their absolute value: acos(x) = pi - acos(-x). */
-double
-acos (double x)
-{
- uint64_t ix = asuint64 (x);
- uint64_t ia = ix & AbsMask;
- uint64_t ia16 = ia >> 48;
- double ax = asdouble (ia);
- uint64_t sign = ix & ~AbsMask;
-
- /* Special values and invalid range. */
- if (unlikely (ia16 == QNaN))
- return x;
- if (ia > One)
- return __math_invalid (x);
- if (ia16 < Small16)
- return PiOver2 - x;
-
- /* Evaluate polynomial Q(|x|) = z + z * z2 * P(z2) with
- z2 = x ^ 2 and z = |x| , if |x| < 0.5
- z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
- double z2 = ax < 0.5 ? x * x : fma (-0.5, ax, 0.5);
- double z = ax < 0.5 ? ax : sqrt (z2);
-
- /* Use a single polynomial approximation P for both intervals. */
- double z4 = z2 * z2;
- double z8 = z4 * z4;
- double z16 = z8 * z8;
- double p = estrin_11_f64 (z2, z4, z8, z16, __asin_poly);
-
- /* Finalize polynomial: z + z * z2 * P(z2). */
- p = fma (z * z2, p, z);
-
- /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
- = pi - 2 Q(|x|), for -1.0 < x <= -0.5
- = 2 Q(|x|) , for -0.5 < x < 0.0. */
- if (ax < 0.5)
- return PiOver2 - asdouble (asuint64 (p) | sign);
-
- return (x <= -0.5) ? fma (-2.0, p, Pi) : 2.0 * p;
-}
-
-PL_SIG (S, D, 1, acos, -1.0, 1.0)
-PL_TEST_ULP (acos, 1.02)
-PL_TEST_INTERVAL (acos, 0, Small, 5000)
-PL_TEST_INTERVAL (acos, Small, 0.5, 50000)
-PL_TEST_INTERVAL (acos, 0.5, 1.0, 50000)
-PL_TEST_INTERVAL (acos, 1.0, 0x1p11, 50000)
-PL_TEST_INTERVAL (acos, 0x1p11, inf, 20000)
-PL_TEST_INTERVAL (acos, -0, -inf, 20000)