aboutsummaryrefslogtreecommitdiff
path: root/pl/math/finite_pow.h
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/finite_pow.h')
-rw-r--r--pl/math/finite_pow.h365
1 files changed, 0 insertions, 365 deletions
diff --git a/pl/math/finite_pow.h b/pl/math/finite_pow.h
deleted file mode 100644
index 8944d4fae625..000000000000
--- a/pl/math/finite_pow.h
+++ /dev/null
@@ -1,365 +0,0 @@
-/*
- * Double-precision x^y function.
- *
- * Copyright (c) 2018-2023, Arm Limited.
- * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
- */
-
-#include "math_config.h"
-
-/* Scalar version of pow used for fallbacks in vector implementations. */
-
-/* Data is defined in v_pow_log_data.c. */
-#define N_LOG (1 << V_POW_LOG_TABLE_BITS)
-#define Off 0x3fe6955500000000
-#define As __v_pow_log_data.poly
-
-/* Data is defined in v_pow_exp_data.c. */
-#define N_EXP (1 << V_POW_EXP_TABLE_BITS)
-#define SignBias (0x800 << V_POW_EXP_TABLE_BITS)
-#define SmallExp 0x3c9 /* top12(0x1p-54). */
-#define BigExp 0x408 /* top12(512.0). */
-#define ThresExp 0x03f /* BigExp - SmallExp. */
-#define InvLn2N __v_pow_exp_data.n_over_ln2
-#define Ln2HiN __v_pow_exp_data.ln2_over_n_hi
-#define Ln2LoN __v_pow_exp_data.ln2_over_n_lo
-#define SBits __v_pow_exp_data.sbits
-#define Cs __v_pow_exp_data.poly
-
-/* Constants associated with pow. */
-#define SmallPowX 0x001 /* top12(0x1p-126). */
-#define BigPowX 0x7ff /* top12(INFINITY). */
-#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */
-#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */
-#define BigPowY 0x43e /* top12(0x1.749p62). */
-#define ThresPowY 0x080 /* BigPowY - SmallPowY. */
-
-/* Top 12 bits of a double (sign and exponent bits). */
-static inline uint32_t
-top12 (double x)
-{
- return asuint64 (x) >> 52;
-}
-
-/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
- additional 15 bits precision. IX is the bit representation of x, but
- normalized in the subnormal range using the sign bit for the exponent. */
-static inline double
-log_inline (uint64_t ix, double *tail)
-{
- /* x = 2^k z; where z is in range [Off,2*Off) and exact.
- The range is split into N subintervals.
- The ith subinterval contains z and c is near its center. */
- uint64_t tmp = ix - Off;
- int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1);
- int k = (int64_t) tmp >> 52; /* arithmetic shift. */
- uint64_t iz = ix - (tmp & 0xfffULL << 52);
- double z = asdouble (iz);
- double kd = (double) k;
-
- /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
- double invc = __v_pow_log_data.invc[i];
- double logc = __v_pow_log_data.logc[i];
- double logctail = __v_pow_log_data.logctail[i];
-
- /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
- |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
- double r = fma (z, invc, -1.0);
-
- /* k*Ln2 + log(c) + r. */
- double t1 = kd * __v_pow_log_data.ln2_hi + logc;
- double t2 = t1 + r;
- double lo1 = kd * __v_pow_log_data.ln2_lo + logctail;
- double lo2 = t1 - t2 + r;
-
- /* Evaluation is optimized assuming superscalar pipelined execution. */
- double ar = As[0] * r;
- double ar2 = r * ar;
- double ar3 = r * ar2;
- /* k*Ln2 + log(c) + r + A[0]*r*r. */
- double hi = t2 + ar2;
- double lo3 = fma (ar, r, -ar2);
- double lo4 = t2 - hi + ar2;
- /* p = log1p(r) - r - A[0]*r*r. */
- double p = (ar3
- * (As[1] + r * As[2]
- + ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6]))));
- double lo = lo1 + lo2 + lo3 + lo4 + p;
- double y = hi + lo;
- *tail = hi - y + lo;
- return y;
-}
-
-/* Handle cases that may overflow or underflow when computing the result that
- is scale*(1+TMP) without intermediate rounding. The bit representation of
- scale is in SBITS, however it has a computed exponent that may have
- overflown into the sign bit so that needs to be adjusted before using it as
- a double. (int32_t)KI is the k used in the argument reduction and exponent
- adjustment of scale, positive k here means the result may overflow and
- negative k means the result may underflow. */
-static inline double
-special_case (double tmp, uint64_t sbits, uint64_t ki)
-{
- double scale, y;
-
- if ((ki & 0x80000000) == 0)
- {
- /* k > 0, the exponent of scale might have overflowed by <= 460. */
- sbits -= 1009ull << 52;
- scale = asdouble (sbits);
- y = 0x1p1009 * (scale + scale * tmp);
- return check_oflow (eval_as_double (y));
- }
- /* k < 0, need special care in the subnormal range. */
- sbits += 1022ull << 52;
- /* Note: sbits is signed scale. */
- scale = asdouble (sbits);
- y = scale + scale * tmp;
-#if WANT_SIMD_EXCEPT
- if (fabs (y) < 1.0)
- {
- /* Round y to the right precision before scaling it into the subnormal
- range to avoid double rounding that can cause 0.5+E/2 ulp error where
- E is the worst-case ulp error outside the subnormal range. So this
- is only useful if the goal is better than 1 ulp worst-case error. */
- double hi, lo, one = 1.0;
- if (y < 0.0)
- one = -1.0;
- lo = scale - y + scale * tmp;
- hi = one + y;
- lo = one - hi + y + lo;
- y = eval_as_double (hi + lo) - one;
- /* Fix the sign of 0. */
- if (y == 0.0)
- y = asdouble (sbits & 0x8000000000000000);
- /* The underflow exception needs to be signaled explicitly. */
- force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
- }
-#endif
- y = 0x1p-1022 * y;
- return check_uflow (eval_as_double (y));
-}
-
-/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
- The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */
-static inline double
-exp_inline (double x, double xtail, uint32_t sign_bias)
-{
- uint32_t abstop = top12 (x) & 0x7ff;
- if (unlikely (abstop - SmallExp >= ThresExp))
- {
- if (abstop - SmallExp >= 0x80000000)
- {
- /* Avoid spurious underflow for tiny x. */
- /* Note: 0 is common input. */
- return sign_bias ? -1.0 : 1.0;
- }
- if (abstop >= top12 (1024.0))
- {
- /* Note: inf and nan are already handled. */
- /* Skip errno handling. */
-#if WANT_SIMD_EXCEPT
- return asuint64 (x) >> 63 ? __math_uflow (sign_bias)
- : __math_oflow (sign_bias);
-#else
- double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY;
- return sign_bias ? -res_uoflow : res_uoflow;
-#endif
- }
- /* Large x is special cased below. */
- abstop = 0;
- }
-
- /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
- /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
- double z = InvLn2N * x;
- double kd = round (z);
- uint64_t ki = lround (z);
- double r = x - kd * Ln2HiN - kd * Ln2LoN;
- /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
- r += xtail;
- /* 2^(k/N) ~= scale. */
- uint64_t idx = ki & (N_EXP - 1);
- uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS);
- /* This is only a valid scale when -1023*N < k < 1024*N. */
- uint64_t sbits = SBits[idx] + top;
- /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
- /* Evaluation is optimized assuming superscalar pipelined execution. */
- double r2 = r * r;
- double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]);
- if (unlikely (abstop == 0))
- return special_case (tmp, sbits, ki);
- double scale = asdouble (sbits);
- /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
- is no spurious underflow here even without fma. */
- return eval_as_double (scale + scale * tmp);
-}
-
-/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
- A version of exp_inline that is not inlined and for which sign_bias is
- equal to 0. */
-static double NOINLINE
-exp_nosignbias (double x, double xtail)
-{
- uint32_t abstop = top12 (x) & 0x7ff;
- if (unlikely (abstop - SmallExp >= ThresExp))
- {
- /* Avoid spurious underflow for tiny x. */
- if (abstop - SmallExp >= 0x80000000)
- return 1.0;
- /* Note: inf and nan are already handled. */
- if (abstop >= top12 (1024.0))
-#if WANT_SIMD_EXCEPT
- return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0);
-#else
- return asuint64 (x) >> 63 ? 0.0 : INFINITY;
-#endif
- /* Large x is special cased below. */
- abstop = 0;
- }
-
- /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
- /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */
- double z = InvLn2N * x;
- double kd = round (z);
- uint64_t ki = lround (z);
- double r = x - kd * Ln2HiN - kd * Ln2LoN;
- /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
- r += xtail;
- /* 2^(k/N) ~= scale. */
- uint64_t idx = ki & (N_EXP - 1);
- uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS);
- /* This is only a valid scale when -1023*N < k < 1024*N. */
- uint64_t sbits = SBits[idx] + top;
- /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
- double r2 = r * r;
- double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]);
- if (unlikely (abstop == 0))
- return special_case (tmp, sbits, ki);
- double scale = asdouble (sbits);
- /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
- is no spurious underflow here even without fma. */
- return eval_as_double (scale + scale * tmp);
-}
-
-/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
- the bit representation of a non-zero finite floating-point value. */
-static inline int
-checkint (uint64_t iy)
-{
- int e = iy >> 52 & 0x7ff;
- if (e < 0x3ff)
- return 0;
- if (e > 0x3ff + 52)
- return 2;
- if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
- return 0;
- if (iy & (1ULL << (0x3ff + 52 - e)))
- return 1;
- return 2;
-}
-
-/* Returns 1 if input is the bit representation of 0, infinity or nan. */
-static inline int
-zeroinfnan (uint64_t i)
-{
- return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
-}
-
-static double NOINLINE
-__pl_finite_pow (double x, double y)
-{
- uint32_t sign_bias = 0;
- uint64_t ix, iy;
- uint32_t topx, topy;
-
- ix = asuint64 (x);
- iy = asuint64 (y);
- topx = top12 (x);
- topy = top12 (y);
- if (unlikely (topx - SmallPowX >= ThresPowX
- || (topy & 0x7ff) - SmallPowY >= ThresPowY))
- {
- /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
- and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
- /* Special cases: (x < 0x1p-126 or inf or nan) or
- (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
- if (unlikely (zeroinfnan (iy)))
- {
- if (2 * iy == 0)
- return issignaling_inline (x) ? x + y : 1.0;
- if (ix == asuint64 (1.0))
- return issignaling_inline (y) ? x + y : 1.0;
- if (2 * ix > 2 * asuint64 (INFINITY)
- || 2 * iy > 2 * asuint64 (INFINITY))
- return x + y;
- if (2 * ix == 2 * asuint64 (1.0))
- return 1.0;
- if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
- return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
- return y * y;
- }
- if (unlikely (zeroinfnan (ix)))
- {
- double x2 = x * x;
- if (ix >> 63 && checkint (iy) == 1)
- {
- x2 = -x2;
- sign_bias = 1;
- }
-#if WANT_SIMD_EXCEPT
- if (2 * ix == 0 && iy >> 63)
- return __math_divzero (sign_bias);
-#endif
- /* Without the barrier some versions of clang hoist the 1/x2 and
- thus division by zero exception can be signaled spuriously. */
- return iy >> 63 ? opt_barrier_double (1 / x2) : x2;
- }
- /* Here x and y are non-zero finite. */
- if (ix >> 63)
- {
- /* Finite x < 0. */
- int yint = checkint (iy);
- if (yint == 0)
-#if WANT_SIMD_EXCEPT
- return __math_invalid (x);
-#else
- return __builtin_nan ("");
-#endif
- if (yint == 1)
- sign_bias = SignBias;
- ix &= 0x7fffffffffffffff;
- topx &= 0x7ff;
- }
- if ((topy & 0x7ff) - SmallPowY >= ThresPowY)
- {
- /* Note: sign_bias == 0 here because y is not odd. */
- if (ix == asuint64 (1.0))
- return 1.0;
- /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
- if ((topy & 0x7ff) < SmallPowY)
- return 1.0;
-#if WANT_SIMD_EXCEPT
- return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
- : __math_uflow (0);
-#else
- return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0;
-#endif
- }
- if (topx == 0)
- {
- /* Normalize subnormal x so exponent becomes negative. */
- /* Without the barrier some versions of clang evalutate the mul
- unconditionally causing spurious overflow exceptions. */
- ix = asuint64 (opt_barrier_double (x) * 0x1p52);
- ix &= 0x7fffffffffffffff;
- ix -= 52ULL << 52;
- }
- }
-
- double lo;
- double hi = log_inline (ix, &lo);
- double ehi = y * hi;
- double elo = y * lo + fma (y, hi, -ehi);
- return exp_inline (ehi, elo, sign_bias);
-}