diff options
Diffstat (limited to 'pl/math/finite_pow.h')
-rw-r--r-- | pl/math/finite_pow.h | 365 |
1 files changed, 0 insertions, 365 deletions
diff --git a/pl/math/finite_pow.h b/pl/math/finite_pow.h deleted file mode 100644 index 8944d4fae625..000000000000 --- a/pl/math/finite_pow.h +++ /dev/null @@ -1,365 +0,0 @@ -/* - * Double-precision x^y function. - * - * Copyright (c) 2018-2023, Arm Limited. - * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception - */ - -#include "math_config.h" - -/* Scalar version of pow used for fallbacks in vector implementations. */ - -/* Data is defined in v_pow_log_data.c. */ -#define N_LOG (1 << V_POW_LOG_TABLE_BITS) -#define Off 0x3fe6955500000000 -#define As __v_pow_log_data.poly - -/* Data is defined in v_pow_exp_data.c. */ -#define N_EXP (1 << V_POW_EXP_TABLE_BITS) -#define SignBias (0x800 << V_POW_EXP_TABLE_BITS) -#define SmallExp 0x3c9 /* top12(0x1p-54). */ -#define BigExp 0x408 /* top12(512.0). */ -#define ThresExp 0x03f /* BigExp - SmallExp. */ -#define InvLn2N __v_pow_exp_data.n_over_ln2 -#define Ln2HiN __v_pow_exp_data.ln2_over_n_hi -#define Ln2LoN __v_pow_exp_data.ln2_over_n_lo -#define SBits __v_pow_exp_data.sbits -#define Cs __v_pow_exp_data.poly - -/* Constants associated with pow. */ -#define SmallPowX 0x001 /* top12(0x1p-126). */ -#define BigPowX 0x7ff /* top12(INFINITY). */ -#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */ -#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */ -#define BigPowY 0x43e /* top12(0x1.749p62). */ -#define ThresPowY 0x080 /* BigPowY - SmallPowY. */ - -/* Top 12 bits of a double (sign and exponent bits). */ -static inline uint32_t -top12 (double x) -{ - return asuint64 (x) >> 52; -} - -/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about - additional 15 bits precision. IX is the bit representation of x, but - normalized in the subnormal range using the sign bit for the exponent. */ -static inline double -log_inline (uint64_t ix, double *tail) -{ - /* x = 2^k z; where z is in range [Off,2*Off) and exact. - The range is split into N subintervals. - The ith subinterval contains z and c is near its center. */ - uint64_t tmp = ix - Off; - int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1); - int k = (int64_t) tmp >> 52; /* arithmetic shift. */ - uint64_t iz = ix - (tmp & 0xfffULL << 52); - double z = asdouble (iz); - double kd = (double) k; - - /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ - double invc = __v_pow_log_data.invc[i]; - double logc = __v_pow_log_data.logc[i]; - double logctail = __v_pow_log_data.logctail[i]; - - /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and - |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ - double r = fma (z, invc, -1.0); - - /* k*Ln2 + log(c) + r. */ - double t1 = kd * __v_pow_log_data.ln2_hi + logc; - double t2 = t1 + r; - double lo1 = kd * __v_pow_log_data.ln2_lo + logctail; - double lo2 = t1 - t2 + r; - - /* Evaluation is optimized assuming superscalar pipelined execution. */ - double ar = As[0] * r; - double ar2 = r * ar; - double ar3 = r * ar2; - /* k*Ln2 + log(c) + r + A[0]*r*r. */ - double hi = t2 + ar2; - double lo3 = fma (ar, r, -ar2); - double lo4 = t2 - hi + ar2; - /* p = log1p(r) - r - A[0]*r*r. */ - double p = (ar3 - * (As[1] + r * As[2] - + ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6])))); - double lo = lo1 + lo2 + lo3 + lo4 + p; - double y = hi + lo; - *tail = hi - y + lo; - return y; -} - -/* Handle cases that may overflow or underflow when computing the result that - is scale*(1+TMP) without intermediate rounding. The bit representation of - scale is in SBITS, however it has a computed exponent that may have - overflown into the sign bit so that needs to be adjusted before using it as - a double. (int32_t)KI is the k used in the argument reduction and exponent - adjustment of scale, positive k here means the result may overflow and - negative k means the result may underflow. */ -static inline double -special_case (double tmp, uint64_t sbits, uint64_t ki) -{ - double scale, y; - - if ((ki & 0x80000000) == 0) - { - /* k > 0, the exponent of scale might have overflowed by <= 460. */ - sbits -= 1009ull << 52; - scale = asdouble (sbits); - y = 0x1p1009 * (scale + scale * tmp); - return check_oflow (eval_as_double (y)); - } - /* k < 0, need special care in the subnormal range. */ - sbits += 1022ull << 52; - /* Note: sbits is signed scale. */ - scale = asdouble (sbits); - y = scale + scale * tmp; -#if WANT_SIMD_EXCEPT - if (fabs (y) < 1.0) - { - /* Round y to the right precision before scaling it into the subnormal - range to avoid double rounding that can cause 0.5+E/2 ulp error where - E is the worst-case ulp error outside the subnormal range. So this - is only useful if the goal is better than 1 ulp worst-case error. */ - double hi, lo, one = 1.0; - if (y < 0.0) - one = -1.0; - lo = scale - y + scale * tmp; - hi = one + y; - lo = one - hi + y + lo; - y = eval_as_double (hi + lo) - one; - /* Fix the sign of 0. */ - if (y == 0.0) - y = asdouble (sbits & 0x8000000000000000); - /* The underflow exception needs to be signaled explicitly. */ - force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); - } -#endif - y = 0x1p-1022 * y; - return check_uflow (eval_as_double (y)); -} - -/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. - The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */ -static inline double -exp_inline (double x, double xtail, uint32_t sign_bias) -{ - uint32_t abstop = top12 (x) & 0x7ff; - if (unlikely (abstop - SmallExp >= ThresExp)) - { - if (abstop - SmallExp >= 0x80000000) - { - /* Avoid spurious underflow for tiny x. */ - /* Note: 0 is common input. */ - return sign_bias ? -1.0 : 1.0; - } - if (abstop >= top12 (1024.0)) - { - /* Note: inf and nan are already handled. */ - /* Skip errno handling. */ -#if WANT_SIMD_EXCEPT - return asuint64 (x) >> 63 ? __math_uflow (sign_bias) - : __math_oflow (sign_bias); -#else - double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY; - return sign_bias ? -res_uoflow : res_uoflow; -#endif - } - /* Large x is special cased below. */ - abstop = 0; - } - - /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ - /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ - double z = InvLn2N * x; - double kd = round (z); - uint64_t ki = lround (z); - double r = x - kd * Ln2HiN - kd * Ln2LoN; - /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ - r += xtail; - /* 2^(k/N) ~= scale. */ - uint64_t idx = ki & (N_EXP - 1); - uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS); - /* This is only a valid scale when -1023*N < k < 1024*N. */ - uint64_t sbits = SBits[idx] + top; - /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */ - /* Evaluation is optimized assuming superscalar pipelined execution. */ - double r2 = r * r; - double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); - if (unlikely (abstop == 0)) - return special_case (tmp, sbits, ki); - double scale = asdouble (sbits); - /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there - is no spurious underflow here even without fma. */ - return eval_as_double (scale + scale * tmp); -} - -/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. - A version of exp_inline that is not inlined and for which sign_bias is - equal to 0. */ -static double NOINLINE -exp_nosignbias (double x, double xtail) -{ - uint32_t abstop = top12 (x) & 0x7ff; - if (unlikely (abstop - SmallExp >= ThresExp)) - { - /* Avoid spurious underflow for tiny x. */ - if (abstop - SmallExp >= 0x80000000) - return 1.0; - /* Note: inf and nan are already handled. */ - if (abstop >= top12 (1024.0)) -#if WANT_SIMD_EXCEPT - return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0); -#else - return asuint64 (x) >> 63 ? 0.0 : INFINITY; -#endif - /* Large x is special cased below. */ - abstop = 0; - } - - /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ - /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */ - double z = InvLn2N * x; - double kd = round (z); - uint64_t ki = lround (z); - double r = x - kd * Ln2HiN - kd * Ln2LoN; - /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ - r += xtail; - /* 2^(k/N) ~= scale. */ - uint64_t idx = ki & (N_EXP - 1); - uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS); - /* This is only a valid scale when -1023*N < k < 1024*N. */ - uint64_t sbits = SBits[idx] + top; - /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ - double r2 = r * r; - double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); - if (unlikely (abstop == 0)) - return special_case (tmp, sbits, ki); - double scale = asdouble (sbits); - /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there - is no spurious underflow here even without fma. */ - return eval_as_double (scale + scale * tmp); -} - -/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is - the bit representation of a non-zero finite floating-point value. */ -static inline int -checkint (uint64_t iy) -{ - int e = iy >> 52 & 0x7ff; - if (e < 0x3ff) - return 0; - if (e > 0x3ff + 52) - return 2; - if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) - return 0; - if (iy & (1ULL << (0x3ff + 52 - e))) - return 1; - return 2; -} - -/* Returns 1 if input is the bit representation of 0, infinity or nan. */ -static inline int -zeroinfnan (uint64_t i) -{ - return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; -} - -static double NOINLINE -__pl_finite_pow (double x, double y) -{ - uint32_t sign_bias = 0; - uint64_t ix, iy; - uint32_t topx, topy; - - ix = asuint64 (x); - iy = asuint64 (y); - topx = top12 (x); - topy = top12 (y); - if (unlikely (topx - SmallPowX >= ThresPowX - || (topy & 0x7ff) - SmallPowY >= ThresPowY)) - { - /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 - and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ - /* Special cases: (x < 0x1p-126 or inf or nan) or - (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ - if (unlikely (zeroinfnan (iy))) - { - if (2 * iy == 0) - return issignaling_inline (x) ? x + y : 1.0; - if (ix == asuint64 (1.0)) - return issignaling_inline (y) ? x + y : 1.0; - if (2 * ix > 2 * asuint64 (INFINITY) - || 2 * iy > 2 * asuint64 (INFINITY)) - return x + y; - if (2 * ix == 2 * asuint64 (1.0)) - return 1.0; - if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63)) - return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ - return y * y; - } - if (unlikely (zeroinfnan (ix))) - { - double x2 = x * x; - if (ix >> 63 && checkint (iy) == 1) - { - x2 = -x2; - sign_bias = 1; - } -#if WANT_SIMD_EXCEPT - if (2 * ix == 0 && iy >> 63) - return __math_divzero (sign_bias); -#endif - /* Without the barrier some versions of clang hoist the 1/x2 and - thus division by zero exception can be signaled spuriously. */ - return iy >> 63 ? opt_barrier_double (1 / x2) : x2; - } - /* Here x and y are non-zero finite. */ - if (ix >> 63) - { - /* Finite x < 0. */ - int yint = checkint (iy); - if (yint == 0) -#if WANT_SIMD_EXCEPT - return __math_invalid (x); -#else - return __builtin_nan (""); -#endif - if (yint == 1) - sign_bias = SignBias; - ix &= 0x7fffffffffffffff; - topx &= 0x7ff; - } - if ((topy & 0x7ff) - SmallPowY >= ThresPowY) - { - /* Note: sign_bias == 0 here because y is not odd. */ - if (ix == asuint64 (1.0)) - return 1.0; - /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ - if ((topy & 0x7ff) < SmallPowY) - return 1.0; -#if WANT_SIMD_EXCEPT - return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0) - : __math_uflow (0); -#else - return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0; -#endif - } - if (topx == 0) - { - /* Normalize subnormal x so exponent becomes negative. */ - /* Without the barrier some versions of clang evalutate the mul - unconditionally causing spurious overflow exceptions. */ - ix = asuint64 (opt_barrier_double (x) * 0x1p52); - ix &= 0x7fffffffffffffff; - ix -= 52ULL << 52; - } - } - - double lo; - double hi = log_inline (ix, &lo); - double ehi = y * hi; - double elo = y * lo + fma (y, hi, -ehi); - return exp_inline (ehi, elo, sign_bias); -} |