aboutsummaryrefslogtreecommitdiff
path: root/pl/math/sv_acos_2u.c
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/sv_acos_2u.c')
-rw-r--r--pl/math/sv_acos_2u.c91
1 files changed, 0 insertions, 91 deletions
diff --git a/pl/math/sv_acos_2u.c b/pl/math/sv_acos_2u.c
deleted file mode 100644
index e06db6cae6af..000000000000
--- a/pl/math/sv_acos_2u.c
+++ /dev/null
@@ -1,91 +0,0 @@
-/*
- * Double-precision SVE acos(x) function.
- *
- * Copyright (c) 2023, Arm Limited.
- * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
- */
-
-#include "sv_math.h"
-#include "poly_sve_f64.h"
-#include "pl_sig.h"
-#include "pl_test.h"
-
-static const struct data
-{
- float64_t poly[12];
- float64_t pi, pi_over_2;
-} data = {
- /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
- on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
- .poly = { 0x1.555555555554ep-3, 0x1.3333333337233p-4, 0x1.6db6db67f6d9fp-5,
- 0x1.f1c71fbd29fbbp-6, 0x1.6e8b264d467d6p-6, 0x1.1c5997c357e9dp-6,
- 0x1.c86a22cd9389dp-7, 0x1.856073c22ebbep-7, 0x1.fd1151acb6bedp-8,
- 0x1.087182f799c1dp-6, -0x1.6602748120927p-7, 0x1.cfa0dd1f9478p-6, },
- .pi = 0x1.921fb54442d18p+1,
- .pi_over_2 = 0x1.921fb54442d18p+0,
-};
-
-/* Double-precision SVE implementation of vector acos(x).
-
- For |x| in [0, 0.5], use an order 11 polynomial P such that the final
- approximation of asin is an odd polynomial:
-
- acos(x) ~ pi/2 - (x + x^3 P(x^2)).
-
- The largest observed error in this region is 1.18 ulps,
- _ZGVsMxv_acos (0x1.fbc5fe28ee9e3p-2) got 0x1.0d4d0f55667f6p+0
- want 0x1.0d4d0f55667f7p+0.
-
- For |x| in [0.5, 1.0], use same approximation with a change of variable
-
- acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).
-
- The largest observed error in this region is 1.52 ulps,
- _ZGVsMxv_acos (0x1.24024271a500ap-1) got 0x1.ed82df4243f0dp-1
- want 0x1.ed82df4243f0bp-1. */
-svfloat64_t SV_NAME_D1 (acos) (svfloat64_t x, const svbool_t pg)
-{
- const struct data *d = ptr_barrier (&data);
-
- svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
- svfloat64_t ax = svabs_x (pg, x);
-
- svbool_t a_gt_half = svacgt (pg, x, 0.5);
-
- /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
- z2 = x ^ 2 and z = |x| , if |x| < 0.5
- z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
- svfloat64_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),
- svmul_x (pg, x, x));
- svfloat64_t z = svsqrt_m (ax, a_gt_half, z2);
-
- /* Use a single polynomial approximation P for both intervals. */
- svfloat64_t z4 = svmul_x (pg, z2, z2);
- svfloat64_t z8 = svmul_x (pg, z4, z4);
- svfloat64_t z16 = svmul_x (pg, z8, z8);
- svfloat64_t p = sv_estrin_11_f64_x (pg, z2, z4, z8, z16, d->poly);
-
- /* Finalize polynomial: z + z * z2 * P(z2). */
- p = svmla_x (pg, z, svmul_x (pg, z, z2), p);
-
- /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
- = 2 Q(|x|) , for 0.5 < x < 1.0
- = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */
- svfloat64_t y
- = svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (p), sign));
-
- svbool_t is_neg = svcmplt (pg, x, 0.0);
- svfloat64_t off = svdup_f64_z (is_neg, d->pi);
- svfloat64_t mul = svsel (a_gt_half, sv_f64 (2.0), sv_f64 (-1.0));
- svfloat64_t add = svsel (a_gt_half, off, sv_f64 (d->pi_over_2));
-
- return svmla_x (pg, add, mul, y);
-}
-
-PL_SIG (SV, D, 1, acos, -1.0, 1.0)
-PL_TEST_ULP (SV_NAME_D1 (acos), 1.02)
-PL_TEST_INTERVAL (SV_NAME_D1 (acos), 0, 0.5, 50000)
-PL_TEST_INTERVAL (SV_NAME_D1 (acos), 0.5, 1.0, 50000)
-PL_TEST_INTERVAL (SV_NAME_D1 (acos), 1.0, 0x1p11, 50000)
-PL_TEST_INTERVAL (SV_NAME_D1 (acos), 0x1p11, inf, 20000)
-PL_TEST_INTERVAL (SV_NAME_D1 (acos), -0, -inf, 20000)