aboutsummaryrefslogtreecommitdiff
path: root/runtime/src/kmp_tasking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/src/kmp_tasking.cpp')
-rw-r--r--runtime/src/kmp_tasking.cpp4293
1 files changed, 4293 insertions, 0 deletions
diff --git a/runtime/src/kmp_tasking.cpp b/runtime/src/kmp_tasking.cpp
new file mode 100644
index 000000000000..7292ed1452d2
--- /dev/null
+++ b/runtime/src/kmp_tasking.cpp
@@ -0,0 +1,4293 @@
+/*
+ * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
+ */
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "kmp.h"
+#include "kmp_i18n.h"
+#include "kmp_itt.h"
+#include "kmp_stats.h"
+#include "kmp_wait_release.h"
+#include "kmp_taskdeps.h"
+
+#if OMPT_SUPPORT
+#include "ompt-specific.h"
+#endif
+
+#include "tsan_annotations.h"
+
+/* forward declaration */
+static void __kmp_enable_tasking(kmp_task_team_t *task_team,
+ kmp_info_t *this_thr);
+static void __kmp_alloc_task_deque(kmp_info_t *thread,
+ kmp_thread_data_t *thread_data);
+static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
+ kmp_task_team_t *task_team);
+
+#if OMP_45_ENABLED
+static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
+#endif
+
+#ifdef BUILD_TIED_TASK_STACK
+
+// __kmp_trace_task_stack: print the tied tasks from the task stack in order
+// from top do bottom
+//
+// gtid: global thread identifier for thread containing stack
+// thread_data: thread data for task team thread containing stack
+// threshold: value above which the trace statement triggers
+// location: string identifying call site of this function (for trace)
+static void __kmp_trace_task_stack(kmp_int32 gtid,
+ kmp_thread_data_t *thread_data,
+ int threshold, char *location) {
+ kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
+ kmp_taskdata_t **stack_top = task_stack->ts_top;
+ kmp_int32 entries = task_stack->ts_entries;
+ kmp_taskdata_t *tied_task;
+
+ KA_TRACE(
+ threshold,
+ ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
+ "first_block = %p, stack_top = %p \n",
+ location, gtid, entries, task_stack->ts_first_block, stack_top));
+
+ KMP_DEBUG_ASSERT(stack_top != NULL);
+ KMP_DEBUG_ASSERT(entries > 0);
+
+ while (entries != 0) {
+ KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
+ // fix up ts_top if we need to pop from previous block
+ if (entries & TASK_STACK_INDEX_MASK == 0) {
+ kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
+
+ stack_block = stack_block->sb_prev;
+ stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
+ }
+
+ // finish bookkeeping
+ stack_top--;
+ entries--;
+
+ tied_task = *stack_top;
+
+ KMP_DEBUG_ASSERT(tied_task != NULL);
+ KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
+
+ KA_TRACE(threshold,
+ ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, "
+ "stack_top=%p, tied_task=%p\n",
+ location, gtid, entries, stack_top, tied_task));
+ }
+ KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
+
+ KA_TRACE(threshold,
+ ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
+ location, gtid));
+}
+
+// __kmp_init_task_stack: initialize the task stack for the first time
+// after a thread_data structure is created.
+// It should not be necessary to do this again (assuming the stack works).
+//
+// gtid: global thread identifier of calling thread
+// thread_data: thread data for task team thread containing stack
+static void __kmp_init_task_stack(kmp_int32 gtid,
+ kmp_thread_data_t *thread_data) {
+ kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
+ kmp_stack_block_t *first_block;
+
+ // set up the first block of the stack
+ first_block = &task_stack->ts_first_block;
+ task_stack->ts_top = (kmp_taskdata_t **)first_block;
+ memset((void *)first_block, '\0',
+ TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
+
+ // initialize the stack to be empty
+ task_stack->ts_entries = TASK_STACK_EMPTY;
+ first_block->sb_next = NULL;
+ first_block->sb_prev = NULL;
+}
+
+// __kmp_free_task_stack: free the task stack when thread_data is destroyed.
+//
+// gtid: global thread identifier for calling thread
+// thread_data: thread info for thread containing stack
+static void __kmp_free_task_stack(kmp_int32 gtid,
+ kmp_thread_data_t *thread_data) {
+ kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
+ kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
+
+ KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
+ // free from the second block of the stack
+ while (stack_block != NULL) {
+ kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
+
+ stack_block->sb_next = NULL;
+ stack_block->sb_prev = NULL;
+ if (stack_block != &task_stack->ts_first_block) {
+ __kmp_thread_free(thread,
+ stack_block); // free the block, if not the first
+ }
+ stack_block = next_block;
+ }
+ // initialize the stack to be empty
+ task_stack->ts_entries = 0;
+ task_stack->ts_top = NULL;
+}
+
+// __kmp_push_task_stack: Push the tied task onto the task stack.
+// Grow the stack if necessary by allocating another block.
+//
+// gtid: global thread identifier for calling thread
+// thread: thread info for thread containing stack
+// tied_task: the task to push on the stack
+static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
+ kmp_taskdata_t *tied_task) {
+ // GEH - need to consider what to do if tt_threads_data not allocated yet
+ kmp_thread_data_t *thread_data =
+ &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
+ kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
+
+ if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
+ return; // Don't push anything on stack if team or team tasks are serialized
+ }
+
+ KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
+ KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
+
+ KA_TRACE(20,
+ ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
+ gtid, thread, tied_task));
+ // Store entry
+ *(task_stack->ts_top) = tied_task;
+
+ // Do bookkeeping for next push
+ task_stack->ts_top++;
+ task_stack->ts_entries++;
+
+ if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
+ // Find beginning of this task block
+ kmp_stack_block_t *stack_block =
+ (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
+
+ // Check if we already have a block
+ if (stack_block->sb_next !=
+ NULL) { // reset ts_top to beginning of next block
+ task_stack->ts_top = &stack_block->sb_next->sb_block[0];
+ } else { // Alloc new block and link it up
+ kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
+ thread, sizeof(kmp_stack_block_t));
+
+ task_stack->ts_top = &new_block->sb_block[0];
+ stack_block->sb_next = new_block;
+ new_block->sb_prev = stack_block;
+ new_block->sb_next = NULL;
+
+ KA_TRACE(
+ 30,
+ ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
+ gtid, tied_task, new_block));
+ }
+ }
+ KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
+ tied_task));
+}
+
+// __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return
+// the task, just check to make sure it matches the ending task passed in.
+//
+// gtid: global thread identifier for the calling thread
+// thread: thread info structure containing stack
+// tied_task: the task popped off the stack
+// ending_task: the task that is ending (should match popped task)
+static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
+ kmp_taskdata_t *ending_task) {
+ // GEH - need to consider what to do if tt_threads_data not allocated yet
+ kmp_thread_data_t *thread_data =
+ &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
+ kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
+ kmp_taskdata_t *tied_task;
+
+ if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
+ // Don't pop anything from stack if team or team tasks are serialized
+ return;
+ }
+
+ KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
+ KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
+
+ KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
+ thread));
+
+ // fix up ts_top if we need to pop from previous block
+ if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
+ kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
+
+ stack_block = stack_block->sb_prev;
+ task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
+ }
+
+ // finish bookkeeping
+ task_stack->ts_top--;
+ task_stack->ts_entries--;
+
+ tied_task = *(task_stack->ts_top);
+
+ KMP_DEBUG_ASSERT(tied_task != NULL);
+ KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
+ KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
+
+ KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
+ tied_task));
+ return;
+}
+#endif /* BUILD_TIED_TASK_STACK */
+
+// returns 1 if new task is allowed to execute, 0 otherwise
+// checks Task Scheduling constraint (if requested) and
+// mutexinoutset dependencies if any
+static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
+ const kmp_taskdata_t *tasknew,
+ const kmp_taskdata_t *taskcurr) {
+ if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
+ // Check if the candidate obeys the Task Scheduling Constraints (TSC)
+ // only descendant of all deferred tied tasks can be scheduled, checking
+ // the last one is enough, as it in turn is the descendant of all others
+ kmp_taskdata_t *current = taskcurr->td_last_tied;
+ KMP_DEBUG_ASSERT(current != NULL);
+ // check if the task is not suspended on barrier
+ if (current->td_flags.tasktype == TASK_EXPLICIT ||
+ current->td_taskwait_thread > 0) { // <= 0 on barrier
+ kmp_int32 level = current->td_level;
+ kmp_taskdata_t *parent = tasknew->td_parent;
+ while (parent != current && parent->td_level > level) {
+ // check generation up to the level of the current task
+ parent = parent->td_parent;
+ KMP_DEBUG_ASSERT(parent != NULL);
+ }
+ if (parent != current)
+ return false;
+ }
+ }
+ // Check mutexinoutset dependencies, acquire locks
+ kmp_depnode_t *node = tasknew->td_depnode;
+ if (node && (node->dn.mtx_num_locks > 0)) {
+ for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
+ KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
+ if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
+ continue;
+ // could not get the lock, release previous locks
+ for (int j = i - 1; j >= 0; --j)
+ __kmp_release_lock(node->dn.mtx_locks[j], gtid);
+ return false;
+ }
+ // negative num_locks means all locks acquired successfully
+ node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
+ }
+ return true;
+}
+
+// __kmp_realloc_task_deque:
+// Re-allocates a task deque for a particular thread, copies the content from
+// the old deque and adjusts the necessary data structures relating to the
+// deque. This operation must be done with the deque_lock being held
+static void __kmp_realloc_task_deque(kmp_info_t *thread,
+ kmp_thread_data_t *thread_data) {
+ kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
+ kmp_int32 new_size = 2 * size;
+
+ KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
+ "%d] for thread_data %p\n",
+ __kmp_gtid_from_thread(thread), size, new_size, thread_data));
+
+ kmp_taskdata_t **new_deque =
+ (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
+
+ int i, j;
+ for (i = thread_data->td.td_deque_head, j = 0; j < size;
+ i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
+ new_deque[j] = thread_data->td.td_deque[i];
+
+ __kmp_free(thread_data->td.td_deque);
+
+ thread_data->td.td_deque_head = 0;
+ thread_data->td.td_deque_tail = size;
+ thread_data->td.td_deque = new_deque;
+ thread_data->td.td_deque_size = new_size;
+}
+
+// __kmp_push_task: Add a task to the thread's deque
+static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_task_team_t *task_team = thread->th.th_task_team;
+ kmp_int32 tid = __kmp_tid_from_gtid(gtid);
+ kmp_thread_data_t *thread_data;
+
+ KA_TRACE(20,
+ ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
+
+ if (taskdata->td_flags.tiedness == TASK_UNTIED) {
+ // untied task needs to increment counter so that the task structure is not
+ // freed prematurely
+ kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
+ KMP_DEBUG_USE_VAR(counter);
+ KA_TRACE(
+ 20,
+ ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
+ gtid, counter, taskdata));
+ }
+
+ // The first check avoids building task_team thread data if serialized
+ if (taskdata->td_flags.task_serial) {
+ KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
+ "TASK_NOT_PUSHED for task %p\n",
+ gtid, taskdata));
+ return TASK_NOT_PUSHED;
+ }
+
+ // Now that serialized tasks have returned, we can assume that we are not in
+ // immediate exec mode
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+ if (!KMP_TASKING_ENABLED(task_team)) {
+ __kmp_enable_tasking(task_team, thread);
+ }
+ KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
+ KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
+
+ // Find tasking deque specific to encountering thread
+ thread_data = &task_team->tt.tt_threads_data[tid];
+
+ // No lock needed since only owner can allocate
+ if (thread_data->td.td_deque == NULL) {
+ __kmp_alloc_task_deque(thread, thread_data);
+ }
+
+ int locked = 0;
+ // Check if deque is full
+ if (TCR_4(thread_data->td.td_deque_ntasks) >=
+ TASK_DEQUE_SIZE(thread_data->td)) {
+ if (__kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
+ thread->th.th_current_task)) {
+ KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
+ "TASK_NOT_PUSHED for task %p\n",
+ gtid, taskdata));
+ return TASK_NOT_PUSHED;
+ } else {
+ __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
+ locked = 1;
+ // expand deque to push the task which is not allowed to execute
+ __kmp_realloc_task_deque(thread, thread_data);
+ }
+ }
+ // Lock the deque for the task push operation
+ if (!locked) {
+ __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
+#if OMP_45_ENABLED
+ // Need to recheck as we can get a proxy task from thread outside of OpenMP
+ if (TCR_4(thread_data->td.td_deque_ntasks) >=
+ TASK_DEQUE_SIZE(thread_data->td)) {
+ if (__kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
+ thread->th.th_current_task)) {
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+ KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
+ "returning TASK_NOT_PUSHED for task %p\n",
+ gtid, taskdata));
+ return TASK_NOT_PUSHED;
+ } else {
+ // expand deque to push the task which is not allowed to execute
+ __kmp_realloc_task_deque(thread, thread_data);
+ }
+ }
+#endif
+ }
+ // Must have room since no thread can add tasks but calling thread
+ KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
+ TASK_DEQUE_SIZE(thread_data->td));
+
+ thread_data->td.td_deque[thread_data->td.td_deque_tail] =
+ taskdata; // Push taskdata
+ // Wrap index.
+ thread_data->td.td_deque_tail =
+ (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
+ TCW_4(thread_data->td.td_deque_ntasks,
+ TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
+
+ KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
+ "task=%p ntasks=%d head=%u tail=%u\n",
+ gtid, taskdata, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
+
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+
+ return TASK_SUCCESSFULLY_PUSHED;
+}
+
+// __kmp_pop_current_task_from_thread: set up current task from called thread
+// when team ends
+//
+// this_thr: thread structure to set current_task in.
+void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
+ KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
+ "this_thread=%p, curtask=%p, "
+ "curtask_parent=%p\n",
+ 0, this_thr, this_thr->th.th_current_task,
+ this_thr->th.th_current_task->td_parent));
+
+ this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
+
+ KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
+ "this_thread=%p, curtask=%p, "
+ "curtask_parent=%p\n",
+ 0, this_thr, this_thr->th.th_current_task,
+ this_thr->th.th_current_task->td_parent));
+}
+
+// __kmp_push_current_task_to_thread: set up current task in called thread for a
+// new team
+//
+// this_thr: thread structure to set up
+// team: team for implicit task data
+// tid: thread within team to set up
+void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
+ int tid) {
+ // current task of the thread is a parent of the new just created implicit
+ // tasks of new team
+ KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
+ "curtask=%p "
+ "parent_task=%p\n",
+ tid, this_thr, this_thr->th.th_current_task,
+ team->t.t_implicit_task_taskdata[tid].td_parent));
+
+ KMP_DEBUG_ASSERT(this_thr != NULL);
+
+ if (tid == 0) {
+ if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
+ team->t.t_implicit_task_taskdata[0].td_parent =
+ this_thr->th.th_current_task;
+ this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
+ }
+ } else {
+ team->t.t_implicit_task_taskdata[tid].td_parent =
+ team->t.t_implicit_task_taskdata[0].td_parent;
+ this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
+ }
+
+ KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
+ "curtask=%p "
+ "parent_task=%p\n",
+ tid, this_thr, this_thr->th.th_current_task,
+ team->t.t_implicit_task_taskdata[tid].td_parent));
+}
+
+// __kmp_task_start: bookkeeping for a task starting execution
+//
+// GTID: global thread id of calling thread
+// task: task starting execution
+// current_task: task suspending
+static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
+ kmp_taskdata_t *current_task) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_info_t *thread = __kmp_threads[gtid];
+
+ KA_TRACE(10,
+ ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
+ gtid, taskdata, current_task));
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
+
+ // mark currently executing task as suspended
+ // TODO: GEH - make sure root team implicit task is initialized properly.
+ // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
+ current_task->td_flags.executing = 0;
+
+// Add task to stack if tied
+#ifdef BUILD_TIED_TASK_STACK
+ if (taskdata->td_flags.tiedness == TASK_TIED) {
+ __kmp_push_task_stack(gtid, thread, taskdata);
+ }
+#endif /* BUILD_TIED_TASK_STACK */
+
+ // mark starting task as executing and as current task
+ thread->th.th_current_task = taskdata;
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
+ taskdata->td_flags.tiedness == TASK_UNTIED);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
+ taskdata->td_flags.tiedness == TASK_UNTIED);
+ taskdata->td_flags.started = 1;
+ taskdata->td_flags.executing = 1;
+ KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
+
+ // GEH TODO: shouldn't we pass some sort of location identifier here?
+ // APT: yes, we will pass location here.
+ // need to store current thread state (in a thread or taskdata structure)
+ // before setting work_state, otherwise wrong state is set after end of task
+
+ KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
+
+ return;
+}
+
+#if OMPT_SUPPORT
+//------------------------------------------------------------------------------
+// __ompt_task_init:
+// Initialize OMPT fields maintained by a task. This will only be called after
+// ompt_start_tool, so we already know whether ompt is enabled or not.
+
+static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
+ // The calls to __ompt_task_init already have the ompt_enabled condition.
+ task->ompt_task_info.task_data.value = 0;
+ task->ompt_task_info.frame.exit_frame = ompt_data_none;
+ task->ompt_task_info.frame.enter_frame = ompt_data_none;
+ task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
+ task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
+#if OMP_40_ENABLED
+ task->ompt_task_info.ndeps = 0;
+ task->ompt_task_info.deps = NULL;
+#endif /* OMP_40_ENABLED */
+}
+
+// __ompt_task_start:
+// Build and trigger task-begin event
+static inline void __ompt_task_start(kmp_task_t *task,
+ kmp_taskdata_t *current_task,
+ kmp_int32 gtid) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ ompt_task_status_t status = ompt_task_switch;
+ if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
+ status = ompt_task_yield;
+ __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
+ }
+ /* let OMPT know that we're about to run this task */
+ if (ompt_enabled.ompt_callback_task_schedule) {
+ ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
+ &(current_task->ompt_task_info.task_data), status,
+ &(taskdata->ompt_task_info.task_data));
+ }
+ taskdata->ompt_task_info.scheduling_parent = current_task;
+}
+
+// __ompt_task_finish:
+// Build and trigger final task-schedule event
+static inline void
+__ompt_task_finish(kmp_task_t *task, kmp_taskdata_t *resumed_task,
+ ompt_task_status_t status = ompt_task_complete) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
+ taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
+ status = ompt_task_cancel;
+ }
+
+ /* let OMPT know that we're returning to the callee task */
+ if (ompt_enabled.ompt_callback_task_schedule) {
+ ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
+ &(taskdata->ompt_task_info.task_data), status,
+ &((resumed_task ? resumed_task
+ : (taskdata->ompt_task_info.scheduling_parent
+ ? taskdata->ompt_task_info.scheduling_parent
+ : taskdata->td_parent))
+ ->ompt_task_info.task_data));
+ }
+}
+#endif
+
+template <bool ompt>
+static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *task,
+ void *frame_address,
+ void *return_address) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
+ "current_task=%p\n",
+ gtid, loc_ref, taskdata, current_task));
+
+ if (taskdata->td_flags.tiedness == TASK_UNTIED) {
+ // untied task needs to increment counter so that the task structure is not
+ // freed prematurely
+ kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
+ KMP_DEBUG_USE_VAR(counter);
+ KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
+ "incremented for task %p\n",
+ gtid, counter, taskdata));
+ }
+
+ taskdata->td_flags.task_serial =
+ 1; // Execute this task immediately, not deferred.
+ __kmp_task_start(gtid, task, current_task);
+
+#if OMPT_SUPPORT
+ if (ompt) {
+ if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
+ current_task->ompt_task_info.frame.enter_frame.ptr =
+ taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
+ current_task->ompt_task_info.frame.enter_frame_flags =
+ taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer;
+ }
+ if (ompt_enabled.ompt_callback_task_create) {
+ ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
+ ompt_callbacks.ompt_callback(ompt_callback_task_create)(
+ &(parent_info->task_data), &(parent_info->frame),
+ &(taskdata->ompt_task_info.task_data),
+ ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
+ return_address);
+ }
+ __ompt_task_start(task, current_task, gtid);
+ }
+#endif // OMPT_SUPPORT
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
+ loc_ref, taskdata));
+}
+
+#if OMPT_SUPPORT
+OMPT_NOINLINE
+static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *task,
+ void *frame_address,
+ void *return_address) {
+ __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
+ return_address);
+}
+#endif // OMPT_SUPPORT
+
+// __kmpc_omp_task_begin_if0: report that a given serialized task has started
+// execution
+//
+// loc_ref: source location information; points to beginning of task block.
+// gtid: global thread number.
+// task: task thunk for the started task.
+void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *task) {
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ OMPT_STORE_RETURN_ADDRESS(gtid);
+ __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
+ OMPT_GET_FRAME_ADDRESS(1),
+ OMPT_LOAD_RETURN_ADDRESS(gtid));
+ return;
+ }
+#endif
+ __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
+}
+
+#ifdef TASK_UNUSED
+// __kmpc_omp_task_begin: report that a given task has started execution
+// NEVER GENERATED BY COMPILER, DEPRECATED!!!
+void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
+ kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
+
+ KA_TRACE(
+ 10,
+ ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
+
+ __kmp_task_start(gtid, task, current_task);
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
+ loc_ref, KMP_TASK_TO_TASKDATA(task)));
+ return;
+}
+#endif // TASK_UNUSED
+
+// __kmp_free_task: free the current task space and the space for shareds
+//
+// gtid: Global thread ID of calling thread
+// taskdata: task to free
+// thread: thread data structure of caller
+static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
+ kmp_info_t *thread) {
+ KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
+ taskdata));
+
+ // Check to make sure all flags and counters have the correct values
+ KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
+ KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
+ taskdata->td_flags.task_serial == 1);
+ KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
+
+ taskdata->td_flags.freed = 1;
+ ANNOTATE_HAPPENS_BEFORE(taskdata);
+// deallocate the taskdata and shared variable blocks associated with this task
+#if USE_FAST_MEMORY
+ __kmp_fast_free(thread, taskdata);
+#else /* ! USE_FAST_MEMORY */
+ __kmp_thread_free(thread, taskdata);
+#endif
+
+ KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
+}
+
+// __kmp_free_task_and_ancestors: free the current task and ancestors without
+// children
+//
+// gtid: Global thread ID of calling thread
+// taskdata: task to free
+// thread: thread data structure of caller
+static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
+ kmp_taskdata_t *taskdata,
+ kmp_info_t *thread) {
+#if OMP_45_ENABLED
+ // Proxy tasks must always be allowed to free their parents
+ // because they can be run in background even in serial mode.
+ kmp_int32 team_serial =
+ (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
+ !taskdata->td_flags.proxy;
+#else
+ kmp_int32 team_serial =
+ taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser;
+#endif
+ KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
+
+ kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
+ KMP_DEBUG_ASSERT(children >= 0);
+
+ // Now, go up the ancestor tree to see if any ancestors can now be freed.
+ while (children == 0) {
+ kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
+
+ KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
+ "and freeing itself\n",
+ gtid, taskdata));
+
+ // --- Deallocate my ancestor task ---
+ __kmp_free_task(gtid, taskdata, thread);
+
+ taskdata = parent_taskdata;
+
+ if (team_serial)
+ return;
+ // Stop checking ancestors at implicit task instead of walking up ancestor
+ // tree to avoid premature deallocation of ancestors.
+ if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
+ if (taskdata->td_dephash) { // do we need to cleanup dephash?
+ int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
+ kmp_tasking_flags_t flags_old = taskdata->td_flags;
+ if (children == 0 && flags_old.complete == 1) {
+ kmp_tasking_flags_t flags_new = flags_old;
+ flags_new.complete = 0;
+ if (KMP_COMPARE_AND_STORE_ACQ32(
+ RCAST(kmp_int32 *, &taskdata->td_flags),
+ *RCAST(kmp_int32 *, &flags_old),
+ *RCAST(kmp_int32 *, &flags_new))) {
+ KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
+ "dephash of implicit task %p\n",
+ gtid, taskdata));
+ // cleanup dephash of finished implicit task
+ __kmp_dephash_free_entries(thread, taskdata->td_dephash);
+ }
+ }
+ }
+ return;
+ }
+ // Predecrement simulated by "- 1" calculation
+ children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
+ KMP_DEBUG_ASSERT(children >= 0);
+ }
+
+ KA_TRACE(
+ 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
+ "not freeing it yet\n",
+ gtid, taskdata, children));
+}
+
+// __kmp_task_finish: bookkeeping to do when a task finishes execution
+//
+// gtid: global thread ID for calling thread
+// task: task to be finished
+// resumed_task: task to be resumed. (may be NULL if task is serialized)
+template <bool ompt>
+static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
+ kmp_taskdata_t *resumed_task) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_info_t *thread = __kmp_threads[gtid];
+#if OMP_45_ENABLED
+ kmp_task_team_t *task_team =
+ thread->th.th_task_team; // might be NULL for serial teams...
+#endif // OMP_45_ENABLED
+ kmp_int32 children = 0;
+
+ KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
+ "task %p\n",
+ gtid, taskdata, resumed_task));
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
+
+// Pop task from stack if tied
+#ifdef BUILD_TIED_TASK_STACK
+ if (taskdata->td_flags.tiedness == TASK_TIED) {
+ __kmp_pop_task_stack(gtid, thread, taskdata);
+ }
+#endif /* BUILD_TIED_TASK_STACK */
+
+ if (taskdata->td_flags.tiedness == TASK_UNTIED) {
+ // untied task needs to check the counter so that the task structure is not
+ // freed prematurely
+ kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
+ KA_TRACE(
+ 20,
+ ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
+ gtid, counter, taskdata));
+ if (counter > 0) {
+ // untied task is not done, to be continued possibly by other thread, do
+ // not free it now
+ if (resumed_task == NULL) {
+ KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
+ resumed_task = taskdata->td_parent; // In a serialized task, the resumed
+ // task is the parent
+ }
+ thread->th.th_current_task = resumed_task; // restore current_task
+ resumed_task->td_flags.executing = 1; // resume previous task
+ KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
+ "resuming task %p\n",
+ gtid, taskdata, resumed_task));
+ return;
+ }
+ }
+#if OMPT_SUPPORT
+ if (ompt)
+ __ompt_task_finish(task, resumed_task);
+#endif
+
+ // Check mutexinoutset dependencies, release locks
+ kmp_depnode_t *node = taskdata->td_depnode;
+ if (node && (node->dn.mtx_num_locks < 0)) {
+ // negative num_locks means all locks were acquired
+ node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
+ for (int i = node->dn.mtx_num_locks - 1; i >= 0; --i) {
+ KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
+ __kmp_release_lock(node->dn.mtx_locks[i], gtid);
+ }
+ }
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
+ taskdata->td_flags.complete = 1; // mark the task as completed
+ KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
+
+ // Only need to keep track of count if team parallel and tasking not
+ // serialized
+ if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
+ // Predecrement simulated by "- 1" calculation
+ children =
+ KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
+ KMP_DEBUG_ASSERT(children >= 0);
+#if OMP_40_ENABLED
+ if (taskdata->td_taskgroup)
+ KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
+ __kmp_release_deps(gtid, taskdata);
+#if OMP_45_ENABLED
+ } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
+ // if we found proxy tasks there could exist a dependency chain
+ // with the proxy task as origin
+ __kmp_release_deps(gtid, taskdata);
+#endif // OMP_45_ENABLED
+#endif // OMP_40_ENABLED
+ }
+
+ // td_flags.executing must be marked as 0 after __kmp_release_deps has been
+ // called. Othertwise, if a task is executed immediately from the release_deps
+ // code, the flag will be reset to 1 again by this same function
+ KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
+ taskdata->td_flags.executing = 0; // suspend the finishing task
+
+ KA_TRACE(
+ 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
+ gtid, taskdata, children));
+
+#if OMP_40_ENABLED
+ /* If the tasks' destructor thunk flag has been set, we need to invoke the
+ destructor thunk that has been generated by the compiler. The code is
+ placed here, since at this point other tasks might have been released
+ hence overlapping the destructor invokations with some other work in the
+ released tasks. The OpenMP spec is not specific on when the destructors
+ are invoked, so we should be free to choose. */
+ if (taskdata->td_flags.destructors_thunk) {
+ kmp_routine_entry_t destr_thunk = task->data1.destructors;
+ KMP_ASSERT(destr_thunk);
+ destr_thunk(gtid, task);
+ }
+#endif // OMP_40_ENABLED
+
+ // bookkeeping for resuming task:
+ // GEH - note tasking_ser => task_serial
+ KMP_DEBUG_ASSERT(
+ (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
+ taskdata->td_flags.task_serial);
+ if (taskdata->td_flags.task_serial) {
+ if (resumed_task == NULL) {
+ resumed_task = taskdata->td_parent; // In a serialized task, the resumed
+ // task is the parent
+ }
+ } else {
+ KMP_DEBUG_ASSERT(resumed_task !=
+ NULL); // verify that resumed task is passed as arguemnt
+ }
+
+ // Free this task and then ancestor tasks if they have no children.
+ // Restore th_current_task first as suggested by John:
+ // johnmc: if an asynchronous inquiry peers into the runtime system
+ // it doesn't see the freed task as the current task.
+ thread->th.th_current_task = resumed_task;
+ __kmp_free_task_and_ancestors(gtid, taskdata, thread);
+
+ // TODO: GEH - make sure root team implicit task is initialized properly.
+ // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
+ resumed_task->td_flags.executing = 1; // resume previous task
+
+ KA_TRACE(
+ 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
+ gtid, taskdata, resumed_task));
+
+ return;
+}
+
+template <bool ompt>
+static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
+ kmp_int32 gtid,
+ kmp_task_t *task) {
+ KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
+ // this routine will provide task to resume
+ __kmp_task_finish<ompt>(gtid, task, NULL);
+
+ KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
+
+#if OMPT_SUPPORT
+ if (ompt) {
+ ompt_frame_t *ompt_frame;
+ __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
+ ompt_frame->enter_frame = ompt_data_none;
+ ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
+ }
+#endif
+
+ return;
+}
+
+#if OMPT_SUPPORT
+OMPT_NOINLINE
+void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *task) {
+ __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
+}
+#endif // OMPT_SUPPORT
+
+// __kmpc_omp_task_complete_if0: report that a task has completed execution
+//
+// loc_ref: source location information; points to end of task block.
+// gtid: global thread number.
+// task: task thunk for the completed task.
+void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *task) {
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
+ return;
+ }
+#endif
+ __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
+}
+
+#ifdef TASK_UNUSED
+// __kmpc_omp_task_complete: report that a task has completed execution
+// NEVER GENERATED BY COMPILER, DEPRECATED!!!
+void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *task) {
+ KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
+ loc_ref, KMP_TASK_TO_TASKDATA(task)));
+
+ __kmp_task_finish<false>(gtid, task,
+ NULL); // Not sure how to find task to resume
+
+ KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
+ loc_ref, KMP_TASK_TO_TASKDATA(task)));
+ return;
+}
+#endif // TASK_UNUSED
+
+// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
+// task for a given thread
+//
+// loc_ref: reference to source location of parallel region
+// this_thr: thread data structure corresponding to implicit task
+// team: team for this_thr
+// tid: thread id of given thread within team
+// set_curr_task: TRUE if need to push current task to thread
+// NOTE: Routine does not set up the implicit task ICVS. This is assumed to
+// have already been done elsewhere.
+// TODO: Get better loc_ref. Value passed in may be NULL
+void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
+ kmp_team_t *team, int tid, int set_curr_task) {
+ kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
+
+ KF_TRACE(
+ 10,
+ ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
+ tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
+
+ task->td_task_id = KMP_GEN_TASK_ID();
+ task->td_team = team;
+ // task->td_parent = NULL; // fix for CQ230101 (broken parent task info
+ // in debugger)
+ task->td_ident = loc_ref;
+ task->td_taskwait_ident = NULL;
+ task->td_taskwait_counter = 0;
+ task->td_taskwait_thread = 0;
+
+ task->td_flags.tiedness = TASK_TIED;
+ task->td_flags.tasktype = TASK_IMPLICIT;
+#if OMP_45_ENABLED
+ task->td_flags.proxy = TASK_FULL;
+#endif
+
+ // All implicit tasks are executed immediately, not deferred
+ task->td_flags.task_serial = 1;
+ task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
+ task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
+
+ task->td_flags.started = 1;
+ task->td_flags.executing = 1;
+ task->td_flags.complete = 0;
+ task->td_flags.freed = 0;
+
+#if OMP_40_ENABLED
+ task->td_depnode = NULL;
+#endif
+ task->td_last_tied = task;
+
+ if (set_curr_task) { // only do this init first time thread is created
+ KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
+ // Not used: don't need to deallocate implicit task
+ KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
+#if OMP_40_ENABLED
+ task->td_taskgroup = NULL; // An implicit task does not have taskgroup
+ task->td_dephash = NULL;
+#endif
+ __kmp_push_current_task_to_thread(this_thr, team, tid);
+ } else {
+ KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
+ KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
+ }
+
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled))
+ __ompt_task_init(task, tid);
+#endif
+
+ KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
+ team, task));
+}
+
+// __kmp_finish_implicit_task: Release resources associated to implicit tasks
+// at the end of parallel regions. Some resources are kept for reuse in the next
+// parallel region.
+//
+// thread: thread data structure corresponding to implicit task
+void __kmp_finish_implicit_task(kmp_info_t *thread) {
+ kmp_taskdata_t *task = thread->th.th_current_task;
+ if (task->td_dephash) {
+ int children;
+ task->td_flags.complete = 1;
+ children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
+ kmp_tasking_flags_t flags_old = task->td_flags;
+ if (children == 0 && flags_old.complete == 1) {
+ kmp_tasking_flags_t flags_new = flags_old;
+ flags_new.complete = 0;
+ if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
+ *RCAST(kmp_int32 *, &flags_old),
+ *RCAST(kmp_int32 *, &flags_new))) {
+ KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
+ "dephash of implicit task %p\n",
+ thread->th.th_info.ds.ds_gtid, task));
+ __kmp_dephash_free_entries(thread, task->td_dephash);
+ }
+ }
+ }
+}
+
+// __kmp_free_implicit_task: Release resources associated to implicit tasks
+// when these are destroyed regions
+//
+// thread: thread data structure corresponding to implicit task
+void __kmp_free_implicit_task(kmp_info_t *thread) {
+ kmp_taskdata_t *task = thread->th.th_current_task;
+ if (task && task->td_dephash) {
+ __kmp_dephash_free(thread, task->td_dephash);
+ task->td_dephash = NULL;
+ }
+}
+
+// Round up a size to a power of two specified by val: Used to insert padding
+// between structures co-allocated using a single malloc() call
+static size_t __kmp_round_up_to_val(size_t size, size_t val) {
+ if (size & (val - 1)) {
+ size &= ~(val - 1);
+ if (size <= KMP_SIZE_T_MAX - val) {
+ size += val; // Round up if there is no overflow.
+ }
+ }
+ return size;
+} // __kmp_round_up_to_va
+
+// __kmp_task_alloc: Allocate the taskdata and task data structures for a task
+//
+// loc_ref: source location information
+// gtid: global thread number.
+// flags: include tiedness & task type (explicit vs. implicit) of the ''new''
+// task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
+// sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including
+// private vars accessed in task.
+// sizeof_shareds: Size in bytes of array of pointers to shared vars accessed
+// in task.
+// task_entry: Pointer to task code entry point generated by compiler.
+// returns: a pointer to the allocated kmp_task_t structure (task).
+kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_tasking_flags_t *flags,
+ size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ kmp_routine_entry_t task_entry) {
+ kmp_task_t *task;
+ kmp_taskdata_t *taskdata;
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_team_t *team = thread->th.th_team;
+ kmp_taskdata_t *parent_task = thread->th.th_current_task;
+ size_t shareds_offset;
+
+ if (!TCR_4(__kmp_init_middle))
+ __kmp_middle_initialize();
+
+ KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
+ "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
+ gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
+ sizeof_shareds, task_entry));
+
+ if (parent_task->td_flags.final) {
+ if (flags->merged_if0) {
+ }
+ flags->final = 1;
+ }
+ if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
+ // Untied task encountered causes the TSC algorithm to check entire deque of
+ // the victim thread. If no untied task encountered, then checking the head
+ // of the deque should be enough.
+ KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
+ }
+
+#if OMP_45_ENABLED
+ if (flags->proxy == TASK_PROXY) {
+ flags->tiedness = TASK_UNTIED;
+ flags->merged_if0 = 1;
+
+ /* are we running in a sequential parallel or tskm_immediate_exec... we need
+ tasking support enabled */
+ if ((thread->th.th_task_team) == NULL) {
+ /* This should only happen if the team is serialized
+ setup a task team and propagate it to the thread */
+ KMP_DEBUG_ASSERT(team->t.t_serialized);
+ KA_TRACE(30,
+ ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
+ gtid));
+ __kmp_task_team_setup(
+ thread, team,
+ 1); // 1 indicates setup the current team regardless of nthreads
+ thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
+ }
+ kmp_task_team_t *task_team = thread->th.th_task_team;
+
+ /* tasking must be enabled now as the task might not be pushed */
+ if (!KMP_TASKING_ENABLED(task_team)) {
+ KA_TRACE(
+ 30,
+ ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
+ __kmp_enable_tasking(task_team, thread);
+ kmp_int32 tid = thread->th.th_info.ds.ds_tid;
+ kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
+ // No lock needed since only owner can allocate
+ if (thread_data->td.td_deque == NULL) {
+ __kmp_alloc_task_deque(thread, thread_data);
+ }
+ }
+
+ if (task_team->tt.tt_found_proxy_tasks == FALSE)
+ TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
+ }
+#endif
+
+ // Calculate shared structure offset including padding after kmp_task_t struct
+ // to align pointers in shared struct
+ shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
+ shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
+
+ // Allocate a kmp_taskdata_t block and a kmp_task_t block.
+ KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
+ shareds_offset));
+ KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
+ sizeof_shareds));
+
+// Avoid double allocation here by combining shareds with taskdata
+#if USE_FAST_MEMORY
+ taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
+ sizeof_shareds);
+#else /* ! USE_FAST_MEMORY */
+ taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
+ sizeof_shareds);
+#endif /* USE_FAST_MEMORY */
+ ANNOTATE_HAPPENS_AFTER(taskdata);
+
+ task = KMP_TASKDATA_TO_TASK(taskdata);
+
+// Make sure task & taskdata are aligned appropriately
+#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
+ KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
+ KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
+#else
+ KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
+ KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
+#endif
+ if (sizeof_shareds > 0) {
+ // Avoid double allocation here by combining shareds with taskdata
+ task->shareds = &((char *)taskdata)[shareds_offset];
+ // Make sure shareds struct is aligned to pointer size
+ KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
+ 0);
+ } else {
+ task->shareds = NULL;
+ }
+ task->routine = task_entry;
+ task->part_id = 0; // AC: Always start with 0 part id
+
+ taskdata->td_task_id = KMP_GEN_TASK_ID();
+ taskdata->td_team = team;
+ taskdata->td_alloc_thread = thread;
+ taskdata->td_parent = parent_task;
+ taskdata->td_level = parent_task->td_level + 1; // increment nesting level
+ KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
+ taskdata->td_ident = loc_ref;
+ taskdata->td_taskwait_ident = NULL;
+ taskdata->td_taskwait_counter = 0;
+ taskdata->td_taskwait_thread = 0;
+ KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
+#if OMP_45_ENABLED
+ // avoid copying icvs for proxy tasks
+ if (flags->proxy == TASK_FULL)
+#endif
+ copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
+
+ taskdata->td_flags.tiedness = flags->tiedness;
+ taskdata->td_flags.final = flags->final;
+ taskdata->td_flags.merged_if0 = flags->merged_if0;
+#if OMP_40_ENABLED
+ taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
+#endif // OMP_40_ENABLED
+#if OMP_45_ENABLED
+ taskdata->td_flags.proxy = flags->proxy;
+ taskdata->td_task_team = thread->th.th_task_team;
+ taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
+#endif
+ taskdata->td_flags.tasktype = TASK_EXPLICIT;
+
+ // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
+ taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
+
+ // GEH - TODO: fix this to copy parent task's value of team_serial flag
+ taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
+
+ // GEH - Note we serialize the task if the team is serialized to make sure
+ // implicit parallel region tasks are not left until program termination to
+ // execute. Also, it helps locality to execute immediately.
+
+ taskdata->td_flags.task_serial =
+ (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
+ taskdata->td_flags.tasking_ser);
+
+ taskdata->td_flags.started = 0;
+ taskdata->td_flags.executing = 0;
+ taskdata->td_flags.complete = 0;
+ taskdata->td_flags.freed = 0;
+
+ taskdata->td_flags.native = flags->native;
+
+ KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
+ // start at one because counts current task and children
+ KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
+#if OMP_40_ENABLED
+ taskdata->td_taskgroup =
+ parent_task->td_taskgroup; // task inherits taskgroup from the parent task
+ taskdata->td_dephash = NULL;
+ taskdata->td_depnode = NULL;
+#endif
+ if (flags->tiedness == TASK_UNTIED)
+ taskdata->td_last_tied = NULL; // will be set when the task is scheduled
+ else
+ taskdata->td_last_tied = taskdata;
+
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled))
+ __ompt_task_init(taskdata, gtid);
+#endif
+// Only need to keep track of child task counts if team parallel and tasking not
+// serialized or if it is a proxy task
+#if OMP_45_ENABLED
+ if (flags->proxy == TASK_PROXY ||
+ !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser))
+#else
+ if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser))
+#endif
+ {
+ KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
+#if OMP_40_ENABLED
+ if (parent_task->td_taskgroup)
+ KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
+#endif
+ // Only need to keep track of allocated child tasks for explicit tasks since
+ // implicit not deallocated
+ if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
+ KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
+ }
+ }
+
+ KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
+ gtid, taskdata, taskdata->td_parent));
+ ANNOTATE_HAPPENS_BEFORE(task);
+
+ return task;
+}
+
+kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_int32 flags, size_t sizeof_kmp_task_t,
+ size_t sizeof_shareds,
+ kmp_routine_entry_t task_entry) {
+ kmp_task_t *retval;
+ kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
+
+ input_flags->native = FALSE;
+// __kmp_task_alloc() sets up all other runtime flags
+
+#if OMP_45_ENABLED
+ KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s) "
+ "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
+ gtid, loc_ref, input_flags->tiedness ? "tied " : "untied",
+ input_flags->proxy ? "proxy" : "", sizeof_kmp_task_t,
+ sizeof_shareds, task_entry));
+#else
+ KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s) "
+ "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
+ gtid, loc_ref, input_flags->tiedness ? "tied " : "untied",
+ sizeof_kmp_task_t, sizeof_shareds, task_entry));
+#endif
+
+ retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
+ sizeof_shareds, task_entry);
+
+ KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
+
+ return retval;
+}
+
+#if OMP_50_ENABLED
+/*!
+@ingroup TASKING
+@param loc_ref location of the original task directive
+@param gtid Global Thread ID of encountering thread
+@param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
+task''
+@param naffins Number of affinity items
+@param affin_list List of affinity items
+@return Returns non-zero if registering affinity information was not successful.
+ Returns 0 if registration was successful
+This entry registers the affinity information attached to a task with the task
+thunk structure kmp_taskdata_t.
+*/
+kmp_int32
+__kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *new_task, kmp_int32 naffins,
+ kmp_task_affinity_info_t *affin_list) {
+ return 0;
+}
+#endif
+
+// __kmp_invoke_task: invoke the specified task
+//
+// gtid: global thread ID of caller
+// task: the task to invoke
+// current_task: the task to resume after task invokation
+static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
+ kmp_taskdata_t *current_task) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_info_t *thread;
+#if OMP_40_ENABLED
+ int discard = 0 /* false */;
+#endif
+ KA_TRACE(
+ 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
+ gtid, taskdata, current_task));
+ KMP_DEBUG_ASSERT(task);
+#if OMP_45_ENABLED
+ if (taskdata->td_flags.proxy == TASK_PROXY &&
+ taskdata->td_flags.complete == 1) {
+ // This is a proxy task that was already completed but it needs to run
+ // its bottom-half finish
+ KA_TRACE(
+ 30,
+ ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
+ gtid, taskdata));
+
+ __kmp_bottom_half_finish_proxy(gtid, task);
+
+ KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
+ "proxy task %p, resuming task %p\n",
+ gtid, taskdata, current_task));
+
+ return;
+ }
+#endif
+
+#if OMPT_SUPPORT
+ // For untied tasks, the first task executed only calls __kmpc_omp_task and
+ // does not execute code.
+ ompt_thread_info_t oldInfo;
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ // Store the threads states and restore them after the task
+ thread = __kmp_threads[gtid];
+ oldInfo = thread->th.ompt_thread_info;
+ thread->th.ompt_thread_info.wait_id = 0;
+ thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
+ ? ompt_state_work_serial
+ : ompt_state_work_parallel;
+ taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
+ }
+#endif
+
+#if OMP_45_ENABLED
+ // Proxy tasks are not handled by the runtime
+ if (taskdata->td_flags.proxy != TASK_PROXY) {
+#endif
+ ANNOTATE_HAPPENS_AFTER(task);
+ __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
+#if OMP_45_ENABLED
+ }
+#endif
+
+#if OMP_40_ENABLED
+ // TODO: cancel tasks if the parallel region has also been cancelled
+ // TODO: check if this sequence can be hoisted above __kmp_task_start
+ // if cancellation has been enabled for this run ...
+ if (__kmp_omp_cancellation) {
+ thread = __kmp_threads[gtid];
+ kmp_team_t *this_team = thread->th.th_team;
+ kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
+ if ((taskgroup && taskgroup->cancel_request) ||
+ (this_team->t.t_cancel_request == cancel_parallel)) {
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ ompt_data_t *task_data;
+ if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
+ __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
+ ompt_callbacks.ompt_callback(ompt_callback_cancel)(
+ task_data,
+ ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
+ : ompt_cancel_parallel) |
+ ompt_cancel_discarded_task,
+ NULL);
+ }
+#endif
+ KMP_COUNT_BLOCK(TASK_cancelled);
+ // this task belongs to a task group and we need to cancel it
+ discard = 1 /* true */;
+ }
+ }
+
+ // Invoke the task routine and pass in relevant data.
+ // Thunks generated by gcc take a different argument list.
+ if (!discard) {
+ if (taskdata->td_flags.tiedness == TASK_UNTIED) {
+ taskdata->td_last_tied = current_task->td_last_tied;
+ KMP_DEBUG_ASSERT(taskdata->td_last_tied);
+ }
+#if KMP_STATS_ENABLED
+ KMP_COUNT_BLOCK(TASK_executed);
+ switch (KMP_GET_THREAD_STATE()) {
+ case FORK_JOIN_BARRIER:
+ KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
+ break;
+ case PLAIN_BARRIER:
+ KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
+ break;
+ case TASKYIELD:
+ KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
+ break;
+ case TASKWAIT:
+ KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
+ break;
+ case TASKGROUP:
+ KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
+ break;
+ default:
+ KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
+ break;
+ }
+#endif // KMP_STATS_ENABLED
+#endif // OMP_40_ENABLED
+
+// OMPT task begin
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled))
+ __ompt_task_start(task, current_task, gtid);
+#endif
+
+#if USE_ITT_BUILD && USE_ITT_NOTIFY
+ kmp_uint64 cur_time;
+ kmp_int32 kmp_itt_count_task =
+ __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
+ current_task->td_flags.tasktype == TASK_IMPLICIT;
+ if (kmp_itt_count_task) {
+ thread = __kmp_threads[gtid];
+ // Time outer level explicit task on barrier for adjusting imbalance time
+ if (thread->th.th_bar_arrive_time)
+ cur_time = __itt_get_timestamp();
+ else
+ kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
+ }
+#endif
+
+#ifdef KMP_GOMP_COMPAT
+ if (taskdata->td_flags.native) {
+ ((void (*)(void *))(*(task->routine)))(task->shareds);
+ } else
+#endif /* KMP_GOMP_COMPAT */
+ {
+ (*(task->routine))(gtid, task);
+ }
+ KMP_POP_PARTITIONED_TIMER();
+
+#if USE_ITT_BUILD && USE_ITT_NOTIFY
+ if (kmp_itt_count_task) {
+ // Barrier imbalance - adjust arrive time with the task duration
+ thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
+ }
+#endif
+
+#if OMP_40_ENABLED
+ }
+#endif // OMP_40_ENABLED
+
+
+#if OMP_45_ENABLED
+ // Proxy tasks are not handled by the runtime
+ if (taskdata->td_flags.proxy != TASK_PROXY) {
+#endif
+ ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ thread->th.ompt_thread_info = oldInfo;
+ if (taskdata->td_flags.tiedness == TASK_TIED) {
+ taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
+ }
+ __kmp_task_finish<true>(gtid, task, current_task);
+ } else
+#endif
+ __kmp_task_finish<false>(gtid, task, current_task);
+#if OMP_45_ENABLED
+ }
+#endif
+
+ KA_TRACE(
+ 30,
+ ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
+ gtid, taskdata, current_task));
+ return;
+}
+
+// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
+//
+// loc_ref: location of original task pragma (ignored)
+// gtid: Global Thread ID of encountering thread
+// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
+// Returns:
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
+// be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
+// resumed later.
+kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *new_task) {
+ kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+
+ KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
+ loc_ref, new_taskdata));
+
+#if OMPT_SUPPORT
+ kmp_taskdata_t *parent;
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ parent = new_taskdata->td_parent;
+ if (ompt_enabled.ompt_callback_task_create) {
+ ompt_data_t task_data = ompt_data_none;
+ ompt_callbacks.ompt_callback(ompt_callback_task_create)(
+ parent ? &(parent->ompt_task_info.task_data) : &task_data,
+ parent ? &(parent->ompt_task_info.frame) : NULL,
+ &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
+ OMPT_GET_RETURN_ADDRESS(0));
+ }
+ }
+#endif
+
+ /* Should we execute the new task or queue it? For now, let's just always try
+ to queue it. If the queue fills up, then we'll execute it. */
+
+ if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
+ { // Execute this task immediately
+ kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
+ new_taskdata->td_flags.task_serial = 1;
+ __kmp_invoke_task(gtid, new_task, current_task);
+ }
+
+ KA_TRACE(
+ 10,
+ ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
+ "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
+ gtid, loc_ref, new_taskdata));
+
+ ANNOTATE_HAPPENS_BEFORE(new_task);
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ parent->ompt_task_info.frame.enter_frame = ompt_data_none;
+ }
+#endif
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+// __kmp_omp_task: Schedule a non-thread-switchable task for execution
+//
+// gtid: Global Thread ID of encountering thread
+// new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
+// serialize_immediate: if TRUE then if the task is executed immediately its
+// execution will be serialized
+// Returns:
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
+// be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
+// resumed later.
+kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
+ bool serialize_immediate) {
+ kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+
+/* Should we execute the new task or queue it? For now, let's just always try to
+ queue it. If the queue fills up, then we'll execute it. */
+#if OMP_45_ENABLED
+ if (new_taskdata->td_flags.proxy == TASK_PROXY ||
+ __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
+#else
+ if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
+#endif
+ { // Execute this task immediately
+ kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
+ if (serialize_immediate)
+ new_taskdata->td_flags.task_serial = 1;
+ __kmp_invoke_task(gtid, new_task, current_task);
+ }
+
+ ANNOTATE_HAPPENS_BEFORE(new_task);
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
+// non-thread-switchable task from the parent thread only!
+//
+// loc_ref: location of original task pragma (ignored)
+// gtid: Global Thread ID of encountering thread
+// new_task: non-thread-switchable task thunk allocated by
+// __kmp_omp_task_alloc()
+// Returns:
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
+// be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
+// resumed later.
+kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *new_task) {
+ kmp_int32 res;
+ KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
+
+#if KMP_DEBUG || OMPT_SUPPORT
+ kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+#endif
+ KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
+ new_taskdata));
+
+#if OMPT_SUPPORT
+ kmp_taskdata_t *parent = NULL;
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ if (!new_taskdata->td_flags.started) {
+ OMPT_STORE_RETURN_ADDRESS(gtid);
+ parent = new_taskdata->td_parent;
+ if (!parent->ompt_task_info.frame.enter_frame.ptr) {
+ parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
+ }
+ if (ompt_enabled.ompt_callback_task_create) {
+ ompt_data_t task_data = ompt_data_none;
+ ompt_callbacks.ompt_callback(ompt_callback_task_create)(
+ parent ? &(parent->ompt_task_info.task_data) : &task_data,
+ parent ? &(parent->ompt_task_info.frame) : NULL,
+ &(new_taskdata->ompt_task_info.task_data),
+ ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
+ OMPT_LOAD_RETURN_ADDRESS(gtid));
+ }
+ } else {
+ // We are scheduling the continuation of an UNTIED task.
+ // Scheduling back to the parent task.
+ __ompt_task_finish(new_task,
+ new_taskdata->ompt_task_info.scheduling_parent,
+ ompt_task_switch);
+ new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
+ }
+ }
+#endif
+
+ res = __kmp_omp_task(gtid, new_task, true);
+
+ KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
+ "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
+ gtid, loc_ref, new_taskdata));
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
+ parent->ompt_task_info.frame.enter_frame = ompt_data_none;
+ }
+#endif
+ return res;
+}
+
+// __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
+// a taskloop task with the correct OMPT return address
+//
+// loc_ref: location of original task pragma (ignored)
+// gtid: Global Thread ID of encountering thread
+// new_task: non-thread-switchable task thunk allocated by
+// __kmp_omp_task_alloc()
+// codeptr_ra: return address for OMPT callback
+// Returns:
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
+// be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
+// resumed later.
+kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
+ kmp_task_t *new_task, void *codeptr_ra) {
+ kmp_int32 res;
+ KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
+
+#if KMP_DEBUG || OMPT_SUPPORT
+ kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+#endif
+ KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
+ new_taskdata));
+
+#if OMPT_SUPPORT
+ kmp_taskdata_t *parent = NULL;
+ if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
+ parent = new_taskdata->td_parent;
+ if (!parent->ompt_task_info.frame.enter_frame.ptr)
+ parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
+ if (ompt_enabled.ompt_callback_task_create) {
+ ompt_data_t task_data = ompt_data_none;
+ ompt_callbacks.ompt_callback(ompt_callback_task_create)(
+ parent ? &(parent->ompt_task_info.task_data) : &task_data,
+ parent ? &(parent->ompt_task_info.frame) : NULL,
+ &(new_taskdata->ompt_task_info.task_data),
+ ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
+ codeptr_ra);
+ }
+ }
+#endif
+
+ res = __kmp_omp_task(gtid, new_task, true);
+
+ KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
+ "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
+ gtid, loc_ref, new_taskdata));
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
+ parent->ompt_task_info.frame.enter_frame = ompt_data_none;
+ }
+#endif
+ return res;
+}
+
+template <bool ompt>
+static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
+ void *frame_address,
+ void *return_address) {
+ kmp_taskdata_t *taskdata;
+ kmp_info_t *thread;
+ int thread_finished = FALSE;
+ KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
+
+ KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
+
+ if (__kmp_tasking_mode != tskm_immediate_exec) {
+ thread = __kmp_threads[gtid];
+ taskdata = thread->th.th_current_task;
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ ompt_data_t *my_task_data;
+ ompt_data_t *my_parallel_data;
+
+ if (ompt) {
+ my_task_data = &(taskdata->ompt_task_info.task_data);
+ my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
+
+ taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
+
+ if (ompt_enabled.ompt_callback_sync_region) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
+ ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
+ my_task_data, return_address);
+ }
+
+ if (ompt_enabled.ompt_callback_sync_region_wait) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
+ ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
+ my_task_data, return_address);
+ }
+ }
+#endif // OMPT_SUPPORT && OMPT_OPTIONAL
+
+// Debugger: The taskwait is active. Store location and thread encountered the
+// taskwait.
+#if USE_ITT_BUILD
+// Note: These values are used by ITT events as well.
+#endif /* USE_ITT_BUILD */
+ taskdata->td_taskwait_counter += 1;
+ taskdata->td_taskwait_ident = loc_ref;
+ taskdata->td_taskwait_thread = gtid + 1;
+
+#if USE_ITT_BUILD
+ void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
+ if (itt_sync_obj != NULL)
+ __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+
+ bool must_wait =
+ !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
+
+#if OMP_45_ENABLED
+ must_wait = must_wait || (thread->th.th_task_team != NULL &&
+ thread->th.th_task_team->tt.tt_found_proxy_tasks);
+#endif
+ if (must_wait) {
+ kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
+ &(taskdata->td_incomplete_child_tasks)),
+ 0U);
+ while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
+ flag.execute_tasks(thread, gtid, FALSE,
+ &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
+ __kmp_task_stealing_constraint);
+ }
+ }
+#if USE_ITT_BUILD
+ if (itt_sync_obj != NULL)
+ __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+
+ // Debugger: The taskwait is completed. Location remains, but thread is
+ // negated.
+ taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (ompt) {
+ if (ompt_enabled.ompt_callback_sync_region_wait) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
+ ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
+ my_task_data, return_address);
+ }
+ if (ompt_enabled.ompt_callback_sync_region) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
+ ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
+ my_task_data, return_address);
+ }
+ taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
+ }
+#endif // OMPT_SUPPORT && OMPT_OPTIONAL
+
+ ANNOTATE_HAPPENS_AFTER(taskdata);
+ }
+
+ KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
+ "returning TASK_CURRENT_NOT_QUEUED\n",
+ gtid, taskdata));
+
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+OMPT_NOINLINE
+static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
+ void *frame_address,
+ void *return_address) {
+ return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
+ return_address);
+}
+#endif // OMPT_SUPPORT && OMPT_OPTIONAL
+
+// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
+// complete
+kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ OMPT_STORE_RETURN_ADDRESS(gtid);
+ return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
+ OMPT_LOAD_RETURN_ADDRESS(gtid));
+ }
+#endif
+ return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
+}
+
+// __kmpc_omp_taskyield: switch to a different task
+kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
+ kmp_taskdata_t *taskdata;
+ kmp_info_t *thread;
+ int thread_finished = FALSE;
+
+ KMP_COUNT_BLOCK(OMP_TASKYIELD);
+ KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
+
+ KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
+ gtid, loc_ref, end_part));
+
+ if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
+ thread = __kmp_threads[gtid];
+ taskdata = thread->th.th_current_task;
+// Should we model this as a task wait or not?
+// Debugger: The taskwait is active. Store location and thread encountered the
+// taskwait.
+#if USE_ITT_BUILD
+// Note: These values are used by ITT events as well.
+#endif /* USE_ITT_BUILD */
+ taskdata->td_taskwait_counter += 1;
+ taskdata->td_taskwait_ident = loc_ref;
+ taskdata->td_taskwait_thread = gtid + 1;
+
+#if USE_ITT_BUILD
+ void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
+ if (itt_sync_obj != NULL)
+ __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+ if (!taskdata->td_flags.team_serial) {
+ kmp_task_team_t *task_team = thread->th.th_task_team;
+ if (task_team != NULL) {
+ if (KMP_TASKING_ENABLED(task_team)) {
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled))
+ thread->th.ompt_thread_info.ompt_task_yielded = 1;
+#endif
+ __kmp_execute_tasks_32(
+ thread, gtid, NULL, FALSE,
+ &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
+ __kmp_task_stealing_constraint);
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled))
+ thread->th.ompt_thread_info.ompt_task_yielded = 0;
+#endif
+ }
+ }
+ }
+#if USE_ITT_BUILD
+ if (itt_sync_obj != NULL)
+ __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+
+ // Debugger: The taskwait is completed. Location remains, but thread is
+ // negated.
+ taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
+ }
+
+ KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
+ "returning TASK_CURRENT_NOT_QUEUED\n",
+ gtid, taskdata));
+
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+#if OMP_50_ENABLED
+// Task Reduction implementation
+
+typedef struct kmp_task_red_flags {
+ unsigned lazy_priv : 1; // hint: (1) use lazy allocation (big objects)
+ unsigned reserved31 : 31;
+} kmp_task_red_flags_t;
+
+// internal structure for reduction data item related info
+typedef struct kmp_task_red_data {
+ void *reduce_shar; // shared reduction item
+ size_t reduce_size; // size of data item
+ void *reduce_priv; // thread specific data
+ void *reduce_pend; // end of private data for comparison op
+ void *reduce_init; // data initialization routine
+ void *reduce_fini; // data finalization routine
+ void *reduce_comb; // data combiner routine
+ kmp_task_red_flags_t flags; // flags for additional info from compiler
+} kmp_task_red_data_t;
+
+// structure sent us by compiler - one per reduction item
+typedef struct kmp_task_red_input {
+ void *reduce_shar; // shared reduction item
+ size_t reduce_size; // size of data item
+ void *reduce_init; // data initialization routine
+ void *reduce_fini; // data finalization routine
+ void *reduce_comb; // data combiner routine
+ kmp_task_red_flags_t flags; // flags for additional info from compiler
+} kmp_task_red_input_t;
+
+/*!
+@ingroup TASKING
+@param gtid Global thread ID
+@param num Number of data items to reduce
+@param data Array of data for reduction
+@return The taskgroup identifier
+
+Initialize task reduction for the taskgroup.
+*/
+void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
+ kmp_int32 nth = thread->th.th_team_nproc;
+ kmp_task_red_input_t *input = (kmp_task_red_input_t *)data;
+ kmp_task_red_data_t *arr;
+
+ // check input data just in case
+ KMP_ASSERT(tg != NULL);
+ KMP_ASSERT(data != NULL);
+ KMP_ASSERT(num > 0);
+ if (nth == 1) {
+ KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
+ gtid, tg));
+ return (void *)tg;
+ }
+ KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
+ gtid, tg, num));
+ arr = (kmp_task_red_data_t *)__kmp_thread_malloc(
+ thread, num * sizeof(kmp_task_red_data_t));
+ for (int i = 0; i < num; ++i) {
+ void (*f_init)(void *) = (void (*)(void *))(input[i].reduce_init);
+ size_t size = input[i].reduce_size - 1;
+ // round the size up to cache line per thread-specific item
+ size += CACHE_LINE - size % CACHE_LINE;
+ KMP_ASSERT(input[i].reduce_comb != NULL); // combiner is mandatory
+ arr[i].reduce_shar = input[i].reduce_shar;
+ arr[i].reduce_size = size;
+ arr[i].reduce_init = input[i].reduce_init;
+ arr[i].reduce_fini = input[i].reduce_fini;
+ arr[i].reduce_comb = input[i].reduce_comb;
+ arr[i].flags = input[i].flags;
+ if (!input[i].flags.lazy_priv) {
+ // allocate cache-line aligned block and fill it with zeros
+ arr[i].reduce_priv = __kmp_allocate(nth * size);
+ arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
+ if (f_init != NULL) {
+ // initialize thread-specific items
+ for (int j = 0; j < nth; ++j) {
+ f_init((char *)(arr[i].reduce_priv) + j * size);
+ }
+ }
+ } else {
+ // only allocate space for pointers now,
+ // objects will be lazily allocated/initialized once requested
+ arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
+ }
+ }
+ tg->reduce_data = (void *)arr;
+ tg->reduce_num_data = num;
+ return (void *)tg;
+}
+
+/*!
+@ingroup TASKING
+@param gtid Global thread ID
+@param tskgrp The taskgroup ID (optional)
+@param data Shared location of the item
+@return The pointer to per-thread data
+
+Get thread-specific location of data item
+*/
+void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_int32 nth = thread->th.th_team_nproc;
+ if (nth == 1)
+ return data; // nothing to do
+
+ kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
+ if (tg == NULL)
+ tg = thread->th.th_current_task->td_taskgroup;
+ KMP_ASSERT(tg != NULL);
+ kmp_task_red_data_t *arr = (kmp_task_red_data_t *)(tg->reduce_data);
+ kmp_int32 num = tg->reduce_num_data;
+ kmp_int32 tid = thread->th.th_info.ds.ds_tid;
+
+ KMP_ASSERT(data != NULL);
+ while (tg != NULL) {
+ for (int i = 0; i < num; ++i) {
+ if (!arr[i].flags.lazy_priv) {
+ if (data == arr[i].reduce_shar ||
+ (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
+ return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
+ } else {
+ // check shared location first
+ void **p_priv = (void **)(arr[i].reduce_priv);
+ if (data == arr[i].reduce_shar)
+ goto found;
+ // check if we get some thread specific location as parameter
+ for (int j = 0; j < nth; ++j)
+ if (data == p_priv[j])
+ goto found;
+ continue; // not found, continue search
+ found:
+ if (p_priv[tid] == NULL) {
+ // allocate thread specific object lazily
+ void (*f_init)(void *) = (void (*)(void *))(arr[i].reduce_init);
+ p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
+ if (f_init != NULL) {
+ f_init(p_priv[tid]);
+ }
+ }
+ return p_priv[tid];
+ }
+ }
+ tg = tg->parent;
+ arr = (kmp_task_red_data_t *)(tg->reduce_data);
+ num = tg->reduce_num_data;
+ }
+ KMP_ASSERT2(0, "Unknown task reduction item");
+ return NULL; // ERROR, this line never executed
+}
+
+// Finalize task reduction.
+// Called from __kmpc_end_taskgroup()
+static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
+ kmp_int32 nth = th->th.th_team_nproc;
+ KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
+ kmp_task_red_data_t *arr = (kmp_task_red_data_t *)tg->reduce_data;
+ kmp_int32 num = tg->reduce_num_data;
+ for (int i = 0; i < num; ++i) {
+ void *sh_data = arr[i].reduce_shar;
+ void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
+ void (*f_comb)(void *, void *) =
+ (void (*)(void *, void *))(arr[i].reduce_comb);
+ if (!arr[i].flags.lazy_priv) {
+ void *pr_data = arr[i].reduce_priv;
+ size_t size = arr[i].reduce_size;
+ for (int j = 0; j < nth; ++j) {
+ void *priv_data = (char *)pr_data + j * size;
+ f_comb(sh_data, priv_data); // combine results
+ if (f_fini)
+ f_fini(priv_data); // finalize if needed
+ }
+ } else {
+ void **pr_data = (void **)(arr[i].reduce_priv);
+ for (int j = 0; j < nth; ++j) {
+ if (pr_data[j] != NULL) {
+ f_comb(sh_data, pr_data[j]); // combine results
+ if (f_fini)
+ f_fini(pr_data[j]); // finalize if needed
+ __kmp_free(pr_data[j]);
+ }
+ }
+ }
+ __kmp_free(arr[i].reduce_priv);
+ }
+ __kmp_thread_free(th, arr);
+ tg->reduce_data = NULL;
+ tg->reduce_num_data = 0;
+}
+#endif
+
+#if OMP_40_ENABLED
+// __kmpc_taskgroup: Start a new taskgroup
+void __kmpc_taskgroup(ident_t *loc, int gtid) {
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskdata_t *taskdata = thread->th.th_current_task;
+ kmp_taskgroup_t *tg_new =
+ (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
+ KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
+ KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
+ KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
+ tg_new->parent = taskdata->td_taskgroup;
+#if OMP_50_ENABLED
+ tg_new->reduce_data = NULL;
+ tg_new->reduce_num_data = 0;
+#endif
+ taskdata->td_taskgroup = tg_new;
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
+ void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
+ if (!codeptr)
+ codeptr = OMPT_GET_RETURN_ADDRESS(0);
+ kmp_team_t *team = thread->th.th_team;
+ ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
+ // FIXME: I think this is wrong for lwt!
+ ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
+
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
+ ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
+ &(my_task_data), codeptr);
+ }
+#endif
+}
+
+// __kmpc_end_taskgroup: Wait until all tasks generated by the current task
+// and its descendants are complete
+void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskdata_t *taskdata = thread->th.th_current_task;
+ kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
+ int thread_finished = FALSE;
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ kmp_team_t *team;
+ ompt_data_t my_task_data;
+ ompt_data_t my_parallel_data;
+ void *codeptr;
+ if (UNLIKELY(ompt_enabled.enabled)) {
+ team = thread->th.th_team;
+ my_task_data = taskdata->ompt_task_info.task_data;
+ // FIXME: I think this is wrong for lwt!
+ my_parallel_data = team->t.ompt_team_info.parallel_data;
+ codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
+ if (!codeptr)
+ codeptr = OMPT_GET_RETURN_ADDRESS(0);
+ }
+#endif
+
+ KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
+ KMP_DEBUG_ASSERT(taskgroup != NULL);
+ KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
+
+ if (__kmp_tasking_mode != tskm_immediate_exec) {
+ // mark task as waiting not on a barrier
+ taskdata->td_taskwait_counter += 1;
+ taskdata->td_taskwait_ident = loc;
+ taskdata->td_taskwait_thread = gtid + 1;
+#if USE_ITT_BUILD
+ // For ITT the taskgroup wait is similar to taskwait until we need to
+ // distinguish them
+ void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
+ if (itt_sync_obj != NULL)
+ __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
+ ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
+ &(my_task_data), codeptr);
+ }
+#endif
+
+#if OMP_45_ENABLED
+ if (!taskdata->td_flags.team_serial ||
+ (thread->th.th_task_team != NULL &&
+ thread->th.th_task_team->tt.tt_found_proxy_tasks))
+#else
+ if (!taskdata->td_flags.team_serial)
+#endif
+ {
+ kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)),
+ 0U);
+ while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
+ flag.execute_tasks(thread, gtid, FALSE,
+ &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
+ __kmp_task_stealing_constraint);
+ }
+ }
+ taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
+ ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
+ &(my_task_data), codeptr);
+ }
+#endif
+
+#if USE_ITT_BUILD
+ if (itt_sync_obj != NULL)
+ __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+ }
+ KMP_DEBUG_ASSERT(taskgroup->count == 0);
+
+#if OMP_50_ENABLED
+ if (taskgroup->reduce_data != NULL) // need to reduce?
+ __kmp_task_reduction_fini(thread, taskgroup);
+#endif
+ // Restore parent taskgroup for the current task
+ taskdata->td_taskgroup = taskgroup->parent;
+ __kmp_thread_free(thread, taskgroup);
+
+ KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
+ gtid, taskdata));
+ ANNOTATE_HAPPENS_AFTER(taskdata);
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
+ ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
+ ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
+ &(my_task_data), codeptr);
+ }
+#endif
+}
+#endif
+
+// __kmp_remove_my_task: remove a task from my own deque
+static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
+ kmp_task_team_t *task_team,
+ kmp_int32 is_constrained) {
+ kmp_task_t *task;
+ kmp_taskdata_t *taskdata;
+ kmp_thread_data_t *thread_data;
+ kmp_uint32 tail;
+
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+ KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
+ NULL); // Caller should check this condition
+
+ thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
+
+ KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
+
+ if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
+ KA_TRACE(10,
+ ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
+ return NULL;
+ }
+
+ __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
+
+ if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+ KA_TRACE(10,
+ ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
+ return NULL;
+ }
+
+ tail = (thread_data->td.td_deque_tail - 1) &
+ TASK_DEQUE_MASK(thread_data->td); // Wrap index.
+ taskdata = thread_data->td.td_deque[tail];
+
+ if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
+ thread->th.th_current_task)) {
+ // The TSC does not allow to steal victim task
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+ KA_TRACE(10,
+ ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
+ return NULL;
+ }
+
+ thread_data->td.td_deque_tail = tail;
+ TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
+
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+
+ KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, taskdata, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
+
+ task = KMP_TASKDATA_TO_TASK(taskdata);
+ return task;
+}
+
+// __kmp_steal_task: remove a task from another thread's deque
+// Assume that calling thread has already checked existence of
+// task_team thread_data before calling this routine.
+static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
+ kmp_task_team_t *task_team,
+ std::atomic<kmp_int32> *unfinished_threads,
+ int *thread_finished,
+ kmp_int32 is_constrained) {
+ kmp_task_t *task;
+ kmp_taskdata_t *taskdata;
+ kmp_taskdata_t *current;
+ kmp_thread_data_t *victim_td, *threads_data;
+ kmp_int32 target;
+ kmp_int32 victim_tid;
+
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+
+ threads_data = task_team->tt.tt_threads_data;
+ KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
+
+ victim_tid = victim_thr->th.th_info.ds.ds_tid;
+ victim_td = &threads_data[victim_tid];
+
+ KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
+ "task_team=%p ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread(victim_thr), task_team,
+ victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
+ victim_td->td.td_deque_tail));
+
+ if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
+ KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
+ "task_team=%p ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread(victim_thr), task_team,
+ victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
+ victim_td->td.td_deque_tail));
+ return NULL;
+ }
+
+ __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
+
+ int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
+ // Check again after we acquire the lock
+ if (ntasks == 0) {
+ __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
+ KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
+ "task_team=%p ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
+ return NULL;
+ }
+
+ KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
+ current = __kmp_threads[gtid]->th.th_current_task;
+ taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
+ if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
+ // Bump head pointer and Wrap.
+ victim_td->td.td_deque_head =
+ (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
+ } else {
+ if (!task_team->tt.tt_untied_task_encountered) {
+ // The TSC does not allow to steal victim task
+ __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
+ KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
+ "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
+ return NULL;
+ }
+ int i;
+ // walk through victim's deque trying to steal any task
+ target = victim_td->td.td_deque_head;
+ taskdata = NULL;
+ for (i = 1; i < ntasks; ++i) {
+ target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
+ taskdata = victim_td->td.td_deque[target];
+ if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
+ break; // found victim task
+ } else {
+ taskdata = NULL;
+ }
+ }
+ if (taskdata == NULL) {
+ // No appropriate candidate to steal found
+ __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
+ KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
+ "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
+ return NULL;
+ }
+ int prev = target;
+ for (i = i + 1; i < ntasks; ++i) {
+ // shift remaining tasks in the deque left by 1
+ target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
+ victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
+ prev = target;
+ }
+ KMP_DEBUG_ASSERT(
+ victim_td->td.td_deque_tail ==
+ (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
+ victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
+ }
+ if (*thread_finished) {
+ // We need to un-mark this victim as a finished victim. This must be done
+ // before releasing the lock, or else other threads (starting with the
+ // master victim) might be prematurely released from the barrier!!!
+ kmp_int32 count;
+
+ count = KMP_ATOMIC_INC(unfinished_threads);
+
+ KA_TRACE(
+ 20,
+ ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
+ gtid, count + 1, task_team));
+
+ *thread_finished = FALSE;
+ }
+ TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
+
+ __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
+
+ KMP_COUNT_BLOCK(TASK_stolen);
+ KA_TRACE(10,
+ ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
+ "task_team=%p ntasks=%d head=%u tail=%u\n",
+ gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
+ ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
+
+ task = KMP_TASKDATA_TO_TASK(taskdata);
+ return task;
+}
+
+// __kmp_execute_tasks_template: Choose and execute tasks until either the
+// condition is statisfied (return true) or there are none left (return false).
+//
+// final_spin is TRUE if this is the spin at the release barrier.
+// thread_finished indicates whether the thread is finished executing all
+// the tasks it has on its deque, and is at the release barrier.
+// spinner is the location on which to spin.
+// spinner == NULL means only execute a single task and return.
+// checker is the value to check to terminate the spin.
+template <class C>
+static inline int __kmp_execute_tasks_template(
+ kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ kmp_task_team_t *task_team = thread->th.th_task_team;
+ kmp_thread_data_t *threads_data;
+ kmp_task_t *task;
+ kmp_info_t *other_thread;
+ kmp_taskdata_t *current_task = thread->th.th_current_task;
+ std::atomic<kmp_int32> *unfinished_threads;
+ kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
+ tid = thread->th.th_info.ds.ds_tid;
+
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+ KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
+
+ if (task_team == NULL || current_task == NULL)
+ return FALSE;
+
+ KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
+ "*thread_finished=%d\n",
+ gtid, final_spin, *thread_finished));
+
+ thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
+ threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
+ KMP_DEBUG_ASSERT(threads_data != NULL);
+
+ nthreads = task_team->tt.tt_nproc;
+ unfinished_threads = &(task_team->tt.tt_unfinished_threads);
+#if OMP_45_ENABLED
+ KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks);
+#else
+ KMP_DEBUG_ASSERT(nthreads > 1);
+#endif
+ KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
+
+ while (1) { // Outer loop keeps trying to find tasks in case of single thread
+ // getting tasks from target constructs
+ while (1) { // Inner loop to find a task and execute it
+ task = NULL;
+ if (use_own_tasks) { // check on own queue first
+ task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
+ }
+ if ((task == NULL) && (nthreads > 1)) { // Steal a task
+ int asleep = 1;
+ use_own_tasks = 0;
+ // Try to steal from the last place I stole from successfully.
+ if (victim_tid == -2) { // haven't stolen anything yet
+ victim_tid = threads_data[tid].td.td_deque_last_stolen;
+ if (victim_tid !=
+ -1) // if we have a last stolen from victim, get the thread
+ other_thread = threads_data[victim_tid].td.td_thr;
+ }
+ if (victim_tid != -1) { // found last victim
+ asleep = 0;
+ } else if (!new_victim) { // no recent steals and we haven't already
+ // used a new victim; select a random thread
+ do { // Find a different thread to steal work from.
+ // Pick a random thread. Initial plan was to cycle through all the
+ // threads, and only return if we tried to steal from every thread,
+ // and failed. Arch says that's not such a great idea.
+ victim_tid = __kmp_get_random(thread) % (nthreads - 1);
+ if (victim_tid >= tid) {
+ ++victim_tid; // Adjusts random distribution to exclude self
+ }
+ // Found a potential victim
+ other_thread = threads_data[victim_tid].td.td_thr;
+ // There is a slight chance that __kmp_enable_tasking() did not wake
+ // up all threads waiting at the barrier. If victim is sleeping,
+ // then wake it up. Since we were going to pay the cache miss
+ // penalty for referencing another thread's kmp_info_t struct
+ // anyway,
+ // the check shouldn't cost too much performance at this point. In
+ // extra barrier mode, tasks do not sleep at the separate tasking
+ // barrier, so this isn't a problem.
+ asleep = 0;
+ if ((__kmp_tasking_mode == tskm_task_teams) &&
+ (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
+ (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
+ NULL)) {
+ asleep = 1;
+ __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
+ other_thread->th.th_sleep_loc);
+ // A sleeping thread should not have any tasks on it's queue.
+ // There is a slight possibility that it resumes, steals a task
+ // from another thread, which spawns more tasks, all in the time
+ // that it takes this thread to check => don't write an assertion
+ // that the victim's queue is empty. Try stealing from a
+ // different thread.
+ }
+ } while (asleep);
+ }
+
+ if (!asleep) {
+ // We have a victim to try to steal from
+ task = __kmp_steal_task(other_thread, gtid, task_team,
+ unfinished_threads, thread_finished,
+ is_constrained);
+ }
+ if (task != NULL) { // set last stolen to victim
+ if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
+ threads_data[tid].td.td_deque_last_stolen = victim_tid;
+ // The pre-refactored code did not try more than 1 successful new
+ // vicitm, unless the last one generated more local tasks;
+ // new_victim keeps track of this
+ new_victim = 1;
+ }
+ } else { // No tasks found; unset last_stolen
+ KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
+ victim_tid = -2; // no successful victim found
+ }
+ }
+
+ if (task == NULL) // break out of tasking loop
+ break;
+
+// Found a task; execute it
+#if USE_ITT_BUILD && USE_ITT_NOTIFY
+ if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
+ if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
+ // get the object reliably
+ itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
+ }
+ __kmp_itt_task_starting(itt_sync_obj);
+ }
+#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
+ __kmp_invoke_task(gtid, task, current_task);
+#if USE_ITT_BUILD
+ if (itt_sync_obj != NULL)
+ __kmp_itt_task_finished(itt_sync_obj);
+#endif /* USE_ITT_BUILD */
+ // If this thread is only partway through the barrier and the condition is
+ // met, then return now, so that the barrier gather/release pattern can
+ // proceed. If this thread is in the last spin loop in the barrier,
+ // waiting to be released, we know that the termination condition will not
+ // be satisified, so don't waste any cycles checking it.
+ if (flag == NULL || (!final_spin && flag->done_check())) {
+ KA_TRACE(
+ 15,
+ ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
+ gtid));
+ return TRUE;
+ }
+ if (thread->th.th_task_team == NULL) {
+ break;
+ }
+ // Yield before executing next task
+ KMP_YIELD(__kmp_library == library_throughput);
+ // If execution of a stolen task results in more tasks being placed on our
+ // run queue, reset use_own_tasks
+ if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
+ KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
+ "other tasks, restart\n",
+ gtid));
+ use_own_tasks = 1;
+ new_victim = 0;
+ }
+ }
+
+// The task source has been exhausted. If in final spin loop of barrier, check
+// if termination condition is satisfied.
+#if OMP_45_ENABLED
+ // The work queue may be empty but there might be proxy tasks still
+ // executing
+ if (final_spin &&
+ KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0)
+#else
+ if (final_spin)
+#endif
+ {
+ // First, decrement the #unfinished threads, if that has not already been
+ // done. This decrement might be to the spin location, and result in the
+ // termination condition being satisfied.
+ if (!*thread_finished) {
+ kmp_int32 count;
+
+ count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
+ KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
+ "unfinished_threads to %d task_team=%p\n",
+ gtid, count, task_team));
+ *thread_finished = TRUE;
+ }
+
+ // It is now unsafe to reference thread->th.th_team !!!
+ // Decrementing task_team->tt.tt_unfinished_threads can allow the master
+ // thread to pass through the barrier, where it might reset each thread's
+ // th.th_team field for the next parallel region. If we can steal more
+ // work, we know that this has not happened yet.
+ if (flag != NULL && flag->done_check()) {
+ KA_TRACE(
+ 15,
+ ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
+ gtid));
+ return TRUE;
+ }
+ }
+
+ // If this thread's task team is NULL, master has recognized that there are
+ // no more tasks; bail out
+ if (thread->th.th_task_team == NULL) {
+ KA_TRACE(15,
+ ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
+ return FALSE;
+ }
+
+#if OMP_45_ENABLED
+ // We could be getting tasks from target constructs; if this is the only
+ // thread, keep trying to execute tasks from own queue
+ if (nthreads == 1)
+ use_own_tasks = 1;
+ else
+#endif
+ {
+ KA_TRACE(15,
+ ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
+ return FALSE;
+ }
+ }
+}
+
+int __kmp_execute_tasks_32(
+ kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ return __kmp_execute_tasks_template(
+ thread, gtid, flag, final_spin,
+ thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+}
+
+int __kmp_execute_tasks_64(
+ kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ return __kmp_execute_tasks_template(
+ thread, gtid, flag, final_spin,
+ thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+}
+
+int __kmp_execute_tasks_oncore(
+ kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
+ int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
+ kmp_int32 is_constrained) {
+ return __kmp_execute_tasks_template(
+ thread, gtid, flag, final_spin,
+ thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+}
+
+// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
+// next barrier so they can assist in executing enqueued tasks.
+// First thread in allocates the task team atomically.
+static void __kmp_enable_tasking(kmp_task_team_t *task_team,
+ kmp_info_t *this_thr) {
+ kmp_thread_data_t *threads_data;
+ int nthreads, i, is_init_thread;
+
+ KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
+ __kmp_gtid_from_thread(this_thr)));
+
+ KMP_DEBUG_ASSERT(task_team != NULL);
+ KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
+
+ nthreads = task_team->tt.tt_nproc;
+ KMP_DEBUG_ASSERT(nthreads > 0);
+ KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
+
+ // Allocate or increase the size of threads_data if necessary
+ is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
+
+ if (!is_init_thread) {
+ // Some other thread already set up the array.
+ KA_TRACE(
+ 20,
+ ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
+ __kmp_gtid_from_thread(this_thr)));
+ return;
+ }
+ threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
+ KMP_DEBUG_ASSERT(threads_data != NULL);
+
+ if ((__kmp_tasking_mode == tskm_task_teams) &&
+ (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
+ // Release any threads sleeping at the barrier, so that they can steal
+ // tasks and execute them. In extra barrier mode, tasks do not sleep
+ // at the separate tasking barrier, so this isn't a problem.
+ for (i = 0; i < nthreads; i++) {
+ volatile void *sleep_loc;
+ kmp_info_t *thread = threads_data[i].td.td_thr;
+
+ if (i == this_thr->th.th_info.ds.ds_tid) {
+ continue;
+ }
+ // Since we haven't locked the thread's suspend mutex lock at this
+ // point, there is a small window where a thread might be putting
+ // itself to sleep, but hasn't set the th_sleep_loc field yet.
+ // To work around this, __kmp_execute_tasks_template() periodically checks
+ // see if other threads are sleeping (using the same random mechanism that
+ // is used for task stealing) and awakens them if they are.
+ if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
+ NULL) {
+ KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
+ __kmp_gtid_from_thread(this_thr),
+ __kmp_gtid_from_thread(thread)));
+ __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
+ } else {
+ KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
+ __kmp_gtid_from_thread(this_thr),
+ __kmp_gtid_from_thread(thread)));
+ }
+ }
+ }
+
+ KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
+ __kmp_gtid_from_thread(this_thr)));
+}
+
+/* // TODO: Check the comment consistency
+ * Utility routines for "task teams". A task team (kmp_task_t) is kind of
+ * like a shadow of the kmp_team_t data struct, with a different lifetime.
+ * After a child * thread checks into a barrier and calls __kmp_release() from
+ * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
+ * longer assume that the kmp_team_t structure is intact (at any moment, the
+ * master thread may exit the barrier code and free the team data structure,
+ * and return the threads to the thread pool).
+ *
+ * This does not work with the the tasking code, as the thread is still
+ * expected to participate in the execution of any tasks that may have been
+ * spawned my a member of the team, and the thread still needs access to all
+ * to each thread in the team, so that it can steal work from it.
+ *
+ * Enter the existence of the kmp_task_team_t struct. It employs a reference
+ * counting mechanims, and is allocated by the master thread before calling
+ * __kmp_<barrier_kind>_release, and then is release by the last thread to
+ * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes
+ * of the kmp_task_team_t structs for consecutive barriers can overlap
+ * (and will, unless the master thread is the last thread to exit the barrier
+ * release phase, which is not typical).
+ *
+ * The existence of such a struct is useful outside the context of tasking,
+ * but for now, I'm trying to keep it specific to the OMP_30_ENABLED macro,
+ * so that any performance differences show up when comparing the 2.5 vs. 3.0
+ * libraries.
+ *
+ * We currently use the existence of the threads array as an indicator that
+ * tasks were spawned since the last barrier. If the structure is to be
+ * useful outside the context of tasking, then this will have to change, but
+ * not settting the field minimizes the performance impact of tasking on
+ * barriers, when no explicit tasks were spawned (pushed, actually).
+ */
+
+static kmp_task_team_t *__kmp_free_task_teams =
+ NULL; // Free list for task_team data structures
+// Lock for task team data structures
+kmp_bootstrap_lock_t __kmp_task_team_lock =
+ KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
+
+// __kmp_alloc_task_deque:
+// Allocates a task deque for a particular thread, and initialize the necessary
+// data structures relating to the deque. This only happens once per thread
+// per task team since task teams are recycled. No lock is needed during
+// allocation since each thread allocates its own deque.
+static void __kmp_alloc_task_deque(kmp_info_t *thread,
+ kmp_thread_data_t *thread_data) {
+ __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
+ KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
+
+ // Initialize last stolen task field to "none"
+ thread_data->td.td_deque_last_stolen = -1;
+
+ KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
+ KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
+ KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
+
+ KE_TRACE(
+ 10,
+ ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
+ __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
+ // Allocate space for task deque, and zero the deque
+ // Cannot use __kmp_thread_calloc() because threads not around for
+ // kmp_reap_task_team( ).
+ thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
+ INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
+ thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
+}
+
+// __kmp_free_task_deque:
+// Deallocates a task deque for a particular thread. Happens at library
+// deallocation so don't need to reset all thread data fields.
+static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
+ if (thread_data->td.td_deque != NULL) {
+ __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
+ TCW_4(thread_data->td.td_deque_ntasks, 0);
+ __kmp_free(thread_data->td.td_deque);
+ thread_data->td.td_deque = NULL;
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+ }
+
+#ifdef BUILD_TIED_TASK_STACK
+ // GEH: Figure out what to do here for td_susp_tied_tasks
+ if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
+ __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
+ }
+#endif // BUILD_TIED_TASK_STACK
+}
+
+// __kmp_realloc_task_threads_data:
+// Allocates a threads_data array for a task team, either by allocating an
+// initial array or enlarging an existing array. Only the first thread to get
+// the lock allocs or enlarges the array and re-initializes the array eleemnts.
+// That thread returns "TRUE", the rest return "FALSE".
+// Assumes that the new array size is given by task_team -> tt.tt_nproc.
+// The current size is given by task_team -> tt.tt_max_threads.
+static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
+ kmp_task_team_t *task_team) {
+ kmp_thread_data_t **threads_data_p;
+ kmp_int32 nthreads, maxthreads;
+ int is_init_thread = FALSE;
+
+ if (TCR_4(task_team->tt.tt_found_tasks)) {
+ // Already reallocated and initialized.
+ return FALSE;
+ }
+
+ threads_data_p = &task_team->tt.tt_threads_data;
+ nthreads = task_team->tt.tt_nproc;
+ maxthreads = task_team->tt.tt_max_threads;
+
+ // All threads must lock when they encounter the first task of the implicit
+ // task region to make sure threads_data fields are (re)initialized before
+ // used.
+ __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
+
+ if (!TCR_4(task_team->tt.tt_found_tasks)) {
+ // first thread to enable tasking
+ kmp_team_t *team = thread->th.th_team;
+ int i;
+
+ is_init_thread = TRUE;
+ if (maxthreads < nthreads) {
+
+ if (*threads_data_p != NULL) {
+ kmp_thread_data_t *old_data = *threads_data_p;
+ kmp_thread_data_t *new_data = NULL;
+
+ KE_TRACE(
+ 10,
+ ("__kmp_realloc_task_threads_data: T#%d reallocating "
+ "threads data for task_team %p, new_size = %d, old_size = %d\n",
+ __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
+ // Reallocate threads_data to have more elements than current array
+ // Cannot use __kmp_thread_realloc() because threads not around for
+ // kmp_reap_task_team( ). Note all new array entries are initialized
+ // to zero by __kmp_allocate().
+ new_data = (kmp_thread_data_t *)__kmp_allocate(
+ nthreads * sizeof(kmp_thread_data_t));
+ // copy old data to new data
+ KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
+ (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
+
+#ifdef BUILD_TIED_TASK_STACK
+ // GEH: Figure out if this is the right thing to do
+ for (i = maxthreads; i < nthreads; i++) {
+ kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
+ __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
+ }
+#endif // BUILD_TIED_TASK_STACK
+ // Install the new data and free the old data
+ (*threads_data_p) = new_data;
+ __kmp_free(old_data);
+ } else {
+ KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
+ "threads data for task_team %p, size = %d\n",
+ __kmp_gtid_from_thread(thread), task_team, nthreads));
+ // Make the initial allocate for threads_data array, and zero entries
+ // Cannot use __kmp_thread_calloc() because threads not around for
+ // kmp_reap_task_team( ).
+ ANNOTATE_IGNORE_WRITES_BEGIN();
+ *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
+ nthreads * sizeof(kmp_thread_data_t));
+ ANNOTATE_IGNORE_WRITES_END();
+#ifdef BUILD_TIED_TASK_STACK
+ // GEH: Figure out if this is the right thing to do
+ for (i = 0; i < nthreads; i++) {
+ kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
+ __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
+ }
+#endif // BUILD_TIED_TASK_STACK
+ }
+ task_team->tt.tt_max_threads = nthreads;
+ } else {
+ // If array has (more than) enough elements, go ahead and use it
+ KMP_DEBUG_ASSERT(*threads_data_p != NULL);
+ }
+
+ // initialize threads_data pointers back to thread_info structures
+ for (i = 0; i < nthreads; i++) {
+ kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
+ thread_data->td.td_thr = team->t.t_threads[i];
+
+ if (thread_data->td.td_deque_last_stolen >= nthreads) {
+ // The last stolen field survives across teams / barrier, and the number
+ // of threads may have changed. It's possible (likely?) that a new
+ // parallel region will exhibit the same behavior as previous region.
+ thread_data->td.td_deque_last_stolen = -1;
+ }
+ }
+
+ KMP_MB();
+ TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
+ }
+
+ __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
+ return is_init_thread;
+}
+
+// __kmp_free_task_threads_data:
+// Deallocates a threads_data array for a task team, including any attached
+// tasking deques. Only occurs at library shutdown.
+static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
+ __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
+ if (task_team->tt.tt_threads_data != NULL) {
+ int i;
+ for (i = 0; i < task_team->tt.tt_max_threads; i++) {
+ __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
+ }
+ __kmp_free(task_team->tt.tt_threads_data);
+ task_team->tt.tt_threads_data = NULL;
+ }
+ __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
+}
+
+// __kmp_allocate_task_team:
+// Allocates a task team associated with a specific team, taking it from
+// the global task team free list if possible. Also initializes data
+// structures.
+static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
+ kmp_team_t *team) {
+ kmp_task_team_t *task_team = NULL;
+ int nthreads;
+
+ KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
+ (thread ? __kmp_gtid_from_thread(thread) : -1), team));
+
+ if (TCR_PTR(__kmp_free_task_teams) != NULL) {
+ // Take a task team from the task team pool
+ __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
+ if (__kmp_free_task_teams != NULL) {
+ task_team = __kmp_free_task_teams;
+ TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
+ task_team->tt.tt_next = NULL;
+ }
+ __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
+ }
+
+ if (task_team == NULL) {
+ KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
+ "task team for team %p\n",
+ __kmp_gtid_from_thread(thread), team));
+ // Allocate a new task team if one is not available.
+ // Cannot use __kmp_thread_malloc() because threads not around for
+ // kmp_reap_task_team( ).
+ task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
+ __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
+ // AC: __kmp_allocate zeroes returned memory
+ // task_team -> tt.tt_threads_data = NULL;
+ // task_team -> tt.tt_max_threads = 0;
+ // task_team -> tt.tt_next = NULL;
+ }
+
+ TCW_4(task_team->tt.tt_found_tasks, FALSE);
+#if OMP_45_ENABLED
+ TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
+#endif
+ task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
+
+ KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
+ TCW_4(task_team->tt.tt_active, TRUE);
+
+ KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
+ "unfinished_threads init'd to %d\n",
+ (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
+ KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
+ return task_team;
+}
+
+// __kmp_free_task_team:
+// Frees the task team associated with a specific thread, and adds it
+// to the global task team free list.
+void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
+ KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
+ thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
+
+ // Put task team back on free list
+ __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
+
+ KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
+ task_team->tt.tt_next = __kmp_free_task_teams;
+ TCW_PTR(__kmp_free_task_teams, task_team);
+
+ __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
+}
+
+// __kmp_reap_task_teams:
+// Free all the task teams on the task team free list.
+// Should only be done during library shutdown.
+// Cannot do anything that needs a thread structure or gtid since they are
+// already gone.
+void __kmp_reap_task_teams(void) {
+ kmp_task_team_t *task_team;
+
+ if (TCR_PTR(__kmp_free_task_teams) != NULL) {
+ // Free all task_teams on the free list
+ __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
+ while ((task_team = __kmp_free_task_teams) != NULL) {
+ __kmp_free_task_teams = task_team->tt.tt_next;
+ task_team->tt.tt_next = NULL;
+
+ // Free threads_data if necessary
+ if (task_team->tt.tt_threads_data != NULL) {
+ __kmp_free_task_threads_data(task_team);
+ }
+ __kmp_free(task_team);
+ }
+ __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
+ }
+}
+
+// __kmp_wait_to_unref_task_teams:
+// Some threads could still be in the fork barrier release code, possibly
+// trying to steal tasks. Wait for each thread to unreference its task team.
+void __kmp_wait_to_unref_task_teams(void) {
+ kmp_info_t *thread;
+ kmp_uint32 spins;
+ int done;
+
+ KMP_INIT_YIELD(spins);
+
+ for (;;) {
+ done = TRUE;
+
+ // TODO: GEH - this may be is wrong because some sync would be necessary
+ // in case threads are added to the pool during the traversal. Need to
+ // verify that lock for thread pool is held when calling this routine.
+ for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
+ thread = thread->th.th_next_pool) {
+#if KMP_OS_WINDOWS
+ DWORD exit_val;
+#endif
+ if (TCR_PTR(thread->th.th_task_team) == NULL) {
+ KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
+ __kmp_gtid_from_thread(thread)));
+ continue;
+ }
+#if KMP_OS_WINDOWS
+ // TODO: GEH - add this check for Linux* OS / OS X* as well?
+ if (!__kmp_is_thread_alive(thread, &exit_val)) {
+ thread->th.th_task_team = NULL;
+ continue;
+ }
+#endif
+
+ done = FALSE; // Because th_task_team pointer is not NULL for this thread
+
+ KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
+ "unreference task_team\n",
+ __kmp_gtid_from_thread(thread)));
+
+ if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
+ volatile void *sleep_loc;
+ // If the thread is sleeping, awaken it.
+ if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
+ NULL) {
+ KA_TRACE(
+ 10,
+ ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
+ __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
+ __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
+ }
+ }
+ }
+ if (done) {
+ break;
+ }
+
+ // If we are oversubscribed, or have waited a bit (and library mode is
+ // throughput), yield. Pause is in the following code.
+ KMP_YIELD(TCR_4(__kmp_nth) > __kmp_avail_proc);
+ KMP_YIELD_SPIN(spins); // Yields only if KMP_LIBRARY=throughput
+ }
+}
+
+// __kmp_task_team_setup: Create a task_team for the current team, but use
+// an already created, unused one if it already exists.
+void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+
+ // If this task_team hasn't been created yet, allocate it. It will be used in
+ // the region after the next.
+ // If it exists, it is the current task team and shouldn't be touched yet as
+ // it may still be in use.
+ if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
+ (always || team->t.t_nproc > 1)) {
+ team->t.t_task_team[this_thr->th.th_task_state] =
+ __kmp_allocate_task_team(this_thr, team);
+ KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
+ "for team %d at parity=%d\n",
+ __kmp_gtid_from_thread(this_thr),
+ team->t.t_task_team[this_thr->th.th_task_state],
+ ((team != NULL) ? team->t.t_id : -1),
+ this_thr->th.th_task_state));
+ }
+
+ // After threads exit the release, they will call sync, and then point to this
+ // other task_team; make sure it is allocated and properly initialized. As
+ // threads spin in the barrier release phase, they will continue to use the
+ // previous task_team struct(above), until they receive the signal to stop
+ // checking for tasks (they can't safely reference the kmp_team_t struct,
+ // which could be reallocated by the master thread). No task teams are formed
+ // for serialized teams.
+ if (team->t.t_nproc > 1) {
+ int other_team = 1 - this_thr->th.th_task_state;
+ if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
+ team->t.t_task_team[other_team] =
+ __kmp_allocate_task_team(this_thr, team);
+ KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
+ "task_team %p for team %d at parity=%d\n",
+ __kmp_gtid_from_thread(this_thr),
+ team->t.t_task_team[other_team],
+ ((team != NULL) ? team->t.t_id : -1), other_team));
+ } else { // Leave the old task team struct in place for the upcoming region;
+ // adjust as needed
+ kmp_task_team_t *task_team = team->t.t_task_team[other_team];
+ if (!task_team->tt.tt_active ||
+ team->t.t_nproc != task_team->tt.tt_nproc) {
+ TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
+ TCW_4(task_team->tt.tt_found_tasks, FALSE);
+#if OMP_45_ENABLED
+ TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
+#endif
+ KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
+ team->t.t_nproc);
+ TCW_4(task_team->tt.tt_active, TRUE);
+ }
+ // if team size has changed, the first thread to enable tasking will
+ // realloc threads_data if necessary
+ KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
+ "%p for team %d at parity=%d\n",
+ __kmp_gtid_from_thread(this_thr),
+ team->t.t_task_team[other_team],
+ ((team != NULL) ? team->t.t_id : -1), other_team));
+ }
+ }
+}
+
+// __kmp_task_team_sync: Propagation of task team data from team to threads
+// which happens just after the release phase of a team barrier. This may be
+// called by any thread, but only for teams with # threads > 1.
+void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+
+ // Toggle the th_task_state field, to switch which task_team this thread
+ // refers to
+ this_thr->th.th_task_state = 1 - this_thr->th.th_task_state;
+ // It is now safe to propagate the task team pointer from the team struct to
+ // the current thread.
+ TCW_PTR(this_thr->th.th_task_team,
+ team->t.t_task_team[this_thr->th.th_task_state]);
+ KA_TRACE(20,
+ ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
+ "%p from Team #%d (parity=%d)\n",
+ __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
+ ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
+}
+
+// __kmp_task_team_wait: Master thread waits for outstanding tasks after the
+// barrier gather phase. Only called by master thread if #threads in team > 1 or
+// if proxy tasks were created.
+//
+// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
+// by passing in 0 optionally as the last argument. When wait is zero, master
+// thread does not wait for unfinished_threads to reach 0.
+void __kmp_task_team_wait(
+ kmp_info_t *this_thr,
+ kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
+ kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
+
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
+ KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
+
+ if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
+ if (wait) {
+ KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
+ "(for unfinished_threads to reach 0) on task_team = %p\n",
+ __kmp_gtid_from_thread(this_thr), task_team));
+ // Worker threads may have dropped through to release phase, but could
+ // still be executing tasks. Wait here for tasks to complete. To avoid
+ // memory contention, only master thread checks termination condition.
+ kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
+ &task_team->tt.tt_unfinished_threads),
+ 0U);
+ flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
+ }
+ // Deactivate the old task team, so that the worker threads will stop
+ // referencing it while spinning.
+ KA_TRACE(
+ 20,
+ ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
+ "setting active to false, setting local and team's pointer to NULL\n",
+ __kmp_gtid_from_thread(this_thr), task_team));
+#if OMP_45_ENABLED
+ KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
+ task_team->tt.tt_found_proxy_tasks == TRUE);
+ TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
+#else
+ KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1);
+#endif
+ KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
+ TCW_SYNC_4(task_team->tt.tt_active, FALSE);
+ KMP_MB();
+
+ TCW_PTR(this_thr->th.th_task_team, NULL);
+ }
+}
+
+// __kmp_tasking_barrier:
+// This routine may only called when __kmp_tasking_mode == tskm_extra_barrier.
+// Internal function to execute all tasks prior to a regular barrier or a join
+// barrier. It is a full barrier itself, which unfortunately turns regular
+// barriers into double barriers and join barriers into 1 1/2 barriers.
+void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
+ std::atomic<kmp_uint32> *spin = RCAST(
+ std::atomic<kmp_uint32> *,
+ &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
+ int flag = FALSE;
+ KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
+
+#if USE_ITT_BUILD
+ KMP_FSYNC_SPIN_INIT(spin, NULL);
+#endif /* USE_ITT_BUILD */
+ kmp_flag_32 spin_flag(spin, 0U);
+ while (!spin_flag.execute_tasks(thread, gtid, TRUE,
+ &flag USE_ITT_BUILD_ARG(NULL), 0)) {
+#if USE_ITT_BUILD
+ // TODO: What about itt_sync_obj??
+ KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
+#endif /* USE_ITT_BUILD */
+
+ if (TCR_4(__kmp_global.g.g_done)) {
+ if (__kmp_global.g.g_abort)
+ __kmp_abort_thread();
+ break;
+ }
+ KMP_YIELD(TRUE); // GH: We always yield here
+ }
+#if USE_ITT_BUILD
+ KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
+#endif /* USE_ITT_BUILD */
+}
+
+#if OMP_45_ENABLED
+
+// __kmp_give_task puts a task into a given thread queue if:
+// - the queue for that thread was created
+// - there's space in that queue
+// Because of this, __kmp_push_task needs to check if there's space after
+// getting the lock
+static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
+ kmp_int32 pass) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_task_team_t *task_team = taskdata->td_task_team;
+
+ KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
+ taskdata, tid));
+
+ // If task_team is NULL something went really bad...
+ KMP_DEBUG_ASSERT(task_team != NULL);
+
+ bool result = false;
+ kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
+
+ if (thread_data->td.td_deque == NULL) {
+ // There's no queue in this thread, go find another one
+ // We're guaranteed that at least one thread has a queue
+ KA_TRACE(30,
+ ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
+ tid, taskdata));
+ return result;
+ }
+
+ if (TCR_4(thread_data->td.td_deque_ntasks) >=
+ TASK_DEQUE_SIZE(thread_data->td)) {
+ KA_TRACE(
+ 30,
+ ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
+ taskdata, tid));
+
+ // if this deque is bigger than the pass ratio give a chance to another
+ // thread
+ if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
+ return result;
+
+ __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
+ __kmp_realloc_task_deque(thread, thread_data);
+
+ } else {
+
+ __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
+
+ if (TCR_4(thread_data->td.td_deque_ntasks) >=
+ TASK_DEQUE_SIZE(thread_data->td)) {
+ KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
+ "thread %d.\n",
+ taskdata, tid));
+
+ // if this deque is bigger than the pass ratio give a chance to another
+ // thread
+ if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
+ goto release_and_exit;
+
+ __kmp_realloc_task_deque(thread, thread_data);
+ }
+ }
+
+ // lock is held here, and there is space in the deque
+
+ thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
+ // Wrap index.
+ thread_data->td.td_deque_tail =
+ (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
+ TCW_4(thread_data->td.td_deque_ntasks,
+ TCR_4(thread_data->td.td_deque_ntasks) + 1);
+
+ result = true;
+ KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
+ taskdata, tid));
+
+release_and_exit:
+ __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
+
+ return result;
+}
+
+/* The finish of the proxy tasks is divided in two pieces:
+ - the top half is the one that can be done from a thread outside the team
+ - the bottom half must be run from a thread within the team
+
+ In order to run the bottom half the task gets queued back into one of the
+ threads of the team. Once the td_incomplete_child_task counter of the parent
+ is decremented the threads can leave the barriers. So, the bottom half needs
+ to be queued before the counter is decremented. The top half is therefore
+ divided in two parts:
+ - things that can be run before queuing the bottom half
+ - things that must be run after queuing the bottom half
+
+ This creates a second race as the bottom half can free the task before the
+ second top half is executed. To avoid this we use the
+ td_incomplete_child_task of the proxy task to synchronize the top and bottom
+ half. */
+static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
+ KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
+
+ taskdata->td_flags.complete = 1; // mark the task as completed
+
+ if (taskdata->td_taskgroup)
+ KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
+
+ // Create an imaginary children for this task so the bottom half cannot
+ // release the task before we have completed the second top half
+ KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
+}
+
+static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
+ kmp_int32 children = 0;
+
+ // Predecrement simulated by "- 1" calculation
+ children =
+ KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
+ KMP_DEBUG_ASSERT(children >= 0);
+
+ // Remove the imaginary children
+ KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
+}
+
+static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
+ kmp_info_t *thread = __kmp_threads[gtid];
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
+ KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
+ 1); // top half must run before bottom half
+
+ // We need to wait to make sure the top half is finished
+ // Spinning here should be ok as this should happen quickly
+ while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
+ ;
+
+ __kmp_release_deps(gtid, taskdata);
+ __kmp_free_task_and_ancestors(gtid, taskdata, thread);
+}
+
+/*!
+@ingroup TASKING
+@param gtid Global Thread ID of encountering thread
+@param ptask Task which execution is completed
+
+Execute the completation of a proxy task from a thread of that is part of the
+team. Run first and bottom halves directly.
+*/
+void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
+ KMP_DEBUG_ASSERT(ptask != NULL);
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
+ KA_TRACE(
+ 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
+ gtid, taskdata));
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
+
+ __kmp_first_top_half_finish_proxy(taskdata);
+ __kmp_second_top_half_finish_proxy(taskdata);
+ __kmp_bottom_half_finish_proxy(gtid, ptask);
+
+ KA_TRACE(10,
+ ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
+ gtid, taskdata));
+}
+
+/*!
+@ingroup TASKING
+@param ptask Task which execution is completed
+
+Execute the completation of a proxy task from a thread that could not belong to
+the team.
+*/
+void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
+ KMP_DEBUG_ASSERT(ptask != NULL);
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
+
+ KA_TRACE(
+ 10,
+ ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
+ taskdata));
+
+ KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
+
+ __kmp_first_top_half_finish_proxy(taskdata);
+
+ // Enqueue task to complete bottom half completion from a thread within the
+ // corresponding team
+ kmp_team_t *team = taskdata->td_team;
+ kmp_int32 nthreads = team->t.t_nproc;
+ kmp_info_t *thread;
+
+ // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
+ // but we cannot use __kmp_get_random here
+ kmp_int32 start_k = 0;
+ kmp_int32 pass = 1;
+ kmp_int32 k = start_k;
+
+ do {
+ // For now we're just linearly trying to find a thread
+ thread = team->t.t_threads[k];
+ k = (k + 1) % nthreads;
+
+ // we did a full pass through all the threads
+ if (k == start_k)
+ pass = pass << 1;
+
+ } while (!__kmp_give_task(thread, k, ptask, pass));
+
+ __kmp_second_top_half_finish_proxy(taskdata);
+
+ KA_TRACE(
+ 10,
+ ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
+ taskdata));
+}
+
+// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
+// for taskloop
+//
+// thread: allocating thread
+// task_src: pointer to source task to be duplicated
+// returns: a pointer to the allocated kmp_task_t structure (task).
+kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
+ kmp_task_t *task;
+ kmp_taskdata_t *taskdata;
+ kmp_taskdata_t *taskdata_src;
+ kmp_taskdata_t *parent_task = thread->th.th_current_task;
+ size_t shareds_offset;
+ size_t task_size;
+
+ KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
+ task_src));
+ taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
+ KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
+ TASK_FULL); // it should not be proxy task
+ KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
+ task_size = taskdata_src->td_size_alloc;
+
+ // Allocate a kmp_taskdata_t block and a kmp_task_t block.
+ KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
+ task_size));
+#if USE_FAST_MEMORY
+ taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
+#else
+ taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
+#endif /* USE_FAST_MEMORY */
+ KMP_MEMCPY(taskdata, taskdata_src, task_size);
+
+ task = KMP_TASKDATA_TO_TASK(taskdata);
+
+ // Initialize new task (only specific fields not affected by memcpy)
+ taskdata->td_task_id = KMP_GEN_TASK_ID();
+ if (task->shareds != NULL) { // need setup shareds pointer
+ shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
+ task->shareds = &((char *)taskdata)[shareds_offset];
+ KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
+ 0);
+ }
+ taskdata->td_alloc_thread = thread;
+ taskdata->td_parent = parent_task;
+ taskdata->td_taskgroup =
+ parent_task
+ ->td_taskgroup; // task inherits the taskgroup from the parent task
+
+ // Only need to keep track of child task counts if team parallel and tasking
+ // not serialized
+ if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
+ KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
+ if (parent_task->td_taskgroup)
+ KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
+ // Only need to keep track of allocated child tasks for explicit tasks since
+ // implicit not deallocated
+ if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
+ KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
+ }
+
+ KA_TRACE(20,
+ ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
+ thread, taskdata, taskdata->td_parent));
+#if OMPT_SUPPORT
+ if (UNLIKELY(ompt_enabled.enabled))
+ __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
+#endif
+ return task;
+}
+
+// Routine optionally generated by the compiler for setting the lastprivate flag
+// and calling needed constructors for private/firstprivate objects
+// (used to form taskloop tasks from pattern task)
+// Parameters: dest task, src task, lastprivate flag.
+typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
+
+KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
+
+// class to encapsulate manipulating loop bounds in a taskloop task.
+// this abstracts away the Intel vs GOMP taskloop interface for setting/getting
+// the loop bound variables.
+class kmp_taskloop_bounds_t {
+ kmp_task_t *task;
+ const kmp_taskdata_t *taskdata;
+ size_t lower_offset;
+ size_t upper_offset;
+
+public:
+ kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
+ : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
+ lower_offset((char *)lb - (char *)task),
+ upper_offset((char *)ub - (char *)task) {
+ KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
+ KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
+ }
+ kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
+ : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
+ lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
+ size_t get_lower_offset() const { return lower_offset; }
+ size_t get_upper_offset() const { return upper_offset; }
+ kmp_uint64 get_lb() const {
+ kmp_int64 retval;
+#if defined(KMP_GOMP_COMPAT)
+ // Intel task just returns the lower bound normally
+ if (!taskdata->td_flags.native) {
+ retval = *(kmp_int64 *)((char *)task + lower_offset);
+ } else {
+ // GOMP task has to take into account the sizeof(long)
+ if (taskdata->td_size_loop_bounds == 4) {
+ kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
+ retval = (kmp_int64)*lb;
+ } else {
+ kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
+ retval = (kmp_int64)*lb;
+ }
+ }
+#else
+ retval = *(kmp_int64 *)((char *)task + lower_offset);
+#endif // defined(KMP_GOMP_COMPAT)
+ return retval;
+ }
+ kmp_uint64 get_ub() const {
+ kmp_int64 retval;
+#if defined(KMP_GOMP_COMPAT)
+ // Intel task just returns the upper bound normally
+ if (!taskdata->td_flags.native) {
+ retval = *(kmp_int64 *)((char *)task + upper_offset);
+ } else {
+ // GOMP task has to take into account the sizeof(long)
+ if (taskdata->td_size_loop_bounds == 4) {
+ kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
+ retval = (kmp_int64)*ub;
+ } else {
+ kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
+ retval = (kmp_int64)*ub;
+ }
+ }
+#else
+ retval = *(kmp_int64 *)((char *)task + upper_offset);
+#endif // defined(KMP_GOMP_COMPAT)
+ return retval;
+ }
+ void set_lb(kmp_uint64 lb) {
+#if defined(KMP_GOMP_COMPAT)
+ // Intel task just sets the lower bound normally
+ if (!taskdata->td_flags.native) {
+ *(kmp_uint64 *)((char *)task + lower_offset) = lb;
+ } else {
+ // GOMP task has to take into account the sizeof(long)
+ if (taskdata->td_size_loop_bounds == 4) {
+ kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
+ *lower = (kmp_uint32)lb;
+ } else {
+ kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
+ *lower = (kmp_uint64)lb;
+ }
+ }
+#else
+ *(kmp_uint64 *)((char *)task + lower_offset) = lb;
+#endif // defined(KMP_GOMP_COMPAT)
+ }
+ void set_ub(kmp_uint64 ub) {
+#if defined(KMP_GOMP_COMPAT)
+ // Intel task just sets the upper bound normally
+ if (!taskdata->td_flags.native) {
+ *(kmp_uint64 *)((char *)task + upper_offset) = ub;
+ } else {
+ // GOMP task has to take into account the sizeof(long)
+ if (taskdata->td_size_loop_bounds == 4) {
+ kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
+ *upper = (kmp_uint32)ub;
+ } else {
+ kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
+ *upper = (kmp_uint64)ub;
+ }
+ }
+#else
+ *(kmp_uint64 *)((char *)task + upper_offset) = ub;
+#endif // defined(KMP_GOMP_COMPAT)
+ }
+};
+
+// __kmp_taskloop_linear: Start tasks of the taskloop linearly
+//
+// loc Source location information
+// gtid Global thread ID
+// task Pattern task, exposes the loop iteration range
+// lb Pointer to loop lower bound in task structure
+// ub Pointer to loop upper bound in task structure
+// st Loop stride
+// ub_glob Global upper bound (used for lastprivate check)
+// num_tasks Number of tasks to execute
+// grainsize Number of loop iterations per task
+// extras Number of chunks with grainsize+1 iterations
+// tc Iterations count
+// task_dup Tasks duplication routine
+// codeptr_ra Return address for OMPT events
+void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
+ kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
+ kmp_uint64 ub_glob, kmp_uint64 num_tasks,
+ kmp_uint64 grainsize, kmp_uint64 extras,
+ kmp_uint64 tc,
+#if OMPT_SUPPORT
+ void *codeptr_ra,
+#endif
+ void *task_dup) {
+ KMP_COUNT_BLOCK(OMP_TASKLOOP);
+ KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
+ p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
+ // compiler provides global bounds here
+ kmp_taskloop_bounds_t task_bounds(task, lb, ub);
+ kmp_uint64 lower = task_bounds.get_lb();
+ kmp_uint64 upper = task_bounds.get_ub();
+ kmp_uint64 i;
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskdata_t *current_task = thread->th.th_current_task;
+ kmp_task_t *next_task;
+ kmp_int32 lastpriv = 0;
+
+ KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
+ KMP_DEBUG_ASSERT(num_tasks > extras);
+ KMP_DEBUG_ASSERT(num_tasks > 0);
+ KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
+ "extras %lld, i=%lld,%lld(%d)%lld, dup %p\n",
+ gtid, num_tasks, grainsize, extras, lower, upper, ub_glob, st,
+ task_dup));
+
+ // Launch num_tasks tasks, assign grainsize iterations each task
+ for (i = 0; i < num_tasks; ++i) {
+ kmp_uint64 chunk_minus_1;
+ if (extras == 0) {
+ chunk_minus_1 = grainsize - 1;
+ } else {
+ chunk_minus_1 = grainsize;
+ --extras; // first extras iterations get bigger chunk (grainsize+1)
+ }
+ upper = lower + st * chunk_minus_1;
+ if (i == num_tasks - 1) {
+ // schedule the last task, set lastprivate flag if needed
+ if (st == 1) { // most common case
+ KMP_DEBUG_ASSERT(upper == *ub);
+ if (upper == ub_glob)
+ lastpriv = 1;
+ } else if (st > 0) { // positive loop stride
+ KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
+ if ((kmp_uint64)st > ub_glob - upper)
+ lastpriv = 1;
+ } else { // negative loop stride
+ KMP_DEBUG_ASSERT(upper + st < *ub);
+ if (upper - ub_glob < (kmp_uint64)(-st))
+ lastpriv = 1;
+ }
+ }
+ next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
+ kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
+ kmp_taskloop_bounds_t next_task_bounds =
+ kmp_taskloop_bounds_t(next_task, task_bounds);
+
+ // adjust task-specific bounds
+ next_task_bounds.set_lb(lower);
+ if (next_taskdata->td_flags.native) {
+ next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
+ } else {
+ next_task_bounds.set_ub(upper);
+ }
+ if (ptask_dup != NULL) // set lastprivate flag, construct fistprivates, etc.
+ ptask_dup(next_task, task, lastpriv);
+ KA_TRACE(40,
+ ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
+ "upper %lld stride %lld, (offsets %p %p)\n",
+ gtid, i, next_task, lower, upper, st,
+ next_task_bounds.get_lower_offset(),
+ next_task_bounds.get_upper_offset()));
+#if OMPT_SUPPORT
+ __kmp_omp_taskloop_task(NULL, gtid, next_task,
+ codeptr_ra); // schedule new task
+#else
+ __kmp_omp_task(gtid, next_task, true); // schedule new task
+#endif
+ lower = upper + st; // adjust lower bound for the next iteration
+ }
+ // free the pattern task and exit
+ __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
+ // do not execute the pattern task, just do internal bookkeeping
+ __kmp_task_finish<false>(gtid, task, current_task);
+}
+
+// Structure to keep taskloop parameters for auxiliary task
+// kept in the shareds of the task structure.
+typedef struct __taskloop_params {
+ kmp_task_t *task;
+ kmp_uint64 *lb;
+ kmp_uint64 *ub;
+ void *task_dup;
+ kmp_int64 st;
+ kmp_uint64 ub_glob;
+ kmp_uint64 num_tasks;
+ kmp_uint64 grainsize;
+ kmp_uint64 extras;
+ kmp_uint64 tc;
+ kmp_uint64 num_t_min;
+#if OMPT_SUPPORT
+ void *codeptr_ra;
+#endif
+} __taskloop_params_t;
+
+void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
+ kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
+ kmp_uint64, kmp_uint64, kmp_uint64, kmp_uint64,
+#if OMPT_SUPPORT
+ void *,
+#endif
+ void *);
+
+// Execute part of the the taskloop submitted as a task.
+int __kmp_taskloop_task(int gtid, void *ptask) {
+ __taskloop_params_t *p =
+ (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
+ kmp_task_t *task = p->task;
+ kmp_uint64 *lb = p->lb;
+ kmp_uint64 *ub = p->ub;
+ void *task_dup = p->task_dup;
+ // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
+ kmp_int64 st = p->st;
+ kmp_uint64 ub_glob = p->ub_glob;
+ kmp_uint64 num_tasks = p->num_tasks;
+ kmp_uint64 grainsize = p->grainsize;
+ kmp_uint64 extras = p->extras;
+ kmp_uint64 tc = p->tc;
+ kmp_uint64 num_t_min = p->num_t_min;
+#if OMPT_SUPPORT
+ void *codeptr_ra = p->codeptr_ra;
+#endif
+#if KMP_DEBUG
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ KMP_DEBUG_ASSERT(task != NULL);
+ KA_TRACE(20, ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
+ " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
+ gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
+ task_dup));
+#endif
+ KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
+ if (num_tasks > num_t_min)
+ __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
+ grainsize, extras, tc, num_t_min,
+#if OMPT_SUPPORT
+ codeptr_ra,
+#endif
+ task_dup);
+ else
+ __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
+ grainsize, extras, tc,
+#if OMPT_SUPPORT
+ codeptr_ra,
+#endif
+ task_dup);
+
+ KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
+ return 0;
+}
+
+// Schedule part of the the taskloop as a task,
+// execute the rest of the the taskloop.
+//
+// loc Source location information
+// gtid Global thread ID
+// task Pattern task, exposes the loop iteration range
+// lb Pointer to loop lower bound in task structure
+// ub Pointer to loop upper bound in task structure
+// st Loop stride
+// ub_glob Global upper bound (used for lastprivate check)
+// num_tasks Number of tasks to execute
+// grainsize Number of loop iterations per task
+// extras Number of chunks with grainsize+1 iterations
+// tc Iterations count
+// num_t_min Threashold to launch tasks recursively
+// task_dup Tasks duplication routine
+// codeptr_ra Return address for OMPT events
+void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
+ kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
+ kmp_uint64 ub_glob, kmp_uint64 num_tasks,
+ kmp_uint64 grainsize, kmp_uint64 extras,
+ kmp_uint64 tc, kmp_uint64 num_t_min,
+#if OMPT_SUPPORT
+ void *codeptr_ra,
+#endif
+ void *task_dup) {
+#if KMP_DEBUG
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ KMP_DEBUG_ASSERT(task != NULL);
+ KMP_DEBUG_ASSERT(num_tasks > num_t_min);
+ KA_TRACE(20, ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
+ " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
+ gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
+ task_dup));
+#endif
+ p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
+ kmp_uint64 lower = *lb;
+ kmp_info_t *thread = __kmp_threads[gtid];
+ // kmp_taskdata_t *current_task = thread->th.th_current_task;
+ kmp_task_t *next_task;
+ size_t lower_offset =
+ (char *)lb - (char *)task; // remember offset of lb in the task structure
+ size_t upper_offset =
+ (char *)ub - (char *)task; // remember offset of ub in the task structure
+
+ KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
+ KMP_DEBUG_ASSERT(num_tasks > extras);
+ KMP_DEBUG_ASSERT(num_tasks > 0);
+
+ // split the loop in two halves
+ kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
+ kmp_uint64 gr_size0 = grainsize;
+ kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
+ kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
+ if (n_tsk0 <= extras) {
+ gr_size0++; // integrate extras into grainsize
+ ext0 = 0; // no extra iters in 1st half
+ ext1 = extras - n_tsk0; // remaining extras
+ tc0 = gr_size0 * n_tsk0;
+ tc1 = tc - tc0;
+ } else { // n_tsk0 > extras
+ ext1 = 0; // no extra iters in 2nd half
+ ext0 = extras;
+ tc1 = grainsize * n_tsk1;
+ tc0 = tc - tc1;
+ }
+ ub0 = lower + st * (tc0 - 1);
+ lb1 = ub0 + st;
+
+ // create pattern task for 2nd half of the loop
+ next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
+ // adjust lower bound (upper bound is not changed) for the 2nd half
+ *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
+ if (ptask_dup != NULL) // construct fistprivates, etc.
+ ptask_dup(next_task, task, 0);
+ *ub = ub0; // adjust upper bound for the 1st half
+
+ // create auxiliary task for 2nd half of the loop
+ kmp_task_t *new_task =
+ __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
+ sizeof(__taskloop_params_t), &__kmp_taskloop_task);
+ __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
+ p->task = next_task;
+ p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
+ p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
+ p->task_dup = task_dup;
+ p->st = st;
+ p->ub_glob = ub_glob;
+ p->num_tasks = n_tsk1;
+ p->grainsize = grainsize;
+ p->extras = ext1;
+ p->tc = tc1;
+ p->num_t_min = num_t_min;
+#if OMPT_SUPPORT
+ p->codeptr_ra = codeptr_ra;
+#endif
+
+#if OMPT_SUPPORT
+ // schedule new task with correct return address for OMPT events
+ __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
+#else
+ __kmp_omp_task(gtid, new_task, true); // schedule new task
+#endif
+
+ // execute the 1st half of current subrange
+ if (n_tsk0 > num_t_min)
+ __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
+ ext0, tc0, num_t_min,
+#if OMPT_SUPPORT
+ codeptr_ra,
+#endif
+ task_dup);
+ else
+ __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
+ gr_size0, ext0, tc0,
+#if OMPT_SUPPORT
+ codeptr_ra,
+#endif
+ task_dup);
+
+ KA_TRACE(40, ("__kmpc_taskloop_recur(exit): T#%d\n", gtid));
+}
+
+/*!
+@ingroup TASKING
+@param loc Source location information
+@param gtid Global thread ID
+@param task Task structure
+@param if_val Value of the if clause
+@param lb Pointer to loop lower bound in task structure
+@param ub Pointer to loop upper bound in task structure
+@param st Loop stride
+@param nogroup Flag, 1 if no taskgroup needs to be added, 0 otherwise
+@param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
+@param grainsize Schedule value if specified
+@param task_dup Tasks duplication routine
+
+Execute the taskloop construct.
+*/
+void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
+ kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
+ int sched, kmp_uint64 grainsize, void *task_dup) {
+ kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
+ KMP_DEBUG_ASSERT(task != NULL);
+
+ if (nogroup == 0) {
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ OMPT_STORE_RETURN_ADDRESS(gtid);
+#endif
+ __kmpc_taskgroup(loc, gtid);
+ }
+
+ // =========================================================================
+ // calculate loop parameters
+ kmp_taskloop_bounds_t task_bounds(task, lb, ub);
+ kmp_uint64 tc;
+ // compiler provides global bounds here
+ kmp_uint64 lower = task_bounds.get_lb();
+ kmp_uint64 upper = task_bounds.get_ub();
+ kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
+ kmp_uint64 num_tasks = 0, extras = 0;
+ kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskdata_t *current_task = thread->th.th_current_task;
+
+ KA_TRACE(20, ("__kmpc_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
+ "grain %llu(%d), dup %p\n",
+ gtid, taskdata, lower, upper, st, grainsize, sched, task_dup));
+
+ // compute trip count
+ if (st == 1) { // most common case
+ tc = upper - lower + 1;
+ } else if (st < 0) {
+ tc = (lower - upper) / (-st) + 1;
+ } else { // st > 0
+ tc = (upper - lower) / st + 1;
+ }
+ if (tc == 0) {
+ KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid));
+ // free the pattern task and exit
+ __kmp_task_start(gtid, task, current_task);
+ // do not execute anything for zero-trip loop
+ __kmp_task_finish<false>(gtid, task, current_task);
+ return;
+ }
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
+ ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
+ if (ompt_enabled.ompt_callback_work) {
+ ompt_callbacks.ompt_callback(ompt_callback_work)(
+ ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
+ &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
+ }
+#endif
+
+ if (num_tasks_min == 0)
+ // TODO: can we choose better default heuristic?
+ num_tasks_min =
+ KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
+
+ // compute num_tasks/grainsize based on the input provided
+ switch (sched) {
+ case 0: // no schedule clause specified, we can choose the default
+ // let's try to schedule (team_size*10) tasks
+ grainsize = thread->th.th_team_nproc * 10;
+ case 2: // num_tasks provided
+ if (grainsize > tc) {
+ num_tasks = tc; // too big num_tasks requested, adjust values
+ grainsize = 1;
+ extras = 0;
+ } else {
+ num_tasks = grainsize;
+ grainsize = tc / num_tasks;
+ extras = tc % num_tasks;
+ }
+ break;
+ case 1: // grainsize provided
+ if (grainsize > tc) {
+ num_tasks = 1; // too big grainsize requested, adjust values
+ grainsize = tc;
+ extras = 0;
+ } else {
+ num_tasks = tc / grainsize;
+ // adjust grainsize for balanced distribution of iterations
+ grainsize = tc / num_tasks;
+ extras = tc % num_tasks;
+ }
+ break;
+ default:
+ KMP_ASSERT2(0, "unknown scheduling of taskloop");
+ }
+ KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
+ KMP_DEBUG_ASSERT(num_tasks > extras);
+ KMP_DEBUG_ASSERT(num_tasks > 0);
+ // =========================================================================
+
+ // check if clause value first
+ // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
+ if (if_val == 0) { // if(0) specified, mark task as serial
+ taskdata->td_flags.task_serial = 1;
+ taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
+ // always start serial tasks linearly
+ __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
+ grainsize, extras, tc,
+#if OMPT_SUPPORT
+ OMPT_GET_RETURN_ADDRESS(0),
+#endif
+ task_dup);
+ // !taskdata->td_flags.native => currently force linear spawning of tasks
+ // for GOMP_taskloop
+ } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
+ KA_TRACE(20, ("__kmpc_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
+ "(%lld), grain %llu, extras %llu\n",
+ gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
+ __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
+ grainsize, extras, tc, num_tasks_min,
+#if OMPT_SUPPORT
+ OMPT_GET_RETURN_ADDRESS(0),
+#endif
+ task_dup);
+ } else {
+ KA_TRACE(20, ("__kmpc_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
+ "(%lld), grain %llu, extras %llu\n",
+ gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
+ __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
+ grainsize, extras, tc,
+#if OMPT_SUPPORT
+ OMPT_GET_RETURN_ADDRESS(0),
+#endif
+ task_dup);
+ }
+
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ if (ompt_enabled.ompt_callback_work) {
+ ompt_callbacks.ompt_callback(ompt_callback_work)(
+ ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
+ &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
+ }
+#endif
+
+ if (nogroup == 0) {
+#if OMPT_SUPPORT && OMPT_OPTIONAL
+ OMPT_STORE_RETURN_ADDRESS(gtid);
+#endif
+ __kmpc_end_taskgroup(loc, gtid);
+ }
+ KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
+}
+
+#endif