aboutsummaryrefslogtreecommitdiff
path: root/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3
diff options
context:
space:
mode:
Diffstat (limited to 'secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3')
-rw-r--r--secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3294
1 files changed, 118 insertions, 176 deletions
diff --git a/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3 b/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3
index 2b22e6489464..be2246fce6fa 100644
--- a/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3
+++ b/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3
@@ -1,4 +1,5 @@
-.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)
+.\" -*- mode: troff; coding: utf-8 -*-
+.\" Automatically generated by Pod::Man 5.0102 (Pod::Simple 3.45)
.\"
.\" Standard preamble:
.\" ========================================================================
@@ -15,29 +16,12 @@
.ft R
.fi
..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. \*(C+ will
-.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
-.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
-.\" nothing in troff, for use with C<>.
-.tr \(*W-
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
+.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
. ds C`
. ds C'
'br\}
@@ -68,75 +52,15 @@
. \}
.\}
.rr rF
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "PEM_READ_BIO_PRIVATEKEY 3ossl"
-.TH PEM_READ_BIO_PRIVATEKEY 3ossl "2023-09-19" "3.0.11" "OpenSSL"
+.TH PEM_READ_BIO_PRIVATEKEY 3ossl 2025-07-01 3.5.1 OpenSSL
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
-.SH "NAME"
+.SH NAME
pem_password_cb,
PEM_read_bio_PrivateKey_ex, PEM_read_bio_PrivateKey,
PEM_read_PrivateKey_ex, PEM_read_PrivateKey,
@@ -161,13 +85,15 @@ PEM_write_bio_Parameters, PEM_read_bio_DSAparams, PEM_read_DSAparams,
PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
+PEM_read_bio_X509_ACERT, PEM_read_X509_ACERT,
+PEM_write_bio_X509_ACERT, PEM_write_X509_ACERT,
PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
PEM_write_bio_PKCS7, PEM_write_PKCS7 \- PEM routines
-.SH "SYNOPSIS"
+.SH SYNOPSIS
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/pem.h>
@@ -243,6 +169,13 @@ PEM_write_bio_PKCS7, PEM_write_PKCS7 \- PEM routines
\& int PEM_write_bio_X509(BIO *bp, X509 *x);
\& int PEM_write_X509(FILE *fp, X509 *x);
\&
+\& X509_ACERT *PEM_read_bio_X509_ACERT(BIO *bp, X509_ACERT **x,
+\& pem_password_cb *cb, void *u);
+\& X509_ACERT *PEM_read_X509_ACERT(FILE *fp, X509_ACERT **x,
+\& pem_password_cb *cb, void *u);
+\& int PEM_write_bio_X509_ACERT(BIO *bp, X509_ACERT *x);
+\& int PEM_write_X509_ACERT(FILE *fp, X509_ACERT *x);
+\&
\& X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
\& X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
\& int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
@@ -271,7 +204,7 @@ PEM_write_bio_PKCS7, PEM_write_PKCS7 \- PEM routines
.Ve
.PP
The following functions have been deprecated since OpenSSL 3.0, and can be
-hidden entirely by defining \fB\s-1OPENSSL_API_COMPAT\s0\fR with a suitable version value,
+hidden entirely by defining \fBOPENSSL_API_COMPAT\fR with a suitable version value,
see \fBopenssl_user_macros\fR\|(7):
.PP
.Vb 10
@@ -327,23 +260,23 @@ see \fBopenssl_user_macros\fR\|(7):
\& int PEM_write_bio_DHparams(BIO *bp, DH *x);
\& int PEM_write_DHparams(FILE *fp, DH *x);
.Ve
-.SH "DESCRIPTION"
+.SH DESCRIPTION
.IX Header "DESCRIPTION"
-All of the functions described on this page that have a \fI\s-1TYPE\s0\fR of \fB\s-1DH\s0\fR, \fB\s-1DSA\s0\fR
-and \fB\s-1RSA\s0\fR are deprecated. Applications should use \fBOSSL_ENCODER_to_bio\fR\|(3) and
+All of the functions described on this page that have a \fITYPE\fR of \fBDH\fR, \fBDSA\fR
+and \fBRSA\fR are deprecated. Applications should use \fBOSSL_ENCODER_to_bio\fR\|(3) and
\&\fBOSSL_DECODER_from_bio\fR\|(3) instead.
.PP
-The \s-1PEM\s0 functions read or write structures in \s-1PEM\s0 format. In
-this sense \s-1PEM\s0 format is simply base64 encoded data surrounded
+The PEM functions read or write structures in PEM format. In
+this sense PEM format is simply base64 encoded data surrounded
by header lines.
.PP
For more details about the meaning of arguments see the
-\&\fB\s-1PEM FUNCTION ARGUMENTS\s0\fR section.
+\&\fBPEM FUNCTION ARGUMENTS\fR section.
.PP
Each operation has four functions associated with it. For
-brevity the term "\fB\f(BI\s-1TYPE\s0\fB\fR functions" will be used below to collectively
-refer to the \fBPEM_read_bio_\f(BI\s-1TYPE\s0\fB\fR(), \fBPEM_read_\f(BI\s-1TYPE\s0\fB\fR(),
-\&\fBPEM_write_bio_\f(BI\s-1TYPE\s0\fB\fR(), and \fBPEM_write_\f(BI\s-1TYPE\s0\fB\fR() functions.
+brevity the term "\fR\f(BITYPE\fR\fB\fR functions" will be used below to collectively
+refer to the \fBPEM_read_bio_\fR\f(BITYPE\fR\fB\fR(), \fBPEM_read_\fR\f(BITYPE\fR\fB\fR(),
+\&\fBPEM_write_bio_\fR\f(BITYPE\fR\fB\fR(), and \fBPEM_write_\fR\f(BITYPE\fR\fB\fR() functions.
.PP
Some operations have additional variants that take a library context \fIlibctx\fR
and a property query string \fIpropq\fR. The \fBX509\fR, \fBX509_REQ\fR and \fBX509_CRL\fR
@@ -353,70 +286,70 @@ query string parameter. In this case it is possible to set the appropriate
library context or property query string by creating an empty \fBX509\fR,
\&\fBX509_REQ\fR or \fBX509_CRL\fR object using \fBX509_new_ex\fR\|(3), \fBX509_REQ_new_ex\fR\|(3)
or \fBX509_CRL_new_ex\fR\|(3) respectively. Then pass the empty object as a parameter
-to the relevant \s-1PEM\s0 function. See the \*(L"\s-1EXAMPLES\*(R"\s0 section below.
+to the relevant PEM function. See the "EXAMPLES" section below.
.PP
-The \fBPrivateKey\fR functions read or write a private key in \s-1PEM\s0 format using
-an \s-1EVP_PKEY\s0 structure. The write routines use PKCS#8 private key format and are
+The \fBPrivateKey\fR functions read or write a private key in PEM format using
+an EVP_PKEY structure. The write routines use PKCS#8 private key format and are
equivalent to \fBPEM_write_bio_PKCS8PrivateKey()\fR. The read functions transparently
handle traditional and PKCS#8 format encrypted and unencrypted keys.
.PP
\&\fBPEM_write_bio_PrivateKey_traditional()\fR writes out a private key in the
-\&\*(L"traditional\*(R" format with a simple private key marker and should only
+"traditional" format with a simple private key marker and should only
be used for compatibility with legacy programs.
.PP
\&\fBPEM_write_bio_PKCS8PrivateKey()\fR and \fBPEM_write_PKCS8PrivateKey()\fR write a private
-key in an \s-1EVP_PKEY\s0 structure in PKCS#8 EncryptedPrivateKeyInfo format using
+key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using
PKCS#5 v2.0 password based encryption algorithms. The \fIcipher\fR argument
-specifies the encryption algorithm to use: unlike some other \s-1PEM\s0 routines the
-encryption is applied at the PKCS#8 level and not in the \s-1PEM\s0 headers. If
-\&\fIcipher\fR is \s-1NULL\s0 then no encryption is used and a PKCS#8 PrivateKeyInfo
+specifies the encryption algorithm to use: unlike some other PEM routines the
+encryption is applied at the PKCS#8 level and not in the PEM headers. If
+\&\fIcipher\fR is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
structure is used instead.
.PP
\&\fBPEM_write_bio_PKCS8PrivateKey_nid()\fR and \fBPEM_write_PKCS8PrivateKey_nid()\fR
also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
-to use is specified in the \fInid\fR parameter and should be the \s-1NID\s0 of the
-corresponding \s-1OBJECT IDENTIFIER\s0 (see \s-1NOTES\s0 section).
+to use is specified in the \fInid\fR parameter and should be the NID of the
+corresponding OBJECT IDENTIFIER (see NOTES section).
.PP
-The \fB\s-1PUBKEY\s0\fR functions process a public key using an \s-1EVP_PKEY\s0
+The \fBPUBKEY\fR functions process a public key using an EVP_PKEY
structure. The public key is encoded as a SubjectPublicKeyInfo
structure.
.PP
-The \fBRSAPrivateKey\fR functions process an \s-1RSA\s0 private key using an
-\&\s-1RSA\s0 structure. The write routines uses traditional format. The read
+The \fBRSAPrivateKey\fR functions process an RSA private key using an
+RSA structure. The write routines uses traditional format. The read
routines handles the same formats as the \fBPrivateKey\fR
-functions but an error occurs if the private key is not \s-1RSA.\s0
+functions but an error occurs if the private key is not RSA.
.PP
-The \fBRSAPublicKey\fR functions process an \s-1RSA\s0 public key using an
-\&\s-1RSA\s0 structure. The public key is encoded using a PKCS#1 RSAPublicKey
+The \fBRSAPublicKey\fR functions process an RSA public key using an
+RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
structure.
.PP
-The \fB\s-1RSA_PUBKEY\s0\fR functions also process an \s-1RSA\s0 public key using
-an \s-1RSA\s0 structure. However, the public key is encoded using a
+The \fBRSA_PUBKEY\fR functions also process an RSA public key using
+an RSA structure. However, the public key is encoded using a
SubjectPublicKeyInfo structure and an error occurs if the public
-key is not \s-1RSA.\s0
+key is not RSA.
.PP
-The \fBDSAPrivateKey\fR functions process a \s-1DSA\s0 private key using a
-\&\s-1DSA\s0 structure. The write routines uses traditional format. The read
+The \fBDSAPrivateKey\fR functions process a DSA private key using a
+DSA structure. The write routines uses traditional format. The read
routines handles the same formats as the \fBPrivateKey\fR
-functions but an error occurs if the private key is not \s-1DSA.\s0
+functions but an error occurs if the private key is not DSA.
.PP
-The \fB\s-1DSA_PUBKEY\s0\fR functions process a \s-1DSA\s0 public key using
-a \s-1DSA\s0 structure. The public key is encoded using a
+The \fBDSA_PUBKEY\fR functions process a DSA public key using
+a DSA structure. The public key is encoded using a
SubjectPublicKeyInfo structure and an error occurs if the public
-key is not \s-1DSA.\s0
+key is not DSA.
.PP
-The \fBParameters\fR functions read or write key parameters in \s-1PEM\s0 format using
-an \s-1EVP_PKEY\s0 structure. The encoding depends on the type of key; for \s-1DSA\s0 key
-parameters, it will be a Dss-Parms structure as defined in \s-1RFC2459,\s0 and for \s-1DH\s0
+The \fBParameters\fR functions read or write key parameters in PEM format using
+an EVP_PKEY structure. The encoding depends on the type of key; for DSA key
+parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH
key parameters, it will be a PKCS#3 DHparameter structure. \fIThese functions
-only exist for the \f(BI\s-1BIO\s0\fI type\fR.
+only exist for the \fR\f(BIBIO\fR\fI type\fR.
.PP
-The \fBDSAparams\fR functions process \s-1DSA\s0 parameters using a \s-1DSA\s0
+The \fBDSAparams\fR functions process DSA parameters using a DSA
structure. The parameters are encoded using a Dss-Parms structure
-as defined in \s-1RFC2459.\s0
+as defined in RFC2459.
.PP
-The \fBDHparams\fR functions process \s-1DH\s0 parameters using a \s-1DH\s0
+The \fBDHparams\fR functions process DH parameters using a DH
structure. The parameters are encoded using a PKCS#3 DHparameter
structure.
.PP
@@ -424,60 +357,65 @@ The \fBX509\fR functions process an X509 certificate using an X509
structure. They will also process a trusted X509 certificate but
any trust settings are discarded.
.PP
+The \fBX509_ACERT\fR functions process an X509 attribute certificate using
+an X509_ACERT structure.
+.PP
The \fBX509_AUX\fR functions process a trusted X509 certificate using
an X509 structure.
.PP
The \fBX509_REQ\fR and \fBX509_REQ_NEW\fR functions process a PKCS#10
certificate request using an X509_REQ structure. The \fBX509_REQ\fR
-write functions use \fB\s-1CERTIFICATE REQUEST\s0\fR in the header whereas
-the \fBX509_REQ_NEW\fR functions use \fB\s-1NEW CERTIFICATE REQUEST\s0\fR
+write functions use \fBCERTIFICATE REQUEST\fR in the header whereas
+the \fBX509_REQ_NEW\fR functions use \fBNEW CERTIFICATE REQUEST\fR
(as required by some CAs). The \fBX509_REQ\fR read functions will
handle either form so there are no \fBX509_REQ_NEW\fR read functions.
.PP
-The \fBX509_CRL\fR functions process an X509 \s-1CRL\s0 using an X509_CRL
+The \fBX509_CRL\fR functions process an X509 CRL using an X509_CRL
structure.
.PP
-The \fB\s-1PKCS7\s0\fR functions process a PKCS#7 ContentInfo using a \s-1PKCS7\s0
+The \fBPKCS7\fR functions process a PKCS#7 ContentInfo using a PKCS7
structure.
.SH "PEM FUNCTION ARGUMENTS"
.IX Header "PEM FUNCTION ARGUMENTS"
-The \s-1PEM\s0 functions have many common arguments.
+The PEM functions have many common arguments.
.PP
-The \fIbp\fR \s-1BIO\s0 parameter (if present) specifies the \s-1BIO\s0 to read from
-or write to.
+The \fIbp\fR BIO parameter (if present) specifies the BIO to read from
+or write to. The \fIbp\fR BIO parameter \fBMUST NOT\fR be NULL.
.PP
-The \fIfp\fR \s-1FILE\s0 parameter (if present) specifies the \s-1FILE\s0 pointer to
+The \fIfp\fR FILE parameter (if present) specifies the FILE pointer to
read from or write to.
.PP
-The \s-1PEM\s0 read functions all take an argument \fI\f(BI\s-1TYPE\s0\fI **x\fR and return
-a \fI\f(BI\s-1TYPE\s0\fI *\fR pointer. Where \fI\f(BI\s-1TYPE\s0\fI\fR is whatever structure the function
-uses. If \fIx\fR is \s-1NULL\s0 then the parameter is ignored. If \fIx\fR is not
-\&\s-1NULL\s0 but \fI*x\fR is \s-1NULL\s0 then the structure returned will be written
-to \fI*x\fR. If neither \fIx\fR nor \fI*x\fR is \s-1NULL\s0 then an attempt is made
-to reuse the structure at \fI*x\fR (but see \s-1BUGS\s0 and \s-1EXAMPLES\s0 sections).
+The PEM read functions all take an argument \fR\f(BITYPE\fR\fI **x\fR and return
+a \fI\fR\f(BITYPE\fR\fI *\fR pointer. Where \fI\fR\f(BITYPE\fR\fI\fR is whatever structure the function
+uses. If \fIx\fR is NULL then the parameter is ignored. If \fIx\fR is not
+NULL but \fI*x\fR is NULL then the structure returned will be written
+to \fI*x\fR. If neither \fIx\fR nor \fI*x\fR is NULL then an attempt is made
+to reuse the structure at \fI*x\fR (but see BUGS and EXAMPLES sections).
Irrespective of the value of \fIx\fR a pointer to the structure is always
-returned (or \s-1NULL\s0 if an error occurred).
+returned (or NULL if an error occurred). The caller retains ownership of the
+returned object and needs to free it when it is no longer needed, e.g.
+using \fBX509_free()\fR for X509 objects or \fBEVP_PKEY_free()\fR for EVP_PKEY objects.
.PP
-The \s-1PEM\s0 functions which write private keys take an \fIenc\fR parameter
+The PEM functions which write private keys take an \fIenc\fR parameter
which specifies the encryption algorithm to use, encryption is done
-at the \s-1PEM\s0 level. If this parameter is set to \s-1NULL\s0 then the private
+at the PEM level. If this parameter is set to NULL then the private
key is written in unencrypted form.
.PP
The \fIcb\fR argument is the callback to use when querying for the pass
-phrase used for encrypted \s-1PEM\s0 structures (normally only private keys).
+phrase used for encrypted PEM structures (normally only private keys).
.PP
-For the \s-1PEM\s0 write routines if the \fIkstr\fR parameter is not \s-1NULL\s0 then
+For the PEM write routines if the \fIkstr\fR parameter is not NULL then
\&\fIklen\fR bytes at \fIkstr\fR are used as the passphrase and \fIcb\fR is
ignored.
.PP
-If the \fIcb\fR parameters is set to \s-1NULL\s0 and the \fIu\fR parameter is not
-\&\s-1NULL\s0 then the \fIu\fR parameter is interpreted as a \s-1NUL\s0 terminated string
-to use as the passphrase. If both \fIcb\fR and \fIu\fR are \s-1NULL\s0 then the
+If the \fIcb\fR parameters is set to NULL and the \fIu\fR parameter is not
+NULL then the \fIu\fR parameter is interpreted as a NUL terminated string
+to use as the passphrase. If both \fIcb\fR and \fIu\fR are NULL then the
default callback routine is used which will typically prompt for the
passphrase on the current terminal with echoing turned off.
.PP
The default passphrase callback is sometimes inappropriate (for example
-in a \s-1GUI\s0 application) so an alternative can be supplied. The callback
+in a GUI application) so an alternative can be supplied. The callback
routine has the following form:
.PP
.Vb 1
@@ -489,23 +427,23 @@ length of the passphrase (i.e. the size of buf). \fIrwflag\fR is a flag
which is set to 0 when reading and 1 when writing. A typical routine
will ask the user to verify the passphrase (for example by prompting
for it twice) if \fIrwflag\fR is 1. The \fIu\fR parameter has the same
-value as the \fIu\fR parameter passed to the \s-1PEM\s0 routine. It allows
+value as the \fIu\fR parameter passed to the PEM routine. It allows
arbitrary data to be passed to the callback by the application
-(for example a window handle in a \s-1GUI\s0 application). The callback
+(for example a window handle in a GUI application). The callback
\&\fImust\fR return the number of characters in the passphrase or \-1 if
an error occurred. The passphrase can be arbitrary data; in the case where it
-is a string, it is not \s-1NUL\s0 terminated. See the \*(L"\s-1EXAMPLES\*(R"\s0 section below.
+is a string, it is not NUL terminated. See the "EXAMPLES" section below.
.PP
Some implementations may need to use cryptographic algorithms during their
operation. If this is the case and \fIlibctx\fR and \fIpropq\fR parameters have been
passed then any algorithm fetches will use that library context and property
query string. Otherwise the default library context and property query string
will be used.
-.SH "NOTES"
+.SH NOTES
.IX Header "NOTES"
-The \s-1PEM\s0 reading functions will skip any extraneous content or \s-1PEM\s0 data of
+The PEM reading functions will skip any extraneous content or PEM data of
a different type than they expect. This allows for example having a certificate
-(or multiple certificates) and a key in the \s-1PEM\s0 format in a single file.
+(or multiple certificates) and a key in the PEM format in a single file.
.PP
The old \fBPrivateKey\fR write routines are retained for compatibility.
New applications should write private keys using the
@@ -517,7 +455,7 @@ versions of OpenSSL is important.
The \fBPrivateKey\fR read routines can be used in all applications because
they handle all formats transparently.
.PP
-A frequent cause of problems is attempting to use the \s-1PEM\s0 routines like
+A frequent cause of problems is attempting to use the PEM routines like
this:
.PP
.Vb 1
@@ -556,7 +494,7 @@ the base64\-encoded encrypted data.
.PP
The encryption key is derived using \fBEVP_BytesToKey()\fR. The cipher's
initialization vector is passed to \fBEVP_BytesToKey()\fR as the \fIsalt\fR
-parameter. Internally, \fB\s-1PKCS5_SALT_LEN\s0\fR bytes of the salt are used
+parameter. Internally, \fBPKCS5_SALT_LEN\fR bytes of the salt are used
(regardless of the size of the initialization vector). The user's
password is passed to \fBEVP_BytesToKey()\fR using the \fIdata\fR and \fIdatal\fR
parameters. Finally, the library uses an iteration count of 1 for
@@ -564,7 +502,7 @@ parameters. Finally, the library uses an iteration count of 1 for
.PP
The \fIkey\fR derived by \fBEVP_BytesToKey()\fR along with the original initialization
vector is then used to decrypt the encrypted data. The \fIiv\fR produced by
-\&\fBEVP_BytesToKey()\fR is not utilized or needed, and \s-1NULL\s0 should be passed to
+\&\fBEVP_BytesToKey()\fR is not utilized or needed, and NULL should be passed to
the function.
.PP
The pseudo code to derive the key would look similar to:
@@ -585,9 +523,9 @@ The pseudo code to derive the key would look similar to:
\&
\& /* On success, use key and iv to initialize the cipher */
.Ve
-.SH "BUGS"
+.SH BUGS
.IX Header "BUGS"
-The \s-1PEM\s0 read routines in some versions of OpenSSL will not correctly reuse
+The PEM read routines in some versions of OpenSSL will not correctly reuse
an existing structure. Therefore, the following:
.PP
.Vb 1
@@ -605,16 +543,16 @@ is guaranteed to work. It is always acceptable for \fIx\fR to contain a newly
allocated, empty \fBX509\fR object (for example allocated via \fBX509_new_ex\fR\|(3)).
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
-The read routines return either a pointer to the structure read or \s-1NULL\s0
+The read routines return either a pointer to the structure read or NULL
if an error occurred.
.PP
The write routines return 1 for success or 0 for failure.
-.SH "EXAMPLES"
+.SH EXAMPLES
.IX Header "EXAMPLES"
-Although the \s-1PEM\s0 routines take several arguments in almost all applications
-most of them are set to 0 or \s-1NULL.\s0
+Although the PEM routines take several arguments in almost all applications
+most of them are set to 0 or NULL.
.PP
-To read a certificate with a library context in \s-1PEM\s0 format from a \s-1BIO:\s0
+To read a certificate with a library context in PEM format from a BIO:
.PP
.Vb 1
\& X509 *x = X509_new_ex(libctx, NULL);
@@ -626,7 +564,7 @@ To read a certificate with a library context in \s-1PEM\s0 format from a \s-1BIO
\& /* Error */
.Ve
.PP
-Read a certificate in \s-1PEM\s0 format from a \s-1BIO:\s0
+Read a certificate in PEM format from a BIO:
.PP
.Vb 1
\& X509 *x;
@@ -645,23 +583,23 @@ Alternative method:
\& /* Error */
.Ve
.PP
-Write a certificate to a \s-1BIO:\s0
+Write a certificate to a BIO:
.PP
.Vb 2
\& if (!PEM_write_bio_X509(bp, x))
\& /* Error */
.Ve
.PP
-Write a private key (using traditional format) to a \s-1BIO\s0 using
-triple \s-1DES\s0 encryption, the pass phrase is prompted for:
+Write a private key (using traditional format) to a BIO using
+triple DES encryption, the pass phrase is prompted for:
.PP
.Vb 2
\& if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
\& /* Error */
.Ve
.PP
-Write a private key (using PKCS#8 format) to a \s-1BIO\s0 using triple
-\&\s-1DES\s0 encryption, using the pass phrase \*(L"hello\*(R":
+Write a private key (using PKCS#8 format) to a BIO using triple
+DES encryption, using the pass phrase "hello":
.PP
.Vb 3
\& if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
@@ -669,7 +607,7 @@ Write a private key (using PKCS#8 format) to a \s-1BIO\s0 using triple
\& /* Error */
.Ve
.PP
-Read a private key from a \s-1BIO\s0 using a pass phrase callback:
+Read a private key from a BIO using a pass phrase callback:
.PP
.Vb 3
\& key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
@@ -703,10 +641,10 @@ Skeleton pass phrase callback:
.IX Header "SEE ALSO"
\&\fBEVP_EncryptInit\fR\|(3), \fBEVP_BytesToKey\fR\|(3),
\&\fBpassphrase\-encoding\fR\|(7)
-.SH "HISTORY"
+.SH HISTORY
.IX Header "HISTORY"
The old Netscape certificate sequences were no longer documented
-in OpenSSL 1.1.0; applications should use the \s-1PKCS7\s0 standard instead
+in OpenSSL 1.1.0; applications should use the PKCS7 standard instead
as they will be formally deprecated in a future releases.
.PP
\&\fBPEM_read_bio_PrivateKey_ex()\fR, \fBPEM_read_PrivateKey_ex()\fR,
@@ -727,11 +665,15 @@ The functions \fBPEM_read_bio_RSAPrivateKey()\fR, \fBPEM_read_RSAPrivateKey()\fR
\&\fBPEM_write_bio_DSAparams()\fR, \fBPEM_write_DSAparams()\fR,
\&\fBPEM_read_bio_DHparams()\fR, \fBPEM_read_DHparams()\fR,
\&\fBPEM_write_bio_DHparams()\fR and \fBPEM_write_DHparams()\fR were deprecated in 3.0.
-.SH "COPYRIGHT"
+.PP
+\&\fBPEM_read_bio_X509_ACERT()\fR, \fBPEM_read_X509_ACERT()\fR,
+\&\fBPEM_write_bio_X509_ACERT()\fR, \fBPEM_write_X509_ACERT()\fR
+were added in OpenSSL 3.4.
+.SH COPYRIGHT
.IX Header "COPYRIGHT"
-Copyright 2001\-2022 The OpenSSL Project Authors. All Rights Reserved.
+Copyright 2001\-2024 The OpenSSL Project Authors. All Rights Reserved.
.PP
-Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use
+Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
-in the file \s-1LICENSE\s0 in the source distribution or at
+in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.