aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp')
-rw-r--r--source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp13625
1 files changed, 13625 insertions, 0 deletions
diff --git a/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp b/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp
new file mode 100644
index 000000000000..2dd04dd8733d
--- /dev/null
+++ b/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp
@@ -0,0 +1,13625 @@
+//===-- EmulateInstructionARM.cpp -------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include <stdlib.h>
+
+#include "EmulateInstructionARM.h"
+#include "EmulationStateARM.h"
+#include "lldb/Core/ArchSpec.h"
+#include "lldb/Core/Address.h"
+#include "lldb/Core/ConstString.h"
+#include "lldb/Core/PluginManager.h"
+#include "lldb/Core/Stream.h"
+#include "lldb/Interpreter/OptionValueArray.h"
+#include "lldb/Interpreter/OptionValueDictionary.h"
+#include "lldb/Symbol/UnwindPlan.h"
+
+#include "Plugins/Process/Utility/ARMDefines.h"
+#include "Plugins/Process/Utility/ARMUtils.h"
+#include "Utility/ARM_DWARF_Registers.h"
+
+#include "llvm/Support/MathExtras.h" // for SignExtend32 template function
+ // and countTrailingZeros function
+
+using namespace lldb;
+using namespace lldb_private;
+
+// Convenient macro definitions.
+#define APSR_C Bit32(m_opcode_cpsr, CPSR_C_POS)
+#define APSR_V Bit32(m_opcode_cpsr, CPSR_V_POS)
+
+#define AlignPC(pc_val) (pc_val & 0xFFFFFFFC)
+
+//----------------------------------------------------------------------
+//
+// ITSession implementation
+//
+//----------------------------------------------------------------------
+
+// A8.6.50
+// Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition.
+static uint32_t
+CountITSize (uint32_t ITMask) {
+ // First count the trailing zeros of the IT mask.
+ uint32_t TZ = llvm::countTrailingZeros(ITMask);
+ if (TZ > 3)
+ {
+#ifdef LLDB_CONFIGURATION_DEBUG
+ printf("Encoding error: IT Mask '0000'\n");
+#endif
+ return 0;
+ }
+ return (4 - TZ);
+}
+
+// Init ITState. Note that at least one bit is always 1 in mask.
+bool ITSession::InitIT(uint32_t bits7_0)
+{
+ ITCounter = CountITSize(Bits32(bits7_0, 3, 0));
+ if (ITCounter == 0)
+ return false;
+
+ // A8.6.50 IT
+ unsigned short FirstCond = Bits32(bits7_0, 7, 4);
+ if (FirstCond == 0xF)
+ {
+#ifdef LLDB_CONFIGURATION_DEBUG
+ printf("Encoding error: IT FirstCond '1111'\n");
+#endif
+ return false;
+ }
+ if (FirstCond == 0xE && ITCounter != 1)
+ {
+#ifdef LLDB_CONFIGURATION_DEBUG
+ printf("Encoding error: IT FirstCond '1110' && Mask != '1000'\n");
+#endif
+ return false;
+ }
+
+ ITState = bits7_0;
+ return true;
+}
+
+// Update ITState if necessary.
+void ITSession::ITAdvance()
+{
+ //assert(ITCounter);
+ --ITCounter;
+ if (ITCounter == 0)
+ ITState = 0;
+ else
+ {
+ unsigned short NewITState4_0 = Bits32(ITState, 4, 0) << 1;
+ SetBits32(ITState, 4, 0, NewITState4_0);
+ }
+}
+
+// Return true if we're inside an IT Block.
+bool ITSession::InITBlock()
+{
+ return ITCounter != 0;
+}
+
+// Return true if we're the last instruction inside an IT Block.
+bool ITSession::LastInITBlock()
+{
+ return ITCounter == 1;
+}
+
+// Get condition bits for the current thumb instruction.
+uint32_t ITSession::GetCond()
+{
+ if (InITBlock())
+ return Bits32(ITState, 7, 4);
+ else
+ return COND_AL;
+}
+
+// ARM constants used during decoding
+#define REG_RD 0
+#define LDM_REGLIST 1
+#define SP_REG 13
+#define LR_REG 14
+#define PC_REG 15
+#define PC_REGLIST_BIT 0x8000
+
+#define ARMv4 (1u << 0)
+#define ARMv4T (1u << 1)
+#define ARMv5T (1u << 2)
+#define ARMv5TE (1u << 3)
+#define ARMv5TEJ (1u << 4)
+#define ARMv6 (1u << 5)
+#define ARMv6K (1u << 6)
+#define ARMv6T2 (1u << 7)
+#define ARMv7 (1u << 8)
+#define ARMv7S (1u << 9)
+#define ARMv8 (1u << 10)
+#define ARMvAll (0xffffffffu)
+
+#define ARMV4T_ABOVE (ARMv4T|ARMv5T|ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
+#define ARMV5_ABOVE (ARMv5T|ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
+#define ARMV5TE_ABOVE (ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
+#define ARMV5J_ABOVE (ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
+#define ARMV6_ABOVE (ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
+#define ARMV6T2_ABOVE (ARMv6T2|ARMv7|ARMv7S|ARMv8)
+#define ARMV7_ABOVE (ARMv7|ARMv7S|ARMv8)
+
+#define No_VFP 0
+#define VFPv1 (1u << 1)
+#define VFPv2 (1u << 2)
+#define VFPv3 (1u << 3)
+#define AdvancedSIMD (1u << 4)
+
+#define VFPv1_ABOVE (VFPv1 | VFPv2 | VFPv3 | AdvancedSIMD)
+#define VFPv2_ABOVE (VFPv2 | VFPv3 | AdvancedSIMD)
+#define VFPv2v3 (VFPv2 | VFPv3)
+
+//----------------------------------------------------------------------
+//
+// EmulateInstructionARM implementation
+//
+//----------------------------------------------------------------------
+
+void
+EmulateInstructionARM::Initialize ()
+{
+ PluginManager::RegisterPlugin (GetPluginNameStatic (),
+ GetPluginDescriptionStatic (),
+ CreateInstance);
+}
+
+void
+EmulateInstructionARM::Terminate ()
+{
+ PluginManager::UnregisterPlugin (CreateInstance);
+}
+
+ConstString
+EmulateInstructionARM::GetPluginNameStatic ()
+{
+ static ConstString g_name("arm");
+ return g_name;
+}
+
+const char *
+EmulateInstructionARM::GetPluginDescriptionStatic ()
+{
+ return "Emulate instructions for the ARM architecture.";
+}
+
+EmulateInstruction *
+EmulateInstructionARM::CreateInstance (const ArchSpec &arch, InstructionType inst_type)
+{
+ if (EmulateInstructionARM::SupportsEmulatingIntructionsOfTypeStatic(inst_type))
+ {
+ if (arch.GetTriple().getArch() == llvm::Triple::arm)
+ {
+ std::unique_ptr<EmulateInstructionARM> emulate_insn_ap (new EmulateInstructionARM (arch));
+
+ if (emulate_insn_ap.get())
+ return emulate_insn_ap.release();
+ }
+ else if (arch.GetTriple().getArch() == llvm::Triple::thumb)
+ {
+ std::unique_ptr<EmulateInstructionARM> emulate_insn_ap (new EmulateInstructionARM (arch));
+
+ if (emulate_insn_ap.get())
+ return emulate_insn_ap.release();
+ }
+ }
+
+ return NULL;
+}
+
+bool
+EmulateInstructionARM::SetTargetTriple (const ArchSpec &arch)
+{
+ if (arch.GetTriple().getArch () == llvm::Triple::arm)
+ return true;
+ else if (arch.GetTriple().getArch () == llvm::Triple::thumb)
+ return true;
+
+ return false;
+}
+
+// Write "bits (32) UNKNOWN" to memory address "address". Helper function for many ARM instructions.
+bool
+EmulateInstructionARM::WriteBits32UnknownToMemory (addr_t address)
+{
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextWriteMemoryRandomBits;
+ context.SetNoArgs ();
+
+ uint32_t random_data = rand ();
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ if (!MemAWrite (context, address, random_data, addr_byte_size))
+ return false;
+
+ return true;
+}
+
+// Write "bits (32) UNKNOWN" to register n. Helper function for many ARM instructions.
+bool
+EmulateInstructionARM::WriteBits32Unknown (int n)
+{
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextWriteRegisterRandomBits;
+ context.SetNoArgs ();
+
+ bool success;
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
+ return false;
+
+ return true;
+}
+
+bool
+EmulateInstructionARM::GetRegisterInfo (uint32_t reg_kind, uint32_t reg_num, RegisterInfo &reg_info)
+{
+ if (reg_kind == eRegisterKindGeneric)
+ {
+ switch (reg_num)
+ {
+ case LLDB_REGNUM_GENERIC_PC: reg_kind = eRegisterKindDWARF; reg_num = dwarf_pc; break;
+ case LLDB_REGNUM_GENERIC_SP: reg_kind = eRegisterKindDWARF; reg_num = dwarf_sp; break;
+ case LLDB_REGNUM_GENERIC_FP: reg_kind = eRegisterKindDWARF; reg_num = dwarf_r7; break;
+ case LLDB_REGNUM_GENERIC_RA: reg_kind = eRegisterKindDWARF; reg_num = dwarf_lr; break;
+ case LLDB_REGNUM_GENERIC_FLAGS: reg_kind = eRegisterKindDWARF; reg_num = dwarf_cpsr; break;
+ default: return false;
+ }
+ }
+
+ if (reg_kind == eRegisterKindDWARF)
+ return GetARMDWARFRegisterInfo(reg_num, reg_info);
+ return false;
+}
+
+uint32_t
+EmulateInstructionARM::GetFramePointerRegisterNumber () const
+{
+ if (m_opcode_mode == eModeThumb)
+ {
+ switch (m_arch.GetTriple().getOS())
+ {
+ case llvm::Triple::Darwin:
+ case llvm::Triple::MacOSX:
+ case llvm::Triple::IOS:
+ return 7;
+ default:
+ break;
+ }
+ }
+ return 11;
+}
+
+uint32_t
+EmulateInstructionARM::GetFramePointerDWARFRegisterNumber () const
+{
+ if (m_opcode_mode == eModeThumb)
+ {
+ switch (m_arch.GetTriple().getOS())
+ {
+ case llvm::Triple::Darwin:
+ case llvm::Triple::MacOSX:
+ case llvm::Triple::IOS:
+ return dwarf_r7;
+ default:
+ break;
+ }
+ }
+ return dwarf_r11;
+}
+
+// Push Multiple Registers stores multiple registers to the stack, storing to
+// consecutive memory locations ending just below the address in SP, and updates
+// SP to point to the start of the stored data.
+bool
+EmulateInstructionARM::EmulatePUSH (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ NullCheckIfThumbEE(13);
+ address = SP - 4*BitCount(registers);
+
+ for (i = 0 to 14)
+ {
+ if (registers<i> == '1')
+ {
+ if i == 13 && i != LowestSetBit(registers) // Only possible for encoding A1
+ MemA[address,4] = bits(32) UNKNOWN;
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+ }
+ }
+
+ if (registers<15> == '1') // Only possible for encoding A1 or A2
+ MemA[address,4] = PCStoreValue();
+
+ SP = SP - 4*BitCount(registers);
+ }
+#endif
+
+ bool conditional = false;
+ bool success = false;
+ if (ConditionPassed(opcode, &conditional))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t registers = 0;
+ uint32_t Rt; // the source register
+ switch (encoding) {
+ case eEncodingT1:
+ registers = Bits32(opcode, 7, 0);
+ // The M bit represents LR.
+ if (Bit32(opcode, 8))
+ registers |= (1u << 14);
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+ break;
+ case eEncodingT2:
+ // Ignore bits 15 & 13.
+ registers = Bits32(opcode, 15, 0) & ~0xa000;
+ // if BitCount(registers) < 2 then UNPREDICTABLE;
+ if (BitCount(registers) < 2)
+ return false;
+ break;
+ case eEncodingT3:
+ Rt = Bits32(opcode, 15, 12);
+ // if BadReg(t) then UNPREDICTABLE;
+ if (BadReg(Rt))
+ return false;
+ registers = (1u << Rt);
+ break;
+ case eEncodingA1:
+ registers = Bits32(opcode, 15, 0);
+ // Instead of return false, let's handle the following case as well,
+ // which amounts to pushing one reg onto the full descending stacks.
+ // if BitCount(register_list) < 2 then SEE STMDB / STMFD;
+ break;
+ case eEncodingA2:
+ Rt = Bits32(opcode, 15, 12);
+ // if t == 13 then UNPREDICTABLE;
+ if (Rt == dwarf_sp)
+ return false;
+ registers = (1u << Rt);
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = addr_byte_size * BitCount (registers);
+ addr_t addr = sp - sp_offset;
+ uint32_t i;
+
+ EmulateInstruction::Context context;
+ if (conditional)
+ context.type = EmulateInstruction::eContextRegisterStore;
+ else
+ context.type = EmulateInstruction::eContextPushRegisterOnStack;
+ RegisterInfo reg_info;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ for (i=0; i<15; ++i)
+ {
+ if (BitIsSet (registers, i))
+ {
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, reg_info);
+ context.SetRegisterToRegisterPlusOffset (reg_info, sp_reg, addr - sp);
+ uint32_t reg_value = ReadCoreReg(i, &success);
+ if (!success)
+ return false;
+ if (!MemAWrite (context, addr, reg_value, addr_byte_size))
+ return false;
+ addr += addr_byte_size;
+ }
+ }
+
+ if (BitIsSet (registers, 15))
+ {
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, reg_info);
+ context.SetRegisterToRegisterPlusOffset (reg_info, sp_reg, addr - sp);
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ if (!MemAWrite (context, addr, pc, addr_byte_size))
+ return false;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned (-sp_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// Pop Multiple Registers loads multiple registers from the stack, loading from
+// consecutive memory locations staring at the address in SP, and updates
+// SP to point just above the loaded data.
+bool
+EmulateInstructionARM::EmulatePOP (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); NullCheckIfThumbEE(13);
+ address = SP;
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4]; address = address + 4;
+ if registers<15> == '1' then
+ if UnalignedAllowed then
+ LoadWritePC(MemU[address,4]);
+ else
+ LoadWritePC(MemA[address,4]);
+ if registers<13> == '0' then SP = SP + 4*BitCount(registers);
+ if registers<13> == '1' then SP = bits(32) UNKNOWN;
+ }
+#endif
+
+ bool success = false;
+
+ bool conditional = false;
+ if (ConditionPassed(opcode, &conditional))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t registers = 0;
+ uint32_t Rt; // the destination register
+ switch (encoding) {
+ case eEncodingT1:
+ registers = Bits32(opcode, 7, 0);
+ // The P bit represents PC.
+ if (Bit32(opcode, 8))
+ registers |= (1u << 15);
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+ break;
+ case eEncodingT2:
+ // Ignore bit 13.
+ registers = Bits32(opcode, 15, 0) & ~0x2000;
+ // if BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
+ if (BitCount(registers) < 2 || (Bit32(opcode, 15) && Bit32(opcode, 14)))
+ return false;
+ // if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (BitIsSet(registers, 15) && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingT3:
+ Rt = Bits32(opcode, 15, 12);
+ // if t == 13 || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;
+ if (Rt == 13)
+ return false;
+ if (Rt == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ registers = (1u << Rt);
+ break;
+ case eEncodingA1:
+ registers = Bits32(opcode, 15, 0);
+ // Instead of return false, let's handle the following case as well,
+ // which amounts to popping one reg from the full descending stacks.
+ // if BitCount(register_list) < 2 then SEE LDM / LDMIA / LDMFD;
+
+ // if registers<13> == '1' && ArchVersion() >= 7 then UNPREDICTABLE;
+ if (BitIsSet(opcode, 13) && ArchVersion() >= ARMv7)
+ return false;
+ break;
+ case eEncodingA2:
+ Rt = Bits32(opcode, 15, 12);
+ // if t == 13 then UNPREDICTABLE;
+ if (Rt == dwarf_sp)
+ return false;
+ registers = (1u << Rt);
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = addr_byte_size * BitCount (registers);
+ addr_t addr = sp;
+ uint32_t i, data;
+
+ EmulateInstruction::Context context;
+ if (conditional)
+ context.type = EmulateInstruction::eContextRegisterLoad;
+ else
+ context.type = EmulateInstruction::eContextPopRegisterOffStack;
+
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+
+ for (i=0; i<15; ++i)
+ {
+ if (BitIsSet (registers, i))
+ {
+ context.SetRegisterPlusOffset (sp_reg, addr - sp);
+ data = MemARead(context, addr, 4, 0, &success);
+ if (!success)
+ return false;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i, data))
+ return false;
+ addr += addr_byte_size;
+ }
+ }
+
+ if (BitIsSet (registers, 15))
+ {
+ context.SetRegisterPlusOffset (sp_reg, addr - sp);
+ data = MemARead(context, addr, 4, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ //addr += addr_byte_size;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned (sp_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// Set r7 or ip to point to saved value residing within the stack.
+// ADD (SP plus immediate)
+bool
+EmulateInstructionARM::EmulateADDRdSPImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rd; // the destination register
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = 7;
+ imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32)
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = imm32;
+ addr_t addr = sp + sp_offset; // a pointer to the stack area
+
+ EmulateInstruction::Context context;
+ context.type = eContextSetFramePointer;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ context.SetRegisterPlusOffset (sp_reg, sp_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, addr))
+ return false;
+ }
+ return true;
+}
+
+// Set r7 or ip to the current stack pointer.
+// MOV (register)
+bool
+EmulateInstructionARM::EmulateMOVRdSP (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = R[m];
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ // APSR.C unchanged
+ // APSR.V unchanged
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rd; // the destination register
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = 7;
+ break;
+ case eEncodingA1:
+ Rd = 12;
+ break;
+ default:
+ return false;
+ }
+
+ EmulateInstruction::Context context;
+ if (Rd == GetFramePointerRegisterNumber())
+ context.type = EmulateInstruction::eContextSetFramePointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ context.SetRegisterPlusOffset (sp_reg, 0);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, sp))
+ return false;
+ }
+ return true;
+}
+
+// Move from high register (r8-r15) to low register (r0-r7).
+// MOV (register)
+bool
+EmulateInstructionARM::EmulateMOVLowHigh (const uint32_t opcode, const ARMEncoding encoding)
+{
+ return EmulateMOVRdRm (opcode, encoding);
+}
+
+// Move from register to register.
+// MOV (register)
+bool
+EmulateInstructionARM::EmulateMOVRdRm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = R[m];
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ // APSR.C unchanged
+ // APSR.V unchanged
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rm; // the source register
+ uint32_t Rd; // the destination register
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 6, 3);
+ setflags = false;
+ if (Rd == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = true;
+ if (InITBlock())
+ return false;
+ break;
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ // if setflags && (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
+ if (setflags && (BadReg(Rd) || BadReg(Rm)))
+ return false;
+ // if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;
+ if (!setflags && (Rd == 15 || Rm == 15 || (Rd == 13 && Rm == 13)))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ uint32_t result = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // The context specifies that Rm is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterLoad;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
+ context.SetRegister (dwarf_reg);
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags))
+ return false;
+ }
+ return true;
+}
+
+// Move (immediate) writes an immediate value to the destination register. It
+// can optionally update the condition flags based on the value.
+// MOV (immediate)
+bool
+EmulateInstructionARM::EmulateMOVRdImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd; // the destination register
+ uint32_t imm32; // the immediate value to be written to Rd
+ uint32_t carry = 0; // the carry bit after ThumbExpandImm_C or ARMExpandImm_C.
+ // for setflags == false, this value is a don't care
+ // initialized to 0 to silence the static analyzer
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 10, 8);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 7, 0); // imm32 = ZeroExtend(imm8, 32)
+ carry = APSR_C;
+
+ break;
+
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry);
+ if (BadReg(Rd))
+ return false;
+
+ break;
+
+ case eEncodingT3:
+ {
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
+ Rd = Bits32 (opcode, 11, 8);
+ setflags = false;
+ uint32_t imm4 = Bits32 (opcode, 19, 16);
+ uint32_t imm3 = Bits32 (opcode, 14, 12);
+ uint32_t i = Bit32 (opcode, 26);
+ uint32_t imm8 = Bits32 (opcode, 7, 0);
+ imm32 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
+
+ // if BadReg(d) then UNPREDICTABLE;
+ if (BadReg (Rd))
+ return false;
+ }
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); setflags = (S == Ô1Õ); (imm32, carry) = ARMExpandImm_C(imm12, APSR.C);
+ Rd = Bits32 (opcode, 15, 12);
+ setflags = BitIsSet (opcode, 20);
+ imm32 = ARMExpandImm_C (opcode, APSR_C, carry);
+
+ // if Rd == Ô1111Õ && S == Ô1Õ then SEE SUBS PC, LR and related instructions;
+ if ((Rd == 15) && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+
+ break;
+
+ case eEncodingA2:
+ {
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
+ Rd = Bits32 (opcode, 15, 12);
+ setflags = false;
+ uint32_t imm4 = Bits32 (opcode, 19, 16);
+ uint32_t imm12 = Bits32 (opcode, 11, 0);
+ imm32 = (imm4 << 12) | imm12;
+
+ // if d == 15 then UNPREDICTABLE;
+ if (Rd == 15)
+ return false;
+ }
+ break;
+
+ default:
+ return false;
+ }
+ uint32_t result = imm32;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// MUL multiplies two register values. The least significant 32 bits of the result are written to the destination
+// register. These 32 bits do not depend on whether the source register values are considered to be signed values or
+// unsigned values.
+//
+// Optionally, it can update the condition flags based on the result. In the Thumb instruction set, this option is
+// limited to only a few forms of the instruction.
+bool
+EmulateInstructionARM::EmulateMUL (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
+ operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
+ result = operand1 * operand2;
+ R[d] = result<31:0>;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ if ArchVersion() == 4 then
+ APSR.C = bit UNKNOWN;
+ // else APSR.C unchanged
+ // APSR.V always unchanged
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool setflags;
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();
+ d = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 2, 0);
+ setflags = !InITBlock();
+
+ // if ArchVersion() < 6 && d == n then UNPREDICTABLE;
+ if ((ArchVersion() < ARMv6) && (d == n))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
+ d = Bits32 (opcode, 11, 8);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+ setflags = false;
+
+ // if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg (d) || BadReg (n) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
+ d = Bits32 (opcode, 19, 16);
+ n = Bits32 (opcode, 3, 0);
+ m = Bits32 (opcode, 11, 8);
+ setflags = BitIsSet (opcode, 20);
+
+ // if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (n == 15) || (m == 15))
+ return false;
+
+ // if ArchVersion() < 6 && d == n then UNPREDICTABLE;
+ if ((ArchVersion() < ARMv6) && (d == n))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ bool success = false;
+
+ // operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
+ uint64_t operand1 = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ // operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
+ uint64_t operand2 = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // result = operand1 * operand2;
+ uint64_t result = operand1 * operand2;
+
+ // R[d] = result<31:0>;
+ RegisterInfo op1_reg;
+ RegisterInfo op2_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, op1_reg);
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, op2_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ context.SetRegisterRegisterOperands (op1_reg, op2_reg);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, (0x0000ffff & result)))
+ return false;
+
+ // if setflags then
+ if (setflags)
+ {
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ m_new_inst_cpsr = m_opcode_cpsr;
+ SetBit32 (m_new_inst_cpsr, CPSR_N_POS, Bit32 (result, 31));
+ SetBit32 (m_new_inst_cpsr, CPSR_Z_POS, result == 0 ? 1 : 0);
+ if (m_new_inst_cpsr != m_opcode_cpsr)
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+
+ // if ArchVersion() == 4 then
+ // APSR.C = bit UNKNOWN;
+ }
+ }
+ return true;
+}
+
+// Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.
+// It can optionally update the condition flags based on the value.
+bool
+EmulateInstructionARM::EmulateMVNImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = NOT(imm32);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd; // the destination register
+ uint32_t imm32; // the output after ThumbExpandImm_C or ARMExpandImm_C
+ uint32_t carry; // the carry bit after ThumbExpandImm_C or ARMExpandImm_C
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry);
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ uint32_t result = ~imm32;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateMVNReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = NOT(shifted);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rm; // the source register
+ uint32_t Rd; // the destination register
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry; // the carry bit after the shift operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ if (InITBlock())
+ return false;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
+ if (BadReg(Rd) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+ bool success = false;
+ uint32_t value = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(value, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = ~shifted;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// PC relative immediate load into register, possibly followed by ADD (SP plus register).
+// LDR (literal)
+bool
+EmulateInstructionARM::EmulateLDRRtPCRelative (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ data = MemU[address,4];
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else // Can only apply before ARMv7
+ if CurrentInstrSet() == InstrSet_ARM then
+ R[t] = ROR(data, 8*UInt(address<1:0>));
+ else
+ R[t] = bits(32) UNKNOWN;
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ bool success = false;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ // PC relative immediate load context
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo pc_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
+ context.SetRegisterPlusOffset (pc_reg, 0);
+
+ uint32_t Rt; // the destination register
+ uint32_t imm32; // immediate offset from the PC
+ bool add; // +imm32 or -imm32?
+ addr_t base; // the base address
+ addr_t address; // the PC relative address
+ uint32_t data; // the literal data value from the PC relative load
+ switch (encoding) {
+ case eEncodingT1:
+ Rt = Bits32(opcode, 10, 8);
+ imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32);
+ add = true;
+ break;
+ case eEncodingT2:
+ Rt = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0) << 2; // imm32 = ZeroExtend(imm12, 32);
+ add = BitIsSet(opcode, 23);
+ if (Rt == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ base = Align(pc, 4);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ context.SetRegisterPlusOffset(pc_reg, address - base);
+ data = MemURead(context, address, 4, 0, &success);
+ if (!success)
+ return false;
+
+ if (Rt == 15)
+ {
+ if (Bits32(address, 1, 0) == 0)
+ {
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+ else
+ return false;
+ }
+ else if (UnalignedSupport() || Bits32(address, 1, 0) == 0)
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rt, data))
+ return false;
+ }
+ else // We don't handle ARM for now.
+ return false;
+
+ }
+ return true;
+}
+
+// An add operation to adjust the SP.
+// ADD (SP plus immediate)
+bool
+EmulateInstructionARM::EmulateADDSPImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t imm32; // the immediate operand
+ uint32_t d;
+ //bool setflags = false; // Add this back if/when support eEncodingT3 eEncodingA1
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);
+ d = Bits32 (opcode, 10, 8);
+ imm32 = (Bits32 (opcode, 7, 0) << 2);
+
+ break;
+
+ case eEncodingT2:
+ // d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);
+ d = 13;
+ imm32 = ThumbImm7Scaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
+
+ break;
+
+ default:
+ return false;
+ }
+ addr_t sp_offset = imm32;
+ addr_t addr = sp + sp_offset; // the adjusted stack pointer value
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ context.SetRegisterPlusOffset (sp_reg, sp_offset);
+
+ if (d == 15)
+ {
+ if (!ALUWritePC (context, addr))
+ return false;
+ }
+ else
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, addr))
+ return false;
+
+ // Add this back if/when support eEncodingT3 eEncodingA1
+ //if (setflags)
+ //{
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+ //}
+ }
+ }
+ return true;
+}
+
+// An add operation to adjust the SP.
+// ADD (SP plus register)
+bool
+EmulateInstructionARM::EmulateADDSPRm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(SP, shifted, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rm; // the second operand
+ switch (encoding) {
+ case eEncodingT2:
+ Rm = Bits32(opcode, 6, 3);
+ break;
+ default:
+ return false;
+ }
+ int32_t reg_value = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ addr_t addr = (int32_t)sp + reg_value; // the adjusted stack pointer value
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+
+ RegisterInfo other_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, other_reg);
+ context.SetRegisterRegisterOperands (sp_reg, other_reg);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, addr))
+ return false;
+ }
+ return true;
+}
+
+// Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine
+// at a PC-relative address, and changes instruction set from ARM to Thumb, or
+// from Thumb to ARM.
+// BLX (immediate)
+bool
+EmulateInstructionARM::EmulateBLXImmediate (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ if CurrentInstrSet() == InstrSet_ARM then
+ LR = PC - 4;
+ else
+ LR = PC<31:1> : '1';
+ if targetInstrSet == InstrSet_ARM then
+ targetAddress = Align(PC,4) + imm32;
+ else
+ targetAddress = PC + imm32;
+ SelectInstrSet(targetInstrSet);
+ BranchWritePC(targetAddress);
+ }
+#endif
+
+ bool success = true;
+
+ if (ConditionPassed(opcode))
+ {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ addr_t lr; // next instruction address
+ addr_t target; // target address
+ int32_t imm32; // PC-relative offset
+ switch (encoding) {
+ case eEncodingT1:
+ {
+ lr = pc | 1u; // return address
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm10 = Bits32(opcode, 25, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm11 = Bits32(opcode, 10, 0);
+ uint32_t I1 = !(J1 ^ S);
+ uint32_t I2 = !(J2 ^ S);
+ uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
+ imm32 = llvm::SignExtend32<25>(imm25);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ }
+ case eEncodingT2:
+ {
+ lr = pc | 1u; // return address
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm10H = Bits32(opcode, 25, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm10L = Bits32(opcode, 10, 1);
+ uint32_t I1 = !(J1 ^ S);
+ uint32_t I2 = !(J2 ^ S);
+ uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10H << 12) | (imm10L << 2);
+ imm32 = llvm::SignExtend32<25>(imm25);
+ target = Align(pc, 4) + imm32;
+ context.SetISAAndImmediateSigned (eModeARM, 4 + imm32);
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ }
+ case eEncodingA1:
+ lr = pc - 4; // return address
+ imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2);
+ target = Align(pc, 4) + imm32;
+ context.SetISAAndImmediateSigned (eModeARM, 8 + imm32);
+ break;
+ case eEncodingA2:
+ lr = pc - 4; // return address
+ imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2 | Bits32(opcode, 24, 24) << 1);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 8 + imm32);
+ break;
+ default:
+ return false;
+ }
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
+ return false;
+ if (!BranchWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Branch with Link and Exchange (register) calls a subroutine at an address and
+// instruction set specified by a register.
+// BLX (register)
+bool
+EmulateInstructionARM::EmulateBLXRm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ target = R[m];
+ if CurrentInstrSet() == InstrSet_ARM then
+ next_instr_addr = PC - 4;
+ LR = next_instr_addr;
+ else
+ next_instr_addr = PC - 2;
+ LR = next_instr_addr<31:1> : '1';
+ BXWritePC(target);
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ addr_t lr; // next instruction address
+ if (!success)
+ return false;
+ uint32_t Rm; // the register with the target address
+ switch (encoding) {
+ case eEncodingT1:
+ lr = (pc - 2) | 1u; // return address
+ Rm = Bits32(opcode, 6, 3);
+ // if m == 15 then UNPREDICTABLE;
+ if (Rm == 15)
+ return false;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ lr = pc - 4; // return address
+ Rm = Bits32(opcode, 3, 0);
+ // if m == 15 then UNPREDICTABLE;
+ if (Rm == 15)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ addr_t target = ReadCoreReg (Rm, &success);
+ if (!success)
+ return false;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
+ context.SetRegister (dwarf_reg);
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
+ return false;
+ if (!BXWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Branch and Exchange causes a branch to an address and instruction set specified by a register.
+bool
+EmulateInstructionARM::EmulateBXRm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ BXWritePC(R[m]);
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
+ uint32_t Rm; // the register with the target address
+ switch (encoding) {
+ case eEncodingT1:
+ Rm = Bits32(opcode, 6, 3);
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ Rm = Bits32(opcode, 3, 0);
+ break;
+ default:
+ return false;
+ }
+ bool success = false;
+ addr_t target = ReadCoreReg (Rm, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
+ context.SetRegister (dwarf_reg);
+ if (!BXWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Branch and Exchange Jazelle attempts to change to Jazelle state. If the attempt fails, it branches to an
+// address and instruction set specified by a register as though it were a BX instruction.
+//
+// TODO: Emulate Jazelle architecture?
+// We currently assume that switching to Jazelle state fails, thus treating BXJ as a BX operation.
+bool
+EmulateInstructionARM::EmulateBXJRm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ if JMCR.JE == '0' || CurrentInstrSet() == InstrSet_ThumbEE then
+ BXWritePC(R[m]);
+ else
+ if JazelleAcceptsExecution() then
+ SwitchToJazelleExecution();
+ else
+ SUBARCHITECTURE_DEFINED handler call;
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
+ uint32_t Rm; // the register with the target address
+ switch (encoding) {
+ case eEncodingT1:
+ Rm = Bits32(opcode, 19, 16);
+ if (BadReg(Rm))
+ return false;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ Rm = Bits32(opcode, 3, 0);
+ if (Rm == 15)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ bool success = false;
+ addr_t target = ReadCoreReg (Rm, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
+ context.SetRegister (dwarf_reg);
+ if (!BXWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Set r7 to point to some ip offset.
+// SUB (immediate)
+bool
+EmulateInstructionARM::EmulateSUBR7IPImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ bool success = false;
+ const addr_t ip = ReadCoreReg (12, &success);
+ if (!success)
+ return false;
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingA1:
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ addr_t ip_offset = imm32;
+ addr_t addr = ip - ip_offset; // the adjusted ip value
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r12, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, -ip_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r7, addr))
+ return false;
+ }
+ return true;
+}
+
+// Set ip to point to some stack offset.
+// SUB (SP minus immediate)
+bool
+EmulateInstructionARM::EmulateSUBIPSPImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ if (ConditionPassed(opcode))
+ {
+ bool success = false;
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingA1:
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = imm32;
+ addr_t addr = sp - sp_offset; // the adjusted stack pointer value
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, -sp_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r12, addr))
+ return false;
+ }
+ return true;
+}
+
+// This instruction subtracts an immediate value from the SP value, and writes
+// the result to the destination register.
+//
+// If Rd == 13 => A sub operation to adjust the SP -- allocate space for local storage.
+bool
+EmulateInstructionARM::EmulateSUBSPImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode))
+ {
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rd;
+ bool setflags;
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = 13;
+ setflags = false;
+ imm32 = ThumbImm7Scaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (Rd == 15 && setflags)
+ return EmulateCMPImm(opcode, eEncodingT2);
+ if (Rd == 15 && !setflags)
+ return false;
+ break;
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = false;
+ imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
+ if (Rd == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ AddWithCarryResult res = AddWithCarry(sp, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ if (Rd == 13)
+ {
+ uint64_t imm64 = imm32; // Need to expand it to 64 bits before attempting to negate it, or the wrong
+ // value gets passed down to context.SetImmediateSigned.
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned (-imm64); // the stack pointer offset
+ }
+ else
+ {
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+ }
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// A store operation to the stack that also updates the SP.
+bool
+EmulateInstructionARM::EmulateSTRRtSP (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
+ if wback then R[n] = offset_addr;
+ }
+#endif
+
+ bool conditional = false;
+ bool success = false;
+ if (ConditionPassed(opcode, &conditional))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rt; // the source register
+ uint32_t imm12;
+ uint32_t Rn; // This function assumes Rn is the SP, but we should verify that.
+
+ bool index;
+ bool add;
+ bool wback;
+ switch (encoding) {
+ case eEncodingA1:
+ Rt = Bits32(opcode, 15, 12);
+ imm12 = Bits32(opcode, 11, 0);
+ Rn = Bits32 (opcode, 19, 16);
+
+ if (Rn != 13) // 13 is the SP reg on ARM. Verify that Rn == SP.
+ return false;
+
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ if (wback && ((Rn == 15) || (Rn == Rt)))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ addr_t offset_addr;
+ if (add)
+ offset_addr = sp + imm12;
+ else
+ offset_addr = sp - imm12;
+
+ addr_t addr;
+ if (index)
+ addr = offset_addr;
+ else
+ addr = sp;
+
+ EmulateInstruction::Context context;
+ if (conditional)
+ context.type = EmulateInstruction::eContextRegisterStore;
+ else
+ context.type = EmulateInstruction::eContextPushRegisterOnStack;
+ RegisterInfo sp_reg;
+ RegisterInfo dwarf_reg;
+
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rt, dwarf_reg);
+ context.SetRegisterToRegisterPlusOffset ( dwarf_reg, sp_reg, addr - sp);
+ if (Rt != 15)
+ {
+ uint32_t reg_value = ReadCoreReg(Rt, &success);
+ if (!success)
+ return false;
+ if (!MemUWrite (context, addr, reg_value, addr_byte_size))
+ return false;
+ }
+ else
+ {
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ if (!MemUWrite (context, addr, pc, addr_byte_size))
+ return false;
+ }
+
+
+ if (wback)
+ {
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned (addr - sp);
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// Vector Push stores multiple extension registers to the stack.
+// It also updates SP to point to the start of the stored data.
+bool
+EmulateInstructionARM::EmulateVPUSH (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
+ address = SP - imm32;
+ SP = SP - imm32;
+ if single_regs then
+ for r = 0 to regs-1
+ MemA[address,4] = S[d+r]; address = address+4;
+ else
+ for r = 0 to regs-1
+ // Store as two word-aligned words in the correct order for current endianness.
+ MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
+ MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
+ address = address+8;
+ }
+#endif
+
+ bool success = false;
+ bool conditional = false;
+ if (ConditionPassed(opcode, &conditional))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ bool single_regs;
+ uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
+ uint32_t imm32; // stack offset
+ uint32_t regs; // number of registers
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ single_regs = false;
+ d = Bit32(opcode, 22) << 4 | Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ // If UInt(imm8) is odd, see "FSTMX".
+ regs = Bits32(opcode, 7, 0) / 2;
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ case eEncodingT2:
+ case eEncodingA2:
+ single_regs = true;
+ d = Bits32(opcode, 15, 12) << 1 | Bit32(opcode, 22);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ regs = Bits32(opcode, 7, 0);
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+ uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
+ addr_t sp_offset = imm32;
+ addr_t addr = sp - sp_offset;
+ uint32_t i;
+
+ EmulateInstruction::Context context;
+ if (conditional)
+ context.type = EmulateInstruction::eContextRegisterStore;
+ else
+ context.type = EmulateInstruction::eContextPushRegisterOnStack;
+ RegisterInfo dwarf_reg;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ for (i=0; i<regs; ++i)
+ {
+ GetRegisterInfo (eRegisterKindDWARF, start_reg + d + i, dwarf_reg);
+ context.SetRegisterToRegisterPlusOffset ( dwarf_reg, sp_reg, addr - sp);
+ // uint64_t to accommodate 64-bit registers.
+ uint64_t reg_value = ReadRegisterUnsigned (&dwarf_reg, 0, &success);
+ if (!success)
+ return false;
+ if (!MemAWrite (context, addr, reg_value, reg_byte_size))
+ return false;
+ addr += reg_byte_size;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned (-sp_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// Vector Pop loads multiple extension registers from the stack.
+// It also updates SP to point just above the loaded data.
+bool
+EmulateInstructionARM::EmulateVPOP (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
+ address = SP;
+ SP = SP + imm32;
+ if single_regs then
+ for r = 0 to regs-1
+ S[d+r] = MemA[address,4]; address = address+4;
+ else
+ for r = 0 to regs-1
+ word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
+ // Combine the word-aligned words in the correct order for current endianness.
+ D[d+r] = if BigEndian() then word1:word2 else word2:word1;
+ }
+#endif
+
+ bool success = false;
+ bool conditional = false;
+ if (ConditionPassed(opcode, &conditional))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+ bool single_regs;
+ uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
+ uint32_t imm32; // stack offset
+ uint32_t regs; // number of registers
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ single_regs = false;
+ d = Bit32(opcode, 22) << 4 | Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ // If UInt(imm8) is odd, see "FLDMX".
+ regs = Bits32(opcode, 7, 0) / 2;
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ case eEncodingT2:
+ case eEncodingA2:
+ single_regs = true;
+ d = Bits32(opcode, 15, 12) << 1 | Bit32(opcode, 22);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ regs = Bits32(opcode, 7, 0);
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+ uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
+ addr_t sp_offset = imm32;
+ addr_t addr = sp;
+ uint32_t i;
+ uint64_t data; // uint64_t to accomodate 64-bit registers.
+
+ EmulateInstruction::Context context;
+ if (conditional)
+ context.type = EmulateInstruction::eContextRegisterLoad;
+ else
+ context.type = EmulateInstruction::eContextPopRegisterOffStack;
+ RegisterInfo dwarf_reg;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ for (i=0; i<regs; ++i)
+ {
+ GetRegisterInfo (eRegisterKindDWARF, start_reg + d + i, dwarf_reg);
+ context.SetRegisterPlusOffset (sp_reg, addr - sp);
+ data = MemARead(context, addr, reg_byte_size, 0, &success);
+ if (!success)
+ return false;
+ if (!WriteRegisterUnsigned(context, &dwarf_reg, data))
+ return false;
+ addr += reg_byte_size;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned (sp_offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// SVC (previously SWI)
+bool
+EmulateInstructionARM::EmulateSVC (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ CallSupervisor();
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ addr_t lr; // next instruction address
+ if (!success)
+ return false;
+ uint32_t imm32; // the immediate constant
+ uint32_t mode; // ARM or Thumb mode
+ switch (encoding) {
+ case eEncodingT1:
+ lr = (pc + 2) | 1u; // return address
+ imm32 = Bits32(opcode, 7, 0);
+ mode = eModeThumb;
+ break;
+ case eEncodingA1:
+ lr = pc + 4; // return address
+ imm32 = Bits32(opcode, 23, 0);
+ mode = eModeARM;
+ break;
+ default:
+ return false;
+ }
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextSupervisorCall;
+ context.SetISAAndImmediate (mode, imm32);
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
+ return false;
+ }
+ return true;
+}
+
+// If Then makes up to four following instructions (the IT block) conditional.
+bool
+EmulateInstructionARM::EmulateIT (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ EncodingSpecificOperations();
+ ITSTATE.IT<7:0> = firstcond:mask;
+#endif
+
+ m_it_session.InitIT(Bits32(opcode, 7, 0));
+ return true;
+}
+
+bool
+EmulateInstructionARM::EmulateNop (const uint32_t opcode, const ARMEncoding encoding)
+{
+ // NOP, nothing to do...
+ return true;
+}
+
+// Branch causes a branch to a target address.
+bool
+EmulateInstructionARM::EmulateB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ BranchWritePC(PC + imm32);
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ addr_t target; // target address
+ int32_t imm32; // PC-relative offset
+ switch (encoding) {
+ case eEncodingT1:
+ // The 'cond' field is handled in EmulateInstructionARM::CurrentCond().
+ imm32 = llvm::SignExtend32<9>(Bits32(opcode, 7, 0) << 1);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
+ break;
+ case eEncodingT2:
+ imm32 = llvm::SignExtend32<12>(Bits32(opcode, 10, 0));
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
+ break;
+ case eEncodingT3:
+ // The 'cond' field is handled in EmulateInstructionARM::CurrentCond().
+ {
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm6 = Bits32(opcode, 21, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm11 = Bits32(opcode, 10, 0);
+ uint32_t imm21 = (S << 20) | (J2 << 19) | (J1 << 18) | (imm6 << 12) | (imm11 << 1);
+ imm32 = llvm::SignExtend32<21>(imm21);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
+ break;
+ }
+ case eEncodingT4:
+ {
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm10 = Bits32(opcode, 25, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm11 = Bits32(opcode, 10, 0);
+ uint32_t I1 = !(J1 ^ S);
+ uint32_t I2 = !(J2 ^ S);
+ uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
+ imm32 = llvm::SignExtend32<25>(imm25);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
+ break;
+ }
+ case eEncodingA1:
+ imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeARM, 8 + imm32);
+ break;
+ default:
+ return false;
+ }
+ if (!BranchWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with
+// zero and conditionally branch forward a constant value. They do not affect the condition flags.
+// CBNZ, CBZ
+bool
+EmulateInstructionARM::EmulateCB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ EncodingSpecificOperations();
+ if nonzero ^ IsZero(R[n]) then
+ BranchWritePC(PC + imm32);
+#endif
+
+ bool success = false;
+
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Bits32(opcode, 2, 0), &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ addr_t target; // target address
+ uint32_t imm32; // PC-relative offset to branch forward
+ bool nonzero;
+ switch (encoding) {
+ case eEncodingT1:
+ imm32 = Bit32(opcode, 9) << 6 | Bits32(opcode, 7, 3) << 1;
+ nonzero = BitIsSet(opcode, 11);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
+ break;
+ default:
+ return false;
+ }
+ if (nonzero ^ (reg_val == 0))
+ if (!BranchWritePC(context, target))
+ return false;
+
+ return true;
+}
+
+// Table Branch Byte causes a PC-relative forward branch using a table of single byte offsets.
+// A base register provides a pointer to the table, and a second register supplies an index into the table.
+// The branch length is twice the value of the byte returned from the table.
+//
+// Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets.
+// A base register provides a pointer to the table, and a second register supplies an index into the table.
+// The branch length is twice the value of the halfword returned from the table.
+// TBB, TBH
+bool
+EmulateInstructionARM::EmulateTB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ if is_tbh then
+ halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
+ else
+ halfwords = UInt(MemU[R[n]+R[m], 1]);
+ BranchWritePC(PC + 2*halfwords);
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the base register which contains the address of the table of branch lengths
+ uint32_t Rm; // the index register which contains an integer pointing to a byte/halfword in the table
+ bool is_tbh; // true if table branch halfword
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ is_tbh = BitIsSet(opcode, 4);
+ if (Rn == 13 || BadReg(Rm))
+ return false;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ // Read the address of the table from the operand register Rn.
+ // The PC can be used, in which case the table immediately follows this instruction.
+ uint32_t base = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // the table index
+ uint32_t index = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // the offsetted table address
+ addr_t addr = base + (is_tbh ? index*2 : index);
+
+ // PC-relative offset to branch forward
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextTableBranchReadMemory;
+ uint32_t offset = MemURead(context, addr, is_tbh ? 2 : 1, 0, &success) * 2;
+ if (!success)
+ return false;
+
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ // target address
+ addr_t target = pc + offset;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ context.SetISAAndImmediateSigned (eModeThumb, 4 + offset);
+
+ if (!BranchWritePC(context, target))
+ return false;
+
+ return true;
+}
+
+// This instruction adds an immediate value to a register value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateADDImmThumb (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t n;
+ bool setflags;
+ uint32_t imm32;
+ uint32_t carry_out;
+
+ //EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);
+ d = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ setflags = !InITBlock();
+ imm32 = Bits32 (opcode, 8,6);
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);
+ d = Bits32 (opcode, 10, 8);
+ n = Bits32 (opcode, 10, 8);
+ setflags = !InITBlock();
+ imm32 = Bits32 (opcode, 7, 0);
+
+ break;
+
+ case eEncodingT3:
+ // if Rd == '1111' && S == '1' then SEE CMN (immediate);
+ // if Rn == '1101' then SEE ADD (SP plus immediate);
+ // d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
+ d = Bits32 (opcode, 11, 8);
+ n = Bits32 (opcode, 19, 16);
+ setflags = BitIsSet (opcode, 20);
+ imm32 = ThumbExpandImm_C (opcode, APSR_C, carry_out);
+
+ // if BadReg(d) || n == 15 then UNPREDICTABLE;
+ if (BadReg (d) || (n == 15))
+ return false;
+
+ break;
+
+ case eEncodingT4:
+ {
+ // if Rn == '1111' then SEE ADR;
+ // if Rn == '1101' then SEE ADD (SP plus immediate);
+ // d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
+ d = Bits32 (opcode, 11, 8);
+ n = Bits32 (opcode, 19, 16);
+ setflags = false;
+ uint32_t i = Bit32 (opcode, 26);
+ uint32_t imm3 = Bits32 (opcode, 14, 12);
+ uint32_t imm8 = Bits32 (opcode, 7, 0);
+ imm32 = (i << 11) | (imm3 << 8) | imm8;
+
+ // if BadReg(d) then UNPREDICTABLE;
+ if (BadReg (d))
+ return false;
+
+ break;
+ }
+ default:
+ return false;
+ }
+
+ uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ //(result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ AddWithCarryResult res = AddWithCarry (Rn, imm32, 0);
+
+ RegisterInfo reg_n;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, reg_n);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ context.SetRegisterPlusOffset (reg_n, imm32);
+
+ //R[d] = result;
+ //if setflags then
+ //APSR.N = result<31>;
+ //APSR.Z = IsZeroBit(result);
+ //APSR.C = carry;
+ //APSR.V = overflow;
+ if (!WriteCoreRegOptionalFlags (context, res.result, d, setflags, res.carry_out, res.overflow))
+ return false;
+
+ }
+ return true;
+}
+
+// This instruction adds an immediate value to a register value, and writes the result to the destination
+// register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateADDImmARM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be added to the value obtained from Rn
+ bool setflags;
+ switch (encoding)
+ {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(val1, imm32, 0);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, Rn, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, imm32);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// This instruction adds a register value and an optionally-shifted register value, and writes the result
+// to the destination register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateADDReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ Rm = Bits32(opcode, 8, 6);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Rn = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 6, 3);
+ setflags = false;
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ if (Rn == 15 && Rm == 15)
+ return false;
+ if (Rd == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, shifted, 0);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ RegisterInfo op1_reg;
+ RegisterInfo op2_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rn, op1_reg);
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, op2_reg);
+ context.SetRegisterRegisterOperands (op1_reg, op2_reg);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// Compare Negative (immediate) adds a register value and an immediate value.
+// It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateCMNImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t imm32; // the immediate value to be compared with
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (Rn == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, imm32, 0);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+ if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Compare Negative (register) adds a register value and an optionally-shifted register value.
+// It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateCMNReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if n == 15 || BadReg(m) then UNPREDICTABLE;
+ if (Rn == 15 || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, shifted, 0);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Compare (immediate) subtracts an immediate value from a register value.
+// It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateCMPImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t imm32; // the immediate value to be compared with
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 10, 8);
+ imm32 = Bits32(opcode, 7, 0);
+ break;
+ case eEncodingT2:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (Rn == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+ if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Compare (register) subtracts an optionally-shifted register value from a register value.
+// It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateCMPReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rn = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 6, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ if (Rn < 8 && Rm < 8)
+ return false;
+ if (Rn == 15 || Rm == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, ~shifted, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits,
+// shifting in copies of its sign bit, and writes the result to the destination register. It can
+// optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateASRImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm (opcode, encoding, SRType_ASR);
+}
+
+// Arithmetic Shift Right (register) shifts a register value right by a variable number of bits,
+// shifting in copies of its sign bit, and writes the result to the destination register.
+// The variable number of bits is read from the bottom byte of a register. It can optionally update
+// the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateASRReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg (opcode, encoding, SRType_ASR);
+}
+
+// Logical Shift Left (immediate) shifts a register value left by an immediate number of bits,
+// shifting in zeros, and writes the result to the destination register. It can optionally
+// update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateLSLImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm (opcode, encoding, SRType_LSL);
+}
+
+// Logical Shift Left (register) shifts a register value left by a variable number of bits,
+// shifting in zeros, and writes the result to the destination register. The variable number
+// of bits is read from the bottom byte of a register. It can optionally update the condition
+// flags based on the result.
+bool
+EmulateInstructionARM::EmulateLSLReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg (opcode, encoding, SRType_LSL);
+}
+
+// Logical Shift Right (immediate) shifts a register value right by an immediate number of bits,
+// shifting in zeros, and writes the result to the destination register. It can optionally
+// update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateLSRImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm (opcode, encoding, SRType_LSR);
+}
+
+// Logical Shift Right (register) shifts a register value right by a variable number of bits,
+// shifting in zeros, and writes the result to the destination register. The variable number
+// of bits is read from the bottom byte of a register. It can optionally update the condition
+// flags based on the result.
+bool
+EmulateInstructionARM::EmulateLSRReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg (opcode, encoding, SRType_LSR);
+}
+
+// Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value.
+// The bits that are rotated off the right end are inserted into the vacated bit positions on the left.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateRORImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm (opcode, encoding, SRType_ROR);
+}
+
+// Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits.
+// The bits that are rotated off the right end are inserted into the vacated bit positions on the left.
+// The variable number of bits is read from the bottom byte of a register. It can optionally update the condition
+// flags based on the result.
+bool
+EmulateInstructionARM::EmulateRORReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg (opcode, encoding, SRType_ROR);
+}
+
+// Rotate Right with Extend provides the value of the contents of a register shifted right by one place,
+// with the carry flag shifted into bit [31].
+//
+// RRX can optionally update the condition flags based on the result.
+// In that case, bit [0] is shifted into the carry flag.
+bool
+EmulateInstructionARM::EmulateRRX (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_RRX, 1, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm (opcode, encoding, SRType_RRX);
+}
+
+bool
+EmulateInstructionARM::EmulateShiftImm (const uint32_t opcode, const ARMEncoding encoding, ARM_ShifterType shift_type)
+{
+// assert(shift_type == SRType_ASR
+// || shift_type == SRType_LSL
+// || shift_type == SRType_LSR
+// || shift_type == SRType_ROR
+// || shift_type == SRType_RRX);
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd; // the destination register
+ uint32_t Rm; // the first operand register
+ uint32_t imm5; // encoding for the shift amount
+ uint32_t carry; // the carry bit after the shift operation
+ bool setflags;
+
+ // Special case handling!
+ // A8.6.139 ROR (immediate) -- Encoding T1
+ ARMEncoding use_encoding = encoding;
+ if (shift_type == SRType_ROR && use_encoding == eEncodingT1)
+ {
+ // Morph the T1 encoding from the ARM Architecture Manual into T2 encoding to
+ // have the same decoding of bit fields as the other Thumb2 shift operations.
+ use_encoding = eEncodingT2;
+ }
+
+ switch (use_encoding) {
+ case eEncodingT1:
+ // Due to the above special case handling!
+ if (shift_type == SRType_ROR)
+ return false;
+
+ Rd = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm5 = Bits32(opcode, 10, 6);
+ break;
+ case eEncodingT2:
+ // A8.6.141 RRX
+ // There's no imm form of RRX instructions.
+ if (shift_type == SRType_RRX)
+ return false;
+
+ Rd = Bits32(opcode, 11, 8);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ imm5 = Bits32(opcode, 14, 12) << 2 | Bits32(opcode, 7, 6);
+ if (BadReg(Rd) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ imm5 = Bits32(opcode, 11, 7);
+ break;
+ default:
+ return false;
+ }
+
+ // A8.6.139 ROR (immediate)
+ if (shift_type == SRType_ROR && imm5 == 0)
+ shift_type = SRType_RRX;
+
+ // Get the first operand.
+ uint32_t value = ReadCoreReg (Rm, &success);
+ if (!success)
+ return false;
+
+ // Decode the shift amount if not RRX.
+ uint32_t amt = (shift_type == SRType_RRX ? 1 : DecodeImmShift(shift_type, imm5));
+
+ uint32_t result = Shift_C(value, shift_type, amt, APSR_C, carry, &success);
+ if (!success)
+ return false;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+bool
+EmulateInstructionARM::EmulateShiftReg (const uint32_t opcode, const ARMEncoding encoding, ARM_ShifterType shift_type)
+{
+ // assert(shift_type == SRType_ASR
+ // || shift_type == SRType_LSL
+ // || shift_type == SRType_LSR
+ // || shift_type == SRType_ROR);
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand register
+ uint32_t Rm; // the register whose bottom byte contains the amount to shift by
+ uint32_t carry; // the carry bit after the shift operation
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Rd;
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 3, 0);
+ Rm = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ if (Rd == 15 || Rn == 15 || Rm == 15)
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ // Get the first operand.
+ uint32_t value = ReadCoreReg (Rn, &success);
+ if (!success)
+ return false;
+ // Get the Rm register content.
+ uint32_t val = ReadCoreReg (Rm, &success);
+ if (!success)
+ return false;
+
+ // Get the shift amount.
+ uint32_t amt = Bits32(val, 7, 0);
+
+ uint32_t result = Shift_C(value, shift_type, amt, APSR_C, carry, &success);
+ if (!success)
+ return false;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// LDM loads multiple registers from consecutive memory locations, using an
+// address from a base register. Optionally the address just above the highest of those locations
+// can be written back to the base register.
+bool
+EmulateInstructionARM::EmulateLDM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed()
+ EncodingSpecificOperations(); NullCheckIfThumbEE (n);
+ address = R[n];
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address, 4]; address = address + 4;
+ if registers<15> == '1' then
+ LoadWritePC (MemA[address, 4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] + 4 * BitCount (registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
+
+#endif
+
+ bool success = false;
+ bool conditional = false;
+ if (ConditionPassed(opcode, &conditional))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
+ n = Bits32 (opcode, 10, 8);
+ registers = Bits32 (opcode, 7, 0);
+ registers = registers & 0x00ff; // Make sure the top 8 bits are zeros.
+ wback = BitIsClear (registers, n);
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+ break;
+ case eEncodingT2:
+ // if W == '1' && Rn == '1101' then SEE POP;
+ // n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ registers = registers & 0xdfff; // Make sure bit 13 is zero.
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
+ if ((n == 15)
+ || (BitCount (registers) < 2)
+ || (BitIsSet (opcode, 14) && BitIsSet (opcode, 15)))
+ return false;
+
+ // if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (BitIsSet (registers, 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback
+ && BitIsSet (registers, n))
+ return false;
+ break;
+
+ case eEncodingA1:
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+ if ((n == 15)
+ || (BitCount (registers) < 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ int32_t offset = 0;
+ const addr_t base_address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+
+ for (int i = 0; i < 14; ++i)
+ {
+ if (BitIsSet (registers, i))
+ {
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+ if (wback && (n == 13)) // Pop Instruction
+ {
+ if (conditional)
+ context.type = EmulateInstruction::eContextRegisterLoad;
+ else
+ context.type = EmulateInstruction::eContextPopRegisterOffStack;
+ }
+
+ // R[i] = MemA [address, 4]; address = address + 4;
+ uint32_t data = MemARead (context, base_address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
+ return false;
+
+ offset += addr_byte_size;
+ }
+ }
+
+ if (BitIsSet (registers, 15))
+ {
+ //LoadWritePC (MemA [address, 4]);
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+ uint32_t data = MemARead (context, base_address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ if (wback && BitIsClear (registers, n))
+ {
+ // R[n] = R[n] + 4 * BitCount (registers)
+ int32_t offset = addr_byte_size * BitCount (registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, base_address + offset))
+ return false;
+ }
+ if (wback && BitIsSet (registers, n))
+ // R[n] bits(32) UNKNOWN;
+ return WriteBits32Unknown (n);
+ }
+ return true;
+}
+
+// LDMDA loads multiple registers from consecutive memory locations using an address from a base register.
+// The consecutive memory locations end at this address and the address just below the lowest of those locations
+// can optionally be written back to the base register.
+bool
+EmulateInstructionARM::EmulateLDMDA (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] - 4*BitCount(registers) + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address,4]; address = address + 4;
+
+ if registers<15> == '1' then
+ LoadWritePC(MemA[address,4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount (registers) < 1))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+ // address = R[n] - 4*BitCount(registers) + 4;
+
+ int32_t offset = 0;
+ addr_t Rn = ReadCoreReg (n, &success);
+
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount (registers)) + addr_byte_size;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+
+ // for i = 0 to 14
+ for (int i = 0; i < 14; ++i)
+ {
+ // if registers<i> == '1' then
+ if (BitIsSet (registers, i))
+ {
+ // R[i] = MemA[address,4]; address = address + 4;
+ context.SetRegisterPlusOffset (dwarf_reg, Rn - (address + offset));
+ uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
+ return false;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // LoadWritePC(MemA[address,4]);
+ if (BitIsSet (registers, 15))
+ {
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+ uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ // if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if (wback && BitIsClear (registers, n))
+ {
+ if (!success)
+ return false;
+
+ offset = (addr_byte_size * BitCount (registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t addr = Rn + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, addr))
+ return false;
+ }
+
+ // if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
+ if (wback && BitIsSet (registers, n))
+ return WriteBits32Unknown (n);
+ }
+ return true;
+}
+
+// LDMDB loads multiple registers from consecutive memory locations using an address from a base register. The
+// consecutive memory lcoations end just below this address, and the address of the lowest of those locations can
+// be optionally written back to the base register.
+bool
+EmulateInstructionARM::EmulateLDMDB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n] - 4*BitCount(registers);
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address,4]; address = address + 4;
+ if registers<15> == '1' then
+ LoadWritePC(MemA[address,4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ registers = registers & 0xdfff; // Make sure bit 13 is a zero.
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
+ if ((n == 15)
+ || (BitCount (registers) < 2)
+ || (BitIsSet (opcode, 14) && BitIsSet (opcode, 15)))
+ return false;
+
+ // if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (BitIsSet (registers, 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet (registers, n))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount (registers) < 1))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n] - 4*BitCount(registers);
+
+ int32_t offset = 0;
+ addr_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount (registers));
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, Rn - address);
+
+ for (int i = 0; i < 14; ++i)
+ {
+ if (BitIsSet (registers, i))
+ {
+ // R[i] = MemA[address,4]; address = address + 4;
+ context.SetRegisterPlusOffset (dwarf_reg, Rn - (address + offset));
+ uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
+ return false;
+
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // LoadWritePC(MemA[address,4]);
+ if (BitIsSet (registers, 15))
+ {
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+ uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ // if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if (wback && BitIsClear (registers, n))
+ {
+ if (!success)
+ return false;
+
+ offset = (addr_byte_size * BitCount (registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t addr = Rn + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, addr))
+ return false;
+ }
+
+ // if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
+ if (wback && BitIsSet (registers, n))
+ return WriteBits32Unknown (n);
+ }
+ return true;
+}
+
+// LDMIB loads multiple registers from consecutive memory locations using an address from a base register. The
+// consecutive memory locations start just above this address, and thea ddress of the last of those locations can
+// optinoally be written back to the base register.
+bool
+EmulateInstructionARM::EmulateLDMIB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address,4]; address = address + 4;
+ if registers<15> == '1' then
+ LoadWritePC(MemA[address,4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount (registers) < 1))
+ return false;
+
+ break;
+ default:
+ return false;
+ }
+ // address = R[n] + 4;
+
+ int32_t offset = 0;
+ addr_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+
+ if (!success)
+ return false;
+
+ addr_t address = Rn + addr_byte_size;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+
+ for (int i = 0; i < 14; ++i)
+ {
+ if (BitIsSet (registers, i))
+ {
+ // R[i] = MemA[address,4]; address = address + 4;
+
+ context.SetRegisterPlusOffset (dwarf_reg, offset + addr_byte_size);
+ uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
+ return false;
+
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // LoadWritePC(MemA[address,4]);
+ if (BitIsSet (registers, 15))
+ {
+ context.SetRegisterPlusOffset (dwarf_reg, offset);
+ uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ // if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
+ if (wback && BitIsClear (registers, n))
+ {
+ if (!success)
+ return false;
+
+ offset = addr_byte_size * BitCount (registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t addr = Rn + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, addr))
+ return false;
+ }
+
+ // if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
+ if (wback && BitIsSet (registers, n))
+ return WriteBits32Unknown (n);
+ }
+ return true;
+}
+
+// Load Register (immediate) calculates an address from a base register value and
+// an immediate offset, loads a word from memory, and writes to a register.
+// LDR (immediate, Thumb)
+bool
+EmulateInstructionARM::EmulateLDRRtRnImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,4];
+ if wback then R[n] = offset_addr;
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else R[t] = bits(32) UNKNOWN; // Can only apply before ARMv7
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rt; // the destination register
+ uint32_t Rn; // the base register
+ uint32_t imm32; // the immediate offset used to form the address
+ addr_t offset_addr; // the offset address
+ addr_t address; // the calculated address
+ uint32_t data; // the literal data value from memory load
+ bool add, index, wback;
+ switch (encoding) {
+ case eEncodingT1:
+ Rt = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ imm32 = Bits32(opcode, 10, 6) << 2; // imm32 = ZeroExtend(imm5:'00', 32);
+ // index = TRUE; add = TRUE; wback = FALSE
+ add = true;
+ index = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT2:
+ // t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
+ Rt = Bits32 (opcode, 10, 8);
+ Rn = 13;
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT3:
+ // if Rn == '1111' then SEE LDR (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ Rt = Bits32 (opcode, 15, 12);
+ Rn = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if ((Rt == 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingT4:
+ // if Rn == '1111' then SEE LDR (literal);
+ // if P == '1' && U == '1' && W == '0' then SEE LDRT;
+ // if Rn == '1101' && P == '0' && U == '1' && W == '1' && imm8 == '00000100' then SEE POP;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ Rt = Bits32 (opcode, 15, 12);
+ Rn = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;
+ if ((wback && (Rn == Rt)) || ((Rt == 15) && InITBlock() && !LastInITBlock()))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+ uint32_t base = ReadCoreReg (Rn, &success);
+ if (!success)
+ return false;
+ if (add)
+ offset_addr = base + imm32;
+ else
+ offset_addr = base - imm32;
+
+ address = (index ? offset_addr : base);
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rn, base_reg);
+ if (wback)
+ {
+ EmulateInstruction::Context ctx;
+ ctx.type = EmulateInstruction::eContextAdjustBaseRegister;
+ ctx.SetRegisterPlusOffset (base_reg, (int32_t) (offset_addr - base));
+
+ if (!WriteRegisterUnsigned (ctx, eRegisterKindDWARF, dwarf_r0 + Rn, offset_addr))
+ return false;
+ }
+
+ // Prepare to write to the Rt register.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, (int32_t) (offset_addr - base));
+
+ // Read memory from the address.
+ data = MemURead(context, address, 4, 0, &success);
+ if (!success)
+ return false;
+
+ if (Rt == 15)
+ {
+ if (Bits32(address, 1, 0) == 0)
+ {
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+ else
+ return false;
+ }
+ else if (UnalignedSupport() || Bits32(address, 1, 0) == 0)
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rt, data))
+ return false;
+ }
+ else
+ WriteBits32Unknown (Rt);
+ }
+ return true;
+}
+
+// STM (Store Multiple Increment After) stores multiple registers to consecutive memory locations using an address
+// from a base register. The consecutive memory locations start at this address, and teh address just above the last
+// of those locations can optionally be written back to the base register.
+bool
+EmulateInstructionARM::EmulateSTM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n];
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then // Only possible for encoding A1
+ MemA[address,4] = PCStoreValue();
+ if wback then R[n] = R[n] + 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
+ n = Bits32 (opcode, 10, 8);
+ registers = Bits32 (opcode, 7, 0);
+ registers = registers & 0x00ff; // Make sure the top 8 bits are zeros.
+ wback = true;
+
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount (registers) < 1)
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ registers = registers & 0x5fff; // Make sure bits 15 & 13 are zeros.
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount (registers) < 2))
+ return false;
+
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet (registers, n))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount (registers) < 1))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n];
+ int32_t offset = 0;
+ const addr_t address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ // for i = 0 to 14
+ uint32_t lowest_set_bit = 14;
+ for (uint32_t i = 0; i < 14; ++i)
+ {
+ // if registers<i> == '1' then
+ if (BitIsSet (registers, i))
+ {
+ if (i < lowest_set_bit)
+ lowest_set_bit = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_set_bit))
+ // MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
+ WriteBits32UnknownToMemory (address + offset);
+ else
+ {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, offset);
+ if (!MemAWrite (context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then // Only possible for encoding A1
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet (registers, 15))
+ {
+ RegisterInfo pc_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
+ context.SetRegisterPlusOffset (pc_reg, 8);
+ const uint32_t pc = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] + 4*BitCount(registers);
+ if (wback)
+ {
+ offset = addr_byte_size * BitCount (registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t data = address + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STMDA (Store Multiple Decrement After) stores multiple registers to consecutive memory locations using an address
+// from a base register. The consecutive memory locations end at this address, and the address just below the lowest
+// of those locations can optionally be written back to the base register.
+bool
+EmulateInstructionARM::EmulateSTMDA (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] - 4*BitCount(registers) + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN;
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then
+ MemA[address,4] = PCStoreValue();
+
+ if wback then R[n] = R[n] - 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount (registers) < 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ // address = R[n] - 4*BitCount(registers) + 4;
+ int32_t offset = 0;
+ addr_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount (registers)) + 4;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ // for i = 0 to 14
+ uint32_t lowest_bit_set = 14;
+ for (uint32_t i = 0; i < 14; ++i)
+ {
+ // if registers<i> == '1' then
+ if (BitIsSet (registers, i))
+ {
+ if (i < lowest_bit_set)
+ lowest_bit_set = i;
+ //if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_bit_set))
+ // MemA[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory (address + offset);
+ else
+ {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, Rn - (address + offset));
+ if (!MemAWrite (context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet (registers, 15))
+ {
+ RegisterInfo pc_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
+ context.SetRegisterPlusOffset (pc_reg, 8);
+ const uint32_t pc = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] - 4*BitCount(registers);
+ if (wback)
+ {
+ offset = (addr_byte_size * BitCount (registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t data = Rn + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STMDB (Store Multiple Decrement Before) stores multiple registers to consecutive memory locations using an address
+// from a base register. The consecutive memory locations end just below this address, and the address of the first of
+// those locations can optionally be written back to the base register.
+bool
+EmulateInstructionARM::EmulateSTMDB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n] - 4*BitCount(registers);
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then // Only possible for encoding A1
+ MemA[address,4] = PCStoreValue();
+
+ if wback then R[n] = R[n] - 4*BitCount(registers);
+#endif
+
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if W == '1' && Rn == '1101' then SEE PUSH;
+ if ((BitIsSet (opcode, 21)) && (Bits32 (opcode, 19, 16) == 13))
+ {
+ // See PUSH
+ }
+ // n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ registers = registers & 0x5fff; // Make sure bits 15 & 13 are zeros.
+ wback = BitIsSet (opcode, 21);
+ // if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
+ if ((n == 15) || BitCount (registers) < 2)
+ return false;
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet (registers, n))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // if W == '1' && Rn == '1101Õ && BitCount(register_list) >= 2 then SEE PUSH;
+ if (BitIsSet (opcode, 21) && (Bits32 (opcode, 19, 16) == 13) && BitCount (Bits32 (opcode, 15, 0)) >= 2)
+ {
+ // See Push
+ }
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || BitCount (registers) < 1)
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n] - 4*BitCount(registers);
+
+ int32_t offset = 0;
+ addr_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount (registers));
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ // for i = 0 to 14
+ uint32_t lowest_set_bit = 14;
+ for (uint32_t i = 0; i < 14; ++i)
+ {
+ // if registers<i> == '1' then
+ if (BitIsSet (registers, i))
+ {
+ if (i < lowest_set_bit)
+ lowest_set_bit = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_set_bit))
+ // MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
+ WriteBits32UnknownToMemory (address + offset);
+ else
+ {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, Rn - (address + offset));
+ if (!MemAWrite (context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then // Only possible for encoding A1
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet (registers, 15))
+ {
+ RegisterInfo pc_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
+ context.SetRegisterPlusOffset (pc_reg, 8);
+ const uint32_t pc = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] - 4*BitCount(registers);
+ if (wback)
+ {
+ offset = (addr_byte_size * BitCount (registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t data = Rn + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STMIB (Store Multiple Increment Before) stores multiple registers to consecutive memory locations using an address
+// from a base register. The consecutive memory locations start just above this address, and the address of the last
+// of those locations can optionally be written back to the base register.
+bool
+EmulateInstructionARM::EmulateSTMIB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN;
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then
+ MemA[address,4] = PCStoreValue();
+
+ if wback then R[n] = R[n] + 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32 (opcode, 19, 16);
+ registers = Bits32 (opcode, 15, 0);
+ wback = BitIsSet (opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) && (BitCount (registers) < 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ // address = R[n] + 4;
+
+ int32_t offset = 0;
+ addr_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn + addr_byte_size;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t lowest_set_bit = 14;
+ // for i = 0 to 14
+ for (uint32_t i = 0; i < 14; ++i)
+ {
+ // if registers<i> == '1' then
+ if (BitIsSet (registers, i))
+ {
+ if (i < lowest_set_bit)
+ lowest_set_bit = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_set_bit))
+ // MemA[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory (address + offset);
+ // else
+ else
+ {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, offset + addr_byte_size);
+ if (!MemAWrite (context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet (registers, 15))
+ {
+ RegisterInfo pc_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
+ context.SetRegisterPlusOffset (pc_reg, 8);
+ const uint32_t pc = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] + 4*BitCount(registers);
+ if (wback)
+ {
+ offset = addr_byte_size * BitCount (registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned (offset);
+ addr_t data = Rn + offset;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STR (store immediate) calcualtes an address from a base register value and an immediate offset, and stores a word
+// from a register to memory. It can use offset, post-indexed, or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateSTRThumb (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ if UnalignedSupport() || address<1:0> == '00' then
+ MemU[address,4] = R[t];
+ else // Can only occur before ARMv7
+ MemU[address,4] = bits(32) UNKNOWN;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+ // EncodingSpecificOperations (); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ imm32 = Bits32 (opcode, 10, 6) << 2;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = false;
+ wback = false;
+ break;
+
+ case eEncodingT2:
+ // t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
+ t = Bits32 (opcode, 10, 8);
+ n = 13;
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+ break;
+
+ case eEncodingT3:
+ // if Rn == '1111' then UNDEFINED;
+ if (Bits32 (opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+ break;
+
+ case eEncodingT4:
+ // if P == '1' && U == '1' && W == '0' then SEE STRT;
+ // if Rn == '1101' && P == '1' && U == '0' && W == '1' && imm8 == '00000100' then SEE PUSH;
+ // if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
+ if ((Bits32 (opcode, 19, 16) == 15)
+ || (BitIsClear (opcode, 10) && BitIsClear (opcode, 8)))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if t == 15 || (wback && n == t) then UNPREDICTABLE;
+ if ((t == 15) || (wback && (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t base_address = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = base_address + imm32;
+ else
+ offset_addr = base_address - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ // if UnalignedSupport() || address<1:0> == '00' then
+ if (UnalignedSupport () || (BitIsClear (address, 1) && BitIsClear (address, 0)))
+ {
+ // MemU[address,4] = R[t];
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+ int32_t offset = address - base_address;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, offset);
+ if (!MemUWrite (context, address, data, addr_byte_size))
+ return false;
+ }
+ else
+ {
+ // MemU[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory (address);
+ }
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextRegisterLoad;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STR (Store Register) calculates an address from a base register value and an offset register value, stores a
+// word from a register to memory. The offset register value can optionally be shifted.
+bool
+EmulateInstructionARM::EmulateSTRRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ if t == 15 then // Only possible for encoding A1
+ data = PCStoreValue();
+ else
+ data = R[t];
+ if UnalignedSupport() || address<1:0> == '00' || CurrentInstrSet() == InstrSet_ARM then
+ MemU[address,4] = data;
+ else // Can only occur before ARMv7
+ MemU[address,4] = bits(32) UNKNOWN;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations (); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then UNDEFINED;
+ if (Bits32 (opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if t == 15 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 15) || (BadReg (m)))
+ return false;
+ break;
+
+ case eEncodingA1:
+ {
+ // if P == '0' && W == '1' then SEE STRT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ uint32_t typ = Bits32 (opcode, 6, 5);
+ uint32_t imm5 = Bits32 (opcode, 11, 7);
+ shift_n = DecodeImmShift(typ, imm5, shift_t);
+
+ // if m == 15 then UNPREDICTABLE;
+ if (m == 15)
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+ }
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+ int32_t offset = 0;
+
+ addr_t base_address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rm_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset = Shift (Rm_data, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ if (add)
+ offset_addr = base_address + offset;
+ else
+ offset_addr = base_address - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ uint32_t data;
+ // if t == 15 then // Only possible for encoding A1
+ if (t == 15)
+ // data = PCStoreValue();
+ data = ReadCoreReg (PC_REG, &success);
+ else
+ // data = R[t];
+ data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+
+ // if UnalignedSupport() || address<1:0> == '00' || CurrentInstrSet() == InstrSet_ARM then
+ if (UnalignedSupport ()
+ || (BitIsClear (address, 1) && BitIsClear (address, 0))
+ || CurrentInstrSet() == eModeARM)
+ {
+ // MemU[address,4] = data;
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - base_address);
+ if (!MemUWrite (context, address, data, addr_byte_size))
+ return false;
+
+ }
+ else
+ // MemU[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory (address);
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextRegisterLoad;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ }
+ return true;
+}
+
+bool
+EmulateInstructionARM::EmulateSTRBThumb (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,1] = R[t]<7:0>;
+ if wback then R[n] = offset_addr;
+#endif
+
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ imm32 = Bits32 (opcode, 10, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then UNDEFINED;
+ if (Bits32 (opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if BadReg(t) then UNPREDICTABLE;
+ if (BadReg (t))
+ return false;
+ break;
+
+ case eEncodingT3:
+ // if P == '1' && U == '1' && W == '0' then SEE STRBT;
+ // if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
+ if (Bits32 (opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE
+ if ((BadReg (t)) || (wback && (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+ addr_t base_address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = base_address + imm32;
+ else
+ offset_addr = base_address - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ // MemU[address,1] = R[t]<7:0>
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - base_address);
+
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+ if (!success)
+ return false;
+
+ data = Bits32 (data, 7, 0);
+
+ if (!MemUWrite (context, address, data, 1))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextRegisterLoad;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ }
+
+ return true;
+}
+
+// STRH (register) calculates an address from a base register value and an offset register value, and stores a
+// halfword from a register to memory. The offset register alue can be shifted left by 0, 1, 2, or 3 bits.
+bool
+EmulateInstructionARM::EmulateSTRHRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ if UnalignedSupport() || address<0> == '0' then
+ MemU[address,2] = R[t]<15:0>;
+ else // Can only occur before ARMv7
+ MemU[address,2] = bits(16) UNKNOWN;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then UNDEFINED;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+ if (n == 15)
+ return false;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if BadReg(t) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg (t) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE STRHT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+
+ // if UnalignedSupport() || address<0> == '0' then
+ if (UnalignedSupport() || BitIsClear (address, 0))
+ {
+ // MemU[address,2] = R[t]<15:0>;
+ uint32_t Rt = ReadCoreReg (t, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+ context.SetRegisterToRegisterPlusIndirectOffset (base_reg, offset_reg, data_reg);
+
+ if (!MemUWrite (context, address, Bits32 (Rt, 15, 0), 2))
+ return false;
+ }
+ else // Can only occur before ARMv7
+ {
+ // MemU[address,2] = bits(16) UNKNOWN;
+ }
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Add with Carry (immediate) adds an immediate value and the carry flag value to a register value,
+// and writes the result to the destination register. It can optionally update the condition flags
+// based on the result.
+bool
+EmulateInstructionARM::EmulateADCImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be added to the value obtained from Rn
+ bool setflags;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ int32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(val1, imm32, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted
+// register value, and writes the result to the destination register. It can optionally update the
+// condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateADCReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ int32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ int32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, shifted, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// This instruction adds an immediate value to the PC value to form a PC-relative address,
+// and writes the result to the destination register.
+bool
+EmulateInstructionARM::EmulateADR (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
+ if d == 15 then // Can only occur for ARM encodings
+ ALUWritePC(result);
+ else
+ R[d] = result;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd;
+ uint32_t imm32; // the immediate value to be added/subtracted to/from the PC
+ bool add;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 10, 8);
+ imm32 = ThumbImm8Scaled(opcode); // imm32 = ZeroExtend(imm8:'00', 32)
+ add = true;
+ break;
+ case eEncodingT2:
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
+ add = (Bits32(opcode, 24, 21) == 0); // 0b0000 => ADD; 0b0101 => SUB
+ if (BadReg(Rd))
+ return false;
+ break;
+ case eEncodingA1:
+ case eEncodingA2:
+ Rd = Bits32(opcode, 15, 12);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ add = (Bits32(opcode, 24, 21) == 0x4); // 0b0100 => ADD; 0b0010 => SUB
+ break;
+ default:
+ return false;
+ }
+
+ // Read the PC value.
+ uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = (add ? Align(pc, 4) + imm32 : Align(pc, 4) - imm32);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreReg(context, result, Rd))
+ return false;
+ }
+ return true;
+}
+
+// This instruction performs a bitwise AND of a register value and an immediate value, and writes the result
+// to the destination register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateANDImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] AND imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be ANDed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ // if Rd == '1111' && S == '1' then SEE TST (immediate);
+ if (Rd == 15 && setflags)
+ return EmulateTSTImm(opcode, eEncodingT1);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 & imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// This instruction performs a bitwise AND of a register value and an optionally-shifted register value,
+// and writes the result to the destination register. It can optionally update the condition flags
+// based on the result.
+bool
+EmulateInstructionARM::EmulateANDReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] AND shifted;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if Rd == '1111' && S == '1' then SEE TST (register);
+ if (Rd == 15 && setflags)
+ return EmulateTSTReg(opcode, eEncodingT2);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 & shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an
+// immediate value, and writes the result to the destination register. It can optionally update the
+// condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateBICImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] AND NOT(imm32);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be bitwise inverted and ANDed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 & ~imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an
+// optionally-shifted register value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateBICReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] AND NOT(shifted);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 & ~shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// LDR (immediate, ARM) calculates an address from a base register value and an immediate offset, loads a word
+// from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateLDRImmediateARM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,4];
+ if wback then R[n] = offset_addr;
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else // Can only apply before ARMv7
+ R[t] = ROR(data, 8*UInt(address<1:0>));
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // if Rn == '1111' then SEE LDR (literal);
+ // if P == '0' && W == '1' then SEE LDRT;
+ // if Rn == '1101' && P == '0' && U == '1' && W == '0' && imm12 == '000000000100' then SEE POP;
+ // t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // if wback && n == t then UNPREDICTABLE;
+ if (wback && (n == t))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t address;
+ addr_t offset_addr;
+ addr_t base_address = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = base_address + imm32;
+ else
+ offset_addr = base_address - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ // data = MemU[address,4];
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base_address);
+
+ uint64_t data = MemURead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ // if t == 15 then
+ if (t == 15)
+ {
+ // if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ if (BitIsClear (address, 1) && BitIsClear (address, 0))
+ {
+ // LoadWritePC (data);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base_address);
+ LoadWritePC (context, data);
+ }
+ else
+ return false;
+ }
+ // elsif UnalignedSupport() || address<1:0> = '00' then
+ else if (UnalignedSupport() || (BitIsClear (address, 1) && BitIsClear (address, 0)))
+ {
+ // R[t] = data;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base_address);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ // else // Can only apply before ARMv7
+ else
+ {
+ // R[t] = ROR(data, 8*UInt(address<1:0>));
+ data = ROR (data, Bits32 (address, 1, 0), &success);
+ if (!success)
+ return false;
+ context.type = eContextRegisterLoad;
+ context.SetImmediate (data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+
+ }
+ return true;
+}
+
+// LDR (register) calculates an address from a base register value and an offset register value, loads a word
+// from memory, and writes it to a resgister. The offset register value can optionally be shifted.
+bool
+EmulateInstructionARM::EmulateLDRRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,4];
+ if wback then R[n] = offset_addr;
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else // Can only apply before ARMv7
+ if CurrentInstrSet() == InstrSet_ARM then
+ R[t] = ROR(data, 8*UInt(address<1:0>));
+ else
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDR (literal);
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if BadReg(m) then UNPREDICTABLE;
+ if (BadReg (m))
+ return false;
+
+ // if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if ((t == 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ {
+ // if P == '0' && W == '1' then SEE LDRT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ uint32_t type = Bits32 (opcode, 6, 5);
+ uint32_t imm5 = Bits32 (opcode, 11, 7);
+ shift_n = DecodeImmShift (type, imm5, shift_t);
+
+ // if m == 15 then UNPREDICTABLE;
+ if (m == 15)
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+ }
+ break;
+
+
+ default:
+ return false;
+ }
+
+ uint32_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C); -- Note "The APSR is an application level alias for the CPSR".
+ addr_t offset = Shift (Rm, shift_t, shift_n, Bit32 (m_opcode_cpsr, APSR_C), &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,4];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint64_t data = MemURead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ // if t == 15 then
+ if (t == 15)
+ {
+ // if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ if (BitIsClear (address, 1) && BitIsClear (address, 0))
+ {
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+ LoadWritePC (context, data);
+ }
+ else
+ return false;
+ }
+ // elsif UnalignedSupport() || address<1:0> = '00' then
+ else if (UnalignedSupport () || (BitIsClear (address, 1) && BitIsClear (address, 0)))
+ {
+ // R[t] = data;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ else // Can only apply before ARMv7
+ {
+ // if CurrentInstrSet() == InstrSet_ARM then
+ if (CurrentInstrSet () == eModeARM)
+ {
+ // R[t] = ROR(data, 8*UInt(address<1:0>));
+ data = ROR (data, Bits32 (address, 1, 0), &success);
+ if (!success)
+ return false;
+ context.type = eContextRegisterLoad;
+ context.SetImmediate (data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ else
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ }
+ return true;
+}
+
+// LDRB (immediate, Thumb)
+bool
+EmulateInstructionARM::EmulateLDRBImmediate (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ R[t] = ZeroExtend(MemU[address,1], 32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ imm32 = Bits32 (opcode, 10, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback= false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' then SEE PLD;
+ // if Rn == '1111' then SEE LDRB (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingT3:
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLD;
+ // if Rn == '1111' then SEE LDRB (literal);
+ // if P == '1' && U == '1' && W == '0' then SEE LDRBT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (BadReg (t) || (wback && (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t address;
+ addr_t offset_addr;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = ZeroExtend(MemU[address,1], 32);
+ RegisterInfo base_reg;
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+
+ uint64_t data = MemURead (context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDRB (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory,
+// zero-extends it to form a 32-bit word and writes it to a register.
+bool
+EmulateInstructionARM::EmulateLDRBLiteral (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ R[t] = ZeroExtend(MemU[address,1], 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE PLD;
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ imm32 = Bits32 (opcode, 11, 0);
+ add = BitIsSet (opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // t == UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ imm32 = Bits32 (opcode, 11, 0);
+ add = BitIsSet (opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint32_t pc_val = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ uint32_t base = AlignPC (pc_val);
+
+ addr_t address;
+ // address = if add then (base + imm32) else (base - imm32);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // R[t] = ZeroExtend(MemU[address,1], 32);
+ EmulateInstruction::Context context;
+ context.type = eContextRelativeBranchImmediate;
+ context.SetImmediate (address - base);
+
+ uint64_t data = MemURead (context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ return true;
+}
+
+// LDRB (register) calculates an address from a base register value and an offset rigister value, loads a byte from
+// memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
+// optionally be shifted.
+bool
+EmulateInstructionARM::EmulateLDRBRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ R[t] = ZeroExtend(MemU[address,1],32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' then SEE PLD;
+ // if Rn == '1111' then SEE LDRB (literal);
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg (m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ {
+ // if P == '0' && W == '1' then SEE LDRBT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ uint32_t type = Bits32 (opcode, 6, 5);
+ uint32_t imm5 = Bits32 (opcode, 11, 7);
+ shift_n = DecodeImmShift (type, imm5, shift_t);
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = ZeroExtend(MemU[address,1],32);
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint64_t data = MemURead (context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDRH (immediate, Thumb) calculates an address from a base register value and an immediate offset, loads a
+// halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
+// post-indexed, or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateLDRHImmediate (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = ZeroExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ imm32 = Bits32 (opcode, 10, 6) << 1;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // if Rn == '1111' then SEE LDRH (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+ break;
+
+ case eEncodingT3:
+ // if Rn == '1111' then SEE LDRH (literal);
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Unallocated memory hints";
+ // if P == '1' && U == '1' && W == '0' then SEE LDRHT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (BadReg (t) || (wback && (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint64_t data = MemURead (context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport () || BitIsClear (address, 0))
+ {
+ // R[t] = ZeroExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ return true;
+}
+
+// LDRH (literal) caculates an address from the PC value and an immediate offset, loads a halfword from memory,
+// zero-extends it to form a 32-bit word, and writes it to a register.
+bool
+EmulateInstructionARM::EmulateLDRHLiteral (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ data = MemU[address,2];
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = ZeroExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ imm32 = Bits32 (opcode, 11, 0);
+ add = BitIsSet (opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ {
+ uint32_t imm4H = Bits32 (opcode, 11, 8);
+ uint32_t imm4L = Bits32 (opcode, 3, 0);
+
+ // t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ imm32 = (imm4H << 4) | imm4L;
+ add = BitIsSet (opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint64_t pc_value = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ addr_t base = AlignPC (pc_value);
+ addr_t address;
+
+ // address = if add then (base + imm32) else (base - imm32);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // data = MemU[address,2];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base);
+
+ uint64_t data = MemURead (context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport () || BitIsClear (address, 0))
+ {
+ // R[t] = ZeroExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ }
+ else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ return true;
+}
+
+// LDRH (literal) calculates an address from a base register value and an offset register value, loads a halfword
+// from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
+// be shifted left by 0, 1, 2, or 3 bits.
+bool
+EmulateInstructionARM::EmulateLDRHRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = ZeroExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDRH (literal);
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg (m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE LDRHT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ RegisterInfo base_reg;
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
+ uint64_t data = MemURead (context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear (address, 0))
+ {
+ // R[t] = ZeroExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ return true;
+}
+
+// LDRSB (immediate) calculates an address from a base register value and an immediate offset, loads a byte from
+// memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
+// or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateLDRSBImmediate (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ R[t] = SignExtend(MemU[address,1], 32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE PLI;
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLI;
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (((t == 13) || ((t == 15)
+ && (BitIsClear (opcode, 10) || BitIsSet (opcode, 9) || BitIsSet (opcode, 8))))
+ || (wback && (n == t)))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ {
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // if P == '0' && W == '1' then SEE LDRSBT;
+ // t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+
+ uint32_t imm4H = Bits32 (opcode, 11, 8);
+ uint32_t imm4L = Bits32 (opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
+
+ // if t == 15 || (wback && n == t) then UNPREDICTABLE;
+ if ((t == 15) || (wback && (n == t)))
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ uint64_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = SignExtend(MemU[address,1], 32);
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint64_t unsigned_data = MemURead (context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// LDRSB (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory,
+// sign-extends it to form a 32-bit word, and writes tit to a register.
+bool
+EmulateInstructionARM::EmulateLDRSBLiteral (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ R[t] = SignExtend(MemU[address,1], 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE PLI;
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ imm32 = Bits32 (opcode, 11, 0);
+ add = BitIsSet (opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ {
+ // t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ uint32_t imm4H = Bits32 (opcode, 11, 8);
+ uint32_t imm4L = Bits32 (opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+ add = BitIsSet (opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint64_t pc_value = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+ uint64_t base = AlignPC (pc_value);
+
+ // address = if add then (base + imm32) else (base - imm32);
+ addr_t address;
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // R[t] = SignExtend(MemU[address,1], 32);
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base);
+
+ uint64_t unsigned_data = MemURead (context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
+ return false;
+ }
+ return true;
+}
+
+// LDRSB (register) calculates an address from a base register value and an offset register value, loadsa byte from
+// memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value can be
+// shifted left by 0, 1, 2, or 3 bits.
+bool
+EmulateInstructionARM::EmulateLDRSBRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ R[t] = SignExtend(MemU[address,1], 32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' then SEE PLI;
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg (m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE LDRSBT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = SignExtend(MemU[address,1], 32);
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
+
+ uint64_t unsigned_data = MemURead (context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDRSH (immediate) calculates an address from a base register value and an immediate offset, loads a halfword from
+// memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or
+// pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateLDRSHImmediate (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = SignExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Unallocated memory hints";
+ // if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet (opcode, 10);
+ add = BitIsSet (opcode, 9);
+ wback = BitIsSet (opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (BadReg (t) || (wback && (n == t)))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ {
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if P == '0' && W == '1' then SEE LDRSHT;
+ // t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ uint32_t imm4H = Bits32 (opcode, 11,8);
+ uint32_t imm4L = Bits32 (opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // if t == 15 || (wback && n == t) then UNPREDICTABLE;
+ if ((t == 15) || (wback && (n == t)))
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint64_t data = MemURead (context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear (address, 0))
+ {
+ // R[t] = SignExtend(data, 32);
+ int64_t signed_data = llvm::SignExtend64<16>(data);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
+ return false;
+ }
+ else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ return true;
+}
+
+// LDRSH (literal) calculates an address from the PC value and an immediate offset, loads a halfword from memory,
+// sign-extends it to from a 32-bit word, and writes it to a register.
+bool
+EmulateInstructionARM::EmulateLDRSHLiteral (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ data = MemU[address,2];
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = SignExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ imm32 = Bits32 (opcode, 11, 0);
+ add = BitIsSet (opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ {
+ // t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
+ t = Bits32 (opcode, 15, 12);
+ uint32_t imm4H = Bits32 (opcode, 11, 8);
+ uint32_t imm4L = Bits32 (opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+ add = BitIsSet (opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+
+ break;
+ }
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint64_t pc_value = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ uint64_t base = AlignPC (pc_value);
+
+ addr_t address;
+ // address = if add then (base + imm32) else (base - imm32);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // data = MemU[address,2];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, imm32);
+
+ uint64_t data = MemURead (context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear (address, 0))
+ {
+ // R[t] = SignExtend(data, 32);
+ int64_t signed_data = llvm::SignExtend64<16>(data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
+ return false;
+ }
+ else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ return true;
+}
+
+// LDRSH (register) calculates an address from a base register value and an offset register value, loads a halfword
+// from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value can be
+// shifted left by 0, 1, 2, or 3 bits.
+bool
+EmulateInstructionARM::EmulateLDRSHRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = SignExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32 (opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE LDRSHT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
+
+ uint64_t data = MemURead (context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear (address, 0))
+ {
+ // R[t] = SignExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
+
+ int64_t signed_data = llvm::SignExtend64<16>(data);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
+ return false;
+ }
+ else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown (t);
+ }
+ }
+ return true;
+}
+
+// SXTB extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to the destination
+// register. You can specifiy a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.
+bool
+EmulateInstructionARM::EmulateSXTB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = SignExtend(rotated<7:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32 (opcode, 2, 0);
+ m = Bits32 (opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 11, 8);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg (d) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 15, 12);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR (Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = SignExtend(rotated<7:0>, 32);
+ int64_t data = llvm::SignExtend64<8>(rotated);
+
+ RegisterInfo source_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister (source_reg);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, (uint64_t) data))
+ return false;
+ }
+ return true;
+}
+
+// SXTH extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the result to the destination
+// register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
+bool
+EmulateInstructionARM::EmulateSXTH (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = SignExtend(rotated<15:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32 (opcode, 2, 0);
+ m = Bits32 (opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 11, 8);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg (d) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 15, 12);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR (Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = SignExtend(rotated<15:0>, 32);
+ RegisterInfo source_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister (source_reg);
+
+ int64_t data = llvm::SignExtend64<16> (rotated);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, (uint64_t) data))
+ return false;
+ }
+
+ return true;
+}
+
+// UXTB extracts an 8-bit value from a register, zero-extneds it to 32 bits, and writes the result to the destination
+// register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.
+bool
+EmulateInstructionARM::EmulateUXTB (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = ZeroExtend(rotated<7:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32 (opcode, 2, 0);
+ m = Bits32 (opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 11, 8);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg (d) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 15, 12);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR (Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = ZeroExtend(rotated<7:0>, 32);
+ RegisterInfo source_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister (source_reg);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, Bits32 (rotated, 7, 0)))
+ return false;
+ }
+ return true;
+}
+
+// UXTH extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the result to the destination
+// register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
+bool
+EmulateInstructionARM::EmulateUXTH (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = ZeroExtend(rotated<15:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32 (opcode, 2, 0);
+ m = Bits32 (opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 11, 8);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg (d) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32 (opcode, 15, 12);
+ m = Bits32 (opcode, 3, 0);
+ rotation = Bits32 (opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR (Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = ZeroExtend(rotated<15:0>, 32);
+ RegisterInfo source_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister (source_reg);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, Bits32 (rotated, 15, 0)))
+ return false;
+ }
+ return true;
+}
+
+// RFE (Return From Exception) loads the PC and the CPSR from the word at the specified address and the following
+// word respectively.
+bool
+EmulateInstructionARM::EmulateRFE (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE then
+ UNPREDICTABLE;
+ else
+ address = if increment then R[n] else R[n]-8;
+ if wordhigher then address = address+4;
+ CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
+ BranchWritePC(MemA[address,4]);
+ if wback then R[n] = if increment then R[n]+8 else R[n]-8;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t n;
+ bool wback;
+ bool increment;
+ bool wordhigher;
+
+ // EncodingSpecificOperations();
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher = FALSE;
+ n = Bits32 (opcode, 19, 16);
+ wback = BitIsSet (opcode, 21);
+ increment = false;
+ wordhigher = false;
+
+ // if n == 15 then UNPREDICTABLE;
+ if (n == 15)
+ return false;
+
+ // if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // n = UInt(Rn); wback = (W == '1'); increment = TRUE; wordhigher = FALSE;
+ n = Bits32 (opcode, 19, 16);
+ wback = BitIsSet (opcode, 21);
+ increment = true;
+ wordhigher = false;
+
+ // if n == 15 then UNPREDICTABLE;
+ if (n == 15)
+ return false;
+
+ // if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn);
+ n = Bits32 (opcode, 19, 16);
+
+ // wback = (W == '1'); inc = (U == '1'); wordhigher = (P == U);
+ wback = BitIsSet (opcode, 21);
+ increment = BitIsSet (opcode, 23);
+ wordhigher = (Bit32 (opcode, 24) == Bit32 (opcode, 23));
+
+ // if n == 15 then UNPREDICTABLE;
+ if (n == 15)
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE then
+ if (!CurrentModeIsPrivileged ())
+ // UNPREDICTABLE;
+ return false;
+ else
+ {
+ uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t address;
+ // address = if increment then R[n] else R[n]-8;
+ if (increment)
+ address = Rn;
+ else
+ address = Rn - 8;
+
+ // if wordhigher then address = address+4;
+ if (wordhigher)
+ address = address + 4;
+
+ // CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextReturnFromException;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint64_t data = MemARead (context, address + 4, 4, 0, &success);
+ if (!success)
+ return false;
+
+ CPSRWriteByInstr (data, 15, true);
+
+ // BranchWritePC(MemA[address,4]);
+ uint64_t data2 = MemARead (context, address, 4, 0, &success);
+ if (!success)
+ return false;
+
+ BranchWritePC (context, data2);
+
+ // if wback then R[n] = if increment then R[n]+8 else R[n]-8;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ if (increment)
+ {
+ context.SetOffset (8);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + 8))
+ return false;
+ }
+ else
+ {
+ context.SetOffset (-8);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn - 8))
+ return false;
+ }
+ } // if wback
+ }
+ } // if ConditionPassed()
+ return true;
+}
+
+// Bitwise Exclusive OR (immediate) performs a bitwise exclusive OR of a register value and an immediate value,
+// and writes the result to the destination register. It can optionally update the condition flags based on
+// the result.
+bool
+EmulateInstructionARM::EmulateEORImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] EOR imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be ORed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ // if Rd == '1111' && S == '1' then SEE TEQ (immediate);
+ if (Rd == 15 && setflags)
+ return EmulateTEQImm (opcode, eEncodingT1);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 ^ imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise Exclusive OR (register) performs a bitwise exclusive OR of a register value and an
+// optionally-shifted register value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateEORReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] EOR shifted;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if Rd == '1111' && S == '1' then SEE TEQ (register);
+ if (Rd == 15 && setflags)
+ return EmulateTEQReg (opcode, eEncodingT1);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 ^ shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and
+// writes the result to the destination register. It can optionally update the condition flags based
+// on the result.
+bool
+EmulateInstructionARM::EmulateORRImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] OR imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be ORed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ // if Rn == '1111' then SEE MOV (immediate);
+ if (Rn == 15)
+ return EmulateMOVRdImm (opcode, eEncodingT2);
+ if (BadReg(Rd) || Rn == 13)
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 | imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
+// value, and writes the result to the destination register. It can optionally update the condition flags based
+// on the result.
+bool
+EmulateInstructionARM::EmulateORRReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] OR shifted;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if Rn == '1111' then SEE MOV (register);
+ if (Rn == 15)
+ return EmulateMOVRdRm (opcode, eEncodingT3);
+ if (BadReg(Rd) || Rn == 13 || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 | shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to
+// the destination register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateRSBImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be added to the value obtained from Rn
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm32 = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(~reg_val, imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the
+// result to the destination register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateRSBReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(~val1, shifted, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from
+// an immediate value, and writes the result to the destination register. It can optionally update the condition
+// flags based on the result.
+bool
+EmulateInstructionARM::EmulateRSCImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, APSR.C);
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be added to the value obtained from Rn
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(~reg_val, imm32, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an
+// optionally-shifted register value, and writes the result to the destination register. It can optionally update the
+// condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateRSCReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, APSR.C);
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(~val1, shifted, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Subtract with Carry (immediate) subtracts an immediate value and the value of
+// NOT (Carry flag) from a register value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateSBCImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be added to the value obtained from Rn
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Subtract with Carry (register) subtracts an optionally-shifted register value and the value of
+// NOT (Carry flag) from a register value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateSBCReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, ~shifted, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// This instruction subtracts an immediate value from a register value, and writes the result
+// to the destination register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateSUBImmThumb (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be subtracted from the value obtained from Rn
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 8, 6); // imm32 = ZeroExtend(imm3, 32)
+ break;
+ case eEncodingT2:
+ Rd = Rn = Bits32(opcode, 10, 8);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 7, 0); // imm32 = ZeroExtend(imm8, 32)
+ break;
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+
+ // if Rd == '1111' && S == '1' then SEE CMP (immediate);
+ if (Rd == 15 && setflags)
+ return EmulateCMPImm (opcode, eEncodingT2);
+
+ // if Rn == '1101' then SEE SUB (SP minus immediate);
+ if (Rn == 13)
+ return EmulateSUBSPImm (opcode, eEncodingT2);
+
+ // if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;
+ if (Rd == 13 || (Rd == 15 && !setflags) || Rn == 15)
+ return false;
+ break;
+ case eEncodingT4:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
+
+ // if Rn == '1111' then SEE ADR;
+ if (Rn == 15)
+ return EmulateADR (opcode, eEncodingT2);
+
+ // if Rn == '1101' then SEE SUB (SP minus immediate);
+ if (Rn == 13)
+ return EmulateSUBSPImm (opcode, eEncodingT3);
+
+ if (BadReg(Rd))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// This instruction subtracts an immediate value from a register value, and writes the result
+// to the destination register. It can optionally update the condition flags based on the result.
+bool
+EmulateInstructionARM::EmulateSUBImmARM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be subtracted from the value obtained from Rn
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rn == '1111' && S == '0' then SEE ADR;
+ if (Rn == 15 && !setflags)
+ return EmulateADR (opcode, eEncodingA2);
+
+ // if Rn == '1101' then SEE SUB (SP minus immediate);
+ if (Rn == 13)
+ return EmulateSUBSPImm (opcode, eEncodingA1);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc (opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
+ return false;
+
+ return true;
+}
+
+// Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an
+// immediate value. It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateTEQImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] EOR imm32;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rn;
+ uint32_t imm32; // the immediate value to be ANDed to the value obtained from Rn
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm_C (opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ if (BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm_C (opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 ^ imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// Test Equivalence (register) performs a bitwise exclusive OR operation on a register value and an
+// optionally-shifted register value. It updates the condition flags based on the result, and discards
+// the result.
+bool
+EmulateInstructionARM::EmulateTEQReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] EOR shifted;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ uint32_t carry;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 ^ shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// Test (immediate) performs a bitwise AND operation on a register value and an immediate value.
+// It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateTSTImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] AND imm32;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rn;
+ uint32_t imm32; // the immediate value to be ANDed to the value obtained from Rn
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ if (BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 & imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value.
+// It updates the condition flags based on the result, and discards the result.
+bool
+EmulateInstructionARM::EmulateTSTReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] AND shifted;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ uint32_t carry;
+ switch (encoding)
+ {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 & shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs ();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.216 SUB (SP minus register)
+bool
+EmulateInstructionARM::EmulateSUBSPReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), Ô1Õ);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t m;
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); setflags = (S == Ô1Õ);
+ d = Bits32 (opcode, 11, 8);
+ m = Bits32 (opcode, 3, 0);
+ setflags = BitIsSet (opcode, 20);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
+ shift_n = DecodeImmShiftThumb (opcode, shift_t);
+
+ // if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
+ if ((d == 13) && ((shift_t != SRType_LSL) || (shift_n > 3)))
+ return false;
+
+ // if d == 15 || BadReg(m) then UNPREDICTABLE;
+ if ((d == 15) || BadReg (m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); setflags = (S == Ô1Õ);
+ d = Bits32 (opcode, 15, 12);
+ m = Bits32 (opcode, 3, 0);
+ setflags = BitIsSet (opcode, 20);
+
+ // if Rd == Ô1111Õ && S == Ô1Õ then SEE SUBS PC, LR and related instructions;
+ if (d == 15 && setflags)
+ EmulateSUBSPcLrEtc (opcode, encoding);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ shift_n = DecodeImmShiftARM (opcode, shift_t);
+ break;
+
+ default:
+ return false;
+ }
+
+ // shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), Ô1Õ);
+ uint32_t sp_val = ReadCoreReg (SP_REG, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry (sp_val, ~shifted, 1);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ RegisterInfo sp_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
+ RegisterInfo dwarf_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, dwarf_reg);
+ context.SetRegisterRegisterOperands (sp_reg, dwarf_reg);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, dwarf_r0 + d, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+
+// A8.6.7 ADD (register-shifted register)
+bool
+EmulateInstructionARM::EmulateADDRegShift (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[s]<7:0>);
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, Ô0Õ);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ uint32_t s;
+ bool setflags;
+ ARM_ShifterType shift_t;
+
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
+ d = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+ s = Bits32 (opcode, 11, 8);
+
+ // setflags = (S == Ô1Õ); shift_t = DecodeRegShift(type);
+ setflags = BitIsSet (opcode, 20);
+ shift_t = DecodeRegShift (Bits32 (opcode, 6, 5));
+
+ // if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15) || (m == 15) || (s == 15))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // shift_n = UInt(R[s]<7:0>);
+ uint32_t Rs = ReadCoreReg (s, &success);
+ if (!success)
+ return false;
+
+ uint32_t shift_n = Bits32 (Rs, 7, 0);
+
+ // shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // (result, carry, overflow) = AddWithCarry(R[n], shifted, Ô0Õ);
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry (Rn, shifted, 0);
+
+ // R[d] = result;
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ RegisterInfo reg_n;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, reg_n);
+ RegisterInfo reg_m;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, reg_m);
+
+ context.SetRegisterRegisterOperands (reg_n, reg_m);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, res.result))
+ return false;
+
+ // if setflags then
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+ if (setflags)
+ return WriteFlags (context, res.result, res.carry_out, res.overflow);
+ }
+ return true;
+}
+
+// A8.6.213 SUB (register)
+bool
+EmulateInstructionARM::EmulateSUBReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), Ô1Õ);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
+ d = Bits32 (opcode, 2, 0);
+ n = Bits32 (opcode, 5, 3);
+ m = Bits32 (opcode, 8, 6);
+ setflags = !InITBlock();
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rd == Ô1111Õ && S == Ô1Õ then SEE CMP (register);
+ // if Rn == Ô1101Õ then SEE SUB (SP minus register);
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == Ô1Õ);
+ d = Bits32 (opcode, 11, 8);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+ setflags = BitIsSet (opcode, 20);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
+ shift_n = DecodeImmShiftThumb (opcode, shift_t);
+
+ // if d == 13 || (d == 15 && S == '0') || n == 15 || BadReg(m) then UNPREDICTABLE;
+ if ((d == 13) || ((d == 15) && BitIsClear (opcode, 20)) || (n == 15) || BadReg (m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if Rn == Ô1101Õ then SEE SUB (SP minus register);
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == Ô1Õ);
+ d = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+ setflags = BitIsSet (opcode, 20);
+
+ // if Rd == Ô1111Õ && S == Ô1Õ then SEE SUBS PC, LR and related instructions;
+ if ((d == 15) && setflags)
+ EmulateSUBSPcLrEtc (opcode, encoding);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ shift_n = DecodeImmShiftARM (opcode, shift_t);
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), Ô1Õ);
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry (Rn, ~shifted, 1);
+
+ // if d == 15 then // Can only occur for ARM encoding
+ // ALUWritePC(result); // setflags is always FALSE here
+ // else
+ // R[d] = result;
+ // if setflags then
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ RegisterInfo reg_n;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, reg_n);
+ RegisterInfo reg_m;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, reg_m);
+ context.SetRegisterRegisterOperands (reg_n, reg_m);
+
+ if (!WriteCoreRegOptionalFlags (context, res.result, dwarf_r0 + d, setflags, res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.202 STREX
+// Store Register Exclusive calculates an address from a base register value and an immediate offset, and stores a
+// word from a register to memory if the executing processor has exclusive access to the memory addressed.
+bool
+EmulateInstructionARM::EmulateSTREX (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n] + imm32;
+ if ExclusiveMonitorsPass(address,4) then
+ MemA[address,4] = R[t];
+ R[d] = 0;
+ else
+ R[d] = 1;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t d;
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ d = Bits32 (opcode, 11, 8);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // if BadReg(d) || BadReg(t) || n == 15 then UNPREDICTABLE;
+ if (BadReg (d) || BadReg (t) || (n == 15))
+ return false;
+
+ // if d == n || d == t then UNPREDICTABLE;
+ if ((d == n) || (d == t))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
+ d = Bits32 (opcode, 15, 12);
+ t = Bits32 (opcode, 3, 0);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = 0;
+
+ // if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
+ if ((d == 15) || (t == 15) || (n == 15))
+ return false;
+
+ // if d == n || d == t then UNPREDICTABLE;
+ if ((d == n) || (d == t))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n] + imm32;
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn + imm32;
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, imm32);
+
+ // if ExclusiveMonitorsPass(address,4) then
+ // if (ExclusiveMonitorsPass (address, addr_byte_size)) -- For now, for the sake of emulation, we will say this
+ // always return true.
+ if (true)
+ {
+ // MemA[address,4] = R[t];
+ uint32_t Rt = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address, Rt, addr_byte_size))
+ return false;
+
+ // R[d] = 0;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, 0))
+ return false;
+ }
+ else
+ {
+ // R[d] = 1;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, 1))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.197 STRB (immediate, ARM)
+bool
+EmulateInstructionARM::EmulateSTRBImmARM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,1] = R[t]<7:0>;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // if P == Ô0Õ && W == Ô1Õ then SEE STRBT;
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // MemU[address,1] = R[t]<7:0>;
+ uint32_t Rt = ReadCoreReg (t, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+
+ if (!MemUWrite (context, address, Bits32 (Rt, 7, 0), 1))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.194 STR (immediate, ARM)
+bool
+EmulateInstructionARM::EmulateSTRImmARM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // if P == Ô0Õ && W == Ô1Õ then SEE STRT;
+ // if Rn == Ô1101Õ && P == Ô1Õ && U == Ô0Õ && W == Ô1Õ && imm12 == Ô000000000100Õ then SEE PUSH;
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 11, 0);
+
+ // index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+
+ // MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
+ uint32_t Rt = ReadCoreReg (t, &success);
+ if (!success)
+ return false;
+
+ if (t == 15)
+ {
+ uint32_t pc_value = ReadCoreReg (PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemUWrite (context, address, pc_value, addr_byte_size))
+ return false;
+ }
+ else
+ {
+ if (!MemUWrite (context, address, Rt, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetImmediate (offset_addr);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.66 LDRD (immediate)
+// Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
+// words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateLDRDImmediate (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ R[t] = MemA[address,4];
+ R[t2] = MemA[address+4,4];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ //if P == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
+ //if Rn == Ô1111Õ then SEE LDRD (literal);
+ //t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ t = Bits32 (opcode, 15, 12);
+ t2 = Bits32 (opcode, 11, 8);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ //index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsSet (opcode, 21);
+
+ //if wback && (n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == t) || (n == t2)))
+ return false;
+
+ //if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;
+ if (BadReg (t) || BadReg (t2) || (t == t2))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ //if Rn == Ô1111Õ then SEE LDRD (literal);
+ //if Rt<0> == Ô1Õ then UNPREDICTABLE;
+ //t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
+ t = Bits32 (opcode, 15, 12);
+ if (BitIsSet (t, 0))
+ return false;
+ t2 = t + 1;
+ n = Bits32 (opcode, 19, 16);
+ imm32 = (Bits32 (opcode, 11, 8) << 4) | Bits32 (opcode, 3, 0);
+
+ //index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ //if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
+ if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
+ return false;
+
+ //if wback && (n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == t) || (n == t2)))
+ return false;
+
+ //if t2 == 15 then UNPREDICTABLE;
+ if (t2 == 15)
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ //offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ //address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ //R[t] = MemA[address,4];
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ //R[t2] = MemA[address+4,4];
+
+ context.SetRegisterPlusOffset (base_reg, (address + 4) - Rn);
+ data = MemARead (context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t2, data))
+ return false;
+
+ //if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.68 LDRD (register)
+// Load Register Dual (register) calculates an address from a base register value and a register offset, loads two
+// words from memory, and writes them to two registers. It can use offset, post-indexed or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateLDRDRegister (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ address = if index then offset_addr else R[n];
+ R[t] = MemA[address,4];
+ R[t2] = MemA[address+4,4];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // if Rt<0> == Ô1Õ then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ if (BitIsSet (t, 0))
+ return false;
+ t2 = t + 1;
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
+ if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
+ return false;
+
+ // if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
+ if ((t2 == 15) || (m == 15) || (m == t) || (m == t2))
+ return false;
+
+ // if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t) || (n == t2)))
+ return false;
+
+ // if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;
+ if ((ArchVersion() < 6) && wback && (m == n))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+
+ // offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + Rm;
+ else
+ offset_addr = Rn - Rm;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
+
+ // R[t] = MemA[address,4];
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // R[t2] = MemA[address+4,4];
+
+ data = MemARead (context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t2, data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.200 STRD (immediate)
+// Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and
+// stores two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing.
+bool
+EmulateInstructionARM::EmulateSTRDImm (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemA[address,4] = R[t];
+ MemA[address+4,4] = R[t2];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if P == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
+ // t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ t = Bits32 (opcode, 15, 12);
+ t2 = Bits32 (opcode, 11, 8);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsSet (opcode, 21);
+
+ // if wback && (n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == t) || (n == t2)))
+ return false;
+
+ // if n == 15 || BadReg(t) || BadReg(t2) then UNPREDICTABLE;
+ if ((n == 15) || BadReg (t) || BadReg (t2))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if Rt<0> == Ô1Õ then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
+ t = Bits32 (opcode, 15, 12);
+ if (BitIsSet (t, 0))
+ return false;
+
+ t2 = t + 1;
+ n = Bits32 (opcode, 19, 16);
+ imm32 = (Bits32 (opcode, 11, 8) << 4) | Bits32 (opcode, 3, 0);
+
+ // index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
+ if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
+ return false;
+
+ // if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t) || (n == t2)))
+ return false;
+
+ // if t2 == 15 then UNPREDICTABLE;
+ if (t2 == 15)
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ //offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ //address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ //MemA[address,4] = R[t];
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+
+ uint32_t data = ReadCoreReg (t, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ if (!MemAWrite (context, address, data, addr_byte_size))
+ return false;
+
+ //MemA[address+4,4] = R[t2];
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t2, data_reg);
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
+
+ data = ReadCoreReg (t2, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address + 4, data, addr_byte_size))
+ return false;
+
+ //if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+
+// A8.6.201 STRD (register)
+bool
+EmulateInstructionARM::EmulateSTRDReg (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ address = if index then offset_addr else R[n];
+ MemA[address,4] = R[t];
+ MemA[address+4,4] = R[t2];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding)
+ {
+ case eEncodingA1:
+ // if Rt<0> == Ô1Õ then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
+ t = Bits32 (opcode, 15, 12);
+ if (BitIsSet (t, 0))
+ return false;
+
+ t2 = t+1;
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
+ index = BitIsSet (opcode, 24);
+ add = BitIsSet (opcode, 23);
+ wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
+
+ // if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
+ if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
+ return false;
+
+ // if t2 == 15 || m == 15 then UNPREDICTABLE;
+ if ((t2 == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t) || (n == t2)))
+ return false;
+
+ // if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;
+ if ((ArchVersion() < 6) && wback && (m == n))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+ RegisterInfo offset_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
+ RegisterInfo data_reg;
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + Rm;
+ else
+ offset_addr = Rn - Rm;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+ // MemA[address,4] = R[t];
+ uint32_t Rt = ReadCoreReg (t, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
+ context.SetRegisterToRegisterPlusIndirectOffset (base_reg, offset_reg, data_reg);
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ if (!MemAWrite (context, address, Rt, addr_byte_size))
+ return false;
+
+ // MemA[address+4,4] = R[t2];
+ uint32_t Rt2 = ReadCoreReg (t2, &success);
+ if (!success)
+ return false;
+
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t2, data_reg);
+
+ context.SetRegisterToRegisterPlusIndirectOffset (base_reg, offset_reg, data_reg);
+
+ if (!MemAWrite (context, address + 4, Rt2, addr_byte_size))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback)
+ {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress (offset_addr);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
+ return false;
+
+ }
+ }
+ return true;
+}
+
+// A8.6.319 VLDM
+// Vector Load Multiple loads multiple extension registers from consecutive memory locations using an address from
+// an ARM core register.
+bool
+EmulateInstructionARM::EmulateVLDM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ address = if add then R[n] else R[n]-imm32;
+ if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ for r = 0 to regs-1
+ if single_regs then
+ S[d+r] = MemA[address,4]; address = address+4;
+ else
+ word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
+ // Combine the word-aligned words in the correct order for current endianness.
+ D[d+r] = if BigEndian() then word1:word2 else word2:word1;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode))
+ {
+ bool single_regs;
+ bool add;
+ bool wback;
+ uint32_t d;
+ uint32_t n;
+ uint32_t imm32;
+ uint32_t regs;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ // if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
+ // if P == Ô0Õ && U == Ô1Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPOP;
+ // if P == Ô1Õ && W == Ô0Õ then SEE VLDR;
+ // if P == U && W == Ô1Õ then UNDEFINED;
+ if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
+ // single_regs = FALSE; add = (U == Ô1Õ); wback = (W == Ô1Õ);
+ single_regs = false;
+ add = BitIsSet (opcode, 23);
+ wback = BitIsSet (opcode, 21);
+
+ // d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see ÒFLDMXÓ.
+ regs = Bits32 (opcode, 7, 0) / 2;
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
+ if (n == 15 && (wback || CurrentInstrSet() != eModeARM))
+ return false;
+
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || (regs > 16) || ((d + regs) > 32))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
+ // if P == Ô0Õ && U == Ô1Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPOP;
+ // if P == Ô1Õ && W == Ô0Õ then SEE VLDR;
+ // if P == U && W == Ô1Õ then UNDEFINED;
+ if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
+ // single_regs = TRUE; add = (U == Ô1Õ); wback = (W == Ô1Õ); d = UInt(Vd:D); n = UInt(Rn);
+ single_regs = true;
+ add = BitIsSet (opcode, 23);
+ wback = BitIsSet (opcode, 21);
+ d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
+ n = Bits32 (opcode, 19, 16);
+
+ // imm32 = ZeroExtend(imm8:Õ00Õ, 32); regs = UInt(imm8);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+ regs = Bits32 (opcode, 7, 0);
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
+ if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
+ return false;
+
+ // if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || ((d + regs) > 32))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = if add then R[n] else R[n]-imm32;
+ addr_t address;
+ if (add)
+ address = Rn;
+ else
+ address = Rn - imm32;
+
+ // if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ EmulateInstruction::Context context;
+
+ if (wback)
+ {
+ uint32_t value;
+ if (add)
+ value = Rn + imm32;
+ else
+ value = Rn - imm32;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetImmediateSigned (value - Rn);
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
+ return false;
+
+ }
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+
+ context.type = eContextRegisterLoad;
+
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r)
+ {
+ if (single_regs)
+ {
+ // S[d+r] = MemA[address,4]; address = address+4;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+
+ uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d + r, data))
+ return false;
+
+ address = address + 4;
+ }
+ else
+ {
+ // word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+ uint32_t word1 = MemARead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ context.SetRegisterPlusOffset (base_reg, (address + 4) - Rn);
+ uint32_t word2 = MemARead (context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ address = address + 8;
+ // // Combine the word-aligned words in the correct order for current endianness.
+ // D[d+r] = if BigEndian() then word1:word2 else word2:word1;
+ uint64_t data;
+ if (GetByteOrder() == eByteOrderBig)
+ {
+ data = word1;
+ data = (data << 32) | word2;
+ }
+ else
+ {
+ data = word2;
+ data = (data << 32) | word1;
+ }
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d + r, data))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.399 VSTM
+// Vector Store Multiple stores multiple extension registers to consecutive memory locations using an address from an
+// ARM core register.
+bool
+EmulateInstructionARM::EmulateVSTM (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ address = if add then R[n] else R[n]-imm32;
+ if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ for r = 0 to regs-1
+ if single_regs then
+ MemA[address,4] = S[d+r]; address = address+4;
+ else
+ // Store as two word-aligned words in the correct order for current endianness.
+ MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
+ MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
+ address = address+8;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ bool single_regs;
+ bool add;
+ bool wback;
+ uint32_t d;
+ uint32_t n;
+ uint32_t imm32;
+ uint32_t regs;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ // if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
+ // if P == Ô1Õ && U == Ô0Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPUSH;
+ // if P == Ô1Õ && W == Ô0Õ then SEE VSTR;
+ // if P == U && W == Ô1Õ then UNDEFINED;
+ if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
+ // single_regs = FALSE; add = (U == Ô1Õ); wback = (W == Ô1Õ);
+ single_regs = false;
+ add = BitIsSet (opcode, 23);
+ wback = BitIsSet (opcode, 21);
+
+ // d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see ÒFSTMXÓ.
+ regs = Bits32 (opcode, 7, 0) / 2;
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
+ if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
+ return false;
+
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || (regs > 16) || ((d + regs) > 32))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
+ // if P == Ô1Õ && U == Ô0Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPUSH;
+ // if P == Ô1Õ && W == Ô0Õ then SEE VSTR;
+ // if P == U && W == Ô1Õ then UNDEFINED;
+ if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
+ // single_regs = TRUE; add = (U == Ô1Õ); wback = (W == Ô1Õ); d = UInt(Vd:D); n = UInt(Rn);
+ single_regs = true;
+ add = BitIsSet (opcode, 23);
+ wback = BitIsSet (opcode, 21);
+ d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
+ n = Bits32 (opcode, 19, 16);
+
+ // imm32 = ZeroExtend(imm8:Õ00Õ, 32); regs = UInt(imm8);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+ regs = Bits32 (opcode, 7, 0);
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
+ if ((n == 15) && (wback || (CurrentInstrSet () != eModeARM)))
+ return false;
+
+ // if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || ((d + regs) > 32))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = if add then R[n] else R[n]-imm32;
+ addr_t address;
+ if (add)
+ address = Rn;
+ else
+ address = Rn - imm32;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ if (wback)
+ {
+ uint32_t value;
+ if (add)
+ value = Rn + imm32;
+ else
+ value = Rn - imm32;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (base_reg, value - Rn);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
+ return false;
+ }
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+
+ context.type = eContextRegisterStore;
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r)
+ {
+
+ if (single_regs)
+ {
+ // MemA[address,4] = S[d+r]; address = address+4;
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d + r, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, start_reg + d + r, data_reg);
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+ if (!MemAWrite (context, address, data, addr_byte_size))
+ return false;
+
+ address = address + 4;
+ }
+ else
+ {
+ // // Store as two word-aligned words in the correct order for current endianness.
+ // MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
+ // MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
+ uint64_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d + r, 0, &success);
+ if (!success)
+ return false;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, start_reg + d + r, data_reg);
+
+ if (GetByteOrder() == eByteOrderBig)
+ {
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+ if (!MemAWrite (context, address, Bits64 (data, 63, 32), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
+ if (!MemAWrite (context, address+ 4, Bits64 (data, 31, 0), addr_byte_size))
+ return false;
+ }
+ else
+ {
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+ if (!MemAWrite (context, address, Bits64 (data, 31, 0), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
+ if (!MemAWrite (context, address + 4, Bits64 (data, 63, 32), addr_byte_size))
+ return false;
+ }
+ // address = address+8;
+ address = address + 8;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.320
+// This instruciton loads a single extension register fronm memory, using an address from an ARM core register, with
+// an optional offset.
+bool
+EmulateInstructionARM::EmulateVLDR (const uint32_t opcode, ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ base = if n == 15 then Align(PC,4) else R[n];
+ address = if add then (base + imm32) else (base - imm32);
+ if single_reg then
+ S[d] = MemA[address,4];
+ else
+ word1 = MemA[address,4]; word2 = MemA[address+4,4];
+ // Combine the word-aligned words in the correct order for current endianness.
+ D[d] = if BigEndian() then word1:word2 else word2:word1;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ bool single_reg;
+ bool add;
+ uint32_t imm32;
+ uint32_t d;
+ uint32_t n;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ // single_reg = FALSE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ single_reg = false;
+ add = BitIsSet (opcode, 23);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // d = UInt(D:Vd); n = UInt(Rn);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // single_reg = TRUE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ single_reg = true;
+ add = BitIsSet (opcode, 23);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // d = UInt(Vd:D); n = UInt(Rn);
+ d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
+ n = Bits32 (opcode, 19, 16);
+
+ break;
+
+ default:
+ return false;
+ }
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // base = if n == 15 then Align(PC,4) else R[n];
+ uint32_t base;
+ if (n == 15)
+ base = AlignPC (Rn);
+ else
+ base = Rn;
+
+ // address = if add then (base + imm32) else (base - imm32);
+ addr_t address;
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_reg ? dwarf_s0 : dwarf_d0;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - base);
+
+ if (single_reg)
+ {
+ // S[d] = MemA[address,4];
+ uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d, data))
+ return false;
+ }
+ else
+ {
+ // word1 = MemA[address,4]; word2 = MemA[address+4,4];
+ uint32_t word1 = MemARead (context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ context.SetRegisterPlusOffset (base_reg, (address + 4) - base);
+ uint32_t word2 = MemARead (context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // // Combine the word-aligned words in the correct order for current endianness.
+ // D[d] = if BigEndian() then word1:word2 else word2:word1;
+ uint64_t data64;
+ if (GetByteOrder() == eByteOrderBig)
+ {
+ data64 = word1;
+ data64 = (data64 << 32) | word2;
+ }
+ else
+ {
+ data64 = word2;
+ data64 = (data64 << 32) | word1;
+ }
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d, data64))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.400 VSTR
+// This instruction stores a signle extension register to memory, using an address from an ARM core register, with an
+// optional offset.
+bool
+EmulateInstructionARM::EmulateVSTR (const uint32_t opcode, ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ address = if add then (R[n] + imm32) else (R[n] - imm32);
+ if single_reg then
+ MemA[address,4] = S[d];
+ else
+ // Store as two word-aligned words in the correct order for current endianness.
+ MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
+ MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ bool single_reg;
+ bool add;
+ uint32_t imm32;
+ uint32_t d;
+ uint32_t n;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ // single_reg = FALSE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ single_reg = false;
+ add = BitIsSet (opcode, 23);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // d = UInt(D:Vd); n = UInt(Rn);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+
+ // if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
+ if ((n == 15) && (CurrentInstrSet() != eModeARM))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // single_reg = TRUE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
+ single_reg = true;
+ add = BitIsSet (opcode, 23);
+ imm32 = Bits32 (opcode, 7, 0) << 2;
+
+ // d = UInt(Vd:D); n = UInt(Rn);
+ d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
+ n = Bits32 (opcode, 19, 16);
+
+ // if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
+ if ((n == 15) && (CurrentInstrSet() != eModeARM))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = if add then (R[n] + imm32) else (R[n] - imm32);
+ addr_t address;
+ if (add)
+ address = Rn + imm32;
+ else
+ address = Rn - imm32;
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_reg ? dwarf_s0 : dwarf_d0;
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, start_reg + d, data_reg);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+
+ if (single_reg)
+ {
+ // MemA[address,4] = S[d];
+ uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d, 0, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite (context, address, data, addr_byte_size))
+ return false;
+ }
+ else
+ {
+ // // Store as two word-aligned words in the correct order for current endianness.
+ // MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
+ // MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;
+ uint64_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d, 0, &success);
+ if (!success)
+ return false;
+
+ if (GetByteOrder() == eByteOrderBig)
+ {
+ if (!MemAWrite (context, address, Bits64 (data, 63, 32), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
+ if (!MemAWrite (context, address + 4, Bits64 (data, 31, 0), addr_byte_size))
+ return false;
+ }
+ else
+ {
+ if (!MemAWrite (context, address, Bits64 (data, 31, 0), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
+ if (!MemAWrite (context, address + 4, Bits64 (data, 63, 32), addr_byte_size))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.307 VLDI1 (multiple single elements)
+// This instruction loads elements from memory into one, two, three or four registers, without de-interleaving. Every
+// element of each register is loaded.
+bool
+EmulateInstructionARM::EmulateVLD1Multiple (const uint32_t opcode, ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ for r = 0 to regs-1
+ for e = 0 to elements-1
+ Elem[D[d+r],e,esize] = MemU[address,ebytes];
+ address = address + ebytes;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ uint32_t regs;
+ uint32_t alignment;
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t elements;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ {
+ // case type of
+ // when Ô0111Õ
+ // regs = 1; if align<1> == Ô1Õ then UNDEFINED;
+ // when Ô1010Õ
+ // regs = 2; if align == Ô11Õ then UNDEFINED;
+ // when Ô0110Õ
+ // regs = 3; if align<1> == Ô1Õ then UNDEFINED;
+ // when Ô0010Õ
+ // regs = 4;
+ // otherwise
+ // SEE ÒRelated encodingsÓ;
+ uint32_t type = Bits32 (opcode, 11, 8);
+ uint32_t align = Bits32 (opcode, 5, 4);
+ if (type == 7) // '0111'
+ {
+ regs = 1;
+ if (BitIsSet (align, 1))
+ return false;
+ }
+ else if (type == 10) // '1010'
+ {
+ regs = 2;
+ if (align == 3)
+ return false;
+
+ }
+ else if (type == 6) // '0110'
+ {
+ regs = 3;
+ if (BitIsSet (align, 1))
+ return false;
+ }
+ else if (type == 2) // '0010'
+ {
+ regs = 4;
+ }
+ else
+ return false;
+
+ // alignment = if align == Ô00Õ then 1 else 4 << UInt(align);
+ if (align == 0)
+ alignment = 1;
+ else
+ alignment = 4 << align;
+
+ // ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
+ ebytes = 1 << Bits32 (opcode, 7, 6);
+ esize = 8 * ebytes;
+ elements = 8 / ebytes;
+
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 15);
+ m = Bits32 (opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13);
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ // if d+regs > 32 then UNPREDICTABLE;
+ if ((d + regs) > 32)
+ return false;
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ if (wback)
+ {
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = 8 * regs;
+
+ uint32_t value = Rn + offset;
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (base_reg, offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
+ return false;
+
+ }
+
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r)
+ {
+ // for e = 0 to elements-1
+ uint64_t assembled_data = 0;
+ for (uint32_t e = 0; e < elements; ++e)
+ {
+ // Elem[D[d+r],e,esize] = MemU[address,ebytes];
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset (base_reg, address - Rn);
+ uint64_t data = MemURead (context, address, ebytes, 0, &success);
+ if (!success)
+ return false;
+
+ assembled_data = (data << (e * esize)) | assembled_data; // New data goes to the left of existing data
+
+ // address = address + ebytes;
+ address = address + ebytes;
+ }
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_d0 + d + r, assembled_data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.308 VLD1 (single element to one lane)
+//
+bool
+EmulateInstructionARM::EmulateVLD1Single (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ Elem[D[d],index,esize] = MemU[address,ebytes];
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t index;
+ uint32_t alignment;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ {
+ uint32_t size = Bits32 (opcode, 11, 10);
+ uint32_t index_align = Bits32 (opcode, 7, 4);
+ // if size == Ô11Õ then SEE VLD1 (single element to all lanes);
+ if (size == 3)
+ return EmulateVLD1SingleAll (opcode, encoding);
+ // case size of
+ if (size == 0) // when '00'
+ {
+ // if index_align<0> != Ô0Õ then UNDEFINED;
+ if (BitIsClear (index_align, 0))
+ return false;
+
+ // ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
+ ebytes = 1;
+ esize = 8;
+ index = Bits32 (index_align, 3, 1);
+ alignment = 1;
+ }
+ else if (size == 1) // when Ô01Õ
+ {
+ // if index_align<1> != Ô0Õ then UNDEFINED;
+ if (BitIsClear (index_align, 1))
+ return false;
+
+ // ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
+ ebytes = 2;
+ esize = 16;
+ index = Bits32 (index_align, 3, 2);
+
+ // alignment = if index_align<0> == Ô0Õ then 1 else 2;
+ if (BitIsClear (index_align, 0))
+ alignment = 1;
+ else
+ alignment = 2;
+ }
+ else if (size == 2) // when Ô10Õ
+ {
+ // if index_align<2> != Ô0Õ then UNDEFINED;
+ if (BitIsClear (index_align, 2))
+ return false;
+
+ // if index_align<1:0> != Ô00Õ && index_align<1:0> != Ô11Õ then UNDEFINED;
+ if ((Bits32 (index_align, 1, 0) != 0) && (Bits32 (index_align, 1, 0) != 3))
+ return false;
+
+ // ebytes = 4; esize = 32; index = UInt(index_align<3>);
+ ebytes = 4;
+ esize = 32;
+ index = Bit32 (index_align, 3);
+
+ // alignment = if index_align<1:0> == Ô00Õ then 1 else 4;
+ if (Bits32 (index_align, 1, 0) == 0)
+ alignment = 1;
+ else
+ alignment = 4;
+ }
+ else
+ {
+ return false;
+ }
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15 then UNPREDICTABLE;
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ if (n == 15)
+ return false;
+
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ if (wback)
+ {
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = ebytes;
+
+ uint32_t value = Rn + offset;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (base_reg, offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
+ return false;
+ }
+
+ // Elem[D[d],index,esize] = MemU[address,ebytes];
+ uint32_t element = MemURead (context, address, esize, 0, &success);
+ if (!success)
+ return false;
+
+ element = element << (index * esize);
+
+ uint64_t reg_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_d0 + d, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t all_ones = -1;
+ uint64_t mask = all_ones << ((index+1) * esize); // mask is all 1's to left of where 'element' goes, & all 0's
+ // at element & to the right of element.
+ if (index > 0)
+ mask = mask | Bits64 (all_ones, (index * esize) - 1, 0); // add 1's to the right of where 'element' goes.
+ // now mask should be 0's where element goes & 1's
+ // everywhere else.
+
+ uint64_t masked_reg = reg_data & mask; // Take original reg value & zero out 'element' bits
+ reg_data = masked_reg & element; // Put 'element' into those bits in reg_data.
+
+ context.type = eContextRegisterLoad;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, reg_data))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.391 VST1 (multiple single elements)
+// Vector Store (multiple single elements) stores elements to memory from one, two, three, or four regsiters, without
+// interleaving. Every element of each register is stored.
+bool
+EmulateInstructionARM::EmulateVST1Multiple (const uint32_t opcode, ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ for r = 0 to regs-1
+ for e = 0 to elements-1
+ MemU[address,ebytes] = Elem[D[d+r],e,esize];
+ address = address + ebytes;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ uint32_t regs;
+ uint32_t alignment;
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t elements;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ {
+ uint32_t type = Bits32 (opcode, 11, 8);
+ uint32_t align = Bits32 (opcode, 5, 4);
+
+ // case type of
+ if (type == 7) // when Ô0111Õ
+ {
+ // regs = 1; if align<1> == Ô1Õ then UNDEFINED;
+ regs = 1;
+ if (BitIsSet (align, 1))
+ return false;
+ }
+ else if (type == 10) // when Ô1010Õ
+ {
+ // regs = 2; if align == Ô11Õ then UNDEFINED;
+ regs = 2;
+ if (align == 3)
+ return false;
+ }
+ else if (type == 6) // when Ô0110Õ
+ {
+ // regs = 3; if align<1> == Ô1Õ then UNDEFINED;
+ regs = 3;
+ if (BitIsSet (align, 1))
+ return false;
+ }
+ else if (type == 2) // when Ô0010Õ
+ // regs = 4;
+ regs = 4;
+ else // otherwise
+ // SEE ÒRelated encodingsÓ;
+ return false;
+
+ // alignment = if align == Ô00Õ then 1 else 4 << UInt(align);
+ if (align == 0)
+ alignment = 1;
+ else
+ alignment = 4 << align;
+
+ // ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
+ ebytes = 1 << Bits32 (opcode,7, 6);
+ esize = 8 * ebytes;
+ elements = 8 / ebytes;
+
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13);
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ // if d+regs > 32 then UNPREDICTABLE; if n == 15 then UNPREDICTABLE;
+ if ((d + regs) > 32)
+ return false;
+
+ if (n == 15)
+ return false;
+
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ if (wback)
+ {
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = 8 * regs;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (base_reg, offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + offset))
+ return false;
+ }
+
+ RegisterInfo data_reg;
+ context.type = eContextRegisterStore;
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r)
+ {
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_d0 + d + r, data_reg);
+ uint64_t register_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_d0 + d + r, 0, &success);
+ if (!success)
+ return false;
+
+ // for e = 0 to elements-1
+ for (uint32_t e = 0; e < elements; ++e)
+ {
+ // MemU[address,ebytes] = Elem[D[d+r],e,esize];
+ uint64_t word = Bits64 (register_data, ((e + 1) * esize) - 1, e * esize);
+
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+ if (!MemUWrite (context, address, word, ebytes))
+ return false;
+
+ // address = address + ebytes;
+ address = address + ebytes;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.392 VST1 (single element from one lane)
+// This instruction stores one element to memory from one element of a register.
+bool
+EmulateInstructionARM::EmulateVST1Single (const uint32_t opcode, ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ MemU[address,ebytes] = Elem[D[d],index,esize];
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t index;
+ uint32_t alignment;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ {
+ uint32_t size = Bits32 (opcode, 11, 10);
+ uint32_t index_align = Bits32 (opcode, 7, 4);
+
+ // if size == Ô11Õ then UNDEFINED;
+ if (size == 3)
+ return false;
+
+ // case size of
+ if (size == 0) // when Ô00Õ
+ {
+ // if index_align<0> != Ô0Õ then UNDEFINED;
+ if (BitIsClear (index_align, 0))
+ return false;
+ // ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
+ ebytes = 1;
+ esize = 8;
+ index = Bits32 (index_align, 3, 1);
+ alignment = 1;
+ }
+ else if (size == 1) // when Ô01Õ
+ {
+ // if index_align<1> != Ô0Õ then UNDEFINED;
+ if (BitIsClear (index_align, 1))
+ return false;
+
+ // ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
+ ebytes = 2;
+ esize = 16;
+ index = Bits32 (index_align, 3, 2);
+
+ // alignment = if index_align<0> == Ô0Õ then 1 else 2;
+ if (BitIsClear (index_align, 0))
+ alignment = 1;
+ else
+ alignment = 2;
+ }
+ else if (size == 2) // when Ô10Õ
+ {
+ // if index_align<2> != Ô0Õ then UNDEFINED;
+ if (BitIsClear (index_align, 2))
+ return false;
+
+ // if index_align<1:0> != Ô00Õ && index_align<1:0> != Ô11Õ then UNDEFINED;
+ if ((Bits32 (index_align, 1, 0) != 0) && (Bits32 (index_align, 1, 0) != 3))
+ return false;
+
+ // ebytes = 4; esize = 32; index = UInt(index_align<3>);
+ ebytes = 4;
+ esize = 32;
+ index = Bit32 (index_align, 3);
+
+ // alignment = if index_align<1:0> == Ô00Õ then 1 else 4;
+ if (Bits32 (index_align, 1, 0) == 0)
+ alignment = 1;
+ else
+ alignment = 4;
+ }
+ else
+ {
+ return false;
+ }
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15 then UNPREDICTABLE;
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ if (n == 15)
+ return false;
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ if (wback)
+ {
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = ebytes;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (base_reg, offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + offset))
+ return false;
+ }
+
+ // MemU[address,ebytes] = Elem[D[d],index,esize];
+ uint64_t register_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_d0 + d, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t word = Bits64 (register_data, ((index + 1) * esize) - 1, index * esize);
+
+ RegisterInfo data_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_d0 + d, data_reg);
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
+
+ if (!MemUWrite (context, address, word, ebytes))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.309 VLD1 (single element to all lanes)
+// This instruction loads one element from memory into every element of one or two vectors.
+bool
+EmulateInstructionARM::EmulateVLD1SingleAll (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ replicated_element = Replicate(MemU[address,ebytes], elements);
+ for r = 0 to regs-1
+ D[d+r] = replicated_element;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ uint32_t ebytes;
+ uint32_t elements;
+ uint32_t regs;
+ uint32_t alignment;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ case eEncodingA1:
+ {
+ //if size == Ô11Õ || (size == Ô00Õ && a == Ô1Õ) then UNDEFINED;
+ uint32_t size = Bits32 (opcode, 7, 6);
+ if ((size == 3) || ((size == 0) && BitIsSet (opcode, 4)))
+ return false;
+
+ //ebytes = 1 << UInt(size); elements = 8 DIV ebytes; regs = if T == Ô0Õ then 1 else 2;
+ ebytes = 1 << size;
+ elements = 8 / ebytes;
+ if (BitIsClear (opcode, 5))
+ regs = 1;
+ else
+ regs = 2;
+
+ //alignment = if a == Ô0Õ then 1 else ebytes;
+ if (BitIsClear (opcode, 4))
+ alignment = 1;
+ else
+ alignment = ebytes;
+
+ //d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+
+ //wback = (m != 15); register_index = (m != 15 && m != 13);
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ //if d+regs > 32 then UNPREDICTABLE; if n == 15 then UNPREDICTABLE;
+ if ((d + regs) > 32)
+ return false;
+
+ if (n == 15)
+ return false;
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ RegisterInfo base_reg;
+ GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ if (wback)
+ {
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = ebytes;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset (base_reg, offset);
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + offset))
+ return false;
+ }
+
+ // replicated_element = Replicate(MemU[address,ebytes], elements);
+
+ context.type = eContextRegisterLoad;
+ uint64_t word = MemURead (context, address, ebytes, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t replicated_element = 0;
+ uint32_t esize = ebytes * 8;
+ for (uint32_t e = 0; e < elements; ++e)
+ replicated_element = (replicated_element << esize) | Bits64 (word, esize - 1, 0);
+
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r)
+ {
+ // D[d+r] = replicated_element;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_d0 + d + r, replicated_element))
+ return false;
+ }
+ }
+ return true;
+}
+
+// B6.2.13 SUBS PC, LR and related instructions
+//The SUBS PC, LR, #<const? instruction provides an exception return without the use of the stack. It subtracts the
+// immediate constant from the LR, branches to the resulting address, and also copies the SPSR to the CPSR.
+bool
+EmulateInstructionARM::EmulateSUBSPcLrEtc (const uint32_t opcode, const ARMEncoding encoding)
+{
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ if CurrentInstrSet() == InstrSet_ThumbEE then
+ UNPREDICTABLE;
+ operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
+ case opcode of
+ when Ô0000Õ result = R[n] AND operand2; // AND
+ when Ô0001Õ result = R[n] EOR operand2; // EOR
+ when Ô0010Õ (result, -, -) = AddWithCarry(R[n], NOT(operand2), Ô1Õ); // SUB
+ when Ô0011Õ (result, -, -) = AddWithCarry(NOT(R[n]), operand2, Ô1Õ); // RSB
+ when Ô0100Õ (result, -, -) = AddWithCarry(R[n], operand2, Ô0Õ); // ADD
+ when Ô0101Õ (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
+ when Ô0110Õ (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
+ when Ô0111Õ (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
+ when Ô1100Õ result = R[n] OR operand2; // ORR
+ when Ô1101Õ result = operand2; // MOV
+ when Ô1110Õ result = R[n] AND NOT(operand2); // BIC
+ when Ô1111Õ result = NOT(operand2); // MVN
+ CPSRWriteByInstr(SPSR[], Ô1111Õ, TRUE);
+ BranchWritePC(result);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed (opcode))
+ {
+ uint32_t n;
+ uint32_t m;
+ uint32_t imm32;
+ bool register_form;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+ uint32_t code;
+
+ switch (encoding)
+ {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE
+ // n = 14; imm32 = ZeroExtend(imm8, 32); register_form = FALSE; opcode = Ô0010Õ; // = SUB
+ n = 14;
+ imm32 = Bits32 (opcode, 7, 0);
+ register_form = false;
+ code = 2;
+
+ // if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn); imm32 = ARMExpandImm(imm12); register_form = FALSE;
+ n = Bits32 (opcode, 19, 16);
+ imm32 = ARMExpandImm (opcode);
+ register_form = false;
+ code = Bits32 (opcode, 24, 21);
+
+ break;
+
+ case eEncodingA2:
+ // n = UInt(Rn); m = UInt(Rm); register_form = TRUE;
+ n = Bits32 (opcode, 19, 16);
+ m = Bits32 (opcode, 3, 0);
+ register_form = true;
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ shift_n = DecodeImmShiftARM (opcode, shift_t);
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
+ uint32_t operand2;
+ if (register_form)
+ {
+ uint32_t Rm = ReadCoreReg (m, &success);
+ if (!success)
+ return false;
+
+ operand2 = Shift (Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ }
+ else
+ {
+ operand2 = imm32;
+ }
+
+ uint32_t Rn = ReadCoreReg (n, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult result;
+
+ // case opcode of
+ switch (code)
+ {
+ case 0: // when Ô0000Õ
+ // result = R[n] AND operand2; // AND
+ result.result = Rn & operand2;
+ break;
+
+ case 1: // when Ô0001Õ
+ // result = R[n] EOR operand2; // EOR
+ result.result = Rn ^ operand2;
+ break;
+
+ case 2: // when Ô0010Õ
+ // (result, -, -) = AddWithCarry(R[n], NOT(operand2), Ô1Õ); // SUB
+ result = AddWithCarry (Rn, ~(operand2), 1);
+ break;
+
+ case 3: // when Ô0011Õ
+ // (result, -, -) = AddWithCarry(NOT(R[n]), operand2, Ô1Õ); // RSB
+ result = AddWithCarry (~(Rn), operand2, 1);
+ break;
+
+ case 4: // when Ô0100Õ
+ // (result, -, -) = AddWithCarry(R[n], operand2, Ô0Õ); // ADD
+ result = AddWithCarry (Rn, operand2, 0);
+ break;
+
+ case 5: // when Ô0101Õ
+ // (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
+ result = AddWithCarry (Rn, operand2, APSR_C);
+ break;
+
+ case 6: // when Ô0110Õ
+ // (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
+ result = AddWithCarry (Rn, ~(operand2), APSR_C);
+ break;
+
+ case 7: // when Ô0111Õ
+ // (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
+ result = AddWithCarry (~(Rn), operand2, APSR_C);
+ break;
+
+ case 10: // when Ô1100Õ
+ // result = R[n] OR operand2; // ORR
+ result.result = Rn | operand2;
+ break;
+
+ case 11: // when Ô1101Õ
+ // result = operand2; // MOV
+ result.result = operand2;
+ break;
+
+ case 12: // when Ô1110Õ
+ // result = R[n] AND NOT(operand2); // BIC
+ result.result = Rn & ~(operand2);
+ break;
+
+ case 15: // when Ô1111Õ
+ // result = NOT(operand2); // MVN
+ result.result = ~(operand2);
+ break;
+
+ default:
+ return false;
+ }
+ // CPSRWriteByInstr(SPSR[], Ô1111Õ, TRUE);
+
+ // For now, in emulation mode, we don't have access to the SPSR, so we will use the CPSR instead, and hope for
+ // the best.
+ uint32_t spsr = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_cpsr, 0, &success);
+ if (!success)
+ return false;
+
+ CPSRWriteByInstr (spsr, 15, true);
+
+ // BranchWritePC(result);
+ EmulateInstruction::Context context;
+ context.type = eContextAdjustPC;
+ context.SetImmediate (result.result);
+
+ BranchWritePC (context, result.result);
+ }
+ return true;
+}
+
+EmulateInstructionARM::ARMOpcode*
+EmulateInstructionARM::GetARMOpcodeForInstruction (const uint32_t opcode, uint32_t arm_isa)
+{
+ static ARMOpcode
+ g_arm_opcodes[] =
+ {
+ //----------------------------------------------------------------------
+ // Prologue instructions
+ //----------------------------------------------------------------------
+
+ // push register(s)
+ { 0x0fff0000, 0x092d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push <registers>" },
+ { 0x0fff0fff, 0x052d0004, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push <register>" },
+
+ // set r7 to point to a stack offset
+ { 0x0ffff000, 0x028d7000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDRdSPImm, "add r7, sp, #<const>" },
+ { 0x0ffff000, 0x024c7000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBR7IPImm, "sub r7, ip, #<const>"},
+ // copy the stack pointer to ip
+ { 0x0fffffff, 0x01a0c00d, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdSP, "mov ip, sp" },
+ { 0x0ffff000, 0x028dc000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDRdSPImm, "add ip, sp, #<const>" },
+ { 0x0ffff000, 0x024dc000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBIPSPImm, "sub ip, sp, #<const>"},
+
+ // adjust the stack pointer
+ { 0x0ffff000, 0x024dd000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub sp, sp, #<const>"},
+ { 0x0fef0010, 0x004d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPReg, "sub{s}<c> <Rd>, sp, <Rm>{,<shift>}" },
+
+ // push one register
+ // if Rn == '1101' && imm12 == '000000000100' then SEE PUSH;
+ { 0x0e5f0000, 0x040d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRRtSP, "str Rt, [sp, #-imm12]!" },
+
+ // vector push consecutive extension register(s)
+ { 0x0fbf0f00, 0x0d2d0b00, ARMV6T2_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
+ { 0x0fbf0f00, 0x0d2d0a00, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
+
+ //----------------------------------------------------------------------
+ // Epilogue instructions
+ //----------------------------------------------------------------------
+
+ { 0x0fff0000, 0x08bd0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop <registers>"},
+ { 0x0fff0fff, 0x049d0004, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop <register>"},
+ { 0x0fbf0f00, 0x0cbd0b00, ARMV6T2_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
+ { 0x0fbf0f00, 0x0cbd0a00, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
+
+ //----------------------------------------------------------------------
+ // Supervisor Call (previously Software Interrupt)
+ //----------------------------------------------------------------------
+ { 0x0f000000, 0x0f000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSVC, "svc #imm24"},
+
+ //----------------------------------------------------------------------
+ // Branch instructions
+ //----------------------------------------------------------------------
+ { 0x0f000000, 0x0a000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateB, "b #imm24"},
+ // To resolve ambiguity, "blx <label>" should come before "bl <label>".
+ { 0xfe000000, 0xfa000000, ARMV5_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
+ { 0x0f000000, 0x0b000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
+ { 0x0ffffff0, 0x012fff30, ARMV5_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
+ // for example, "bx lr"
+ { 0x0ffffff0, 0x012fff10, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXRm, "bx <Rm>"},
+ // bxj
+ { 0x0ffffff0, 0x012fff20, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXJRm, "bxj <Rm>"},
+
+ //----------------------------------------------------------------------
+ // Data-processing instructions
+ //----------------------------------------------------------------------
+ // adc (immediate)
+ { 0x0fe00000, 0x02a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCImm, "adc{s}<c> <Rd>, <Rn>, #const"},
+ // adc (register)
+ { 0x0fe00010, 0x00a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCReg, "adc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (immediate)
+ { 0x0fe00000, 0x02800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDImmARM, "add{s}<c> <Rd>, <Rn>, #const"},
+ // add (register)
+ { 0x0fe00010, 0x00800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDReg, "add{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (register-shifted register)
+ { 0x0fe00090, 0x00800010, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDRegShift, "add{s}<c> <Rd>, <Rn>, <Rm>, <type> <RS>"},
+ // adr
+ { 0x0fff0000, 0x028f0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
+ { 0x0fff0000, 0x024f0000, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "sub<c> <Rd>, PC, #<const>"},
+ // and (immediate)
+ { 0x0fe00000, 0x02000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDImm, "and{s}<c> <Rd>, <Rn>, #const"},
+ // and (register)
+ { 0x0fe00010, 0x00000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDReg, "and{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // bic (immediate)
+ { 0x0fe00000, 0x03c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICImm, "bic{s}<c> <Rd>, <Rn>, #const"},
+ // bic (register)
+ { 0x0fe00010, 0x01c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICReg, "bic{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // eor (immediate)
+ { 0x0fe00000, 0x02200000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORImm, "eor{s}<c> <Rd>, <Rn>, #const"},
+ // eor (register)
+ { 0x0fe00010, 0x00200000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORReg, "eor{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // orr (immediate)
+ { 0x0fe00000, 0x03800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRImm, "orr{s}<c> <Rd>, <Rn>, #const"},
+ // orr (register)
+ { 0x0fe00010, 0x01800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRReg, "orr{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // rsb (immediate)
+ { 0x0fe00000, 0x02600000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBImm, "rsb{s}<c> <Rd>, <Rn>, #<const>"},
+ // rsb (register)
+ { 0x0fe00010, 0x00600000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBReg, "rsb{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // rsc (immediate)
+ { 0x0fe00000, 0x02e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSCImm, "rsc{s}<c> <Rd>, <Rn>, #<const>"},
+ // rsc (register)
+ { 0x0fe00010, 0x00e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSCReg, "rsc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // sbc (immediate)
+ { 0x0fe00000, 0x02c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCImm, "sbc{s}<c> <Rd>, <Rn>, #<const>"},
+ // sbc (register)
+ { 0x0fe00010, 0x00c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCReg, "sbc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // sub (immediate, ARM)
+ { 0x0fe00000, 0x02400000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBImmARM, "sub{s}<c> <Rd>, <Rn>, #<const>"},
+ // sub (sp minus immediate)
+ { 0x0fef0000, 0x024d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub{s}<c> <Rd>, sp, #<const>"},
+ // sub (register)
+ { 0x0fe00010, 0x00400000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBReg, "sub{s}<c> <Rd>, <Rn>, <Rm>{,<shift>}"},
+ // teq (immediate)
+ { 0x0ff0f000, 0x03300000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQImm, "teq<c> <Rn>, #const"},
+ // teq (register)
+ { 0x0ff0f010, 0x01300000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQReg, "teq<c> <Rn>, <Rm> {,<shift>}"},
+ // tst (immediate)
+ { 0x0ff0f000, 0x03100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTImm, "tst<c> <Rn>, #const"},
+ // tst (register)
+ { 0x0ff0f010, 0x01100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTReg, "tst<c> <Rn>, <Rm> {,<shift>}"},
+
+ // mov (immediate)
+ { 0x0fef0000, 0x03a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "mov{s}<c> <Rd>, #<const>"},
+ { 0x0ff00000, 0x03000000, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "movw<c> <Rd>, #<imm16>" },
+ // mov (register)
+ { 0x0fef0ff0, 0x01a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdRm, "mov{s}<c> <Rd>, <Rm>"},
+ // mvn (immediate)
+ { 0x0fef0000, 0x03e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNImm, "mvn{s}<c> <Rd>, #<const>"},
+ // mvn (register)
+ { 0x0fef0010, 0x01e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNReg, "mvn{s}<c> <Rd>, <Rm> {,<shift>}"},
+ // cmn (immediate)
+ { 0x0ff0f000, 0x03700000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNImm, "cmn<c> <Rn>, #<const>"},
+ // cmn (register)
+ { 0x0ff0f010, 0x01700000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm> {,<shift>}"},
+ // cmp (immediate)
+ { 0x0ff0f000, 0x03500000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMPImm, "cmp<c> <Rn>, #<const>"},
+ // cmp (register)
+ { 0x0ff0f010, 0x01500000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm> {,<shift>}"},
+ // asr (immediate)
+ { 0x0fef0070, 0x01a00040, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRImm, "asr{s}<c> <Rd>, <Rm>, #imm"},
+ // asr (register)
+ { 0x0fef00f0, 0x01a00050, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRReg, "asr{s}<c> <Rd>, <Rn>, <Rm>"},
+ // lsl (immediate)
+ { 0x0fef0070, 0x01a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLImm, "lsl{s}<c> <Rd>, <Rm>, #imm"},
+ // lsl (register)
+ { 0x0fef00f0, 0x01a00010, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLReg, "lsl{s}<c> <Rd>, <Rn>, <Rm>"},
+ // lsr (immediate)
+ { 0x0fef0070, 0x01a00020, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRImm, "lsr{s}<c> <Rd>, <Rm>, #imm"},
+ // lsr (register)
+ { 0x0fef00f0, 0x01a00050, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRReg, "lsr{s}<c> <Rd>, <Rn>, <Rm>"},
+ // rrx is a special case encoding of ror (immediate)
+ { 0x0fef0ff0, 0x01a00060, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRRX, "rrx{s}<c> <Rd>, <Rm>"},
+ // ror (immediate)
+ { 0x0fef0070, 0x01a00060, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORImm, "ror{s}<c> <Rd>, <Rm>, #imm"},
+ // ror (register)
+ { 0x0fef00f0, 0x01a00070, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORReg, "ror{s}<c> <Rd>, <Rn>, <Rm>"},
+ // mul
+ { 0x0fe000f0, 0x00000090, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMUL, "mul{s}<c> <Rd>,<R>,<Rm>" },
+
+ // subs pc, lr and related instructions
+ { 0x0e10f000, 0x0210f000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPcLrEtc, "<opc>S<c> PC,#<const> | <Rn>,#<const>" },
+ { 0x0e10f010, 0x0010f000, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPcLrEtc, "<opc>S<c> PC,<Rn>,<Rm{,<shift>}" },
+
+ //----------------------------------------------------------------------
+ // Load instructions
+ //----------------------------------------------------------------------
+ { 0x0fd00000, 0x08900000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDM, "ldm<c> <Rn>{!} <registers>" },
+ { 0x0fd00000, 0x08100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMDA, "ldmda<c> <Rn>{!} <registers>" },
+ { 0x0fd00000, 0x09100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMDB, "ldmdb<c> <Rn>{!} <registers>" },
+ { 0x0fd00000, 0x09900000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMIB, "ldmib<c> <Rn<{!} <registers>" },
+ { 0x0e500000, 0x04100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRImmediateARM, "ldr<c> <Rt> [<Rn> {#+/-<imm12>}]" },
+ { 0x0e500010, 0x06100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRegister, "ldr<c> <Rt> [<Rn> +/-<Rm> {<shift>}] {!}" },
+ { 0x0e5f0000, 0x045f0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBLiteral, "ldrb<c> <Rt>, [...]"},
+ { 0xfe500010, 0x06500000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c> <Rt>, [<Rn>,+/-<Rm>{, <shift>}]{!}" },
+ { 0x0e5f00f0, 0x005f00b0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHLiteral, "ldrh<c> <Rt>, <label>" },
+ { 0x0e5000f0, 0x001000b0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHRegister, "ldrh<c> <Rt>,[<Rn>,+/-<Rm>]{!}" },
+ { 0x0e5000f0, 0x005000d0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBImmediate, "ldrsb<c> <Rt>, [<Rn>{,#+/-<imm8>}]" },
+ { 0x0e5f00f0, 0x005f00d0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBLiteral, "ldrsb<c> <Rt> <label>" },
+ { 0x0e5000f0, 0x001000d0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBRegister, "ldrsb<c> <Rt>,[<Rn>,+/-<Rm>]{!}" },
+ { 0x0e5000f0, 0x005000f0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHImmediate, "ldrsh<c> <Rt>,[<Rn>{,#+/-<imm8>}]"},
+ { 0x0e5f00f0, 0x005f00f0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHLiteral, "ldrsh<c> <Rt>,<label>" },
+ { 0x0e5000f0, 0x001000f0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHRegister, "ldrsh<c> <Rt>,[<Rn>,+/-<Rm>]{!}" },
+ { 0x0e5000f0, 0x004000d0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRDImmediate, "ldrd<c> <Rt>, <Rt2>, [<Rn>,#+/-<imm8>]!"},
+ { 0x0e500ff0, 0x000000d0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRDRegister, "ldrd<c> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]{!}"},
+ { 0x0e100f00, 0x0c100b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ { 0x0e100f00, 0x0c100a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ { 0x0f300f00, 0x0d100b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
+ { 0x0f300f00, 0x0d100a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Sd>, [<Rn>{,#+/-<imm>}]"},
+ { 0xffb00000, 0xf4200000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Multiple, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ { 0xffb00300, 0xf4a00000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Single, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ { 0xffb00f00, 0xf4a00c00, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1SingleAll, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ //----------------------------------------------------------------------
+ // Store instructions
+ //----------------------------------------------------------------------
+ { 0x0fd00000, 0x08800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTM, "stm<c> <Rn>{!} <registers>" },
+ { 0x0fd00000, 0x08000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMDA, "stmda<c> <Rn>{!} <registers>" },
+ { 0x0fd00000, 0x09000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMDB, "stmdb<c> <Rn>{!} <registers>" },
+ { 0x0fd00000, 0x09800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMIB, "stmib<c> <Rn>{!} <registers>" },
+ { 0x0e500010, 0x06000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRRegister, "str<c> <Rt> [<Rn> +/-<Rm> {<shift>}]{!}" },
+ { 0x0e5000f0, 0x000000b0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRHRegister, "strh<c> <Rt>,[<Rn>,+/-<Rm>[{!}" },
+ { 0x0ff00ff0, 0x01800f90, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTREX, "strex<c> <Rd>, <Rt>, [<Rn>]"},
+ { 0x0e500000, 0x04400000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRBImmARM, "strb<c> <Rt>,[<Rn>,#+/-<imm12>]!"},
+ { 0x0e500000, 0x04000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRImmARM, "str<c> <Rt>,[<Rn>,#+/-<imm12>]!"},
+ { 0x0e5000f0, 0x004000f0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRDImm, "strd<c> <Rt>, <Rt2>, [<Rn> #+/-<imm8>]!"},
+ { 0x0e500ff0, 0x000000f0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRDReg, "strd<c> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]{!}"},
+ { 0x0e100f00, 0x0c000b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!} <list>"},
+ { 0x0e100f00, 0x0c000a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!} <list>"},
+ { 0x0f300f00, 0x0d000b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Dd> [<Rn>{,#+/-<imm>}]"},
+ { 0x0f300f00, 0x0d000a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Sd> [<Rn>{,#+/-<imm>}]"},
+ { 0xffb00000, 0xf4000000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Multiple, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ { 0xffb00300, 0xf4800000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Single, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ //----------------------------------------------------------------------
+ // Other instructions
+ //----------------------------------------------------------------------
+ { 0x0fff00f0, 0x06af00f0, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTB, "sxtb<c> <Rd>,<Rm>{,<rotation>}" },
+ { 0x0fff00f0, 0x06bf0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTH, "sxth<c> <Rd>,<Rm>{,<rotation>}" },
+ { 0x0fff00f0, 0x06ef0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTB, "uxtb<c> <Rd>,<Rm>{,<rotation>}" },
+ { 0x0fff00f0, 0x06ff0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTH, "uxth<c> <Rd>,<Rm>{,<rotation>}" },
+ { 0xfe500000, 0xf8100000, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRFE, "rfe{<amode>} <Rn>{!}" }
+
+ };
+ static const size_t k_num_arm_opcodes = sizeof(g_arm_opcodes)/sizeof(ARMOpcode);
+
+ for (size_t i=0; i<k_num_arm_opcodes; ++i)
+ {
+ if ((g_arm_opcodes[i].mask & opcode) == g_arm_opcodes[i].value &&
+ (g_arm_opcodes[i].variants & arm_isa) != 0)
+ return &g_arm_opcodes[i];
+ }
+ return NULL;
+}
+
+
+EmulateInstructionARM::ARMOpcode*
+EmulateInstructionARM::GetThumbOpcodeForInstruction (const uint32_t opcode, uint32_t arm_isa)
+{
+
+ static ARMOpcode
+ g_thumb_opcodes[] =
+ {
+ //----------------------------------------------------------------------
+ // Prologue instructions
+ //----------------------------------------------------------------------
+
+ // push register(s)
+ { 0xfffffe00, 0x0000b400, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulatePUSH, "push <registers>" },
+ { 0xffff0000, 0xe92d0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push.w <registers>" },
+ { 0xffff0fff, 0xf84d0d04, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push.w <register>" },
+
+ // set r7 to point to a stack offset
+ { 0xffffff00, 0x0000af00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDRdSPImm, "add r7, sp, #imm" },
+ // copy the stack pointer to r7
+ { 0xffffffff, 0x0000466f, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdSP, "mov r7, sp" },
+ // move from high register to low register (comes after "mov r7, sp" to resolve ambiguity)
+ { 0xffffffc0, 0x00004640, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVLowHigh, "mov r0-r7, r8-r15" },
+
+ // PC-relative load into register (see also EmulateADDSPRm)
+ { 0xfffff800, 0x00004800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRtPCRelative, "ldr <Rt>, [PC, #imm]"},
+
+ // adjust the stack pointer
+ { 0xffffff87, 0x00004485, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDSPRm, "add sp, <Rm>"},
+ { 0xffffff80, 0x0000b080, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBSPImm, "sub sp, sp, #imm"},
+ { 0xfbef8f00, 0xf1ad0d00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub.w sp, sp, #<const>"},
+ { 0xfbff8f00, 0xf2ad0d00, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "subw sp, sp, #imm12"},
+ { 0xffef8000, 0xebad0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPReg, "sub{s}<c> <Rd>, sp, <Rm>{,<shift>}" },
+
+ // vector push consecutive extension register(s)
+ { 0xffbf0f00, 0xed2d0b00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
+ { 0xffbf0f00, 0xed2d0a00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
+
+ //----------------------------------------------------------------------
+ // Epilogue instructions
+ //----------------------------------------------------------------------
+
+ { 0xfffff800, 0x0000a800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDSPImm, "add<c> <Rd>, sp, #imm"},
+ { 0xffffff80, 0x0000b000, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDSPImm, "add sp, #imm"},
+ { 0xfffffe00, 0x0000bc00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulatePOP, "pop <registers>"},
+ { 0xffff0000, 0xe8bd0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop.w <registers>" },
+ { 0xffff0fff, 0xf85d0d04, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop.w <register>" },
+ { 0xffbf0f00, 0xecbd0b00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
+ { 0xffbf0f00, 0xecbd0a00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
+
+ //----------------------------------------------------------------------
+ // Supervisor Call (previously Software Interrupt)
+ //----------------------------------------------------------------------
+ { 0xffffff00, 0x0000df00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSVC, "svc #imm8"},
+
+ //----------------------------------------------------------------------
+ // If Then makes up to four following instructions conditional.
+ //----------------------------------------------------------------------
+ // The next 5 opcode _must_ come before the if then instruction
+ { 0xffffffff, 0x0000bf00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop"},
+ { 0xffffffff, 0x0000bf10, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop YIELD (yield hint)"},
+ { 0xffffffff, 0x0000bf20, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop WFE (wait for event hint)"},
+ { 0xffffffff, 0x0000bf30, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop WFI (wait for interrupt hint)"},
+ { 0xffffffff, 0x0000bf40, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop SEV (send event hint)"},
+ { 0xffffff00, 0x0000bf00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateIT, "it{<x>{<y>{<z>}}} <firstcond>"},
+
+ //----------------------------------------------------------------------
+ // Branch instructions
+ //----------------------------------------------------------------------
+ // To resolve ambiguity, "b<c> #imm8" should come after "svc #imm8".
+ { 0xfffff000, 0x0000d000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateB, "b<c> #imm8 (outside IT)"},
+ { 0xfffff800, 0x0000e000, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateB, "b<c> #imm11 (outside or last in IT)"},
+ { 0xf800d000, 0xf0008000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateB, "b<c>.w #imm8 (outside IT)"},
+ { 0xf800d000, 0xf0009000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateB, "b<c>.w #imm8 (outside or last in IT)"},
+ // J1 == J2 == 1
+ { 0xf800d000, 0xf000d000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
+ // J1 == J2 == 1
+ { 0xf800d001, 0xf000c000, ARMV5_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
+ { 0xffffff87, 0x00004780, ARMV5_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
+ // for example, "bx lr"
+ { 0xffffff87, 0x00004700, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXRm, "bx <Rm>"},
+ // bxj
+ { 0xfff0ffff, 0xf3c08f00, ARMV5J_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXJRm, "bxj <Rm>"},
+ // compare and branch
+ { 0xfffff500, 0x0000b100, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCB, "cb{n}z <Rn>, <label>"},
+ // table branch byte
+ { 0xfff0fff0, 0xe8d0f000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTB, "tbb<c> <Rn>, <Rm>"},
+ // table branch halfword
+ { 0xfff0fff0, 0xe8d0f010, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTB, "tbh<c> <Rn>, <Rm>, lsl #1"},
+
+ //----------------------------------------------------------------------
+ // Data-processing instructions
+ //----------------------------------------------------------------------
+ // adc (immediate)
+ { 0xfbe08000, 0xf1400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCImm, "adc{s}<c> <Rd>, <Rn>, #<const>"},
+ // adc (register)
+ { 0xffffffc0, 0x00004140, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADCReg, "adcs|adc<c> <Rdn>, <Rm>"},
+ { 0xffe08000, 0xeb400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCReg, "adc{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (register)
+ { 0xfffffe00, 0x00001800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDReg, "adds|add<c> <Rd>, <Rn>, <Rm>"},
+ // Make sure "add sp, <Rm>" comes before this instruction, so there's no ambiguity decoding the two.
+ { 0xffffff00, 0x00004400, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDReg, "add<c> <Rdn>, <Rm>"},
+ // adr
+ { 0xfffff800, 0x0000a000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
+ { 0xfbff8000, 0xf2af0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "sub<c> <Rd>, PC, #<const>"},
+ { 0xfbff8000, 0xf20f0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
+ // and (immediate)
+ { 0xfbe08000, 0xf0000000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDImm, "and{s}<c> <Rd>, <Rn>, #<const>"},
+ // and (register)
+ { 0xffffffc0, 0x00004000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateANDReg, "ands|and<c> <Rdn>, <Rm>"},
+ { 0xffe08000, 0xea000000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDReg, "and{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // bic (immediate)
+ { 0xfbe08000, 0xf0200000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICImm, "bic{s}<c> <Rd>, <Rn>, #<const>"},
+ // bic (register)
+ { 0xffffffc0, 0x00004380, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateBICReg, "bics|bic<c> <Rdn>, <Rm>"},
+ { 0xffe08000, 0xea200000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICReg, "bic{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // eor (immediate)
+ { 0xfbe08000, 0xf0800000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORImm, "eor{s}<c> <Rd>, <Rn>, #<const>"},
+ // eor (register)
+ { 0xffffffc0, 0x00004040, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateEORReg, "eors|eor<c> <Rdn>, <Rm>"},
+ { 0xffe08000, 0xea800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORReg, "eor{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // orr (immediate)
+ { 0xfbe08000, 0xf0400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRImm, "orr{s}<c> <Rd>, <Rn>, #<const>"},
+ // orr (register)
+ { 0xffffffc0, 0x00004300, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateORRReg, "orrs|orr<c> <Rdn>, <Rm>"},
+ { 0xffe08000, 0xea400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRReg, "orr{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // rsb (immediate)
+ { 0xffffffc0, 0x00004240, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateRSBImm, "rsbs|rsb<c> <Rd>, <Rn>, #0"},
+ { 0xfbe08000, 0xf1c00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBImm, "rsb{s}<c>.w <Rd>, <Rn>, #<const>"},
+ // rsb (register)
+ { 0xffe08000, 0xea400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBReg, "rsb{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // sbc (immediate)
+ { 0xfbe08000, 0xf1600000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCImm, "sbc{s}<c> <Rd>, <Rn>, #<const>"},
+ // sbc (register)
+ { 0xffffffc0, 0x00004180, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSBCReg, "sbcs|sbc<c> <Rdn>, <Rm>"},
+ { 0xffe08000, 0xeb600000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCReg, "sbc{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (immediate, Thumb)
+ { 0xfffffe00, 0x00001c00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDImmThumb, "adds|add<c> <Rd>,<Rn>,#<imm3>" },
+ { 0xfffff800, 0x00003000, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDImmThumb, "adds|add<c> <Rdn>,#<imm8>" },
+ { 0xfbe08000, 0xf1000000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDImmThumb, "add{s}<c>.w <Rd>,<Rn>,#<const>" },
+ { 0xfbf08000, 0xf2000000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDImmThumb, "addw<c> <Rd>,<Rn>,#<imm12>" },
+ // sub (immediate, Thumb)
+ { 0xfffffe00, 0x00001e00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBImmThumb, "subs|sub<c> <Rd>, <Rn> #imm3"},
+ { 0xfffff800, 0x00003800, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBImmThumb, "subs|sub<c> <Rdn>, #imm8"},
+ { 0xfbe08000, 0xf1a00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBImmThumb, "sub{s}<c>.w <Rd>, <Rn>, #<const>"},
+ { 0xfbf08000, 0xf2a00000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBImmThumb, "subw<c> <Rd>, <Rn>, #imm12"},
+ // sub (sp minus immediate)
+ { 0xfbef8000, 0xf1ad0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub{s}.w <Rd>, sp, #<const>"},
+ { 0xfbff8000, 0xf2ad0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "subw<c> <Rd>, sp, #imm12"},
+ // sub (register)
+ { 0xfffffe00, 0x00001a00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBReg, "subs|sub<c> <Rd>, <Rn>, <Rm>"},
+ { 0xffe08000, 0xeba00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBReg, "sub{s}<c>.w <Rd>, <Rn>, <Rm>{,<shift>}"},
+ // teq (immediate)
+ { 0xfbf08f00, 0xf0900f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQImm, "teq<c> <Rn>, #<const>"},
+ // teq (register)
+ { 0xfff08f00, 0xea900f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQReg, "teq<c> <Rn>, <Rm> {,<shift>}"},
+ // tst (immediate)
+ { 0xfbf08f00, 0xf0100f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTImm, "tst<c> <Rn>, #<const>"},
+ // tst (register)
+ { 0xffffffc0, 0x00004200, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateTSTReg, "tst<c> <Rdn>, <Rm>"},
+ { 0xfff08f00, 0xea100f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTReg, "tst<c>.w <Rn>, <Rm> {,<shift>}"},
+
+
+ // move from high register to high register
+ { 0xffffff00, 0x00004600, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdRm, "mov<c> <Rd>, <Rm>"},
+ // move from low register to low register
+ { 0xffffffc0, 0x00000000, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdRm, "movs <Rd>, <Rm>"},
+ // mov{s}<c>.w <Rd>, <Rm>
+ { 0xffeff0f0, 0xea4f0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdRm, "mov{s}<c>.w <Rd>, <Rm>"},
+ // move immediate
+ { 0xfffff800, 0x00002000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdImm, "movs|mov<c> <Rd>, #imm8"},
+ { 0xfbef8000, 0xf04f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "mov{s}<c>.w <Rd>, #<const>"},
+ { 0xfbf08000, 0xf2400000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "movw<c> <Rd>,#<imm16>"},
+ // mvn (immediate)
+ { 0xfbef8000, 0xf06f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNImm, "mvn{s} <Rd>, #<const>"},
+ // mvn (register)
+ { 0xffffffc0, 0x000043c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMVNReg, "mvns|mvn<c> <Rd>, <Rm>"},
+ { 0xffef8000, 0xea6f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNReg, "mvn{s}<c>.w <Rd>, <Rm> {,<shift>}"},
+ // cmn (immediate)
+ { 0xfbf08f00, 0xf1100f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNImm, "cmn<c> <Rn>, #<const>"},
+ // cmn (register)
+ { 0xffffffc0, 0x000042c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm>"},
+ { 0xfff08f00, 0xeb100f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm> {,<shift>}"},
+ // cmp (immediate)
+ { 0xfffff800, 0x00002800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMPImm, "cmp<c> <Rn>, #imm8"},
+ { 0xfbf08f00, 0xf1b00f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMPImm, "cmp<c>.w <Rn>, #<const>"},
+ // cmp (register) (Rn and Rm both from r0-r7)
+ { 0xffffffc0, 0x00004280, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm>"},
+ // cmp (register) (Rn and Rm not both from r0-r7)
+ { 0xffffff00, 0x00004500, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm>"},
+ // asr (immediate)
+ { 0xfffff800, 0x00001000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateASRImm, "asrs|asr<c> <Rd>, <Rm>, #imm"},
+ { 0xffef8030, 0xea4f0020, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRImm, "asr{s}<c>.w <Rd>, <Rm>, #imm"},
+ // asr (register)
+ { 0xffffffc0, 0x00004100, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateASRReg, "asrs|asr<c> <Rdn>, <Rm>"},
+ { 0xffe0f0f0, 0xfa40f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRReg, "asr{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // lsl (immediate)
+ { 0xfffff800, 0x00000000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSLImm, "lsls|lsl<c> <Rd>, <Rm>, #imm"},
+ { 0xffef8030, 0xea4f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLImm, "lsl{s}<c>.w <Rd>, <Rm>, #imm"},
+ // lsl (register)
+ { 0xffffffc0, 0x00004080, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSLReg, "lsls|lsl<c> <Rdn>, <Rm>"},
+ { 0xffe0f0f0, 0xfa00f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLReg, "lsl{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // lsr (immediate)
+ { 0xfffff800, 0x00000800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSRImm, "lsrs|lsr<c> <Rd>, <Rm>, #imm"},
+ { 0xffef8030, 0xea4f0010, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRImm, "lsr{s}<c>.w <Rd>, <Rm>, #imm"},
+ // lsr (register)
+ { 0xffffffc0, 0x000040c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSRReg, "lsrs|lsr<c> <Rdn>, <Rm>"},
+ { 0xffe0f0f0, 0xfa20f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRReg, "lsr{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // rrx is a special case encoding of ror (immediate)
+ { 0xffeff0f0, 0xea4f0030, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRRX, "rrx{s}<c>.w <Rd>, <Rm>"},
+ // ror (immediate)
+ { 0xffef8030, 0xea4f0030, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORImm, "ror{s}<c>.w <Rd>, <Rm>, #imm"},
+ // ror (register)
+ { 0xffffffc0, 0x000041c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateRORReg, "rors|ror<c> <Rdn>, <Rm>"},
+ { 0xffe0f0f0, 0xfa60f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORReg, "ror{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // mul
+ { 0xffffffc0, 0x00004340, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMUL, "muls <Rdm>,<Rn>,<Rdm>" },
+ // mul
+ { 0xfff0f0f0, 0xfb00f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMUL, "mul<c> <Rd>,<Rn>,<Rm>" },
+
+ // subs pc, lr and related instructions
+ { 0xffffff00, 0xf3de8f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPcLrEtc, "SUBS<c> PC, LR, #<imm8>" },
+
+ //----------------------------------------------------------------------
+ // RFE instructions *** IMPORTANT *** THESE MUST BE LISTED **BEFORE** THE LDM.. Instructions in this table;
+ // otherwise the wrong instructions will be selected.
+ //----------------------------------------------------------------------
+
+ { 0xffd0ffff, 0xe810c000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRFE, "rfedb<c> <Rn>{!}" },
+ { 0xffd0ffff, 0xe990c000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateRFE, "rfe{ia}<c> <Rn>{!}" },
+
+ //----------------------------------------------------------------------
+ // Load instructions
+ //----------------------------------------------------------------------
+ { 0xfffff800, 0x0000c800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDM, "ldm<c> <Rn>{!} <registers>" },
+ { 0xffd02000, 0xe8900000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDM, "ldm<c>.w <Rn>{!} <registers>" },
+ { 0xffd00000, 0xe9100000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMDB, "ldmdb<c> <Rn>{!} <registers>" },
+ { 0xfffff800, 0x00006800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [<Rn>{,#imm}]"},
+ { 0xfffff800, 0x00009800, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [SP{,#imm}]"},
+ { 0xfff00000, 0xf8d00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c>.w <Rt>, [<Rn>{,#imm12}]"},
+ { 0xfff00800, 0xf8500800, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [<Rn>{,#+/-<imm8>}]{!}"},
+ // Thumb2 PC-relative load into register
+ { 0xff7f0000, 0xf85f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRtPCRelative, "ldr<c>.w <Rt>, [PC, +/-#imm}]"},
+ { 0xfffffe00, 0x00005800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRegister, "ldr<c> <Rt>, [<Rn>, <Rm>]" },
+ { 0xfff00fc0, 0xf8500000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRegister, "ldr<c>.w <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]" },
+ { 0xfffff800, 0x00007800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRBImmediate, "ldrb<c> <Rt>,[<Rn>{,#<imm5>}]" },
+ { 0xfff00000, 0xf8900000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBImmediate, "ldrb<c>.w <Rt>,[<Rn>{,#<imm12>}]" },
+ { 0xfff00800, 0xf8100800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBImmediate, "ldrb<c> <Rt>,[<Rn>, #+/-<imm8>]{!}" },
+ { 0xff7f0000, 0xf81f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBLiteral, "ldrb<c> <Rt>,[...]" },
+ { 0xfffffe00, 0x00005c00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c> <Rt>,[<Rn>,<Rm>]" },
+ { 0xfff00fc0, 0xf8100000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c>.w <Rt>,[<Rn>,<Rm>{,LSL #imm2>}]" },
+ { 0xfffff800, 0x00008800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRHImmediate, "ldrh<c> <Rt>, [<Rn>{,#<imm>}]" },
+ { 0xfff00000, 0xf8b00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHImmediate, "ldrh<c>.w <Rt>,[<Rn>{,#<imm12>}]" },
+ { 0xfff00800, 0xf8300800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHImmediate, "ldrh<c> <Rt>,[<Rn>,#+/-<imm8>]{!}" },
+ { 0xff7f0000, 0xf83f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHLiteral, "ldrh<c> <Rt>, <label>" },
+ { 0xfffffe00, 0x00005a00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRHRegister, "ldrh<c> <Rt>, [<Rn>,<Rm>]" },
+ { 0xfff00fc0, 0xf8300000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHRegister, "ldrh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]" },
+ { 0xfff00000, 0xf9900000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBImmediate, "ldrsb<c> <Rt>,[<Rn>,#<imm12>]" },
+ { 0xfff00800, 0xf9100800, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBImmediate, "ldrsb<c> <Rt>,[<Rn>,#+/-<imm8>]" },
+ { 0xff7f0000, 0xf91f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBLiteral, "ldrsb<c> <Rt>, <label>" },
+ { 0xfffffe00, 0x00005600, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRSBRegister, "ldrsb<c> <Rt>,[<Rn>,<Rm>]" },
+ { 0xfff00fc0, 0xf9100000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBRegister, "ldrsb<c>.w <Rt>,[<Rn>,<Rm>{,LSL #imm2>}]" },
+ { 0xfff00000, 0xf9b00000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHImmediate, "ldrsh<c> <Rt>,[<Rn>,#<imm12>]" },
+ { 0xfff00800, 0xf9300800, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHImmediate, "ldrsh<c> <Rt>,[<Rn>,#+/-<imm8>]" },
+ { 0xff7f0000, 0xf93f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHLiteral, "ldrsh<c> <Rt>,<label>" },
+ { 0xfffffe00, 0x00005e00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRSHRegister, "ldrsh<c> <Rt>,[<Rn>,<Rm>]" },
+ { 0xfff00fc0, 0xf9300000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHRegister, "ldrsh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]" },
+ { 0xfe500000, 0xe8500000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRDImmediate, "ldrd<c> <Rt>, <Rt2>, [<Rn>,#+/-<imm>]!"},
+ { 0xfe100f00, 0xec100b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ { 0xfe100f00, 0xec100a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>" },
+ { 0xffe00f00, 0xed100b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
+ { 0xff300f00, 0xed100a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Sd>, {<Rn>{,#+/-<imm>}]"},
+ { 0xffb00000, 0xf9200000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Multiple, "vld1<c>.<size> <list>, [<Rn>{@<align>}],<Rm>"},
+ { 0xffb00300, 0xf9a00000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Single, "vld1<c>.<size> <list>, [<Rn>{@<align>}],<Rm>"},
+ { 0xffb00f00, 0xf9a00c00, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1SingleAll, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ //----------------------------------------------------------------------
+ // Store instructions
+ //----------------------------------------------------------------------
+ { 0xfffff800, 0x0000c000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTM, "stm<c> <Rn>{!} <registers>" },
+ { 0xffd00000, 0xe8800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTM, "stm<c>.w <Rn>{!} <registers>" },
+ { 0xffd00000, 0xe9000000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMDB, "stmdb<c> <Rn>{!} <registers>" },
+ { 0xfffff800, 0x00006000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [<Rn>{,#<imm>}]" },
+ { 0xfffff800, 0x00009000, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [SP,#<imm>]" },
+ { 0xfff00000, 0xf8c00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRThumb, "str<c>.w <Rt>, [<Rn>,#<imm12>]" },
+ { 0xfff00800, 0xf8400800, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [<Rn>,#+/-<imm8>]" },
+ { 0xfffffe00, 0x00005000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRRegister, "str<c> <Rt> ,{<Rn>, <Rm>]" },
+ { 0xfff00fc0, 0xf8400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRRegister, "str<c>.w <Rt>, [<Rn>, <Rm> {lsl #imm2>}]" },
+ { 0xfffff800, 0x00007000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRBThumb, "strb<c> <Rt>, [<Rn>, #<imm5>]" },
+ { 0xfff00000, 0xf8800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRBThumb, "strb<c>.w <Rt>, [<Rn>, #<imm12>]" },
+ { 0xfff00800, 0xf8000800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRBThumb, "strb<c> <Rt> ,[<Rn>, #+/-<imm8>]{!}" },
+ { 0xfffffe00, 0x00005200, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRHRegister, "strh<c> <Rt>,[<Rn>,<Rm>]" },
+ { 0xfff00fc0, 0xf8200000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRHRegister, "strh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]" },
+ { 0xfff00000, 0xe8400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTREX, "strex<c> <Rd>, <Rt>, [<Rn{,#<imm>}]" },
+ { 0xfe500000, 0xe8400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRDImm, "strd<c> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]!"},
+ { 0xfe100f00, 0xec000b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!}, <list>"},
+ { 0xfea00f00, 0xec000a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!}, <list>"},
+ { 0xff300f00, 0xed000b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
+ { 0xff300f00, 0xed000a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Sd>, [<Rn>{,#+/-<imm>}]"},
+ { 0xffb00000, 0xf9000000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Multiple, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ { 0xffb00300, 0xf9800000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Single, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ //----------------------------------------------------------------------
+ // Other instructions
+ //----------------------------------------------------------------------
+ { 0xffffffc0, 0x0000b240, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSXTB, "sxtb<c> <Rd>,<Rm>" },
+ { 0xfffff080, 0xfa4ff080, ARMV6_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTB, "sxtb<c>.w <Rd>,<Rm>{,<rotation>}" },
+ { 0xffffffc0, 0x0000b200, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSXTH, "sxth<c> <Rd>,<Rm>" },
+ { 0xfffff080, 0xfa0ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTH, "sxth<c>.w <Rd>,<Rm>{,<rotation>}" },
+ { 0xffffffc0, 0x0000b2c0, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateUXTB, "uxtb<c> <Rd>,<Rm>" },
+ { 0xfffff080, 0xfa5ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTB, "uxtb<c>.w <Rd>,<Rm>{,<rotation>}" },
+ { 0xffffffc0, 0x0000b280, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateUXTH, "uxth<c> <Rd>,<Rm>" },
+ { 0xfffff080, 0xfa1ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTH, "uxth<c>.w <Rd>,<Rm>{,<rotation>}" },
+ };
+
+ const size_t k_num_thumb_opcodes = sizeof(g_thumb_opcodes)/sizeof(ARMOpcode);
+ for (size_t i=0; i<k_num_thumb_opcodes; ++i)
+ {
+ if ((g_thumb_opcodes[i].mask & opcode) == g_thumb_opcodes[i].value &&
+ (g_thumb_opcodes[i].variants & arm_isa) != 0)
+ return &g_thumb_opcodes[i];
+ }
+ return NULL;
+}
+
+bool
+EmulateInstructionARM::SetArchitecture (const ArchSpec &arch)
+{
+ m_arch = arch;
+ m_arm_isa = 0;
+ const char *arch_cstr = arch.GetArchitectureName ();
+ if (arch_cstr)
+ {
+ if (0 == ::strcasecmp(arch_cstr, "armv4t")) m_arm_isa = ARMv4T;
+ else if (0 == ::strcasecmp(arch_cstr, "armv5tej")) m_arm_isa = ARMv5TEJ;
+ else if (0 == ::strcasecmp(arch_cstr, "armv5te")) m_arm_isa = ARMv5TE;
+ else if (0 == ::strcasecmp(arch_cstr, "armv5t")) m_arm_isa = ARMv5T;
+ else if (0 == ::strcasecmp(arch_cstr, "armv6k")) m_arm_isa = ARMv6K;
+ else if (0 == ::strcasecmp(arch_cstr, "armv6t2")) m_arm_isa = ARMv6T2;
+ else if (0 == ::strcasecmp(arch_cstr, "armv7s")) m_arm_isa = ARMv7S;
+ else if (0 == ::strcasecmp(arch_cstr, "arm")) m_arm_isa = ARMvAll;
+ else if (0 == ::strcasecmp(arch_cstr, "thumb")) m_arm_isa = ARMvAll;
+ else if (0 == ::strncasecmp(arch_cstr,"armv4", 5)) m_arm_isa = ARMv4;
+ else if (0 == ::strncasecmp(arch_cstr,"armv6", 5)) m_arm_isa = ARMv6;
+ else if (0 == ::strncasecmp(arch_cstr,"armv7", 5)) m_arm_isa = ARMv7;
+ else if (0 == ::strncasecmp(arch_cstr,"armv8", 5)) m_arm_isa = ARMv8;
+ }
+ return m_arm_isa != 0;
+}
+
+bool
+EmulateInstructionARM::SetInstruction (const Opcode &insn_opcode, const Address &inst_addr, Target *target)
+{
+ if (EmulateInstruction::SetInstruction (insn_opcode, inst_addr, target))
+ {
+ if (m_arch.GetTriple().getArch() == llvm::Triple::thumb)
+ m_opcode_mode = eModeThumb;
+ else
+ {
+ AddressClass addr_class = inst_addr.GetAddressClass();
+
+ if ((addr_class == eAddressClassCode) || (addr_class == eAddressClassUnknown))
+ m_opcode_mode = eModeARM;
+ else if (addr_class == eAddressClassCodeAlternateISA)
+ m_opcode_mode = eModeThumb;
+ else
+ return false;
+ }
+ if (m_opcode_mode == eModeThumb)
+ m_opcode_cpsr = CPSR_MODE_USR | MASK_CPSR_T;
+ else
+ m_opcode_cpsr = CPSR_MODE_USR;
+ return true;
+ }
+ return false;
+}
+
+bool
+EmulateInstructionARM::ReadInstruction ()
+{
+ bool success = false;
+ m_opcode_cpsr = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, 0, &success);
+ if (success)
+ {
+ addr_t pc = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_ADDRESS, &success);
+ if (success)
+ {
+ Context read_inst_context;
+ read_inst_context.type = eContextReadOpcode;
+ read_inst_context.SetNoArgs ();
+
+ if (m_opcode_cpsr & MASK_CPSR_T)
+ {
+ m_opcode_mode = eModeThumb;
+ uint32_t thumb_opcode = MemARead(read_inst_context, pc, 2, 0, &success);
+
+ if (success)
+ {
+ if ((thumb_opcode & 0xe000) != 0xe000 || ((thumb_opcode & 0x1800u) == 0))
+ {
+ m_opcode.SetOpcode16 (thumb_opcode);
+ }
+ else
+ {
+ m_opcode.SetOpcode32 ((thumb_opcode << 16) | MemARead(read_inst_context, pc + 2, 2, 0, &success));
+ }
+ }
+ }
+ else
+ {
+ m_opcode_mode = eModeARM;
+ m_opcode.SetOpcode32 (MemARead(read_inst_context, pc, 4, 0, &success));
+ }
+ }
+ }
+ if (!success)
+ {
+ m_opcode_mode = eModeInvalid;
+ m_addr = LLDB_INVALID_ADDRESS;
+ }
+ return success;
+}
+
+uint32_t
+EmulateInstructionARM::ArchVersion ()
+{
+ return m_arm_isa;
+}
+
+bool
+EmulateInstructionARM::ConditionPassed (const uint32_t opcode, bool *is_conditional)
+{
+ // If we are ignoring conditions, then always return true.
+ // this allows us to iterate over disassembly code and still
+ // emulate an instruction even if we don't have all the right
+ // bits set in the CPSR register...
+ if (m_ignore_conditions)
+ return true;
+
+ if (is_conditional)
+ *is_conditional = true;
+
+ const uint32_t cond = CurrentCond (opcode);
+
+ if (cond == UINT32_MAX)
+ return false;
+
+ bool result = false;
+ switch (UnsignedBits(cond, 3, 1))
+ {
+ case 0:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_Z) != 0;
+ break;
+ case 1:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_C) != 0;
+ break;
+ case 2:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_N) != 0;
+ break;
+ case 3:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_V) != 0;
+ break;
+ case 4:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = ((m_opcode_cpsr & MASK_CPSR_C) != 0) && ((m_opcode_cpsr & MASK_CPSR_Z) == 0);
+ break;
+ case 5:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ {
+ bool n = (m_opcode_cpsr & MASK_CPSR_N);
+ bool v = (m_opcode_cpsr & MASK_CPSR_V);
+ result = n == v;
+ }
+ break;
+ case 6:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ {
+ bool n = (m_opcode_cpsr & MASK_CPSR_N);
+ bool v = (m_opcode_cpsr & MASK_CPSR_V);
+ result = n == v && ((m_opcode_cpsr & MASK_CPSR_Z) == 0);
+ }
+ break;
+ case 7:
+ // Always execute (cond == 0b1110, or the special 0b1111 which gives
+ // opcodes different meanings, but always means execution happpens.
+ if (is_conditional)
+ *is_conditional = false;
+ result = true;
+ break;
+ }
+
+ if (cond & 1)
+ result = !result;
+ return result;
+}
+
+uint32_t
+EmulateInstructionARM::CurrentCond (const uint32_t opcode)
+{
+ switch (m_opcode_mode)
+ {
+ case eModeInvalid:
+ break;
+
+ case eModeARM:
+ return UnsignedBits(opcode, 31, 28);
+
+ case eModeThumb:
+ // For T1 and T3 encodings of the Branch instruction, it returns the 4-bit
+ // 'cond' field of the encoding.
+ {
+ const uint32_t byte_size = m_opcode.GetByteSize();
+ if (byte_size == 2)
+ {
+ if (Bits32(opcode, 15, 12) == 0x0d && Bits32(opcode, 11, 7) != 0x0f)
+ return Bits32(opcode, 11, 7);
+ }
+ else if (byte_size == 4)
+ {
+ if (Bits32(opcode, 31, 27) == 0x1e &&
+ Bits32(opcode, 15, 14) == 0x02 &&
+ Bits32(opcode, 12, 12) == 0x00 &&
+ Bits32(opcode, 25, 22) <= 0x0d)
+ {
+ return Bits32(opcode, 25, 22);
+ }
+ }
+ else
+ // We have an invalid thumb instruction, let's bail out.
+ break;
+
+ return m_it_session.GetCond();
+ }
+ }
+ return UINT32_MAX; // Return invalid value
+}
+
+bool
+EmulateInstructionARM::InITBlock()
+{
+ return CurrentInstrSet() == eModeThumb && m_it_session.InITBlock();
+}
+
+bool
+EmulateInstructionARM::LastInITBlock()
+{
+ return CurrentInstrSet() == eModeThumb && m_it_session.LastInITBlock();
+}
+
+bool
+EmulateInstructionARM::BadMode (uint32_t mode)
+{
+
+ switch (mode)
+ {
+ case 16: return false; // '10000'
+ case 17: return false; // '10001'
+ case 18: return false; // '10010'
+ case 19: return false; // '10011'
+ case 22: return false; // '10110'
+ case 23: return false; // '10111'
+ case 27: return false; // '11011'
+ case 31: return false; // '11111'
+ default: return true;
+ }
+ return true;
+}
+
+bool
+EmulateInstructionARM::CurrentModeIsPrivileged ()
+{
+ uint32_t mode = Bits32 (m_opcode_cpsr, 4, 0);
+
+ if (BadMode (mode))
+ return false;
+
+ if (mode == 16)
+ return false;
+
+ return true;
+}
+
+void
+EmulateInstructionARM::CPSRWriteByInstr (uint32_t value, uint32_t bytemask, bool affect_execstate)
+{
+ bool privileged = CurrentModeIsPrivileged();
+
+ uint32_t tmp_cpsr = Bits32 (m_opcode_cpsr, 23, 20) << 20;
+
+ if (BitIsSet (bytemask, 3))
+ {
+ tmp_cpsr = tmp_cpsr | (Bits32 (value, 31, 27) << 27);
+ if (affect_execstate)
+ tmp_cpsr = tmp_cpsr | (Bits32 (value, 26, 24) << 24);
+ }
+
+ if (BitIsSet (bytemask, 2))
+ {
+ tmp_cpsr = tmp_cpsr | (Bits32 (value, 19, 16) << 16);
+ }
+
+ if (BitIsSet (bytemask, 1))
+ {
+ if (affect_execstate)
+ tmp_cpsr = tmp_cpsr | (Bits32 (value, 15, 10) << 10);
+ tmp_cpsr = tmp_cpsr | (Bit32 (value, 9) << 9);
+ if (privileged)
+ tmp_cpsr = tmp_cpsr | (Bit32 (value, 8) << 8);
+ }
+
+ if (BitIsSet (bytemask, 0))
+ {
+ if (privileged)
+ tmp_cpsr = tmp_cpsr | (Bits32 (value, 7, 6) << 6);
+ if (affect_execstate)
+ tmp_cpsr = tmp_cpsr | (Bit32 (value, 5) << 5);
+ if (privileged)
+ tmp_cpsr = tmp_cpsr | Bits32 (value, 4, 0);
+ }
+
+ m_opcode_cpsr = tmp_cpsr;
+}
+
+
+bool
+EmulateInstructionARM::BranchWritePC (const Context &context, uint32_t addr)
+{
+ addr_t target;
+
+ // Check the current instruction set.
+ if (CurrentInstrSet() == eModeARM)
+ target = addr & 0xfffffffc;
+ else
+ target = addr & 0xfffffffe;
+
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, target))
+ return false;
+
+ return true;
+}
+
+// As a side effect, BXWritePC sets context.arg2 to eModeARM or eModeThumb by inspecting addr.
+bool
+EmulateInstructionARM::BXWritePC (Context &context, uint32_t addr)
+{
+ addr_t target;
+ // If the CPSR is changed due to switching between ARM and Thumb ISETSTATE,
+ // we want to record it and issue a WriteRegister callback so the clients
+ // can track the mode changes accordingly.
+ bool cpsr_changed = false;
+
+ if (BitIsSet(addr, 0))
+ {
+ if (CurrentInstrSet() != eModeThumb)
+ {
+ SelectInstrSet(eModeThumb);
+ cpsr_changed = true;
+ }
+ target = addr & 0xfffffffe;
+ context.SetISA (eModeThumb);
+ }
+ else if (BitIsClear(addr, 1))
+ {
+ if (CurrentInstrSet() != eModeARM)
+ {
+ SelectInstrSet(eModeARM);
+ cpsr_changed = true;
+ }
+ target = addr & 0xfffffffc;
+ context.SetISA (eModeARM);
+ }
+ else
+ return false; // address<1:0> == '10' => UNPREDICTABLE
+
+ if (cpsr_changed)
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, target))
+ return false;
+
+ return true;
+}
+
+// Dispatches to either BXWritePC or BranchWritePC based on architecture versions.
+bool
+EmulateInstructionARM::LoadWritePC (Context &context, uint32_t addr)
+{
+ if (ArchVersion() >= ARMv5T)
+ return BXWritePC(context, addr);
+ else
+ return BranchWritePC((const Context)context, addr);
+}
+
+// Dispatches to either BXWritePC or BranchWritePC based on architecture versions and current instruction set.
+bool
+EmulateInstructionARM::ALUWritePC (Context &context, uint32_t addr)
+{
+ if (ArchVersion() >= ARMv7 && CurrentInstrSet() == eModeARM)
+ return BXWritePC(context, addr);
+ else
+ return BranchWritePC((const Context)context, addr);
+}
+
+EmulateInstructionARM::Mode
+EmulateInstructionARM::CurrentInstrSet ()
+{
+ return m_opcode_mode;
+}
+
+// Set the 'T' bit of our CPSR. The m_opcode_mode gets updated when the next
+// ReadInstruction() is performed. This function has a side effect of updating
+// the m_new_inst_cpsr member variable if necessary.
+bool
+EmulateInstructionARM::SelectInstrSet (Mode arm_or_thumb)
+{
+ m_new_inst_cpsr = m_opcode_cpsr;
+ switch (arm_or_thumb)
+ {
+ default:
+ return false;
+ case eModeARM:
+ // Clear the T bit.
+ m_new_inst_cpsr &= ~MASK_CPSR_T;
+ break;
+ case eModeThumb:
+ // Set the T bit.
+ m_new_inst_cpsr |= MASK_CPSR_T;
+ break;
+ }
+ return true;
+}
+
+// This function returns TRUE if the processor currently provides support for
+// unaligned memory accesses, or FALSE otherwise. This is always TRUE in ARMv7,
+// controllable by the SCTLR.U bit in ARMv6, and always FALSE before ARMv6.
+bool
+EmulateInstructionARM::UnalignedSupport()
+{
+ return (ArchVersion() >= ARMv7);
+}
+
+// The main addition and subtraction instructions can produce status information
+// about both unsigned carry and signed overflow conditions. This status
+// information can be used to synthesize multi-word additions and subtractions.
+EmulateInstructionARM::AddWithCarryResult
+EmulateInstructionARM::AddWithCarry (uint32_t x, uint32_t y, uint8_t carry_in)
+{
+ uint32_t result;
+ uint8_t carry_out;
+ uint8_t overflow;
+
+ uint64_t unsigned_sum = x + y + carry_in;
+ int64_t signed_sum = (int32_t)x + (int32_t)y + (int32_t)carry_in;
+
+ result = UnsignedBits(unsigned_sum, 31, 0);
+// carry_out = (result == unsigned_sum ? 0 : 1);
+ overflow = ((int32_t)result == signed_sum ? 0 : 1);
+
+ if (carry_in)
+ carry_out = ((int32_t) x >= (int32_t) (~y)) ? 1 : 0;
+ else
+ carry_out = ((int32_t) x > (int32_t) y) ? 1 : 0;
+
+ AddWithCarryResult res = { result, carry_out, overflow };
+ return res;
+}
+
+uint32_t
+EmulateInstructionARM::ReadCoreReg(uint32_t num, bool *success)
+{
+ uint32_t reg_kind, reg_num;
+ switch (num)
+ {
+ case SP_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_SP;
+ break;
+ case LR_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_RA;
+ break;
+ case PC_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_PC;
+ break;
+ default:
+ if (num < SP_REG)
+ {
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_r0 + num;
+ }
+ else
+ {
+ //assert(0 && "Invalid register number");
+ *success = false;
+ return UINT32_MAX;
+ }
+ break;
+ }
+
+ // Read our register.
+ uint32_t val = ReadRegisterUnsigned (reg_kind, reg_num, 0, success);
+
+ // When executing an ARM instruction , PC reads as the address of the current
+ // instruction plus 8.
+ // When executing a Thumb instruction , PC reads as the address of the current
+ // instruction plus 4.
+ if (num == 15)
+ {
+ if (CurrentInstrSet() == eModeARM)
+ val += 8;
+ else
+ val += 4;
+ }
+
+ return val;
+}
+
+// Write the result to the ARM core register Rd, and optionally update the
+// condition flags based on the result.
+//
+// This helper method tries to encapsulate the following pseudocode from the
+// ARM Architecture Reference Manual:
+//
+// if d == 15 then // Can only occur for encoding A1
+// ALUWritePC(result); // setflags is always FALSE here
+// else
+// R[d] = result;
+// if setflags then
+// APSR.N = result<31>;
+// APSR.Z = IsZeroBit(result);
+// APSR.C = carry;
+// // APSR.V unchanged
+//
+// In the above case, the API client does not pass in the overflow arg, which
+// defaults to ~0u.
+bool
+EmulateInstructionARM::WriteCoreRegOptionalFlags (Context &context,
+ const uint32_t result,
+ const uint32_t Rd,
+ bool setflags,
+ const uint32_t carry,
+ const uint32_t overflow)
+{
+ if (Rd == 15)
+ {
+ if (!ALUWritePC (context, result))
+ return false;
+ }
+ else
+ {
+ uint32_t reg_kind, reg_num;
+ switch (Rd)
+ {
+ case SP_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_SP;
+ break;
+ case LR_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_RA;
+ break;
+ default:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_r0 + Rd;
+ }
+ if (!WriteRegisterUnsigned (context, reg_kind, reg_num, result))
+ return false;
+ if (setflags)
+ return WriteFlags (context, result, carry, overflow);
+ }
+ return true;
+}
+
+// This helper method tries to encapsulate the following pseudocode from the
+// ARM Architecture Reference Manual:
+//
+// APSR.N = result<31>;
+// APSR.Z = IsZeroBit(result);
+// APSR.C = carry;
+// APSR.V = overflow
+//
+// Default arguments can be specified for carry and overflow parameters, which means
+// not to update the respective flags.
+bool
+EmulateInstructionARM::WriteFlags (Context &context,
+ const uint32_t result,
+ const uint32_t carry,
+ const uint32_t overflow)
+{
+ m_new_inst_cpsr = m_opcode_cpsr;
+ SetBit32(m_new_inst_cpsr, CPSR_N_POS, Bit32(result, CPSR_N_POS));
+ SetBit32(m_new_inst_cpsr, CPSR_Z_POS, result == 0 ? 1 : 0);
+ if (carry != ~0u)
+ SetBit32(m_new_inst_cpsr, CPSR_C_POS, carry);
+ if (overflow != ~0u)
+ SetBit32(m_new_inst_cpsr, CPSR_V_POS, overflow);
+ if (m_new_inst_cpsr != m_opcode_cpsr)
+ {
+ if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+ return true;
+}
+
+bool
+EmulateInstructionARM::EvaluateInstruction (uint32_t evaluate_options)
+{
+ // Advance the ITSTATE bits to their values for the next instruction.
+ if (m_opcode_mode == eModeThumb && m_it_session.InITBlock())
+ m_it_session.ITAdvance();
+
+ ARMOpcode *opcode_data = NULL;
+
+ if (m_opcode_mode == eModeThumb)
+ opcode_data = GetThumbOpcodeForInstruction (m_opcode.GetOpcode32(), m_arm_isa);
+ else if (m_opcode_mode == eModeARM)
+ opcode_data = GetARMOpcodeForInstruction (m_opcode.GetOpcode32(), m_arm_isa);
+
+ if (opcode_data == NULL)
+ return false;
+
+ const bool auto_advance_pc = evaluate_options & eEmulateInstructionOptionAutoAdvancePC;
+ m_ignore_conditions = evaluate_options & eEmulateInstructionOptionIgnoreConditions;
+
+ bool success = false;
+ if (m_opcode_cpsr == 0 || m_ignore_conditions == false)
+ {
+ m_opcode_cpsr = ReadRegisterUnsigned (eRegisterKindDWARF,
+ dwarf_cpsr,
+ 0,
+ &success);
+ }
+
+ // Only return false if we are unable to read the CPSR if we care about conditions
+ if (success == false && m_ignore_conditions == false)
+ return false;
+
+ uint32_t orig_pc_value = 0;
+ if (auto_advance_pc)
+ {
+ orig_pc_value = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_pc, 0, &success);
+ if (!success)
+ return false;
+ }
+
+ // Call the Emulate... function.
+ success = (this->*opcode_data->callback) (m_opcode.GetOpcode32(), opcode_data->encoding);
+ if (!success)
+ return false;
+
+ if (auto_advance_pc)
+ {
+ uint32_t after_pc_value = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_pc, 0, &success);
+ if (!success)
+ return false;
+
+ if (auto_advance_pc && (after_pc_value == orig_pc_value))
+ {
+ if (opcode_data->size == eSize32)
+ after_pc_value += 4;
+ else if (opcode_data->size == eSize16)
+ after_pc_value += 2;
+
+ EmulateInstruction::Context context;
+ context.type = eContextAdvancePC;
+ context.SetNoArgs();
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_pc, after_pc_value))
+ return false;
+
+ }
+ }
+ return true;
+}
+
+bool
+EmulateInstructionARM::TestEmulation (Stream *out_stream, ArchSpec &arch, OptionValueDictionary *test_data)
+{
+ if (!test_data)
+ {
+ out_stream->Printf ("TestEmulation: Missing test data.\n");
+ return false;
+ }
+
+ static ConstString opcode_key ("opcode");
+ static ConstString before_key ("before_state");
+ static ConstString after_key ("after_state");
+
+ OptionValueSP value_sp = test_data->GetValueForKey (opcode_key);
+
+ uint32_t test_opcode;
+ if ((value_sp.get() == NULL) || (value_sp->GetType() != OptionValue::eTypeUInt64))
+ {
+ out_stream->Printf ("TestEmulation: Error reading opcode from test file.\n");
+ return false;
+ }
+ test_opcode = value_sp->GetUInt64Value ();
+
+ if (arch.GetTriple().getArch() == llvm::Triple::arm)
+ {
+ m_opcode_mode = eModeARM;
+ m_opcode.SetOpcode32 (test_opcode);
+ }
+ else if (arch.GetTriple().getArch() == llvm::Triple::thumb)
+ {
+ m_opcode_mode = eModeThumb;
+ if (test_opcode < 0x10000)
+ m_opcode.SetOpcode16 (test_opcode);
+ else
+ m_opcode.SetOpcode32 (test_opcode);
+
+ }
+ else
+ {
+ out_stream->Printf ("TestEmulation: Invalid arch.\n");
+ return false;
+ }
+
+ EmulationStateARM before_state;
+ EmulationStateARM after_state;
+
+ value_sp = test_data->GetValueForKey (before_key);
+ if ((value_sp.get() == NULL) || (value_sp->GetType() != OptionValue::eTypeDictionary))
+ {
+ out_stream->Printf ("TestEmulation: Failed to find 'before' state.\n");
+ return false;
+ }
+
+ OptionValueDictionary *state_dictionary = value_sp->GetAsDictionary ();
+ if (!before_state.LoadStateFromDictionary (state_dictionary))
+ {
+ out_stream->Printf ("TestEmulation: Failed loading 'before' state.\n");
+ return false;
+ }
+
+ value_sp = test_data->GetValueForKey (after_key);
+ if ((value_sp.get() == NULL) || (value_sp->GetType() != OptionValue::eTypeDictionary))
+ {
+ out_stream->Printf ("TestEmulation: Failed to find 'after' state.\n");
+ return false;
+ }
+
+ state_dictionary = value_sp->GetAsDictionary ();
+ if (!after_state.LoadStateFromDictionary (state_dictionary))
+ {
+ out_stream->Printf ("TestEmulation: Failed loading 'after' state.\n");
+ return false;
+ }
+
+ SetBaton ((void *) &before_state);
+ SetCallbacks (&EmulationStateARM::ReadPseudoMemory,
+ &EmulationStateARM::WritePseudoMemory,
+ &EmulationStateARM::ReadPseudoRegister,
+ &EmulationStateARM::WritePseudoRegister);
+
+ bool success = EvaluateInstruction (eEmulateInstructionOptionAutoAdvancePC);
+ if (!success)
+ {
+ out_stream->Printf ("TestEmulation: EvaluateInstruction() failed.\n");
+ return false;
+ }
+
+ success = before_state.CompareState (after_state);
+ if (!success)
+ out_stream->Printf ("TestEmulation: 'before' and 'after' states do not match.\n");
+
+ return success;
+}
+//
+//
+//const char *
+//EmulateInstructionARM::GetRegisterName (uint32_t reg_kind, uint32_t reg_num)
+//{
+// if (reg_kind == eRegisterKindGeneric)
+// {
+// switch (reg_num)
+// {
+// case LLDB_REGNUM_GENERIC_PC: return "pc";
+// case LLDB_REGNUM_GENERIC_SP: return "sp";
+// case LLDB_REGNUM_GENERIC_FP: return "fp";
+// case LLDB_REGNUM_GENERIC_RA: return "lr";
+// case LLDB_REGNUM_GENERIC_FLAGS: return "cpsr";
+// default: return NULL;
+// }
+// }
+// else if (reg_kind == eRegisterKindDWARF)
+// {
+// return GetARMDWARFRegisterName (reg_num);
+// }
+// return NULL;
+//}
+//
+bool
+EmulateInstructionARM::CreateFunctionEntryUnwind (UnwindPlan &unwind_plan)
+{
+ unwind_plan.Clear();
+ unwind_plan.SetRegisterKind (eRegisterKindDWARF);
+
+ UnwindPlan::RowSP row(new UnwindPlan::Row);
+
+ // Our previous Call Frame Address is the stack pointer
+ row->SetCFARegister (dwarf_sp);
+
+ // Our previous PC is in the LR
+ row->SetRegisterLocationToRegister(dwarf_pc, dwarf_lr, true);
+ unwind_plan.AppendRow (row);
+
+ // All other registers are the same.
+
+ unwind_plan.SetSourceName ("EmulateInstructionARM");
+ unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
+ unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolYes);
+ return true;
+}