aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp')
-rwxr-xr-xsource/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp1239
1 files changed, 1239 insertions, 0 deletions
diff --git a/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp b/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
new file mode 100755
index 000000000000..2080d2ede372
--- /dev/null
+++ b/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
@@ -0,0 +1,1239 @@
+//===-- NativeRegisterContextLinux_x86_64.cpp ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#if defined(__i386__) || defined(__x86_64__)
+
+#include "NativeRegisterContextLinux_x86_64.h"
+
+#include "lldb/Core/Log.h"
+#include "lldb/Core/DataBufferHeap.h"
+#include "lldb/Core/Error.h"
+#include "lldb/Core/RegisterValue.h"
+#include "lldb/Host/HostInfo.h"
+
+#include "Plugins/Process/Utility/RegisterContextLinux_i386.h"
+#include "Plugins/Process/Utility/RegisterContextLinux_x86_64.h"
+
+using namespace lldb_private;
+using namespace lldb_private::process_linux;
+
+// ----------------------------------------------------------------------------
+// Private namespace.
+// ----------------------------------------------------------------------------
+
+namespace
+{
+ // x86 32-bit general purpose registers.
+ const uint32_t
+ g_gpr_regnums_i386[] =
+ {
+ lldb_eax_i386,
+ lldb_ebx_i386,
+ lldb_ecx_i386,
+ lldb_edx_i386,
+ lldb_edi_i386,
+ lldb_esi_i386,
+ lldb_ebp_i386,
+ lldb_esp_i386,
+ lldb_eip_i386,
+ lldb_eflags_i386,
+ lldb_cs_i386,
+ lldb_fs_i386,
+ lldb_gs_i386,
+ lldb_ss_i386,
+ lldb_ds_i386,
+ lldb_es_i386,
+ lldb_ax_i386,
+ lldb_bx_i386,
+ lldb_cx_i386,
+ lldb_dx_i386,
+ lldb_di_i386,
+ lldb_si_i386,
+ lldb_bp_i386,
+ lldb_sp_i386,
+ lldb_ah_i386,
+ lldb_bh_i386,
+ lldb_ch_i386,
+ lldb_dh_i386,
+ lldb_al_i386,
+ lldb_bl_i386,
+ lldb_cl_i386,
+ lldb_dl_i386,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+ };
+ static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) - 1 == k_num_gpr_registers_i386,
+ "g_gpr_regnums_i386 has wrong number of register infos");
+
+ // x86 32-bit floating point registers.
+ const uint32_t
+ g_fpu_regnums_i386[] =
+ {
+ lldb_fctrl_i386,
+ lldb_fstat_i386,
+ lldb_ftag_i386,
+ lldb_fop_i386,
+ lldb_fiseg_i386,
+ lldb_fioff_i386,
+ lldb_foseg_i386,
+ lldb_fooff_i386,
+ lldb_mxcsr_i386,
+ lldb_mxcsrmask_i386,
+ lldb_st0_i386,
+ lldb_st1_i386,
+ lldb_st2_i386,
+ lldb_st3_i386,
+ lldb_st4_i386,
+ lldb_st5_i386,
+ lldb_st6_i386,
+ lldb_st7_i386,
+ lldb_mm0_i386,
+ lldb_mm1_i386,
+ lldb_mm2_i386,
+ lldb_mm3_i386,
+ lldb_mm4_i386,
+ lldb_mm5_i386,
+ lldb_mm6_i386,
+ lldb_mm7_i386,
+ lldb_xmm0_i386,
+ lldb_xmm1_i386,
+ lldb_xmm2_i386,
+ lldb_xmm3_i386,
+ lldb_xmm4_i386,
+ lldb_xmm5_i386,
+ lldb_xmm6_i386,
+ lldb_xmm7_i386,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+ };
+ static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) - 1 == k_num_fpr_registers_i386,
+ "g_fpu_regnums_i386 has wrong number of register infos");
+
+ // x86 32-bit AVX registers.
+ const uint32_t
+ g_avx_regnums_i386[] =
+ {
+ lldb_ymm0_i386,
+ lldb_ymm1_i386,
+ lldb_ymm2_i386,
+ lldb_ymm3_i386,
+ lldb_ymm4_i386,
+ lldb_ymm5_i386,
+ lldb_ymm6_i386,
+ lldb_ymm7_i386,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+ };
+ static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) - 1 == k_num_avx_registers_i386,
+ " g_avx_regnums_i386 has wrong number of register infos");
+
+ // x86 64-bit general purpose registers.
+ static const
+ uint32_t g_gpr_regnums_x86_64[] =
+ {
+ lldb_rax_x86_64,
+ lldb_rbx_x86_64,
+ lldb_rcx_x86_64,
+ lldb_rdx_x86_64,
+ lldb_rdi_x86_64,
+ lldb_rsi_x86_64,
+ lldb_rbp_x86_64,
+ lldb_rsp_x86_64,
+ lldb_r8_x86_64,
+ lldb_r9_x86_64,
+ lldb_r10_x86_64,
+ lldb_r11_x86_64,
+ lldb_r12_x86_64,
+ lldb_r13_x86_64,
+ lldb_r14_x86_64,
+ lldb_r15_x86_64,
+ lldb_rip_x86_64,
+ lldb_rflags_x86_64,
+ lldb_cs_x86_64,
+ lldb_fs_x86_64,
+ lldb_gs_x86_64,
+ lldb_ss_x86_64,
+ lldb_ds_x86_64,
+ lldb_es_x86_64,
+ lldb_eax_x86_64,
+ lldb_ebx_x86_64,
+ lldb_ecx_x86_64,
+ lldb_edx_x86_64,
+ lldb_edi_x86_64,
+ lldb_esi_x86_64,
+ lldb_ebp_x86_64,
+ lldb_esp_x86_64,
+ lldb_r8d_x86_64, // Low 32 bits or r8
+ lldb_r9d_x86_64, // Low 32 bits or r9
+ lldb_r10d_x86_64, // Low 32 bits or r10
+ lldb_r11d_x86_64, // Low 32 bits or r11
+ lldb_r12d_x86_64, // Low 32 bits or r12
+ lldb_r13d_x86_64, // Low 32 bits or r13
+ lldb_r14d_x86_64, // Low 32 bits or r14
+ lldb_r15d_x86_64, // Low 32 bits or r15
+ lldb_ax_x86_64,
+ lldb_bx_x86_64,
+ lldb_cx_x86_64,
+ lldb_dx_x86_64,
+ lldb_di_x86_64,
+ lldb_si_x86_64,
+ lldb_bp_x86_64,
+ lldb_sp_x86_64,
+ lldb_r8w_x86_64, // Low 16 bits or r8
+ lldb_r9w_x86_64, // Low 16 bits or r9
+ lldb_r10w_x86_64, // Low 16 bits or r10
+ lldb_r11w_x86_64, // Low 16 bits or r11
+ lldb_r12w_x86_64, // Low 16 bits or r12
+ lldb_r13w_x86_64, // Low 16 bits or r13
+ lldb_r14w_x86_64, // Low 16 bits or r14
+ lldb_r15w_x86_64, // Low 16 bits or r15
+ lldb_ah_x86_64,
+ lldb_bh_x86_64,
+ lldb_ch_x86_64,
+ lldb_dh_x86_64,
+ lldb_al_x86_64,
+ lldb_bl_x86_64,
+ lldb_cl_x86_64,
+ lldb_dl_x86_64,
+ lldb_dil_x86_64,
+ lldb_sil_x86_64,
+ lldb_bpl_x86_64,
+ lldb_spl_x86_64,
+ lldb_r8l_x86_64, // Low 8 bits or r8
+ lldb_r9l_x86_64, // Low 8 bits or r9
+ lldb_r10l_x86_64, // Low 8 bits or r10
+ lldb_r11l_x86_64, // Low 8 bits or r11
+ lldb_r12l_x86_64, // Low 8 bits or r12
+ lldb_r13l_x86_64, // Low 8 bits or r13
+ lldb_r14l_x86_64, // Low 8 bits or r14
+ lldb_r15l_x86_64, // Low 8 bits or r15
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+ };
+ static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) - 1 == k_num_gpr_registers_x86_64,
+ "g_gpr_regnums_x86_64 has wrong number of register infos");
+
+ // x86 64-bit floating point registers.
+ static const uint32_t
+ g_fpu_regnums_x86_64[] =
+ {
+ lldb_fctrl_x86_64,
+ lldb_fstat_x86_64,
+ lldb_ftag_x86_64,
+ lldb_fop_x86_64,
+ lldb_fiseg_x86_64,
+ lldb_fioff_x86_64,
+ lldb_foseg_x86_64,
+ lldb_fooff_x86_64,
+ lldb_mxcsr_x86_64,
+ lldb_mxcsrmask_x86_64,
+ lldb_st0_x86_64,
+ lldb_st1_x86_64,
+ lldb_st2_x86_64,
+ lldb_st3_x86_64,
+ lldb_st4_x86_64,
+ lldb_st5_x86_64,
+ lldb_st6_x86_64,
+ lldb_st7_x86_64,
+ lldb_mm0_x86_64,
+ lldb_mm1_x86_64,
+ lldb_mm2_x86_64,
+ lldb_mm3_x86_64,
+ lldb_mm4_x86_64,
+ lldb_mm5_x86_64,
+ lldb_mm6_x86_64,
+ lldb_mm7_x86_64,
+ lldb_xmm0_x86_64,
+ lldb_xmm1_x86_64,
+ lldb_xmm2_x86_64,
+ lldb_xmm3_x86_64,
+ lldb_xmm4_x86_64,
+ lldb_xmm5_x86_64,
+ lldb_xmm6_x86_64,
+ lldb_xmm7_x86_64,
+ lldb_xmm8_x86_64,
+ lldb_xmm9_x86_64,
+ lldb_xmm10_x86_64,
+ lldb_xmm11_x86_64,
+ lldb_xmm12_x86_64,
+ lldb_xmm13_x86_64,
+ lldb_xmm14_x86_64,
+ lldb_xmm15_x86_64,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+ };
+ static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) - 1 == k_num_fpr_registers_x86_64,
+ "g_fpu_regnums_x86_64 has wrong number of register infos");
+
+ // x86 64-bit AVX registers.
+ static const uint32_t
+ g_avx_regnums_x86_64[] =
+ {
+ lldb_ymm0_x86_64,
+ lldb_ymm1_x86_64,
+ lldb_ymm2_x86_64,
+ lldb_ymm3_x86_64,
+ lldb_ymm4_x86_64,
+ lldb_ymm5_x86_64,
+ lldb_ymm6_x86_64,
+ lldb_ymm7_x86_64,
+ lldb_ymm8_x86_64,
+ lldb_ymm9_x86_64,
+ lldb_ymm10_x86_64,
+ lldb_ymm11_x86_64,
+ lldb_ymm12_x86_64,
+ lldb_ymm13_x86_64,
+ lldb_ymm14_x86_64,
+ lldb_ymm15_x86_64,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+ };
+ static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) - 1 == k_num_avx_registers_x86_64,
+ "g_avx_regnums_x86_64 has wrong number of register infos");
+
+ // Number of register sets provided by this context.
+ enum
+ {
+ k_num_extended_register_sets = 1,
+ k_num_register_sets = 3
+ };
+
+ // Register sets for x86 32-bit.
+ static const RegisterSet
+ g_reg_sets_i386[k_num_register_sets] =
+ {
+ { "General Purpose Registers", "gpr", k_num_gpr_registers_i386, g_gpr_regnums_i386 },
+ { "Floating Point Registers", "fpu", k_num_fpr_registers_i386, g_fpu_regnums_i386 },
+ { "Advanced Vector Extensions", "avx", k_num_avx_registers_i386, g_avx_regnums_i386 }
+ };
+
+ // Register sets for x86 64-bit.
+ static const RegisterSet
+ g_reg_sets_x86_64[k_num_register_sets] =
+ {
+ { "General Purpose Registers", "gpr", k_num_gpr_registers_x86_64, g_gpr_regnums_x86_64 },
+ { "Floating Point Registers", "fpu", k_num_fpr_registers_x86_64, g_fpu_regnums_x86_64 },
+ { "Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64, g_avx_regnums_x86_64 }
+ };
+}
+
+#define REG_CONTEXT_SIZE (GetRegisterInfoInterface ().GetGPRSize () + sizeof(FPR))
+
+// ----------------------------------------------------------------------------
+// Required ptrace defines.
+// ----------------------------------------------------------------------------
+
+// Support ptrace extensions even when compiled without required kernel support
+#ifndef NT_X86_XSTATE
+#define NT_X86_XSTATE 0x202
+#endif
+#ifndef NT_PRXFPREG
+#define NT_PRXFPREG 0x46e62b7f
+#endif
+
+NativeRegisterContextLinux*
+NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(const ArchSpec& target_arch,
+ NativeThreadProtocol &native_thread,
+ uint32_t concrete_frame_idx)
+{
+ return new NativeRegisterContextLinux_x86_64(target_arch, native_thread, concrete_frame_idx);
+}
+
+// ----------------------------------------------------------------------------
+// NativeRegisterContextLinux_x86_64 members.
+// ----------------------------------------------------------------------------
+
+static RegisterInfoInterface*
+CreateRegisterInfoInterface(const ArchSpec& target_arch)
+{
+ if (HostInfo::GetArchitecture().GetAddressByteSize() == 4)
+ {
+ // 32-bit hosts run with a RegisterContextLinux_i386 context.
+ return new RegisterContextLinux_i386(target_arch);
+ }
+ else
+ {
+ assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) &&
+ "Register setting path assumes this is a 64-bit host");
+ // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the x86_64 register context.
+ return new RegisterContextLinux_x86_64 (target_arch);
+ }
+}
+
+NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64 (const ArchSpec& target_arch,
+ NativeThreadProtocol &native_thread,
+ uint32_t concrete_frame_idx) :
+ NativeRegisterContextLinux (native_thread, concrete_frame_idx, CreateRegisterInfoInterface(target_arch)),
+ m_fpr_type (eFPRTypeNotValid),
+ m_fpr (),
+ m_iovec (),
+ m_ymm_set (),
+ m_reg_info (),
+ m_gpr_x86_64 ()
+{
+ // Set up data about ranges of valid registers.
+ switch (target_arch.GetMachine ())
+ {
+ case llvm::Triple::x86:
+ m_reg_info.num_registers = k_num_registers_i386;
+ m_reg_info.num_gpr_registers = k_num_gpr_registers_i386;
+ m_reg_info.num_fpr_registers = k_num_fpr_registers_i386;
+ m_reg_info.num_avx_registers = k_num_avx_registers_i386;
+ m_reg_info.last_gpr = k_last_gpr_i386;
+ m_reg_info.first_fpr = k_first_fpr_i386;
+ m_reg_info.last_fpr = k_last_fpr_i386;
+ m_reg_info.first_st = lldb_st0_i386;
+ m_reg_info.last_st = lldb_st7_i386;
+ m_reg_info.first_mm = lldb_mm0_i386;
+ m_reg_info.last_mm = lldb_mm7_i386;
+ m_reg_info.first_xmm = lldb_xmm0_i386;
+ m_reg_info.last_xmm = lldb_xmm7_i386;
+ m_reg_info.first_ymm = lldb_ymm0_i386;
+ m_reg_info.last_ymm = lldb_ymm7_i386;
+ m_reg_info.first_dr = lldb_dr0_i386;
+ m_reg_info.gpr_flags = lldb_eflags_i386;
+ break;
+ case llvm::Triple::x86_64:
+ m_reg_info.num_registers = k_num_registers_x86_64;
+ m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64;
+ m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64;
+ m_reg_info.num_avx_registers = k_num_avx_registers_x86_64;
+ m_reg_info.last_gpr = k_last_gpr_x86_64;
+ m_reg_info.first_fpr = k_first_fpr_x86_64;
+ m_reg_info.last_fpr = k_last_fpr_x86_64;
+ m_reg_info.first_st = lldb_st0_x86_64;
+ m_reg_info.last_st = lldb_st7_x86_64;
+ m_reg_info.first_mm = lldb_mm0_x86_64;
+ m_reg_info.last_mm = lldb_mm7_x86_64;
+ m_reg_info.first_xmm = lldb_xmm0_x86_64;
+ m_reg_info.last_xmm = lldb_xmm15_x86_64;
+ m_reg_info.first_ymm = lldb_ymm0_x86_64;
+ m_reg_info.last_ymm = lldb_ymm15_x86_64;
+ m_reg_info.first_dr = lldb_dr0_x86_64;
+ m_reg_info.gpr_flags = lldb_rflags_x86_64;
+ break;
+ default:
+ assert(false && "Unhandled target architecture.");
+ break;
+ }
+
+ // Initialize m_iovec to point to the buffer and buffer size
+ // using the conventions of Berkeley style UIO structures, as required
+ // by PTRACE extensions.
+ m_iovec.iov_base = &m_fpr.xstate.xsave;
+ m_iovec.iov_len = sizeof(m_fpr.xstate.xsave);
+
+ // Clear out the FPR state.
+ ::memset(&m_fpr, 0, sizeof(FPR));
+
+ // Store byte offset of fctrl (i.e. first register of FPR)
+ const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
+ m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;
+}
+
+// CONSIDER after local and llgs debugging are merged, register set support can
+// be moved into a base x86-64 class with IsRegisterSetAvailable made virtual.
+uint32_t
+NativeRegisterContextLinux_x86_64::GetRegisterSetCount () const
+{
+ uint32_t sets = 0;
+ for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
+ {
+ if (IsRegisterSetAvailable (set_index))
+ ++sets;
+ }
+
+ return sets;
+}
+
+uint32_t
+NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const
+{
+ uint32_t count = 0;
+ for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
+ {
+ const RegisterSet* set = GetRegisterSet(set_index);
+ if (set)
+ count += set->num_registers;
+ }
+ return count;
+}
+
+const RegisterSet *
+NativeRegisterContextLinux_x86_64::GetRegisterSet (uint32_t set_index) const
+{
+ if (!IsRegisterSetAvailable (set_index))
+ return nullptr;
+
+ switch (GetRegisterInfoInterface ().GetTargetArchitecture ().GetMachine ())
+ {
+ case llvm::Triple::x86:
+ return &g_reg_sets_i386[set_index];
+ case llvm::Triple::x86_64:
+ return &g_reg_sets_x86_64[set_index];
+ default:
+ assert (false && "Unhandled target architecture.");
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+Error
+NativeRegisterContextLinux_x86_64::ReadRegister (const RegisterInfo *reg_info, RegisterValue &reg_value)
+{
+ Error error;
+
+ if (!reg_info)
+ {
+ error.SetErrorString ("reg_info NULL");
+ return error;
+ }
+
+ const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
+ if (reg == LLDB_INVALID_REGNUM)
+ {
+ // This is likely an internal register for lldb use only and should not be directly queried.
+ error.SetErrorStringWithFormat ("register \"%s\" is an internal-only lldb register, cannot read directly", reg_info->name);
+ return error;
+ }
+
+ if (IsFPR(reg, GetFPRType()))
+ {
+ error = ReadFPR();
+ if (error.Fail())
+ return error;
+ }
+ else
+ {
+ uint32_t full_reg = reg;
+ bool is_subreg = reg_info->invalidate_regs && (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
+
+ if (is_subreg)
+ {
+ // Read the full aligned 64-bit register.
+ full_reg = reg_info->invalidate_regs[0];
+ }
+
+ error = ReadRegisterRaw(full_reg, reg_value);
+
+ if (error.Success ())
+ {
+ // If our read was not aligned (for ah,bh,ch,dh), shift our returned value one byte to the right.
+ if (is_subreg && (reg_info->byte_offset & 0x1))
+ reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
+
+ // If our return byte size was greater than the return value reg size, then
+ // use the type specified by reg_info rather than the uint64_t default
+ if (reg_value.GetByteSize() > reg_info->byte_size)
+ reg_value.SetType(reg_info);
+ }
+ return error;
+ }
+
+ if (reg_info->encoding == lldb::eEncodingVector)
+ {
+ lldb::ByteOrder byte_order = GetByteOrder();
+
+ if (byte_order != lldb::eByteOrderInvalid)
+ {
+ if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
+ reg_value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_st].bytes, reg_info->byte_size, byte_order);
+ if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
+ reg_value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_mm].bytes, reg_info->byte_size, byte_order);
+ if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
+ reg_value.SetBytes(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_xmm].bytes, reg_info->byte_size, byte_order);
+ if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm)
+ {
+ // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes
+ if (GetFPRType() == eFPRTypeXSAVE && CopyXSTATEtoYMM(reg, byte_order))
+ reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, reg_info->byte_size, byte_order);
+ else
+ {
+ error.SetErrorString ("failed to copy ymm register value");
+ return error;
+ }
+ }
+
+ if (reg_value.GetType() != RegisterValue::eTypeBytes)
+ error.SetErrorString ("write failed - type was expected to be RegisterValue::eTypeBytes");
+
+ return error;
+ }
+
+ error.SetErrorString ("byte order is invalid");
+ return error;
+ }
+
+ // Get pointer to m_fpr.xstate.fxsave variable and set the data from it.
+
+ // Byte offsets of all registers are calculated wrt 'UserArea' structure.
+ // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)}
+ // and stores them in 'm_fpr' (of type FPR structure). To extract values of fpu
+ // registers, m_fpr should be read at byte offsets calculated wrt to FPR structure.
+
+ // Since, FPR structure is also one of the member of UserArea structure.
+ // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - byte_offset(fctrl wrt UserArea)
+ assert ( (reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
+ uint8_t *src = (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
+ switch (reg_info->byte_size)
+ {
+ case 1:
+ reg_value.SetUInt8(*(uint8_t *)src);
+ break;
+ case 2:
+ reg_value.SetUInt16(*(uint16_t *)src);
+ break;
+ case 4:
+ reg_value.SetUInt32(*(uint32_t *)src);
+ break;
+ case 8:
+ reg_value.SetUInt64(*(uint64_t *)src);
+ break;
+ default:
+ assert(false && "Unhandled data size.");
+ error.SetErrorStringWithFormat ("unhandled byte size: %" PRIu32, reg_info->byte_size);
+ break;
+ }
+
+ return error;
+}
+
+Error
+NativeRegisterContextLinux_x86_64::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &reg_value)
+{
+ assert (reg_info && "reg_info is null");
+
+ const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
+ if (reg_index == LLDB_INVALID_REGNUM)
+ return Error ("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : "<unknown register>");
+
+ if (IsGPR(reg_index))
+ return WriteRegisterRaw(reg_index, reg_value);
+
+ if (IsFPR(reg_index, GetFPRType()))
+ {
+ if (reg_info->encoding == lldb::eEncodingVector)
+ {
+ if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st)
+ ::memcpy (m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_st].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
+
+ if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm)
+ ::memcpy (m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
+
+ if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm)
+ ::memcpy (m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
+
+ if (reg_index >= m_reg_info.first_ymm && reg_index <= m_reg_info.last_ymm)
+ {
+ if (GetFPRType() != eFPRTypeXSAVE)
+ return Error ("target processor does not support AVX");
+
+ // Store ymm register content, and split into the register halves in xmm.bytes and ymmh.bytes
+ ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
+ if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
+ return Error ("CopyYMMtoXSTATE() failed");
+ }
+ }
+ else
+ {
+ // Get pointer to m_fpr.xstate.fxsave variable and set the data to it.
+
+ // Byte offsets of all registers are calculated wrt 'UserArea' structure.
+ // However, WriteFPR() takes m_fpr (of type FPR structure) and writes only fpu
+ // registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu registers should
+ // be written in m_fpr at byte offsets calculated wrt FPR structure.
+
+ // Since, FPR structure is also one of the member of UserArea structure.
+ // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - byte_offset(fctrl wrt UserArea)
+ assert ( (reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
+ uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
+ switch (reg_info->byte_size)
+ {
+ case 1:
+ *(uint8_t *)dst = reg_value.GetAsUInt8();
+ break;
+ case 2:
+ *(uint16_t *)dst = reg_value.GetAsUInt16();
+ break;
+ case 4:
+ *(uint32_t *)dst = reg_value.GetAsUInt32();
+ break;
+ case 8:
+ *(uint64_t *)dst = reg_value.GetAsUInt64();
+ break;
+ default:
+ assert(false && "Unhandled data size.");
+ return Error ("unhandled register data size %" PRIu32, reg_info->byte_size);
+ }
+ }
+
+ Error error = WriteFPR();
+ if (error.Fail())
+ return error;
+
+ if (IsAVX(reg_index))
+ {
+ if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
+ return Error ("CopyYMMtoXSTATE() failed");
+ }
+ return Error ();
+ }
+ return Error ("failed - register wasn't recognized to be a GPR or an FPR, write strategy unknown");
+}
+
+Error
+NativeRegisterContextLinux_x86_64::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
+{
+ Error error;
+
+ data_sp.reset (new DataBufferHeap (REG_CONTEXT_SIZE, 0));
+ if (!data_sp)
+ {
+ error.SetErrorStringWithFormat ("failed to allocate DataBufferHeap instance of size %" PRIu64, REG_CONTEXT_SIZE);
+ return error;
+ }
+
+ error = ReadGPR();
+ if (error.Fail())
+ return error;
+
+ error = ReadFPR();
+ if (error.Fail())
+ return error;
+
+ uint8_t *dst = data_sp->GetBytes ();
+ if (dst == nullptr)
+ {
+ error.SetErrorStringWithFormat ("DataBufferHeap instance of size %" PRIu64 " returned a null pointer", REG_CONTEXT_SIZE);
+ return error;
+ }
+
+ ::memcpy (dst, &m_gpr_x86_64, GetRegisterInfoInterface ().GetGPRSize ());
+ dst += GetRegisterInfoInterface ().GetGPRSize ();
+ if (GetFPRType () == eFPRTypeFXSAVE)
+ ::memcpy (dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave));
+ else if (GetFPRType () == eFPRTypeXSAVE)
+ {
+ lldb::ByteOrder byte_order = GetByteOrder ();
+
+ // Assemble the YMM register content from the register halves.
+ for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; ++reg)
+ {
+ if (!CopyXSTATEtoYMM (reg, byte_order))
+ {
+ error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s CopyXSTATEtoYMM() failed for reg num %" PRIu32, __FUNCTION__, reg);
+ return error;
+ }
+ }
+
+ // Copy the extended register state including the assembled ymm registers.
+ ::memcpy (dst, &m_fpr, sizeof (m_fpr));
+ }
+ else
+ {
+ assert (false && "how do we save the floating point registers?");
+ error.SetErrorString ("unsure how to save the floating point registers");
+ }
+ /** The following code is specific to Linux x86 based architectures,
+ * where the register orig_eax (32 bit)/orig_rax (64 bit) is set to
+ * -1 to solve the bug 23659, such a setting prevents the automatic
+ * decrement of the instruction pointer which was causing the SIGILL
+ * exception.
+ * **/
+
+ RegisterValue value((uint64_t) -1);
+ const RegisterInfo *reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax");
+ if (reg_info == nullptr)
+ reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax");
+
+ if (reg_info != nullptr)
+ return DoWriteRegisterValue(reg_info->byte_offset,reg_info->name,value);
+
+ return error;
+}
+
+Error
+NativeRegisterContextLinux_x86_64::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
+{
+ Error error;
+
+ if (!data_sp)
+ {
+ error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", __FUNCTION__);
+ return error;
+ }
+
+ if (data_sp->GetByteSize () != REG_CONTEXT_SIZE)
+ {
+ error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched data size, expected %" PRIu64 ", actual %" PRIu64, __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize ());
+ return error;
+ }
+
+
+ uint8_t *src = data_sp->GetBytes ();
+ if (src == nullptr)
+ {
+ error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s DataBuffer::GetBytes() returned a null pointer", __FUNCTION__);
+ return error;
+ }
+ ::memcpy (&m_gpr_x86_64, src, GetRegisterInfoInterface ().GetGPRSize ());
+
+ error = WriteGPR();
+ if (error.Fail())
+ return error;
+
+ src += GetRegisterInfoInterface ().GetGPRSize ();
+ if (GetFPRType () == eFPRTypeFXSAVE)
+ ::memcpy (&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave));
+ else if (GetFPRType () == eFPRTypeXSAVE)
+ ::memcpy (&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave));
+
+ error = WriteFPR();
+ if (error.Fail())
+ return error;
+
+ if (GetFPRType() == eFPRTypeXSAVE)
+ {
+ lldb::ByteOrder byte_order = GetByteOrder();
+
+ // Parse the YMM register content from the register halves.
+ for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; ++reg)
+ {
+ if (!CopyYMMtoXSTATE (reg, byte_order))
+ {
+ error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s CopyYMMtoXSTATE() failed for reg num %" PRIu32, __FUNCTION__, reg);
+ return error;
+ }
+ }
+ }
+
+ return error;
+}
+
+bool
+NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable (uint32_t set_index) const
+{
+ // Note: Extended register sets are assumed to be at the end of g_reg_sets.
+ uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets;
+
+ if (GetFPRType () == eFPRTypeXSAVE)
+ {
+ // AVX is the first extended register set.
+ ++num_sets;
+ }
+ return (set_index < num_sets);
+}
+
+bool
+NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const
+{
+ // GPRs come first.
+ return reg_index <= m_reg_info.last_gpr;
+}
+
+NativeRegisterContextLinux_x86_64::FPRType
+NativeRegisterContextLinux_x86_64::GetFPRType () const
+{
+ Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
+ if (m_fpr_type == eFPRTypeNotValid)
+ {
+ // TODO: Use assembly to call cpuid on the inferior and query ebx or ecx.
+
+ // Try and see if AVX register retrieval works.
+ m_fpr_type = eFPRTypeXSAVE;
+ if (const_cast<NativeRegisterContextLinux_x86_64*>(this)->ReadFPR().Fail())
+ {
+ // Fall back to general floating point with no AVX support.
+ m_fpr_type = eFPRTypeFXSAVE;
+
+ // Check if FXSAVE area can be read.
+ if (const_cast<NativeRegisterContextLinux_x86_64*>(this)->ReadFPR().Fail())
+ {
+ if (log)
+ log->Printf("NativeRegisterContextLinux_x86_64::%s ptrace APIs failed to read XSAVE/FXSAVE area", __FUNCTION__);
+ }
+ }
+ }
+ return m_fpr_type;
+}
+
+bool
+NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const
+{
+ return (m_reg_info.first_fpr <= reg_index && reg_index <= m_reg_info.last_fpr);
+}
+
+bool
+NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index, FPRType fpr_type) const
+{
+ bool generic_fpr = IsFPR(reg_index);
+
+ if (fpr_type == eFPRTypeXSAVE)
+ return generic_fpr || IsAVX(reg_index);
+ return generic_fpr;
+}
+
+Error
+NativeRegisterContextLinux_x86_64::WriteFPR()
+{
+ const FPRType fpr_type = GetFPRType ();
+ const lldb_private::ArchSpec& target_arch = GetRegisterInfoInterface().GetTargetArchitecture();
+ switch (fpr_type)
+ {
+ case FPRType::eFPRTypeFXSAVE:
+ // For 32-bit inferiors on x86_32/x86_64 architectures,
+ // FXSAVE area can be written using PTRACE_SETREGSET ptrace api
+ // For 64-bit inferiors on x86_64 architectures,
+ // FXSAVE area can be written using PTRACE_SETFPREGS ptrace api
+ switch (target_arch.GetMachine ())
+ {
+ case llvm::Triple::x86:
+ return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_PRXFPREG);
+ case llvm::Triple::x86_64:
+ return NativeRegisterContextLinux::WriteFPR();
+ default:
+ assert(false && "Unhandled target architecture.");
+ break;
+ }
+ case FPRType::eFPRTypeXSAVE:
+ return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
+ default:
+ return Error("Unrecognized FPR type");
+ }
+}
+
+bool
+NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const
+{
+ return (m_reg_info.first_ymm <= reg_index && reg_index <= m_reg_info.last_ymm);
+}
+
+bool
+NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM (uint32_t reg_index, lldb::ByteOrder byte_order)
+{
+ if (!IsAVX (reg_index))
+ return false;
+
+ if (byte_order == lldb::eByteOrderLittle)
+ {
+ ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
+ m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof (XMMReg));
+ ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + sizeof (XMMReg),
+ m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof (YMMHReg));
+ return true;
+ }
+
+ if (byte_order == lldb::eByteOrderBig)
+ {
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + sizeof (XMMReg),
+ m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof (XMMReg));
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
+ m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof (YMMHReg));
+ return true;
+ }
+ return false; // unsupported or invalid byte order
+
+}
+
+bool
+NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE(uint32_t reg, lldb::ByteOrder byte_order)
+{
+ if (!IsAVX(reg))
+ return false;
+
+ if (byte_order == lldb::eByteOrderLittle)
+ {
+ ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
+ sizeof(XMMReg));
+ ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
+ sizeof(YMMHReg));
+ return true;
+ }
+
+ if (byte_order == lldb::eByteOrderBig)
+ {
+ ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
+ sizeof(XMMReg));
+ ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
+ sizeof(YMMHReg));
+ return true;
+ }
+ return false; // unsupported or invalid byte order
+}
+
+void*
+NativeRegisterContextLinux_x86_64::GetFPRBuffer()
+{
+ const FPRType fpr_type = GetFPRType ();
+ switch (fpr_type)
+ {
+ case FPRType::eFPRTypeFXSAVE:
+ return &m_fpr.xstate.fxsave;
+ case FPRType::eFPRTypeXSAVE:
+ return &m_iovec;
+ default:
+ return nullptr;
+ }
+}
+
+size_t
+NativeRegisterContextLinux_x86_64::GetFPRSize()
+{
+ const FPRType fpr_type = GetFPRType ();
+ switch (fpr_type)
+ {
+ case FPRType::eFPRTypeFXSAVE:
+ return sizeof(m_fpr.xstate.fxsave);
+ case FPRType::eFPRTypeXSAVE:
+ return sizeof(m_iovec);
+ default:
+ return 0;
+ }
+}
+
+Error
+NativeRegisterContextLinux_x86_64::ReadFPR ()
+{
+ const FPRType fpr_type = GetFPRType ();
+ const lldb_private::ArchSpec& target_arch = GetRegisterInfoInterface().GetTargetArchitecture();
+ switch (fpr_type)
+ {
+ case FPRType::eFPRTypeFXSAVE:
+ // For 32-bit inferiors on x86_32/x86_64 architectures,
+ // FXSAVE area can be read using PTRACE_GETREGSET ptrace api
+ // For 64-bit inferiors on x86_64 architectures,
+ // FXSAVE area can be read using PTRACE_GETFPREGS ptrace api
+ switch (target_arch.GetMachine ())
+ {
+ case llvm::Triple::x86:
+ return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_PRXFPREG);
+ case llvm::Triple::x86_64:
+ return NativeRegisterContextLinux::ReadFPR();
+ default:
+ assert(false && "Unhandled target architecture.");
+ break;
+ }
+ case FPRType::eFPRTypeXSAVE:
+ return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
+ default:
+ return Error("Unrecognized FPR type");
+ }
+}
+
+Error
+NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index, bool &is_hit)
+{
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return Error("Watchpoint index out of range");
+
+ RegisterValue reg_value;
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
+ if (error.Fail())
+ {
+ is_hit = false;
+ return error;
+ }
+
+ uint64_t status_bits = reg_value.GetAsUInt64();
+
+ is_hit = status_bits & (1 << wp_index);
+
+ return error;
+}
+
+Error
+NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex(uint32_t &wp_index, lldb::addr_t trap_addr) {
+ uint32_t num_hw_wps = NumSupportedHardwareWatchpoints();
+ for (wp_index = 0; wp_index < num_hw_wps; ++wp_index)
+ {
+ bool is_hit;
+ Error error = IsWatchpointHit(wp_index, is_hit);
+ if (error.Fail()) {
+ wp_index = LLDB_INVALID_INDEX32;
+ return error;
+ } else if (is_hit) {
+ return error;
+ }
+ }
+ wp_index = LLDB_INVALID_INDEX32;
+ return Error();
+}
+
+Error
+NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index, bool &is_vacant)
+{
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return Error ("Watchpoint index out of range");
+
+ RegisterValue reg_value;
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail())
+ {
+ is_vacant = false;
+ return error;
+ }
+
+ uint64_t control_bits = reg_value.GetAsUInt64();
+
+ is_vacant = !(control_bits & (1 << (2 * wp_index)));
+
+ return error;
+}
+
+Error
+NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex(
+ lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) {
+
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return Error ("Watchpoint index out of range");
+
+ // Read only watchpoints aren't supported on x86_64. Fall back to read/write waitchpoints instead.
+ // TODO: Add logic to detect when a write happens and ignore that watchpoint hit.
+ if (watch_flags == 0x2)
+ watch_flags = 0x3;
+
+ if (watch_flags != 0x1 && watch_flags != 0x3)
+ return Error ("Invalid read/write bits for watchpoint");
+
+ if (size != 1 && size != 2 && size != 4 && size != 8)
+ return Error ("Invalid size for watchpoint");
+
+ bool is_vacant;
+ Error error = IsWatchpointVacant (wp_index, is_vacant);
+ if (error.Fail()) return error;
+ if (!is_vacant) return Error("Watchpoint index not vacant");
+
+ RegisterValue reg_value;
+ error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail()) return error;
+
+ // for watchpoints 0, 1, 2, or 3, respectively,
+ // set bits 1, 3, 5, or 7
+ uint64_t enable_bit = 1 << (2 * wp_index);
+
+ // set bits 16-17, 20-21, 24-25, or 28-29
+ // with 0b01 for write, and 0b11 for read/write
+ uint64_t rw_bits = watch_flags << (16 + 4 * wp_index);
+
+ // set bits 18-19, 22-23, 26-27, or 30-31
+ // with 0b00, 0b01, 0b10, or 0b11
+ // for 1, 2, 8 (if supported), or 4 bytes, respectively
+ uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index);
+
+ uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
+
+ uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
+
+ control_bits |= enable_bit | rw_bits | size_bits;
+
+ error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr));
+ if (error.Fail()) return error;
+
+ error = WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
+ if (error.Fail()) return error;
+
+ error.Clear();
+ return error;
+}
+
+bool
+NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint(uint32_t wp_index)
+{
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return false;
+
+ RegisterValue reg_value;
+
+ // for watchpoints 0, 1, 2, or 3, respectively,
+ // clear bits 0, 1, 2, or 3 of the debug status register (DR6)
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
+ if (error.Fail()) return false;
+ uint64_t bit_mask = 1 << wp_index;
+ uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
+ if (error.Fail()) return false;
+
+ // for watchpoints 0, 1, 2, or 3, respectively,
+ // clear bits {0-1,16-19}, {2-3,20-23}, {4-5,24-27}, or {6-7,28-31}
+ // of the debug control register (DR7)
+ error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail()) return false;
+ bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
+ uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)).Success();
+}
+
+Error
+NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints()
+{
+ RegisterValue reg_value;
+
+ // clear bits {0-4} of the debug status register (DR6)
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
+ if (error.Fail()) return error;
+ uint64_t bit_mask = 0xF;
+ uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
+ if (error.Fail()) return error;
+
+ // clear bits {0-7,16-31} of the debug control register (DR7)
+ error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail()) return error;
+ bit_mask = 0xFF | (0xFFFF << 16);
+ uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
+}
+
+uint32_t
+NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint(
+ lldb::addr_t addr, size_t size, uint32_t watch_flags)
+{
+ Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
+ const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
+ for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index)
+ {
+ bool is_vacant;
+ Error error = IsWatchpointVacant(wp_index, is_vacant);
+ if (is_vacant)
+ {
+ error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index);
+ if (error.Success())
+ return wp_index;
+ }
+ if (error.Fail() && log)
+ {
+ log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s",
+ __FUNCTION__, error.AsCString());
+ }
+ }
+ return LLDB_INVALID_INDEX32;
+}
+
+lldb::addr_t
+NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index)
+{
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return LLDB_INVALID_ADDRESS;
+ RegisterValue reg_value;
+ if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail())
+ return LLDB_INVALID_ADDRESS;
+ return reg_value.GetAsUInt64();
+}
+
+uint32_t
+NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints ()
+{
+ // Available debug address registers: dr0, dr1, dr2, dr3
+ return 4;
+}
+
+#endif // defined(__i386__) || defined(__x86_64__)