aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp')
-rw-r--r--source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp1926
1 files changed, 845 insertions, 1081 deletions
diff --git a/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
index 57983c4979a6..27ce67ded783 100644
--- a/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
+++ b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
@@ -21,12 +21,12 @@
#include "lldb/Target/Target.h"
#include "lldb/Utility/Utils.h"
// Project includes
-#include "Utility/StringExtractorGDBRemote.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"
+#include "Utility/StringExtractorGDBRemote.h"
using namespace lldb;
using namespace lldb_private;
@@ -35,1189 +35,953 @@ using namespace lldb_private::process_gdb_remote;
//----------------------------------------------------------------------
// GDBRemoteRegisterContext constructor
//----------------------------------------------------------------------
-GDBRemoteRegisterContext::GDBRemoteRegisterContext
-(
- ThreadGDBRemote &thread,
- uint32_t concrete_frame_idx,
- GDBRemoteDynamicRegisterInfo &reg_info,
- bool read_all_at_once
-) :
- RegisterContext (thread, concrete_frame_idx),
- m_reg_info (reg_info),
- m_reg_valid (),
- m_reg_data (),
- m_read_all_at_once (read_all_at_once)
-{
- // Resize our vector of bools to contain one bool for every register.
- // We will use these boolean values to know when a register value
- // is valid in m_reg_data.
- m_reg_valid.resize (reg_info.GetNumRegisters());
-
- // Make a heap based buffer that is big enough to store all registers
- DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
- m_reg_data.SetData (reg_data_sp);
- m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
+GDBRemoteRegisterContext::GDBRemoteRegisterContext(
+ ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
+ GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
+ : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
+ m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
+ // Resize our vector of bools to contain one bool for every register.
+ // We will use these boolean values to know when a register value
+ // is valid in m_reg_data.
+ m_reg_valid.resize(reg_info.GetNumRegisters());
+
+ // Make a heap based buffer that is big enough to store all registers
+ DataBufferSP reg_data_sp(
+ new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
+ m_reg_data.SetData(reg_data_sp);
+ m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
-GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
-{
-}
+GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
-void
-GDBRemoteRegisterContext::InvalidateAllRegisters ()
-{
- SetAllRegisterValid (false);
+void GDBRemoteRegisterContext::InvalidateAllRegisters() {
+ SetAllRegisterValid(false);
}
-void
-GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
-{
- std::vector<bool>::iterator pos, end = m_reg_valid.end();
- for (pos = m_reg_valid.begin(); pos != end; ++pos)
- *pos = b;
+void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
+ std::vector<bool>::iterator pos, end = m_reg_valid.end();
+ for (pos = m_reg_valid.begin(); pos != end; ++pos)
+ *pos = b;
}
-size_t
-GDBRemoteRegisterContext::GetRegisterCount ()
-{
- return m_reg_info.GetNumRegisters ();
+size_t GDBRemoteRegisterContext::GetRegisterCount() {
+ return m_reg_info.GetNumRegisters();
}
const RegisterInfo *
-GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
-{
- RegisterInfo* reg_info = m_reg_info.GetRegisterInfoAtIndex (reg);
-
- if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes)
- {
- const ArchSpec &arch = m_thread.GetProcess ()->GetTarget ().GetArchitecture ();
- uint8_t reg_size = UpdateDynamicRegisterSize (arch, reg_info);
- reg_info->byte_size = reg_size;
- }
- return reg_info;
+GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
+ RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
+
+ if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
+ const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
+ uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
+ reg_info->byte_size = reg_size;
+ }
+ return reg_info;
}
-size_t
-GDBRemoteRegisterContext::GetRegisterSetCount ()
-{
- return m_reg_info.GetNumRegisterSets ();
+size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
+ return m_reg_info.GetNumRegisterSets();
}
-
-
-const RegisterSet *
-GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
-{
- return m_reg_info.GetRegisterSet (reg_set);
+const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
+ return m_reg_info.GetRegisterSet(reg_set);
}
+bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
+ RegisterValue &value) {
+ // Read the register
+ if (ReadRegisterBytes(reg_info, m_reg_data)) {
+ const bool partial_data_ok = false;
+ Error error(value.SetValueFromData(reg_info, m_reg_data,
+ reg_info->byte_offset, partial_data_ok));
+ return error.Success();
+ }
+ return false;
+}
-
-bool
-GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
-{
- // Read the register
- if (ReadRegisterBytes (reg_info, m_reg_data))
- {
- const bool partial_data_ok = false;
- Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
- return error.Success();
- }
+bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
+ uint32_t reg, llvm::ArrayRef<uint8_t> data) {
+ const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
+ if (reg_info == NULL)
return false;
-}
-bool
-GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
-{
- const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
- if (reg_info == NULL)
- return false;
-
- // Invalidate if needed
- InvalidateIfNeeded(false);
-
- const uint32_t reg_byte_size = reg_info->byte_size;
- const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
- bool success = bytes_copied == reg_byte_size;
- if (success)
- {
- SetRegisterIsValid(reg, true);
- }
- else if (bytes_copied > 0)
- {
- // Only set register is valid to false if we copied some bytes, else
- // leave it as it was.
- SetRegisterIsValid(reg, false);
- }
- return success;
+ // Invalidate if needed
+ InvalidateIfNeeded(false);
+
+ const size_t reg_byte_size = reg_info->byte_size;
+ memcpy(const_cast<uint8_t *>(
+ m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
+ data.data(), std::min(data.size(), reg_byte_size));
+ bool success = data.size() >= reg_byte_size;
+ if (success) {
+ SetRegisterIsValid(reg, true);
+ } else if (data.size() > 0) {
+ // Only set register is valid to false if we copied some bytes, else
+ // leave it as it was.
+ SetRegisterIsValid(reg, false);
+ }
+ return success;
}
-bool
-GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, uint64_t new_reg_val)
-{
- const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
- if (reg_info == NULL)
- return false;
-
- // Early in process startup, we can get a thread that has an invalid byte order
- // because the process hasn't been completely set up yet (see the ctor where the
- // byte order is setfrom the process). If that's the case, we can't set the
- // value here.
- if (m_reg_data.GetByteOrder() == eByteOrderInvalid)
- {
- return false;
- }
-
- // Invalidate if needed
- InvalidateIfNeeded (false);
+bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
+ uint64_t new_reg_val) {
+ const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
+ if (reg_info == NULL)
+ return false;
- DataBufferSP buffer_sp (new DataBufferHeap (&new_reg_val, sizeof (new_reg_val)));
- DataExtractor data (buffer_sp, endian::InlHostByteOrder(), sizeof (void*));
+ // Early in process startup, we can get a thread that has an invalid byte
+ // order
+ // because the process hasn't been completely set up yet (see the ctor where
+ // the
+ // byte order is setfrom the process). If that's the case, we can't set the
+ // value here.
+ if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
+ return false;
+ }
- // If our register context and our register info disagree, which should never happen, don't
- // overwrite past the end of the buffer.
- if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
- return false;
+ // Invalidate if needed
+ InvalidateIfNeeded(false);
- // Grab a pointer to where we are going to put this register
- uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
+ DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
+ DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
- if (dst == NULL)
- return false;
+ // If our register context and our register info disagree, which should never
+ // happen, don't
+ // overwrite past the end of the buffer.
+ if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
+ return false;
+ // Grab a pointer to where we are going to put this register
+ uint8_t *dst = const_cast<uint8_t *>(
+ m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
- if (data.CopyByteOrderedData (0, // src offset
- reg_info->byte_size, // src length
- dst, // dst
- reg_info->byte_size, // dst length
- m_reg_data.GetByteOrder())) // dst byte order
- {
- SetRegisterIsValid (reg, true);
- return true;
- }
+ if (dst == NULL)
return false;
+
+ if (data.CopyByteOrderedData(0, // src offset
+ reg_info->byte_size, // src length
+ dst, // dst
+ reg_info->byte_size, // dst length
+ m_reg_data.GetByteOrder())) // dst byte order
+ {
+ SetRegisterIsValid(reg, true);
+ return true;
+ }
+ return false;
}
// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
-bool
-GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info,
- GDBRemoteCommunicationClient &gdb_comm)
-{
- const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
- const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
- StringExtractorGDBRemote response;
- if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg, response))
- return PrivateSetRegisterValue (lldb_reg, response);
- return false;
+bool GDBRemoteRegisterContext::GetPrimordialRegister(
+ const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
+ const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
+ const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
+ StringExtractorGDBRemote response;
+ if (DataBufferSP buffer_sp =
+ gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
+ return PrivateSetRegisterValue(
+ lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
+ buffer_sp->GetByteSize()));
+ return false;
}
-bool
-GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
-{
- ExecutionContext exe_ctx (CalculateThread());
+bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
+ DataExtractor &data) {
+ ExecutionContext exe_ctx(CalculateThread());
- Process *process = exe_ctx.GetProcessPtr();
- Thread *thread = exe_ctx.GetThreadPtr();
- if (process == NULL || thread == NULL)
- return false;
-
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
- InvalidateIfNeeded(false);
+ GDBRemoteCommunicationClient &gdb_comm(
+ ((ProcessGDBRemote *)process)->GetGDBRemote());
- const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+ InvalidateIfNeeded(false);
- if (!GetRegisterIsValid(reg))
- {
- if (m_read_all_at_once)
- {
- StringExtractorGDBRemote response;
- if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response))
- return false;
- if (response.IsNormalResponse())
- if (response.GetHexBytes(const_cast<void *>(reinterpret_cast<const void *>(m_reg_data.GetDataStart())),
- m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
- SetAllRegisterValid (true);
- }
- else if (reg_info->value_regs)
- {
- // Process this composite register request by delegating to the constituent
- // primordial registers.
-
- // Index of the primordial register.
- bool success = true;
- for (uint32_t idx = 0; success; ++idx)
- {
- const uint32_t prim_reg = reg_info->value_regs[idx];
- if (prim_reg == LLDB_INVALID_REGNUM)
- break;
- // We have a valid primordial register as our constituent.
- // Grab the corresponding register info.
- const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
- if (prim_reg_info == NULL)
- success = false;
- else
- {
- // Read the containing register if it hasn't already been read
- if (!GetRegisterIsValid(prim_reg))
- success = GetPrimordialRegister(prim_reg_info, gdb_comm);
- }
- }
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
- if (success)
- {
- // If we reach this point, all primordial register requests have succeeded.
- // Validate this composite register.
- SetRegisterIsValid (reg_info, true);
- }
+ if (!GetRegisterIsValid(reg)) {
+ if (m_read_all_at_once) {
+ if (DataBufferSP buffer_sp =
+ gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
+ memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
+ buffer_sp->GetBytes(),
+ std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
+ if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
+ SetAllRegisterValid(true);
+ return true;
}
- else
- {
- // Get each register individually
- GetPrimordialRegister(reg_info, gdb_comm);
+ }
+ return false;
+ }
+ if (reg_info->value_regs) {
+ // Process this composite register request by delegating to the
+ // constituent
+ // primordial registers.
+
+ // Index of the primordial register.
+ bool success = true;
+ for (uint32_t idx = 0; success; ++idx) {
+ const uint32_t prim_reg = reg_info->value_regs[idx];
+ if (prim_reg == LLDB_INVALID_REGNUM)
+ break;
+ // We have a valid primordial register as our constituent.
+ // Grab the corresponding register info.
+ const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
+ if (prim_reg_info == NULL)
+ success = false;
+ else {
+ // Read the containing register if it hasn't already been read
+ if (!GetRegisterIsValid(prim_reg))
+ success = GetPrimordialRegister(prim_reg_info, gdb_comm);
}
-
- // Make sure we got a valid register value after reading it
- if (!GetRegisterIsValid(reg))
- return false;
+ }
+
+ if (success) {
+ // If we reach this point, all primordial register requests have
+ // succeeded.
+ // Validate this composite register.
+ SetRegisterIsValid(reg_info, true);
+ }
+ } else {
+ // Get each register individually
+ GetPrimordialRegister(reg_info, gdb_comm);
}
- if (&data != &m_reg_data)
- {
-#if defined (LLDB_CONFIGURATION_DEBUG)
- assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
-#endif
- // If our register context and our register info disagree, which should never happen, don't
- // read past the end of the buffer.
- if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
- return false;
-
- // If we aren't extracting into our own buffer (which
- // only happens when this function is called from
- // ReadRegisterValue(uint32_t, Scalar&)) then
- // we transfer bytes from our buffer into the data
- // buffer that was passed in
-
- data.SetByteOrder (m_reg_data.GetByteOrder());
- data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
- }
- return true;
-}
+ // Make sure we got a valid register value after reading it
+ if (!GetRegisterIsValid(reg))
+ return false;
+ }
-bool
-GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
- const RegisterValue &value)
-{
- DataExtractor data;
- if (value.GetData (data))
- return WriteRegisterBytes (reg_info, data, 0);
- return false;
+ if (&data != &m_reg_data) {
+#if defined(LLDB_CONFIGURATION_DEBUG)
+ assert(m_reg_data.GetByteSize() >=
+ reg_info->byte_offset + reg_info->byte_size);
+#endif
+ // If our register context and our register info disagree, which should
+ // never happen, don't
+ // read past the end of the buffer.
+ if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
+ return false;
+
+ // If we aren't extracting into our own buffer (which
+ // only happens when this function is called from
+ // ReadRegisterValue(uint32_t, Scalar&)) then
+ // we transfer bytes from our buffer into the data
+ // buffer that was passed in
+
+ data.SetByteOrder(m_reg_data.GetByteOrder());
+ data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
+ }
+ return true;
}
-// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
-bool
-GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info,
- GDBRemoteCommunicationClient &gdb_comm)
-{
- StreamString packet;
- StringExtractorGDBRemote response;
- const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
- packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
- packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
- reg_info->byte_size,
- endian::InlHostByteOrder(),
- endian::InlHostByteOrder());
-
- if (gdb_comm.GetThreadSuffixSupported())
- packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
-
- // Invalidate just this register
- SetRegisterIsValid(reg, false);
- if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
- packet.GetString().size(),
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- if (response.IsOKResponse())
- return true;
- }
- return false;
+bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
+ const RegisterValue &value) {
+ DataExtractor data;
+ if (value.GetData(data))
+ return WriteRegisterBytes(reg_info, data, 0);
+ return false;
}
-void
-GDBRemoteRegisterContext::SyncThreadState(Process *process)
-{
- // NB. We assume our caller has locked the sequence mutex.
-
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
- if (!gdb_comm.GetSyncThreadStateSupported())
- return;
-
- StreamString packet;
- StringExtractorGDBRemote response;
- packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
- if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
- packet.GetString().size(),
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- if (response.IsOKResponse())
- InvalidateAllRegisters();
- }
+// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
+bool GDBRemoteRegisterContext::SetPrimordialRegister(
+ const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
+ StreamString packet;
+ StringExtractorGDBRemote response;
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+ // Invalidate just this register
+ SetRegisterIsValid(reg, false);
+
+ return gdb_comm.WriteRegister(
+ m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
+ {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
+ reg_info->byte_size});
}
-bool
-GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
-{
- ExecutionContext exe_ctx (CalculateThread());
+bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
+ DataExtractor &data,
+ uint32_t data_offset) {
+ ExecutionContext exe_ctx(CalculateThread());
- Process *process = exe_ctx.GetProcessPtr();
- Thread *thread = exe_ctx.GetThreadPtr();
- if (process == NULL || thread == NULL)
- return false;
-
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
-// FIXME: This check isn't right because IsRunning checks the Public state, but this
-// is work you need to do - for instance in ShouldStop & friends - before the public
-// state has been changed.
-// if (gdb_comm.IsRunning())
-// return false;
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
+ GDBRemoteCommunicationClient &gdb_comm(
+ ((ProcessGDBRemote *)process)->GetGDBRemote());
-#if defined (LLDB_CONFIGURATION_DEBUG)
- assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size);
+#if defined(LLDB_CONFIGURATION_DEBUG)
+ assert(m_reg_data.GetByteSize() >=
+ reg_info->byte_offset + reg_info->byte_size);
#endif
- // If our register context and our register info disagree, which should never happen, don't
- // overwrite past the end of the buffer.
- if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
- return false;
+ // If our register context and our register info disagree, which should never
+ // happen, don't
+ // overwrite past the end of the buffer.
+ if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
+ return false;
- // Grab a pointer to where we are going to put this register
- uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
+ // Grab a pointer to where we are going to put this register
+ uint8_t *dst = const_cast<uint8_t *>(
+ m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
- if (dst == NULL)
- return false;
+ if (dst == NULL)
+ return false;
+ if (data.CopyByteOrderedData(data_offset, // src offset
+ reg_info->byte_size, // src length
+ dst, // dst
+ reg_info->byte_size, // dst length
+ m_reg_data.GetByteOrder())) // dst byte order
+ {
+ GDBRemoteClientBase::Lock lock(gdb_comm, false);
+ if (lock) {
+ if (m_read_all_at_once) {
+ // Invalidate all register values
+ InvalidateIfNeeded(true);
+
+ // Set all registers in one packet
+ if (gdb_comm.WriteAllRegisters(
+ m_thread.GetProtocolID(),
+ {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
- if (data.CopyByteOrderedData (data_offset, // src offset
- reg_info->byte_size, // src length
- dst, // dst
- reg_info->byte_size, // dst length
- m_reg_data.GetByteOrder())) // dst byte order
- {
- Mutex::Locker locker;
- if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
{
- const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
- ProcessSP process_sp (m_thread.GetProcess());
- if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
- {
- StreamString packet;
- StringExtractorGDBRemote response;
-
- if (m_read_all_at_once)
- {
- // Set all registers in one packet
- packet.PutChar ('G');
- packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
- m_reg_data.GetByteSize(),
- endian::InlHostByteOrder(),
- endian::InlHostByteOrder());
-
- if (thread_suffix_supported)
- packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
-
- // Invalidate all register values
- InvalidateIfNeeded (true);
-
- if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
- packet.GetString().size(),
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- SetAllRegisterValid (false);
- if (response.IsOKResponse())
- {
- return true;
- }
- }
- }
- else
- {
- bool success = true;
-
- if (reg_info->value_regs)
- {
- // This register is part of another register. In this case we read the actual
- // register data for any "value_regs", and once all that data is read, we will
- // have enough data in our register context bytes for the value of this register
-
- // Invalidate this composite register first.
-
- for (uint32_t idx = 0; success; ++idx)
- {
- const uint32_t reg = reg_info->value_regs[idx];
- if (reg == LLDB_INVALID_REGNUM)
- break;
- // We have a valid primordial register as our constituent.
- // Grab the corresponding register info.
- const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
- if (value_reg_info == NULL)
- success = false;
- else
- success = SetPrimordialRegister(value_reg_info, gdb_comm);
- }
- }
- else
- {
- // This is an actual register, write it
- success = SetPrimordialRegister(reg_info, gdb_comm);
- }
-
- // Check if writing this register will invalidate any other register values?
- // If so, invalidate them
- if (reg_info->invalidate_regs)
- {
- for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
- reg != LLDB_INVALID_REGNUM;
- reg = reg_info->invalidate_regs[++idx])
- {
- SetRegisterIsValid(reg, false);
- }
- }
-
- return success;
- }
- }
+ SetAllRegisterValid(false);
+ return true;
}
- else
- {
- Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
- if (log)
- {
- if (log->GetVerbose())
- {
- StreamString strm;
- gdb_comm.DumpHistory(strm);
- log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
- }
- else
- log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
- }
+ } else {
+ bool success = true;
+
+ if (reg_info->value_regs) {
+ // This register is part of another register. In this case we read the
+ // actual
+ // register data for any "value_regs", and once all that data is read,
+ // we will
+ // have enough data in our register context bytes for the value of
+ // this register
+
+ // Invalidate this composite register first.
+
+ for (uint32_t idx = 0; success; ++idx) {
+ const uint32_t reg = reg_info->value_regs[idx];
+ if (reg == LLDB_INVALID_REGNUM)
+ break;
+ // We have a valid primordial register as our constituent.
+ // Grab the corresponding register info.
+ const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
+ if (value_reg_info == NULL)
+ success = false;
+ else
+ success = SetPrimordialRegister(value_reg_info, gdb_comm);
+ }
+ } else {
+ // This is an actual register, write it
+ success = SetPrimordialRegister(reg_info, gdb_comm);
+ }
+
+ // Check if writing this register will invalidate any other register
+ // values?
+ // If so, invalidate them
+ if (reg_info->invalidate_regs) {
+ for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
+ reg != LLDB_INVALID_REGNUM;
+ reg = reg_info->invalidate_regs[++idx]) {
+ SetRegisterIsValid(reg, false);
+ }
}
+
+ return success;
+ }
+ } else {
+ Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
+ GDBR_LOG_PACKETS));
+ if (log) {
+ if (log->GetVerbose()) {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending "
+ "write register for \"%s\":\n%s",
+ reg_info->name, strm.GetData());
+ } else
+ log->Printf("error: failed to get packet sequence mutex, not sending "
+ "write register for \"%s\"",
+ reg_info->name);
+ }
}
+ }
+ return false;
+}
+
+bool GDBRemoteRegisterContext::ReadAllRegisterValues(
+ RegisterCheckpoint &reg_checkpoint) {
+ ExecutionContext exe_ctx(CalculateThread());
+
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
return false;
+
+ GDBRemoteCommunicationClient &gdb_comm(
+ ((ProcessGDBRemote *)process)->GetGDBRemote());
+
+ uint32_t save_id = 0;
+ if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
+ reg_checkpoint.SetID(save_id);
+ reg_checkpoint.GetData().reset();
+ return true;
+ } else {
+ reg_checkpoint.SetID(0); // Invalid save ID is zero
+ return ReadAllRegisterValues(reg_checkpoint.GetData());
+ }
}
-bool
-GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint &reg_checkpoint)
-{
- ExecutionContext exe_ctx (CalculateThread());
-
+bool GDBRemoteRegisterContext::WriteAllRegisterValues(
+ const RegisterCheckpoint &reg_checkpoint) {
+ uint32_t save_id = reg_checkpoint.GetID();
+ if (save_id != 0) {
+ ExecutionContext exe_ctx(CalculateThread());
+
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
- return false;
-
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
-
- uint32_t save_id = 0;
- if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id))
- {
- reg_checkpoint.SetID(save_id);
- reg_checkpoint.GetData().reset();
- return true;
- }
- else
- {
- reg_checkpoint.SetID(0); // Invalid save ID is zero
- return ReadAllRegisterValues(reg_checkpoint.GetData());
- }
-}
+ return false;
-bool
-GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint &reg_checkpoint)
-{
- uint32_t save_id = reg_checkpoint.GetID();
- if (save_id != 0)
- {
- ExecutionContext exe_ctx (CalculateThread());
-
- Process *process = exe_ctx.GetProcessPtr();
- Thread *thread = exe_ctx.GetThreadPtr();
- if (process == NULL || thread == NULL)
- return false;
-
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
-
- return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
- }
- else
- {
- return WriteAllRegisterValues(reg_checkpoint.GetData());
- }
+ GDBRemoteCommunicationClient &gdb_comm(
+ ((ProcessGDBRemote *)process)->GetGDBRemote());
+
+ return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
+ } else {
+ return WriteAllRegisterValues(reg_checkpoint.GetData());
+ }
}
-bool
-GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
-{
- ExecutionContext exe_ctx (CalculateThread());
+bool GDBRemoteRegisterContext::ReadAllRegisterValues(
+ lldb::DataBufferSP &data_sp) {
+ ExecutionContext exe_ctx(CalculateThread());
- Process *process = exe_ctx.GetProcessPtr();
- Thread *thread = exe_ctx.GetThreadPtr();
- if (process == NULL || thread == NULL)
- return false;
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+ GDBRemoteCommunicationClient &gdb_comm(
+ ((ProcessGDBRemote *)process)->GetGDBRemote());
- StringExtractorGDBRemote response;
+ const bool use_g_packet =
+ gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
- const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
+ GDBRemoteClientBase::Lock lock(gdb_comm, false);
+ if (lock) {
+ if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
+ InvalidateAllRegisters();
- Mutex::Locker locker;
- if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
- {
- SyncThreadState(process);
-
- char packet[32];
- const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
- ProcessSP process_sp (m_thread.GetProcess());
- if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
- {
- int packet_len = 0;
- if (thread_suffix_supported)
- packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
- else
- packet_len = ::snprintf (packet, sizeof(packet), "g");
- assert (packet_len < ((int)sizeof(packet) - 1));
-
- if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
- {
- int packet_len = 0;
- if (thread_suffix_supported)
- packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
- else
- packet_len = ::snprintf (packet, sizeof(packet), "g");
- assert (packet_len < ((int)sizeof(packet) - 1));
-
- if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success)
- {
- if (response.IsErrorResponse())
- return false;
-
- std::string &response_str = response.GetStringRef();
- if (isxdigit(response_str[0]))
- {
- response_str.insert(0, 1, 'G');
- if (thread_suffix_supported)
- {
- char thread_id_cstr[64];
- ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
- response_str.append (thread_id_cstr);
- }
- data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
- return true;
- }
- }
- }
- else
- {
- // For the use_g_packet == false case, we're going to read each register
- // individually and store them as binary data in a buffer instead of as ascii
- // characters.
- const RegisterInfo *reg_info;
-
- // data_sp will take ownership of this DataBufferHeap pointer soon.
- DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0));
-
- for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
- {
- if (reg_info->value_regs) // skip registers that are slices of real registers
- continue;
- ReadRegisterBytes (reg_info, m_reg_data);
- // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer
- }
- memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
-
- data_sp = reg_ctx;
- return true;
- }
- }
- }
- else
- {
+ if (use_g_packet &&
+ (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
+ return true;
- Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
- if (log)
- {
- if (log->GetVerbose())
- {
- StreamString strm;
- gdb_comm.DumpHistory(strm);
- log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
- }
- else
- log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
- }
+ // We're going to read each register
+ // individually and store them as binary data in a buffer.
+ const RegisterInfo *reg_info;
+
+ for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) {
+ if (reg_info
+ ->value_regs) // skip registers that are slices of real registers
+ continue;
+ ReadRegisterBytes(reg_info, m_reg_data);
+ // ReadRegisterBytes saves the contents of the register in to the
+ // m_reg_data buffer
}
+ data_sp.reset(new DataBufferHeap(m_reg_data.GetDataStart(),
+ m_reg_info.GetRegisterDataByteSize()));
+ return true;
+ } else {
+
+ Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
+ GDBR_LOG_PACKETS));
+ if (log) {
+ if (log->GetVerbose()) {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending "
+ "read all registers:\n%s",
+ strm.GetData());
+ } else
+ log->Printf("error: failed to get packet sequence mutex, not sending "
+ "read all registers");
+ }
+ }
- data_sp.reset();
- return false;
+ data_sp.reset();
+ return false;
}
-bool
-GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
-{
- if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
- return false;
+bool GDBRemoteRegisterContext::WriteAllRegisterValues(
+ const lldb::DataBufferSP &data_sp) {
+ if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
+ return false;
- ExecutionContext exe_ctx (CalculateThread());
+ ExecutionContext exe_ctx(CalculateThread());
- Process *process = exe_ctx.GetProcessPtr();
- Thread *thread = exe_ctx.GetThreadPtr();
- if (process == NULL || thread == NULL)
- return false;
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
- GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+ GDBRemoteCommunicationClient &gdb_comm(
+ ((ProcessGDBRemote *)process)->GetGDBRemote());
- const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false;
+ const bool use_g_packet =
+ gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
- StringExtractorGDBRemote response;
- Mutex::Locker locker;
- if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
- {
- const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
- ProcessSP process_sp (m_thread.GetProcess());
- if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
- {
- // The data_sp contains the entire G response packet including the
- // G, and if the thread suffix is supported, it has the thread suffix
- // as well.
- const char *G_packet = (const char *)data_sp->GetBytes();
- size_t G_packet_len = data_sp->GetByteSize();
- if (use_g_packet
- && gdb_comm.SendPacketAndWaitForResponse (G_packet,
- G_packet_len,
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- // The data_sp contains the entire G response packet including the
- // G, and if the thread suffix is supported, it has the thread suffix
- // as well.
- const char *G_packet = (const char *)data_sp->GetBytes();
- size_t G_packet_len = data_sp->GetByteSize();
- if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
- G_packet_len,
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- if (response.IsOKResponse())
- return true;
- else if (response.IsErrorResponse())
- {
- uint32_t num_restored = 0;
- // We need to manually go through all of the registers and
- // restore them manually
-
- response.GetStringRef().assign (G_packet, G_packet_len);
- response.SetFilePos(1); // Skip the leading 'G'
-
- // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier.
- // This means buffer will be a little more than 2x larger than necessary but we resize
- // it down once we've extracted all hex ascii chars from the packet.
- DataBufferHeap buffer (G_packet_len, 0);
-
- const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(),
- buffer.GetByteSize(),
- '\xcc');
-
- DataExtractor restore_data (buffer.GetBytes(),
- buffer.GetByteSize(),
- m_reg_data.GetByteOrder(),
- m_reg_data.GetAddressByteSize());
-
- if (bytes_extracted < restore_data.GetByteSize())
- restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
-
- const RegisterInfo *reg_info;
-
- // The g packet contents may either include the slice registers (registers defined in
- // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers
- // should NOT be in the g packet, but some implementations may incorrectly include them.
- //
- // If the slice registers are included in the packet, we must step over the slice registers
- // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect.
- // If the slice registers are not included, then using the byte_offset values into the
- // data buffer is the best way to find individual register values.
-
- uint64_t size_including_slice_registers = 0;
- uint64_t size_not_including_slice_registers = 0;
- uint64_t size_by_highest_offset = 0;
-
- for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
- {
- size_including_slice_registers += reg_info->byte_size;
- if (reg_info->value_regs == NULL)
- size_not_including_slice_registers += reg_info->byte_size;
- if (reg_info->byte_offset >= size_by_highest_offset)
- size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
- }
-
- bool use_byte_offset_into_buffer;
- if (size_by_highest_offset == restore_data.GetByteSize())
- {
- // The size of the packet agrees with the highest offset: + size in the register file
- use_byte_offset_into_buffer = true;
- }
- else if (size_not_including_slice_registers == restore_data.GetByteSize())
- {
- // The size of the packet is the same as concatenating all of the registers sequentially,
- // skipping the slice registers
- use_byte_offset_into_buffer = true;
- }
- else if (size_including_slice_registers == restore_data.GetByteSize())
- {
- // The slice registers are present in the packet (when they shouldn't be).
- // Don't try to use the RegisterInfo byte_offset into the restore_data, it will
- // point to the wrong place.
- use_byte_offset_into_buffer = false;
- }
- else {
- // None of our expected sizes match the actual g packet data we're looking at.
- // The most conservative approach here is to use the running total byte offset.
- use_byte_offset_into_buffer = false;
- }
-
- // In case our register definitions don't include the correct offsets,
- // keep track of the size of each reg & compute offset based on that.
- uint32_t running_byte_offset = 0;
- for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size)
- {
- // Skip composite aka slice registers (e.g. eax is a slice of rax).
- if (reg_info->value_regs)
- continue;
-
- const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
-
- uint32_t register_offset;
- if (use_byte_offset_into_buffer)
- {
- register_offset = reg_info->byte_offset;
- }
- else
- {
- register_offset = running_byte_offset;
- }
-
- // Only write down the registers that need to be written
- // if we are going to be doing registers individually.
- bool write_reg = true;
- const uint32_t reg_byte_size = reg_info->byte_size;
-
- const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size);
- if (restore_src)
- {
- StreamString packet;
- packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
- packet.PutBytesAsRawHex8 (restore_src,
- reg_byte_size,
- endian::InlHostByteOrder(),
- endian::InlHostByteOrder());
-
- if (thread_suffix_supported)
- packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
-
- SetRegisterIsValid(reg, false);
- if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
- packet.GetString().size(),
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size);
- if (current_src)
- write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
- }
-
- if (write_reg)
- {
- StreamString packet;
- packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
- packet.PutBytesAsRawHex8 (restore_src,
- reg_byte_size,
- endian::InlHostByteOrder(),
- endian::InlHostByteOrder());
-
- if (thread_suffix_supported)
- packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
-
- SetRegisterIsValid(reg, false);
- if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
- packet.GetString().size(),
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- if (response.IsOKResponse())
- ++num_restored;
- }
- }
- }
- }
- return num_restored > 0;
- }
- }
- }
- else
- {
- // For the use_g_packet == false case, we're going to write each register
- // individually. The data buffer is binary data in this case, instead of
- // ascii characters.
-
- bool arm64_debugserver = false;
- if (m_thread.GetProcess().get())
- {
- const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
- if (arch.IsValid()
- && arch.GetMachine() == llvm::Triple::aarch64
- && arch.GetTriple().getVendor() == llvm::Triple::Apple
- && arch.GetTriple().getOS() == llvm::Triple::IOS)
- {
- arm64_debugserver = true;
- }
- }
- uint32_t num_restored = 0;
- const RegisterInfo *reg_info;
- for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++)
- {
- if (reg_info->value_regs) // skip registers that are slices of real registers
- continue;
- // Skip the fpsr and fpcr floating point status/control register writing to
- // work around a bug in an older version of debugserver that would lead to
- // register context corruption when writing fpsr/fpcr.
- if (arm64_debugserver &&
- (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0))
- {
- continue;
- }
- StreamString packet;
- packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]);
- packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder());
- if (thread_suffix_supported)
- packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
-
- SetRegisterIsValid(reg_info, false);
- if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
- packet.GetString().size(),
- response,
- false) == GDBRemoteCommunication::PacketResult::Success)
- {
- if (response.IsOKResponse())
- ++num_restored;
- }
- }
- return num_restored > 0;
- }
+ GDBRemoteClientBase::Lock lock(gdb_comm, false);
+ if (lock) {
+ // The data_sp contains the G response packet.
+ if (use_g_packet) {
+ if (gdb_comm.WriteAllRegisters(
+ m_thread.GetProtocolID(),
+ {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
+ return true;
+
+ uint32_t num_restored = 0;
+ // We need to manually go through all of the registers and
+ // restore them manually
+ DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
+ m_reg_data.GetAddressByteSize());
+
+ const RegisterInfo *reg_info;
+
+ // The g packet contents may either include the slice registers (registers
+ // defined in
+ // terms of other registers, e.g. eax is a subset of rax) or not. The
+ // slice registers
+ // should NOT be in the g packet, but some implementations may incorrectly
+ // include them.
+ //
+ // If the slice registers are included in the packet, we must step over
+ // the slice registers
+ // when parsing the packet -- relying on the RegisterInfo byte_offset
+ // field would be incorrect.
+ // If the slice registers are not included, then using the byte_offset
+ // values into the
+ // data buffer is the best way to find individual register values.
+
+ uint64_t size_including_slice_registers = 0;
+ uint64_t size_not_including_slice_registers = 0;
+ uint64_t size_by_highest_offset = 0;
+
+ for (uint32_t reg_idx = 0;
+ (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) {
+ size_including_slice_registers += reg_info->byte_size;
+ if (reg_info->value_regs == NULL)
+ size_not_including_slice_registers += reg_info->byte_size;
+ if (reg_info->byte_offset >= size_by_highest_offset)
+ size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
+ }
+
+ bool use_byte_offset_into_buffer;
+ if (size_by_highest_offset == restore_data.GetByteSize()) {
+ // The size of the packet agrees with the highest offset: + size in the
+ // register file
+ use_byte_offset_into_buffer = true;
+ } else if (size_not_including_slice_registers ==
+ restore_data.GetByteSize()) {
+ // The size of the packet is the same as concatenating all of the
+ // registers sequentially,
+ // skipping the slice registers
+ use_byte_offset_into_buffer = true;
+ } else if (size_including_slice_registers == restore_data.GetByteSize()) {
+ // The slice registers are present in the packet (when they shouldn't
+ // be).
+ // Don't try to use the RegisterInfo byte_offset into the restore_data,
+ // it will
+ // point to the wrong place.
+ use_byte_offset_into_buffer = false;
+ } else {
+ // None of our expected sizes match the actual g packet data we're
+ // looking at.
+ // The most conservative approach here is to use the running total byte
+ // offset.
+ use_byte_offset_into_buffer = false;
+ }
+
+ // In case our register definitions don't include the correct offsets,
+ // keep track of the size of each reg & compute offset based on that.
+ uint32_t running_byte_offset = 0;
+ for (uint32_t reg_idx = 0;
+ (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL;
+ ++reg_idx, running_byte_offset += reg_info->byte_size) {
+ // Skip composite aka slice registers (e.g. eax is a slice of rax).
+ if (reg_info->value_regs)
+ continue;
+
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+
+ uint32_t register_offset;
+ if (use_byte_offset_into_buffer) {
+ register_offset = reg_info->byte_offset;
+ } else {
+ register_offset = running_byte_offset;
}
- }
- else
- {
- Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
- if (log)
- {
- if (log->GetVerbose())
- {
- StreamString strm;
- gdb_comm.DumpHistory(strm);
- log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
- }
- else
- log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
+
+ const uint32_t reg_byte_size = reg_info->byte_size;
+
+ const uint8_t *restore_src =
+ restore_data.PeekData(register_offset, reg_byte_size);
+ if (restore_src) {
+ SetRegisterIsValid(reg, false);
+ if (gdb_comm.WriteRegister(
+ m_thread.GetProtocolID(),
+ reg_info->kinds[eRegisterKindProcessPlugin],
+ {restore_src, reg_byte_size}))
+ ++num_restored;
+ }
+ }
+ return num_restored > 0;
+ } else {
+ // For the use_g_packet == false case, we're going to write each register
+ // individually. The data buffer is binary data in this case, instead of
+ // ascii characters.
+
+ bool arm64_debugserver = false;
+ if (m_thread.GetProcess().get()) {
+ const ArchSpec &arch =
+ m_thread.GetProcess()->GetTarget().GetArchitecture();
+ if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
+ arch.GetTriple().getVendor() == llvm::Triple::Apple &&
+ arch.GetTriple().getOS() == llvm::Triple::IOS) {
+ arm64_debugserver = true;
}
+ }
+ uint32_t num_restored = 0;
+ const RegisterInfo *reg_info;
+ for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL;
+ i++) {
+ if (reg_info->value_regs) // skip registers that are slices of real
+ // registers
+ continue;
+ // Skip the fpsr and fpcr floating point status/control register writing
+ // to
+ // work around a bug in an older version of debugserver that would lead
+ // to
+ // register context corruption when writing fpsr/fpcr.
+ if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
+ strcmp(reg_info->name, "fpcr") == 0)) {
+ continue;
+ }
+
+ SetRegisterIsValid(reg_info, false);
+ if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
+ reg_info->kinds[eRegisterKindProcessPlugin],
+ {data_sp->GetBytes() + reg_info->byte_offset,
+ reg_info->byte_size}))
+ ++num_restored;
+ }
+ return num_restored > 0;
}
- return false;
+ } else {
+ Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
+ GDBR_LOG_PACKETS));
+ if (log) {
+ if (log->GetVerbose()) {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending "
+ "write all registers:\n%s",
+ strm.GetData());
+ } else
+ log->Printf("error: failed to get packet sequence mutex, not sending "
+ "write all registers");
+ }
+ }
+ return false;
}
-
-uint32_t
-GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
-{
- return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
+uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
+ lldb::RegisterKind kind, uint32_t num) {
+ return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
}
-
-void
-GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
-{
- // For Advanced SIMD and VFP register mapping.
- static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
- static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
- static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
- static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
- static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
- static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
- static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
- static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
- static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
- static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
- static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
- static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
- static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
- static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
- static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
- static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
- static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
- static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
- static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
- static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
- static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
- static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
- static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
- static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
- static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
- static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
- static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
- static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
- static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
- static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
- static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
- static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
-
- // This is our array of composite registers, with each element coming from the above register mappings.
- static uint32_t *g_composites[] = {
- g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs,
- g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
- g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs,
- g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
- };
-
+void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
+ // For Advanced SIMD and VFP register mapping.
+ static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1)
+ static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3)
+ static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5)
+ static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7)
+ static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9)
+ static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11)
+ static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13)
+ static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15)
+ static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17)
+ static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19)
+ static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
+ static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
+ static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
+ static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
+ static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
+ static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
+ static uint32_t g_q0_regs[] = {
+ 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
+ static uint32_t g_q1_regs[] = {
+ 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
+ static uint32_t g_q2_regs[] = {
+ 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
+ static uint32_t g_q3_regs[] = {
+ 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
+ static uint32_t g_q4_regs[] = {
+ 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
+ static uint32_t g_q5_regs[] = {
+ 46, 47, 48, 49,
+ LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
+ static uint32_t g_q6_regs[] = {
+ 50, 51, 52, 53,
+ LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
+ static uint32_t g_q7_regs[] = {
+ 54, 55, 56, 57,
+ LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
+ static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17)
+ static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19)
+ static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
+ static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
+ static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
+ static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
+ static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
+ static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
+
+ // This is our array of composite registers, with each element coming from the
+ // above register mappings.
+ static uint32_t *g_composites[] = {
+ g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs,
+ g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs,
+ g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs,
+ g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs,
+ g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
+ g_q14_regs, g_q15_regs};
+
+ // clang-format off
static RegisterInfo g_register_infos[] = {
-// NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS
-// ====== ====== === === ============= ============ =================== =================== ====================== ============= ==== ========== ===============
- { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL},
- { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL},
- { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL},
- { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL},
- { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL},
- { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL},
- { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL},
- { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL},
- { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL},
- { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL},
- { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL},
- { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL},
- { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL},
- { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL},
- { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL},
- { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL},
- { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL},
- { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL},
- { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL},
- { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL},
- { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL},
- { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL},
- { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL},
- { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL},
- { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL},
- { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL},
- { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL},
- { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL},
- { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL},
- { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL},
- { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL},
- { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL},
- { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL},
- { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL},
- { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL},
- { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL},
- { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL},
- { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL},
- { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL},
- { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL},
- { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL},
- { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL},
- { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL},
- { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL},
- { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL},
- { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL},
- { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL},
- { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL},
- { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL},
- { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL},
- { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL},
- { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL},
- { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL},
- { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL},
- { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL},
- { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL},
- { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL},
- { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL},
- { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL},
- { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL},
- { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL},
- { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL},
- { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL},
- { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL},
- { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL},
- { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL},
- { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL},
- { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL},
- { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL},
- { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL},
- { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL},
- { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL},
- { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL},
- { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL},
- { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL},
- { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL},
- { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL},
- { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL},
- { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL},
- { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL},
- { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL},
- { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL},
- { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL},
- { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL},
- { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL},
- { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL},
- { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL},
- { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL},
- { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL},
- { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL},
- { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL},
- { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL},
- { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL},
- { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL},
- { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL},
- { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL},
- { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL},
- { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL},
- { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL},
- { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL},
- { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL},
- { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL},
- { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL},
- { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL},
- { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL},
- { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL},
- { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL}
+// NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN
+// ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ========
+ { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 },
+ { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 },
+ { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 },
+ { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 },
+ { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 },
+ { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 },
+ { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 },
+ { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 },
+ { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 },
+ { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 },
+ { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 },
+ { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 },
+ { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 },
+ { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 },
+ { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 },
+ { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 },
+ { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 },
+ { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 },
+ { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 },
+ { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 },
+ { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 },
+ { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 },
+ { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 },
+ { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 },
+ { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 },
+ { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 },
+ { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 },
+ { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 },
+ { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 },
+ { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 },
+ { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 },
+ { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 },
+ { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 },
+ { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 },
+ { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 },
+ { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 },
+ { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 },
+ { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 },
+ { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 },
+ { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 },
+ { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 },
+ { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 },
+ { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 },
+ { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 },
+ { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 },
+ { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 },
+ { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 },
+ { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 },
+ { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 },
+ { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 },
+ { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 },
+ { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 },
+ { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 },
+ { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 },
+ { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 },
+ { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 },
+ { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 },
+ { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 },
+ { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 },
+ { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 },
+ { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 },
+ { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 },
+ { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 },
+ { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 },
+ { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 },
+ { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 },
+ { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 },
+ { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 },
+ { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 },
+ { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 },
+ { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 },
+ { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 },
+ { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 },
+ { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 },
+ { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 },
+ { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 },
+ { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 },
+ { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 },
+ { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 },
+ { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 },
+ { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 },
+ { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 },
+ { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 },
+ { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 },
+ { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 },
+ { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 },
+ { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 },
+ { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 },
+ { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 },
+ { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 },
+ { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 },
+ { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 },
+ { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 },
+ { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 },
+ { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 },
+ { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 },
+ { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 },
+ { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 },
+ { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 },
+ { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 },
+ { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 },
+ { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 },
+ { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 },
+ { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 },
+ { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 },
+ { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 },
+ { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 }
};
-
- static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
- static ConstString gpr_reg_set ("General Purpose Registers");
- static ConstString sfp_reg_set ("Software Floating Point Registers");
- static ConstString vfp_reg_set ("Floating Point Registers");
- size_t i;
- if (from_scratch)
- {
- // Calculate the offsets of the registers
- // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
- // "primordial" registers is important. This enables us to calculate the offset of the composite
- // register by using the offset of its first primordial register. For example, to calculate the
- // offset of q0, use s0's offset.
- if (g_register_infos[2].byte_offset == 0)
- {
- uint32_t byte_offset = 0;
- for (i=0; i<num_registers; ++i)
- {
- // For primordial registers, increment the byte_offset by the byte_size to arrive at the
- // byte_offset for the next register. Otherwise, we have a composite register whose
- // offset can be calculated by consulting the offset of its first primordial register.
- if (!g_register_infos[i].value_regs)
- {
- g_register_infos[i].byte_offset = byte_offset;
- byte_offset += g_register_infos[i].byte_size;
- }
- else
- {
- const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
- g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
- }
- }
- }
- for (i=0; i<num_registers; ++i)
- {
- ConstString name;
- ConstString alt_name;
- if (g_register_infos[i].name && g_register_infos[i].name[0])
- name.SetCString(g_register_infos[i].name);
- if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
- alt_name.SetCString(g_register_infos[i].alt_name);
-
- if (i <= 15 || i == 25)
- AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
- else if (i <= 24)
- AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
- else
- AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
+ // clang-format on
+
+ static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
+ static ConstString gpr_reg_set("General Purpose Registers");
+ static ConstString sfp_reg_set("Software Floating Point Registers");
+ static ConstString vfp_reg_set("Floating Point Registers");
+ size_t i;
+ if (from_scratch) {
+ // Calculate the offsets of the registers
+ // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
+ // which comes after the
+ // "primordial" registers is important. This enables us to calculate the
+ // offset of the composite
+ // register by using the offset of its first primordial register. For
+ // example, to calculate the
+ // offset of q0, use s0's offset.
+ if (g_register_infos[2].byte_offset == 0) {
+ uint32_t byte_offset = 0;
+ for (i = 0; i < num_registers; ++i) {
+ // For primordial registers, increment the byte_offset by the byte_size
+ // to arrive at the
+ // byte_offset for the next register. Otherwise, we have a composite
+ // register whose
+ // offset can be calculated by consulting the offset of its first
+ // primordial register.
+ if (!g_register_infos[i].value_regs) {
+ g_register_infos[i].byte_offset = byte_offset;
+ byte_offset += g_register_infos[i].byte_size;
+ } else {
+ const uint32_t first_primordial_reg =
+ g_register_infos[i].value_regs[0];
+ g_register_infos[i].byte_offset =
+ g_register_infos[first_primordial_reg].byte_offset;
}
+ }
}
- else
- {
- // Add composite registers to our primordial registers, then.
- const size_t num_composites = llvm::array_lengthof(g_composites);
- const size_t num_dynamic_regs = GetNumRegisters();
- const size_t num_common_regs = num_registers - num_composites;
- RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
-
- // First we need to validate that all registers that we already have match the non composite regs.
- // If so, then we can add the registers, else we need to bail
- bool match = true;
- if (num_dynamic_regs == num_common_regs)
- {
- for (i=0; match && i<num_dynamic_regs; ++i)
- {
- // Make sure all register names match
- if (m_regs[i].name && g_register_infos[i].name)
- {
- if (strcmp(m_regs[i].name, g_register_infos[i].name))
- {
- match = false;
- break;
- }
- }
-
- // Make sure all register byte sizes match
- if (m_regs[i].byte_size != g_register_infos[i].byte_size)
- {
- match = false;
- break;
- }
- }
- }
- else
- {
- // Wrong number of registers.
+ for (i = 0; i < num_registers; ++i) {
+ ConstString name;
+ ConstString alt_name;
+ if (g_register_infos[i].name && g_register_infos[i].name[0])
+ name.SetCString(g_register_infos[i].name);
+ if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
+ alt_name.SetCString(g_register_infos[i].alt_name);
+
+ if (i <= 15 || i == 25)
+ AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
+ else if (i <= 24)
+ AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
+ else
+ AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
+ }
+ } else {
+ // Add composite registers to our primordial registers, then.
+ const size_t num_composites = llvm::array_lengthof(g_composites);
+ const size_t num_dynamic_regs = GetNumRegisters();
+ const size_t num_common_regs = num_registers - num_composites;
+ RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
+
+ // First we need to validate that all registers that we already have match
+ // the non composite regs.
+ // If so, then we can add the registers, else we need to bail
+ bool match = true;
+ if (num_dynamic_regs == num_common_regs) {
+ for (i = 0; match && i < num_dynamic_regs; ++i) {
+ // Make sure all register names match
+ if (m_regs[i].name && g_register_infos[i].name) {
+ if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
match = false;
+ break;
+ }
}
- // If "match" is true, then we can add extra registers.
- if (match)
- {
- for (i=0; i<num_composites; ++i)
- {
- ConstString name;
- ConstString alt_name;
- const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
- const char *reg_name = g_register_infos[first_primordial_reg].name;
- if (reg_name && reg_name[0])
- {
- for (uint32_t j = 0; j < num_dynamic_regs; ++j)
- {
- const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
- // Find a matching primordial register info entry.
- if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
- {
- // The name matches the existing primordial entry.
- // Find and assign the offset, and then add this composite register entry.
- g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
- name.SetCString(g_comp_register_infos[i].name);
- AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
- }
- }
- }
+
+ // Make sure all register byte sizes match
+ if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
+ match = false;
+ break;
+ }
+ }
+ } else {
+ // Wrong number of registers.
+ match = false;
+ }
+ // If "match" is true, then we can add extra registers.
+ if (match) {
+ for (i = 0; i < num_composites; ++i) {
+ ConstString name;
+ ConstString alt_name;
+ const uint32_t first_primordial_reg =
+ g_comp_register_infos[i].value_regs[0];
+ const char *reg_name = g_register_infos[first_primordial_reg].name;
+ if (reg_name && reg_name[0]) {
+ for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
+ const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
+ // Find a matching primordial register info entry.
+ if (reg_info && reg_info->name &&
+ ::strcasecmp(reg_info->name, reg_name) == 0) {
+ // The name matches the existing primordial entry.
+ // Find and assign the offset, and then add this composite
+ // register entry.
+ g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
+ name.SetCString(g_comp_register_infos[i].name);
+ AddRegister(g_comp_register_infos[i], name, alt_name,
+ vfp_reg_set);
}
+ }
}
+ }
}
+ }
}