aboutsummaryrefslogtreecommitdiff
path: root/src_sinc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src_sinc.c')
-rw-r--r--src_sinc.c1254
1 files changed, 1254 insertions, 0 deletions
diff --git a/src_sinc.c b/src_sinc.c
new file mode 100644
index 000000000000..2ed0d7bac88f
--- /dev/null
+++ b/src_sinc.c
@@ -0,0 +1,1254 @@
+/*
+** Copyright (c) 2002-2021, Erik de Castro Lopo <erikd@mega-nerd.com>
+** All rights reserved.
+**
+** This code is released under 2-clause BSD license. Please see the
+** file at : https://github.com/libsndfile/libsamplerate/blob/master/COPYING
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include "common.h"
+
+#define SINC_MAGIC_MARKER MAKE_MAGIC (' ', 's', 'i', 'n', 'c', ' ')
+
+/*========================================================================================
+*/
+
+#define MAKE_INCREMENT_T(x) ((increment_t) (x))
+
+#define SHIFT_BITS 12
+#define FP_ONE ((double) (((increment_t) 1) << SHIFT_BITS))
+#define INV_FP_ONE (1.0 / FP_ONE)
+
+/* Customixe max channls from Kconfig. */
+#ifndef CONFIG_CHAN_NR
+#define MAX_CHANNELS 128
+#else
+#define MAX_CHANNELS CONFIG_CHAN_NR
+#endif
+
+/*========================================================================================
+*/
+
+typedef int32_t increment_t ;
+typedef float coeff_t ;
+typedef int _CHECK_SHIFT_BITS[2 * (SHIFT_BITS < sizeof (increment_t) * 8 - 1) - 1]; /* sanity check. */
+
+#ifdef ENABLE_SINC_FAST_CONVERTER
+ #include "fastest_coeffs.h"
+#endif
+#ifdef ENABLE_SINC_MEDIUM_CONVERTER
+ #include "mid_qual_coeffs.h"
+#endif
+#ifdef ENABLE_SINC_BEST_CONVERTER
+ #include "high_qual_coeffs.h"
+#endif
+
+typedef struct
+{ int sinc_magic_marker ;
+
+ long in_count, in_used ;
+ long out_count, out_gen ;
+
+ int coeff_half_len, index_inc ;
+
+ double src_ratio, input_index ;
+
+ coeff_t const *coeffs ;
+
+ int b_current, b_end, b_real_end, b_len ;
+
+ /* Sure hope noone does more than 128 channels at once. */
+ double left_calc [MAX_CHANNELS], right_calc [MAX_CHANNELS] ;
+
+ float *buffer ;
+} SINC_FILTER ;
+
+static SRC_ERROR sinc_multichan_vari_process (SRC_STATE *state, SRC_DATA *data) ;
+static SRC_ERROR sinc_hex_vari_process (SRC_STATE *state, SRC_DATA *data) ;
+static SRC_ERROR sinc_quad_vari_process (SRC_STATE *state, SRC_DATA *data) ;
+static SRC_ERROR sinc_stereo_vari_process (SRC_STATE *state, SRC_DATA *data) ;
+static SRC_ERROR sinc_mono_vari_process (SRC_STATE *state, SRC_DATA *data) ;
+
+static SRC_ERROR prepare_data (SINC_FILTER *filter, int channels, SRC_DATA *data, int half_filter_chan_len) WARN_UNUSED ;
+
+static void sinc_reset (SRC_STATE *state) ;
+static SRC_STATE *sinc_copy (SRC_STATE *state) ;
+static void sinc_close (SRC_STATE *state) ;
+
+static SRC_STATE_VT sinc_multichan_state_vt =
+{
+ sinc_multichan_vari_process,
+ sinc_multichan_vari_process,
+ sinc_reset,
+ sinc_copy,
+ sinc_close
+} ;
+
+static SRC_STATE_VT sinc_hex_state_vt =
+{
+ sinc_hex_vari_process,
+ sinc_hex_vari_process,
+ sinc_reset,
+ sinc_copy,
+ sinc_close
+} ;
+
+static SRC_STATE_VT sinc_quad_state_vt =
+{
+ sinc_quad_vari_process,
+ sinc_quad_vari_process,
+ sinc_reset,
+ sinc_copy,
+ sinc_close
+} ;
+
+static SRC_STATE_VT sinc_stereo_state_vt =
+{
+ sinc_stereo_vari_process,
+ sinc_stereo_vari_process,
+ sinc_reset,
+ sinc_copy,
+ sinc_close
+} ;
+
+static SRC_STATE_VT sinc_mono_state_vt =
+{
+ sinc_mono_vari_process,
+ sinc_mono_vari_process,
+ sinc_reset,
+ sinc_copy,
+ sinc_close
+} ;
+
+static inline increment_t
+double_to_fp (double x)
+{ return (increment_t) (lrint ((x) * FP_ONE)) ;
+} /* double_to_fp */
+
+static inline increment_t
+int_to_fp (int x)
+{ return (((increment_t) (x)) << SHIFT_BITS) ;
+} /* int_to_fp */
+
+static inline int
+fp_to_int (increment_t x)
+{ return (((x) >> SHIFT_BITS)) ;
+} /* fp_to_int */
+
+static inline increment_t
+fp_fraction_part (increment_t x)
+{ return ((x) & ((((increment_t) 1) << SHIFT_BITS) - 1)) ;
+} /* fp_fraction_part */
+
+static inline double
+fp_to_double (increment_t x)
+{ return fp_fraction_part (x) * INV_FP_ONE ;
+} /* fp_to_double */
+
+static inline int
+int_div_ceil (int divident, int divisor) /* == (int) ceil ((float) divident / divisor) */
+{ assert (divident >= 0 && divisor > 0) ; /* For positive numbers only */
+ return (divident + (divisor - 1)) / divisor ;
+}
+
+/*----------------------------------------------------------------------------------------
+*/
+
+#if 0
+LIBSAMPLERATE_DLL_PRIVATE const char*
+sinc_get_name (int src_enum)
+{
+ switch (src_enum)
+ { case SRC_SINC_BEST_QUALITY :
+ return "Best Sinc Interpolator" ;
+
+ case SRC_SINC_MEDIUM_QUALITY :
+ return "Medium Sinc Interpolator" ;
+
+ case SRC_SINC_FASTEST :
+ return "Fastest Sinc Interpolator" ;
+
+ default: break ;
+ } ;
+
+ return NULL ;
+} /* sinc_get_descrition */
+
+LIBSAMPLERATE_DLL_PRIVATE const char*
+sinc_get_description (int src_enum)
+{
+ switch (src_enum)
+ { case SRC_SINC_FASTEST :
+ return "Band limited sinc interpolation, fastest, 97dB SNR, 80% BW." ;
+
+ case SRC_SINC_MEDIUM_QUALITY :
+ return "Band limited sinc interpolation, medium quality, 121dB SNR, 90% BW." ;
+
+ case SRC_SINC_BEST_QUALITY :
+ return "Band limited sinc interpolation, best quality, 144dB SNR, 96% BW." ;
+
+ default :
+ break ;
+ } ;
+
+ return NULL ;
+} /* sinc_get_descrition */
+#endif
+
+static SINC_FILTER *
+sinc_filter_new (int converter_type, int channels)
+{
+ assert (converter_type == SRC_SINC_FASTEST ||
+ converter_type == SRC_SINC_MEDIUM_QUALITY ||
+ converter_type == SRC_SINC_BEST_QUALITY) ;
+ assert (channels > 0 && channels <= MAX_CHANNELS) ;
+
+ SINC_FILTER *priv = (SINC_FILTER *) calloc (1, sizeof (SINC_FILTER)) ;
+ if (priv)
+ {
+ priv->sinc_magic_marker = SINC_MAGIC_MARKER ;
+ switch (converter_type)
+ {
+#ifdef ENABLE_SINC_FAST_CONVERTER
+ case SRC_SINC_FASTEST :
+ priv->coeffs = fastest_coeffs.coeffs ;
+ priv->coeff_half_len = ARRAY_LEN (fastest_coeffs.coeffs) - 2 ;
+ priv->index_inc = fastest_coeffs.increment ;
+ break ;
+#endif
+#ifdef ENABLE_SINC_MEDIUM_CONVERTER
+ case SRC_SINC_MEDIUM_QUALITY :
+ priv->coeffs = slow_mid_qual_coeffs.coeffs ;
+ priv->coeff_half_len = ARRAY_LEN (slow_mid_qual_coeffs.coeffs) - 2 ;
+ priv->index_inc = slow_mid_qual_coeffs.increment ;
+ break ;
+#endif
+#ifdef ENABLE_SINC_BEST_CONVERTER
+ case SRC_SINC_BEST_QUALITY :
+ priv->coeffs = slow_high_qual_coeffs.coeffs ;
+ priv->coeff_half_len = ARRAY_LEN (slow_high_qual_coeffs.coeffs) - 2 ;
+ priv->index_inc = slow_high_qual_coeffs.increment ;
+ break ;
+#endif
+ }
+
+ priv->b_len = 3 * (int) lrint ((priv->coeff_half_len + 2.0) / priv->index_inc * SRC_MAX_RATIO + 1) ;
+ priv->b_len = MAX (priv->b_len, 4096) ;
+ priv->b_len *= channels ;
+ priv->b_len += 1 ; // There is a <= check against samples_in_hand requiring a buffer bigger than the calculation above
+
+
+ priv->buffer = (float *) calloc (priv->b_len + channels, sizeof (float)) ;
+ if (!priv->buffer)
+ {
+ free (priv) ;
+ priv = NULL ;
+ }
+ }
+
+ return priv ;
+}
+
+LIBSAMPLERATE_DLL_PRIVATE SRC_STATE *
+sinc_state_new (int converter_type, int channels, SRC_ERROR *error)
+{
+ assert (converter_type == SRC_SINC_FASTEST ||
+ converter_type == SRC_SINC_MEDIUM_QUALITY ||
+ converter_type == SRC_SINC_BEST_QUALITY) ;
+ assert (channels > 0) ;
+ assert (error != NULL) ;
+
+ if (channels > MAX_CHANNELS)
+ {
+ *error = SRC_ERR_BAD_CHANNEL_COUNT ;
+ return NULL ;
+ }
+
+ SRC_STATE *state = (SRC_STATE *) calloc (1, sizeof (SRC_STATE)) ;
+ if (!state)
+ {
+ *error = SRC_ERR_MALLOC_FAILED ;
+ return NULL ;
+ }
+
+ state->channels = channels ;
+ state->mode = SRC_MODE_PROCESS ;
+
+ if (state->channels == 1)
+ state->vt = &sinc_mono_state_vt ;
+ else if (state->channels == 2)
+ state->vt = &sinc_stereo_state_vt ;
+ else if (state->channels == 4)
+ state->vt = &sinc_quad_state_vt ;
+ else if (state->channels == 6)
+ state->vt = &sinc_hex_state_vt ;
+ else
+ state->vt = &sinc_multichan_state_vt ;
+
+ state->private_data = sinc_filter_new (converter_type, state->channels) ;
+ if (!state->private_data)
+ {
+ free (state) ;
+ *error = SRC_ERR_MALLOC_FAILED ;
+ return NULL ;
+ }
+
+ sinc_reset (state) ;
+
+ *error = SRC_ERR_NO_ERROR ;
+
+ return state ;
+}
+
+static void
+sinc_reset (SRC_STATE *state)
+{ SINC_FILTER *filter ;
+
+ filter = (SINC_FILTER*) state->private_data ;
+ if (filter == NULL)
+ return ;
+
+ filter->b_current = filter->b_end = 0 ;
+ filter->b_real_end = -1 ;
+
+ filter->src_ratio = filter->input_index = 0.0 ;
+
+ memset (filter->buffer, 0, filter->b_len * sizeof (filter->buffer [0])) ;
+
+ /* Set this for a sanity check */
+ memset (filter->buffer + filter->b_len, 0xAA, state->channels * sizeof (filter->buffer [0])) ;
+} /* sinc_reset */
+
+static SRC_STATE *
+sinc_copy (SRC_STATE *state)
+{
+ assert (state != NULL) ;
+
+ if (state->private_data == NULL)
+ return NULL ;
+
+ SRC_STATE *to = (SRC_STATE *) calloc (1, sizeof (SRC_STATE)) ;
+ if (!to)
+ return NULL ;
+ memcpy (to, state, sizeof (SRC_STATE)) ;
+
+
+ SINC_FILTER* from_filter = (SINC_FILTER*) state->private_data ;
+ SINC_FILTER *to_filter = (SINC_FILTER *) calloc (1, sizeof (SINC_FILTER)) ;
+ if (!to_filter)
+ {
+ free (to) ;
+ return NULL ;
+ }
+ memcpy (to_filter, from_filter, sizeof (SINC_FILTER)) ;
+ to_filter->buffer = (float *) malloc (sizeof (float) * (from_filter->b_len + state->channels)) ;
+ if (!to_filter->buffer)
+ {
+ free (to) ;
+ free (to_filter) ;
+ return NULL ;
+ }
+ memcpy (to_filter->buffer, from_filter->buffer, sizeof (float) * (from_filter->b_len + state->channels)) ;
+
+ to->private_data = to_filter ;
+
+ return to ;
+} /* sinc_copy */
+
+/*========================================================================================
+** Beware all ye who dare pass this point. There be dragons here.
+*/
+
+static inline double
+calc_output_single (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index)
+{ double fraction, left, right, icoeff ;
+ increment_t filter_index, max_filter_index ;
+ int data_index, coeff_count, indx ;
+
+ /* Convert input parameters into fixed point. */
+ max_filter_index = int_to_fp (filter->coeff_half_len) ;
+
+ /* First apply the left half of the filter. */
+ filter_index = start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current - coeff_count ;
+
+ if (data_index < 0) /* Avoid underflow access to filter->buffer. */
+ { int steps = -data_index ;
+ /* If the assert triggers we would have to take care not to underflow/overflow */
+ assert (steps <= int_div_ceil (filter_index, increment)) ;
+ filter_index -= increment * steps ;
+ data_index += steps ;
+ }
+ left = 0.0 ;
+ while (filter_index >= MAKE_INCREMENT_T (0))
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index < filter->b_len) ;
+ assert (data_index < filter->b_end) ;
+ left += icoeff * filter->buffer [data_index] ;
+
+ filter_index -= increment ;
+ data_index = data_index + 1 ;
+ } ;
+
+ /* Now apply the right half of the filter. */
+ filter_index = increment - start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current + 1 + coeff_count ;
+
+ right = 0.0 ;
+ do
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index < filter->b_len) ;
+ assert (data_index < filter->b_end) ;
+ right += icoeff * filter->buffer [data_index] ;
+
+ filter_index -= increment ;
+ data_index = data_index - 1 ;
+ }
+ while (filter_index > MAKE_INCREMENT_T (0)) ;
+
+ return (left + right) ;
+} /* calc_output_single */
+
+static SRC_ERROR
+sinc_mono_vari_process (SRC_STATE *state, SRC_DATA *data)
+{ SINC_FILTER *filter ;
+ double input_index, src_ratio, count, float_increment, terminate, rem ;
+ increment_t increment, start_filter_index ;
+ int half_filter_chan_len, samples_in_hand ;
+
+ if (state->private_data == NULL)
+ return SRC_ERR_NO_PRIVATE ;
+
+ filter = (SINC_FILTER*) state->private_data ;
+
+ /* If there is not a problem, this will be optimised out. */
+ if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
+ return SRC_ERR_SIZE_INCOMPATIBILITY ;
+
+ filter->in_count = data->input_frames * state->channels ;
+ filter->out_count = data->output_frames * state->channels ;
+ filter->in_used = filter->out_gen = 0 ;
+
+ src_ratio = state->last_ratio ;
+
+ if (is_bad_src_ratio (src_ratio))
+ return SRC_ERR_BAD_INTERNAL_STATE ;
+
+ /* Check the sample rate ratio wrt the buffer len. */
+ count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
+ if (MIN (state->last_ratio, data->src_ratio) < 1.0)
+ count /= MIN (state->last_ratio, data->src_ratio) ;
+
+ /* Maximum coefficientson either side of center point. */
+ half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ;
+
+ input_index = state->last_position ;
+
+ rem = fmod_one (input_index) ;
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+
+ terminate = 1.0 / src_ratio + 1e-20 ;
+
+ /* Main processing loop. */
+ while (filter->out_gen < filter->out_count)
+ {
+ /* Need to reload buffer? */
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+
+ if (samples_in_hand <= half_filter_chan_len)
+ { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0)
+ return state->error ;
+
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+ if (samples_in_hand <= half_filter_chan_len)
+ break ;
+ } ;
+
+ /* This is the termination condition. */
+ if (filter->b_real_end >= 0)
+ { if (filter->b_current + input_index + terminate > filter->b_real_end)
+ break ;
+ } ;
+
+ if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10)
+ src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ;
+
+ float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ;
+ increment = double_to_fp (float_increment) ;
+
+ start_filter_index = double_to_fp (input_index * float_increment) ;
+
+ data->data_out [filter->out_gen] = (float) ((float_increment / filter->index_inc) *
+ calc_output_single (filter, increment, start_filter_index)) ;
+ filter->out_gen ++ ;
+
+ /* Figure out the next index. */
+ input_index += 1.0 / src_ratio ;
+ rem = fmod_one (input_index) ;
+
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+ } ;
+
+ state->last_position = input_index ;
+
+ /* Save current ratio rather then target ratio. */
+ state->last_ratio = src_ratio ;
+
+ data->input_frames_used = filter->in_used / state->channels ;
+ data->output_frames_gen = filter->out_gen / state->channels ;
+
+ return SRC_ERR_NO_ERROR ;
+} /* sinc_mono_vari_process */
+
+static inline void
+calc_output_stereo (SINC_FILTER *filter, int channels, increment_t increment, increment_t start_filter_index, double scale, float * output)
+{ double fraction, left [2], right [2], icoeff ;
+ increment_t filter_index, max_filter_index ;
+ int data_index, coeff_count, indx ;
+
+ /* Convert input parameters into fixed point. */
+ max_filter_index = int_to_fp (filter->coeff_half_len) ;
+
+ /* First apply the left half of the filter. */
+ filter_index = start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current - channels * coeff_count ;
+
+ if (data_index < 0) /* Avoid underflow access to filter->buffer. */
+ { int steps = int_div_ceil (-data_index, 2) ;
+ /* If the assert triggers we would have to take care not to underflow/overflow */
+ assert (steps <= int_div_ceil (filter_index, increment)) ;
+ filter_index -= increment * steps ;
+ data_index += steps * 2;
+ }
+ left [0] = left [1] = 0.0 ;
+ while (filter_index >= MAKE_INCREMENT_T (0))
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + 1 < filter->b_len) ;
+ assert (data_index + 1 < filter->b_end) ;
+ for (int ch = 0; ch < 2; ch++)
+ left [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index + 2 ;
+ } ;
+
+ /* Now apply the right half of the filter. */
+ filter_index = increment - start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current + channels * (1 + coeff_count) ;
+
+ right [0] = right [1] = 0.0 ;
+ do
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + 1 < filter->b_len) ;
+ assert (data_index + 1 < filter->b_end) ;
+ for (int ch = 0; ch < 2; ch++)
+ right [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index - 2 ;
+ }
+ while (filter_index > MAKE_INCREMENT_T (0)) ;
+
+ for (int ch = 0; ch < 2; ch++)
+ output [ch] = (float) (scale * (left [ch] + right [ch])) ;
+} /* calc_output_stereo */
+
+SRC_ERROR
+sinc_stereo_vari_process (SRC_STATE *state, SRC_DATA *data)
+{ SINC_FILTER *filter ;
+ double input_index, src_ratio, count, float_increment, terminate, rem ;
+ increment_t increment, start_filter_index ;
+ int half_filter_chan_len, samples_in_hand ;
+
+ if (state->private_data == NULL)
+ return SRC_ERR_NO_PRIVATE ;
+
+ filter = (SINC_FILTER*) state->private_data ;
+
+ /* If there is not a problem, this will be optimised out. */
+ if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
+ return SRC_ERR_SIZE_INCOMPATIBILITY ;
+
+ filter->in_count = data->input_frames * state->channels ;
+ filter->out_count = data->output_frames * state->channels ;
+ filter->in_used = filter->out_gen = 0 ;
+
+ src_ratio = state->last_ratio ;
+
+ if (is_bad_src_ratio (src_ratio))
+ return SRC_ERR_BAD_INTERNAL_STATE ;
+
+ /* Check the sample rate ratio wrt the buffer len. */
+ count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
+ if (MIN (state->last_ratio, data->src_ratio) < 1.0)
+ count /= MIN (state->last_ratio, data->src_ratio) ;
+
+ /* Maximum coefficientson either side of center point. */
+ half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ;
+
+ input_index = state->last_position ;
+
+ rem = fmod_one (input_index) ;
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+
+ terminate = 1.0 / src_ratio + 1e-20 ;
+
+ /* Main processing loop. */
+ while (filter->out_gen < filter->out_count)
+ {
+ /* Need to reload buffer? */
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+
+ if (samples_in_hand <= half_filter_chan_len)
+ { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0)
+ return state->error ;
+
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+ if (samples_in_hand <= half_filter_chan_len)
+ break ;
+ } ;
+
+ /* This is the termination condition. */
+ if (filter->b_real_end >= 0)
+ { if (filter->b_current + input_index + terminate >= filter->b_real_end)
+ break ;
+ } ;
+
+ if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10)
+ src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ;
+
+ float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ;
+ increment = double_to_fp (float_increment) ;
+
+ start_filter_index = double_to_fp (input_index * float_increment) ;
+
+ calc_output_stereo (filter, state->channels, increment, start_filter_index, float_increment / filter->index_inc, data->data_out + filter->out_gen) ;
+ filter->out_gen += 2 ;
+
+ /* Figure out the next index. */
+ input_index += 1.0 / src_ratio ;
+ rem = fmod_one (input_index) ;
+
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+ } ;
+
+ state->last_position = input_index ;
+
+ /* Save current ratio rather then target ratio. */
+ state->last_ratio = src_ratio ;
+
+ data->input_frames_used = filter->in_used / state->channels ;
+ data->output_frames_gen = filter->out_gen / state->channels ;
+
+ return SRC_ERR_NO_ERROR ;
+} /* sinc_stereo_vari_process */
+
+static inline void
+calc_output_quad (SINC_FILTER *filter, int channels, increment_t increment, increment_t start_filter_index, double scale, float * output)
+{ double fraction, left [4], right [4], icoeff ;
+ increment_t filter_index, max_filter_index ;
+ int data_index, coeff_count, indx ;
+
+ /* Convert input parameters into fixed point. */
+ max_filter_index = int_to_fp (filter->coeff_half_len) ;
+
+ /* First apply the left half of the filter. */
+ filter_index = start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current - channels * coeff_count ;
+
+ if (data_index < 0) /* Avoid underflow access to filter->buffer. */
+ { int steps = int_div_ceil (-data_index, 4) ;
+ /* If the assert triggers we would have to take care not to underflow/overflow */
+ assert (steps <= int_div_ceil (filter_index, increment)) ;
+ filter_index -= increment * steps ;
+ data_index += steps * 4;
+ }
+ left [0] = left [1] = left [2] = left [3] = 0.0 ;
+ while (filter_index >= MAKE_INCREMENT_T (0))
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + 3 < filter->b_len) ;
+ assert (data_index + 3 < filter->b_end) ;
+ for (int ch = 0; ch < 4; ch++)
+ left [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index + 4 ;
+ } ;
+
+ /* Now apply the right half of the filter. */
+ filter_index = increment - start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current + channels * (1 + coeff_count) ;
+
+ right [0] = right [1] = right [2] = right [3] = 0.0 ;
+ do
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + 3 < filter->b_len) ;
+ assert (data_index + 3 < filter->b_end) ;
+ for (int ch = 0; ch < 4; ch++)
+ right [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+
+ filter_index -= increment ;
+ data_index = data_index - 4 ;
+ }
+ while (filter_index > MAKE_INCREMENT_T (0)) ;
+
+ for (int ch = 0; ch < 4; ch++)
+ output [ch] = (float) (scale * (left [ch] + right [ch])) ;
+} /* calc_output_quad */
+
+SRC_ERROR
+sinc_quad_vari_process (SRC_STATE *state, SRC_DATA *data)
+{ SINC_FILTER *filter ;
+ double input_index, src_ratio, count, float_increment, terminate, rem ;
+ increment_t increment, start_filter_index ;
+ int half_filter_chan_len, samples_in_hand ;
+
+ if (state->private_data == NULL)
+ return SRC_ERR_NO_PRIVATE ;
+
+ filter = (SINC_FILTER*) state->private_data ;
+
+ /* If there is not a problem, this will be optimised out. */
+ if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
+ return SRC_ERR_SIZE_INCOMPATIBILITY ;
+
+ filter->in_count = data->input_frames * state->channels ;
+ filter->out_count = data->output_frames * state->channels ;
+ filter->in_used = filter->out_gen = 0 ;
+
+ src_ratio = state->last_ratio ;
+
+ if (is_bad_src_ratio (src_ratio))
+ return SRC_ERR_BAD_INTERNAL_STATE ;
+
+ /* Check the sample rate ratio wrt the buffer len. */
+ count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
+ if (MIN (state->last_ratio, data->src_ratio) < 1.0)
+ count /= MIN (state->last_ratio, data->src_ratio) ;
+
+ /* Maximum coefficientson either side of center point. */
+ half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ;
+
+ input_index = state->last_position ;
+
+ rem = fmod_one (input_index) ;
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+
+ terminate = 1.0 / src_ratio + 1e-20 ;
+
+ /* Main processing loop. */
+ while (filter->out_gen < filter->out_count)
+ {
+ /* Need to reload buffer? */
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+
+ if (samples_in_hand <= half_filter_chan_len)
+ { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0)
+ return state->error ;
+
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+ if (samples_in_hand <= half_filter_chan_len)
+ break ;
+ } ;
+
+ /* This is the termination condition. */
+ if (filter->b_real_end >= 0)
+ { if (filter->b_current + input_index + terminate >= filter->b_real_end)
+ break ;
+ } ;
+
+ if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10)
+ src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ;
+
+ float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ;
+ increment = double_to_fp (float_increment) ;
+
+ start_filter_index = double_to_fp (input_index * float_increment) ;
+
+ calc_output_quad (filter, state->channels, increment, start_filter_index, float_increment / filter->index_inc, data->data_out + filter->out_gen) ;
+ filter->out_gen += 4 ;
+
+ /* Figure out the next index. */
+ input_index += 1.0 / src_ratio ;
+ rem = fmod_one (input_index) ;
+
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+ } ;
+
+ state->last_position = input_index ;
+
+ /* Save current ratio rather then target ratio. */
+ state->last_ratio = src_ratio ;
+
+ data->input_frames_used = filter->in_used / state->channels ;
+ data->output_frames_gen = filter->out_gen / state->channels ;
+
+ return SRC_ERR_NO_ERROR ;
+} /* sinc_quad_vari_process */
+
+static inline void
+calc_output_hex (SINC_FILTER *filter, int channels, increment_t increment, increment_t start_filter_index, double scale, float * output)
+{ double fraction, left [6], right [6], icoeff ;
+ increment_t filter_index, max_filter_index ;
+ int data_index, coeff_count, indx ;
+
+ /* Convert input parameters into fixed point. */
+ max_filter_index = int_to_fp (filter->coeff_half_len) ;
+
+ /* First apply the left half of the filter. */
+ filter_index = start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current - channels * coeff_count ;
+
+ if (data_index < 0) /* Avoid underflow access to filter->buffer. */
+ { int steps = int_div_ceil (-data_index, 6) ;
+ /* If the assert triggers we would have to take care not to underflow/overflow */
+ assert (steps <= int_div_ceil (filter_index, increment)) ;
+ filter_index -= increment * steps ;
+ data_index += steps * 6;
+ }
+ left [0] = left [1] = left [2] = left [3] = left [4] = left [5] = 0.0 ;
+ while (filter_index >= MAKE_INCREMENT_T (0))
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + 5 < filter->b_len) ;
+ assert (data_index + 5 < filter->b_end) ;
+ for (int ch = 0; ch < 6; ch++)
+ left [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index + 6 ;
+ } ;
+
+ /* Now apply the right half of the filter. */
+ filter_index = increment - start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current + channels * (1 + coeff_count) ;
+
+ right [0] = right [1] = right [2] = right [3] = right [4] = right [5] = 0.0 ;
+ do
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + 5 < filter->b_len) ;
+ assert (data_index + 5 < filter->b_end) ;
+ for (int ch = 0; ch < 6; ch++)
+ right [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index - 6 ;
+ }
+ while (filter_index > MAKE_INCREMENT_T (0)) ;
+
+ for (int ch = 0; ch < 6; ch++)
+ output [ch] = (float) (scale * (left [ch] + right [ch])) ;
+} /* calc_output_hex */
+
+SRC_ERROR
+sinc_hex_vari_process (SRC_STATE *state, SRC_DATA *data)
+{ SINC_FILTER *filter ;
+ double input_index, src_ratio, count, float_increment, terminate, rem ;
+ increment_t increment, start_filter_index ;
+ int half_filter_chan_len, samples_in_hand ;
+
+ if (state->private_data == NULL)
+ return SRC_ERR_NO_PRIVATE ;
+
+ filter = (SINC_FILTER*) state->private_data ;
+
+ /* If there is not a problem, this will be optimised out. */
+ if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
+ return SRC_ERR_SIZE_INCOMPATIBILITY ;
+
+ filter->in_count = data->input_frames * state->channels ;
+ filter->out_count = data->output_frames * state->channels ;
+ filter->in_used = filter->out_gen = 0 ;
+
+ src_ratio = state->last_ratio ;
+
+ if (is_bad_src_ratio (src_ratio))
+ return SRC_ERR_BAD_INTERNAL_STATE ;
+
+ /* Check the sample rate ratio wrt the buffer len. */
+ count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
+ if (MIN (state->last_ratio, data->src_ratio) < 1.0)
+ count /= MIN (state->last_ratio, data->src_ratio) ;
+
+ /* Maximum coefficientson either side of center point. */
+ half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ;
+
+ input_index = state->last_position ;
+
+ rem = fmod_one (input_index) ;
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+
+ terminate = 1.0 / src_ratio + 1e-20 ;
+
+ /* Main processing loop. */
+ while (filter->out_gen < filter->out_count)
+ {
+ /* Need to reload buffer? */
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+
+ if (samples_in_hand <= half_filter_chan_len)
+ { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0)
+ return state->error ;
+
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+ if (samples_in_hand <= half_filter_chan_len)
+ break ;
+ } ;
+
+ /* This is the termination condition. */
+ if (filter->b_real_end >= 0)
+ { if (filter->b_current + input_index + terminate >= filter->b_real_end)
+ break ;
+ } ;
+
+ if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10)
+ src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ;
+
+ float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ;
+ increment = double_to_fp (float_increment) ;
+
+ start_filter_index = double_to_fp (input_index * float_increment) ;
+
+ calc_output_hex (filter, state->channels, increment, start_filter_index, float_increment / filter->index_inc, data->data_out + filter->out_gen) ;
+ filter->out_gen += 6 ;
+
+ /* Figure out the next index. */
+ input_index += 1.0 / src_ratio ;
+ rem = fmod_one (input_index) ;
+
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+ } ;
+
+ state->last_position = input_index ;
+
+ /* Save current ratio rather then target ratio. */
+ state->last_ratio = src_ratio ;
+
+ data->input_frames_used = filter->in_used / state->channels ;
+ data->output_frames_gen = filter->out_gen / state->channels ;
+
+ return SRC_ERR_NO_ERROR ;
+} /* sinc_hex_vari_process */
+
+static inline void
+calc_output_multi (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int channels, double scale, float * output)
+{ double fraction, icoeff ;
+ /* The following line is 1999 ISO Standard C. If your compiler complains, get a better compiler. */
+ double *left, *right ;
+ increment_t filter_index, max_filter_index ;
+ int data_index, coeff_count, indx ;
+
+ left = filter->left_calc ;
+ right = filter->right_calc ;
+
+ /* Convert input parameters into fixed point. */
+ max_filter_index = int_to_fp (filter->coeff_half_len) ;
+
+ /* First apply the left half of the filter. */
+ filter_index = start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current - channels * coeff_count ;
+
+ if (data_index < 0) /* Avoid underflow access to filter->buffer. */
+ { int steps = int_div_ceil (-data_index, channels) ;
+ /* If the assert triggers we would have to take care not to underflow/overflow */
+ assert (steps <= int_div_ceil (filter_index, increment)) ;
+ filter_index -= increment * steps ;
+ data_index += steps * channels ;
+ }
+
+ memset (left, 0, sizeof (left [0]) * channels) ;
+
+ while (filter_index >= MAKE_INCREMENT_T (0))
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+
+ assert (data_index >= 0 && data_index + channels - 1 < filter->b_len) ;
+ assert (data_index + channels - 1 < filter->b_end) ;
+ for (int ch = 0; ch < channels; ch++)
+ left [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index + channels ;
+ } ;
+
+ /* Now apply the right half of the filter. */
+ filter_index = increment - start_filter_index ;
+ coeff_count = (max_filter_index - filter_index) / increment ;
+ filter_index = filter_index + coeff_count * increment ;
+ data_index = filter->b_current + channels * (1 + coeff_count) ;
+
+ memset (right, 0, sizeof (right [0]) * channels) ;
+ do
+ { fraction = fp_to_double (filter_index) ;
+ indx = fp_to_int (filter_index) ;
+ assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ;
+ icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;
+ assert (data_index >= 0 && data_index + channels - 1 < filter->b_len) ;
+ assert (data_index + channels - 1 < filter->b_end) ;
+ for (int ch = 0; ch < channels; ch++)
+ right [ch] += icoeff * filter->buffer [data_index + ch] ;
+
+ filter_index -= increment ;
+ data_index = data_index - channels ;
+ }
+ while (filter_index > MAKE_INCREMENT_T (0)) ;
+
+ for(int ch = 0; ch < channels; ch++)
+ output [ch] = (float) (scale * (left [ch] + right [ch])) ;
+
+ return ;
+} /* calc_output_multi */
+
+static SRC_ERROR
+sinc_multichan_vari_process (SRC_STATE *state, SRC_DATA *data)
+{ SINC_FILTER *filter ;
+ double input_index, src_ratio, count, float_increment, terminate, rem ;
+ increment_t increment, start_filter_index ;
+ int half_filter_chan_len, samples_in_hand ;
+
+ if (state->private_data == NULL)
+ return SRC_ERR_NO_PRIVATE ;
+
+ filter = (SINC_FILTER*) state->private_data ;
+
+ /* If there is not a problem, this will be optimised out. */
+ if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
+ return SRC_ERR_SIZE_INCOMPATIBILITY ;
+
+ filter->in_count = data->input_frames * state->channels ;
+ filter->out_count = data->output_frames * state->channels ;
+ filter->in_used = filter->out_gen = 0 ;
+
+ src_ratio = state->last_ratio ;
+
+ if (is_bad_src_ratio (src_ratio))
+ return SRC_ERR_BAD_INTERNAL_STATE ;
+
+ /* Check the sample rate ratio wrt the buffer len. */
+ count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
+ if (MIN (state->last_ratio, data->src_ratio) < 1.0)
+ count /= MIN (state->last_ratio, data->src_ratio) ;
+
+ /* Maximum coefficientson either side of center point. */
+ half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ;
+
+ input_index = state->last_position ;
+
+ rem = fmod_one (input_index) ;
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+
+ terminate = 1.0 / src_ratio + 1e-20 ;
+
+ /* Main processing loop. */
+ while (filter->out_gen < filter->out_count)
+ {
+ /* Need to reload buffer? */
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+
+ if (samples_in_hand <= half_filter_chan_len)
+ { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0)
+ return state->error ;
+
+ samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
+ if (samples_in_hand <= half_filter_chan_len)
+ break ;
+ } ;
+
+ /* This is the termination condition. */
+ if (filter->b_real_end >= 0)
+ { if (filter->b_current + input_index + terminate >= filter->b_real_end)
+ break ;
+ } ;
+
+ if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10)
+ src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ;
+
+ float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ;
+ increment = double_to_fp (float_increment) ;
+
+ start_filter_index = double_to_fp (input_index * float_increment) ;
+
+ calc_output_multi (filter, increment, start_filter_index, state->channels, float_increment / filter->index_inc, data->data_out + filter->out_gen) ;
+ filter->out_gen += state->channels ;
+
+ /* Figure out the next index. */
+ input_index += 1.0 / src_ratio ;
+ rem = fmod_one (input_index) ;
+
+ filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ;
+ input_index = rem ;
+ } ;
+
+ state->last_position = input_index ;
+
+ /* Save current ratio rather then target ratio. */
+ state->last_ratio = src_ratio ;
+
+ data->input_frames_used = filter->in_used / state->channels ;
+ data->output_frames_gen = filter->out_gen / state->channels ;
+
+ return SRC_ERR_NO_ERROR ;
+} /* sinc_multichan_vari_process */
+
+/*----------------------------------------------------------------------------------------
+*/
+
+static SRC_ERROR
+prepare_data (SINC_FILTER *filter, int channels, SRC_DATA *data, int half_filter_chan_len)
+{ int len = 0 ;
+
+ if (filter->b_real_end >= 0)
+ return SRC_ERR_NO_ERROR ; /* Should be terminating. Just return. */
+
+ if (data->data_in == NULL)
+ return SRC_ERR_NO_ERROR ;
+
+ if (filter->b_current == 0)
+ { /* Initial state. Set up zeros at the start of the buffer and
+ ** then load new data after that.
+ */
+ len = filter->b_len - 2 * half_filter_chan_len ;
+
+ filter->b_current = filter->b_end = half_filter_chan_len ;
+ }
+ else if (filter->b_end + half_filter_chan_len + channels < filter->b_len)
+ { /* Load data at current end position. */
+ len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;
+ }
+ else
+ { /* Move data at end of buffer back to the start of the buffer. */
+ len = filter->b_end - filter->b_current ;
+ memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,
+ (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;
+
+ filter->b_current = half_filter_chan_len ;
+ filter->b_end = filter->b_current + len ;
+
+ /* Now load data at current end of buffer. */
+ len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;
+ } ;
+
+ len = MIN ((int) (filter->in_count - filter->in_used), len) ;
+ len -= (len % channels) ;
+
+ if (len < 0 || filter->b_end + len > filter->b_len)
+ return SRC_ERR_SINC_PREPARE_DATA_BAD_LEN ;
+
+ memcpy (filter->buffer + filter->b_end, data->data_in + filter->in_used,
+ len * sizeof (filter->buffer [0])) ;
+
+ filter->b_end += len ;
+ filter->in_used += len ;
+
+ if (filter->in_used == filter->in_count &&
+ filter->b_end - filter->b_current < 2 * half_filter_chan_len && data->end_of_input)
+ { /* Handle the case where all data in the current buffer has been
+ ** consumed and this is the last buffer.
+ */
+
+ if (filter->b_len - filter->b_end < half_filter_chan_len + 5)
+ { /* If necessary, move data down to the start of the buffer. */
+ len = filter->b_end - filter->b_current ;
+ memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,
+ (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;
+
+ filter->b_current = half_filter_chan_len ;
+ filter->b_end = filter->b_current + len ;
+ } ;
+
+ filter->b_real_end = filter->b_end ;
+ len = half_filter_chan_len + 5 ;
+
+ if (len < 0 || filter->b_end + len > filter->b_len)
+ len = filter->b_len - filter->b_end ;
+
+ memset (filter->buffer + filter->b_end, 0, len * sizeof (filter->buffer [0])) ;
+ filter->b_end += len ;
+ } ;
+
+ return SRC_ERR_NO_ERROR ;
+} /* prepare_data */
+
+static void
+sinc_close (SRC_STATE *state)
+{
+ if (state)
+ {
+ SINC_FILTER *sinc = (SINC_FILTER *) state->private_data ;
+ if (sinc)
+ {
+ if (sinc->buffer)
+ {
+ free (sinc->buffer) ;
+ sinc->buffer = NULL ;
+ }
+ free (sinc) ;
+ sinc = NULL ;
+ }
+ free (state) ;
+ state = NULL ;
+ }
+} /* sinc_close */