diff options
Diffstat (limited to 'src_sinc.c')
-rw-r--r-- | src_sinc.c | 1254 |
1 files changed, 1254 insertions, 0 deletions
diff --git a/src_sinc.c b/src_sinc.c new file mode 100644 index 000000000000..2ed0d7bac88f --- /dev/null +++ b/src_sinc.c @@ -0,0 +1,1254 @@ +/* +** Copyright (c) 2002-2021, Erik de Castro Lopo <erikd@mega-nerd.com> +** All rights reserved. +** +** This code is released under 2-clause BSD license. Please see the +** file at : https://github.com/libsndfile/libsamplerate/blob/master/COPYING +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <math.h> + +#include "common.h" + +#define SINC_MAGIC_MARKER MAKE_MAGIC (' ', 's', 'i', 'n', 'c', ' ') + +/*======================================================================================== +*/ + +#define MAKE_INCREMENT_T(x) ((increment_t) (x)) + +#define SHIFT_BITS 12 +#define FP_ONE ((double) (((increment_t) 1) << SHIFT_BITS)) +#define INV_FP_ONE (1.0 / FP_ONE) + +/* Customixe max channls from Kconfig. */ +#ifndef CONFIG_CHAN_NR +#define MAX_CHANNELS 128 +#else +#define MAX_CHANNELS CONFIG_CHAN_NR +#endif + +/*======================================================================================== +*/ + +typedef int32_t increment_t ; +typedef float coeff_t ; +typedef int _CHECK_SHIFT_BITS[2 * (SHIFT_BITS < sizeof (increment_t) * 8 - 1) - 1]; /* sanity check. */ + +#ifdef ENABLE_SINC_FAST_CONVERTER + #include "fastest_coeffs.h" +#endif +#ifdef ENABLE_SINC_MEDIUM_CONVERTER + #include "mid_qual_coeffs.h" +#endif +#ifdef ENABLE_SINC_BEST_CONVERTER + #include "high_qual_coeffs.h" +#endif + +typedef struct +{ int sinc_magic_marker ; + + long in_count, in_used ; + long out_count, out_gen ; + + int coeff_half_len, index_inc ; + + double src_ratio, input_index ; + + coeff_t const *coeffs ; + + int b_current, b_end, b_real_end, b_len ; + + /* Sure hope noone does more than 128 channels at once. */ + double left_calc [MAX_CHANNELS], right_calc [MAX_CHANNELS] ; + + float *buffer ; +} SINC_FILTER ; + +static SRC_ERROR sinc_multichan_vari_process (SRC_STATE *state, SRC_DATA *data) ; +static SRC_ERROR sinc_hex_vari_process (SRC_STATE *state, SRC_DATA *data) ; +static SRC_ERROR sinc_quad_vari_process (SRC_STATE *state, SRC_DATA *data) ; +static SRC_ERROR sinc_stereo_vari_process (SRC_STATE *state, SRC_DATA *data) ; +static SRC_ERROR sinc_mono_vari_process (SRC_STATE *state, SRC_DATA *data) ; + +static SRC_ERROR prepare_data (SINC_FILTER *filter, int channels, SRC_DATA *data, int half_filter_chan_len) WARN_UNUSED ; + +static void sinc_reset (SRC_STATE *state) ; +static SRC_STATE *sinc_copy (SRC_STATE *state) ; +static void sinc_close (SRC_STATE *state) ; + +static SRC_STATE_VT sinc_multichan_state_vt = +{ + sinc_multichan_vari_process, + sinc_multichan_vari_process, + sinc_reset, + sinc_copy, + sinc_close +} ; + +static SRC_STATE_VT sinc_hex_state_vt = +{ + sinc_hex_vari_process, + sinc_hex_vari_process, + sinc_reset, + sinc_copy, + sinc_close +} ; + +static SRC_STATE_VT sinc_quad_state_vt = +{ + sinc_quad_vari_process, + sinc_quad_vari_process, + sinc_reset, + sinc_copy, + sinc_close +} ; + +static SRC_STATE_VT sinc_stereo_state_vt = +{ + sinc_stereo_vari_process, + sinc_stereo_vari_process, + sinc_reset, + sinc_copy, + sinc_close +} ; + +static SRC_STATE_VT sinc_mono_state_vt = +{ + sinc_mono_vari_process, + sinc_mono_vari_process, + sinc_reset, + sinc_copy, + sinc_close +} ; + +static inline increment_t +double_to_fp (double x) +{ return (increment_t) (lrint ((x) * FP_ONE)) ; +} /* double_to_fp */ + +static inline increment_t +int_to_fp (int x) +{ return (((increment_t) (x)) << SHIFT_BITS) ; +} /* int_to_fp */ + +static inline int +fp_to_int (increment_t x) +{ return (((x) >> SHIFT_BITS)) ; +} /* fp_to_int */ + +static inline increment_t +fp_fraction_part (increment_t x) +{ return ((x) & ((((increment_t) 1) << SHIFT_BITS) - 1)) ; +} /* fp_fraction_part */ + +static inline double +fp_to_double (increment_t x) +{ return fp_fraction_part (x) * INV_FP_ONE ; +} /* fp_to_double */ + +static inline int +int_div_ceil (int divident, int divisor) /* == (int) ceil ((float) divident / divisor) */ +{ assert (divident >= 0 && divisor > 0) ; /* For positive numbers only */ + return (divident + (divisor - 1)) / divisor ; +} + +/*---------------------------------------------------------------------------------------- +*/ + +#if 0 +LIBSAMPLERATE_DLL_PRIVATE const char* +sinc_get_name (int src_enum) +{ + switch (src_enum) + { case SRC_SINC_BEST_QUALITY : + return "Best Sinc Interpolator" ; + + case SRC_SINC_MEDIUM_QUALITY : + return "Medium Sinc Interpolator" ; + + case SRC_SINC_FASTEST : + return "Fastest Sinc Interpolator" ; + + default: break ; + } ; + + return NULL ; +} /* sinc_get_descrition */ + +LIBSAMPLERATE_DLL_PRIVATE const char* +sinc_get_description (int src_enum) +{ + switch (src_enum) + { case SRC_SINC_FASTEST : + return "Band limited sinc interpolation, fastest, 97dB SNR, 80% BW." ; + + case SRC_SINC_MEDIUM_QUALITY : + return "Band limited sinc interpolation, medium quality, 121dB SNR, 90% BW." ; + + case SRC_SINC_BEST_QUALITY : + return "Band limited sinc interpolation, best quality, 144dB SNR, 96% BW." ; + + default : + break ; + } ; + + return NULL ; +} /* sinc_get_descrition */ +#endif + +static SINC_FILTER * +sinc_filter_new (int converter_type, int channels) +{ + assert (converter_type == SRC_SINC_FASTEST || + converter_type == SRC_SINC_MEDIUM_QUALITY || + converter_type == SRC_SINC_BEST_QUALITY) ; + assert (channels > 0 && channels <= MAX_CHANNELS) ; + + SINC_FILTER *priv = (SINC_FILTER *) calloc (1, sizeof (SINC_FILTER)) ; + if (priv) + { + priv->sinc_magic_marker = SINC_MAGIC_MARKER ; + switch (converter_type) + { +#ifdef ENABLE_SINC_FAST_CONVERTER + case SRC_SINC_FASTEST : + priv->coeffs = fastest_coeffs.coeffs ; + priv->coeff_half_len = ARRAY_LEN (fastest_coeffs.coeffs) - 2 ; + priv->index_inc = fastest_coeffs.increment ; + break ; +#endif +#ifdef ENABLE_SINC_MEDIUM_CONVERTER + case SRC_SINC_MEDIUM_QUALITY : + priv->coeffs = slow_mid_qual_coeffs.coeffs ; + priv->coeff_half_len = ARRAY_LEN (slow_mid_qual_coeffs.coeffs) - 2 ; + priv->index_inc = slow_mid_qual_coeffs.increment ; + break ; +#endif +#ifdef ENABLE_SINC_BEST_CONVERTER + case SRC_SINC_BEST_QUALITY : + priv->coeffs = slow_high_qual_coeffs.coeffs ; + priv->coeff_half_len = ARRAY_LEN (slow_high_qual_coeffs.coeffs) - 2 ; + priv->index_inc = slow_high_qual_coeffs.increment ; + break ; +#endif + } + + priv->b_len = 3 * (int) lrint ((priv->coeff_half_len + 2.0) / priv->index_inc * SRC_MAX_RATIO + 1) ; + priv->b_len = MAX (priv->b_len, 4096) ; + priv->b_len *= channels ; + priv->b_len += 1 ; // There is a <= check against samples_in_hand requiring a buffer bigger than the calculation above + + + priv->buffer = (float *) calloc (priv->b_len + channels, sizeof (float)) ; + if (!priv->buffer) + { + free (priv) ; + priv = NULL ; + } + } + + return priv ; +} + +LIBSAMPLERATE_DLL_PRIVATE SRC_STATE * +sinc_state_new (int converter_type, int channels, SRC_ERROR *error) +{ + assert (converter_type == SRC_SINC_FASTEST || + converter_type == SRC_SINC_MEDIUM_QUALITY || + converter_type == SRC_SINC_BEST_QUALITY) ; + assert (channels > 0) ; + assert (error != NULL) ; + + if (channels > MAX_CHANNELS) + { + *error = SRC_ERR_BAD_CHANNEL_COUNT ; + return NULL ; + } + + SRC_STATE *state = (SRC_STATE *) calloc (1, sizeof (SRC_STATE)) ; + if (!state) + { + *error = SRC_ERR_MALLOC_FAILED ; + return NULL ; + } + + state->channels = channels ; + state->mode = SRC_MODE_PROCESS ; + + if (state->channels == 1) + state->vt = &sinc_mono_state_vt ; + else if (state->channels == 2) + state->vt = &sinc_stereo_state_vt ; + else if (state->channels == 4) + state->vt = &sinc_quad_state_vt ; + else if (state->channels == 6) + state->vt = &sinc_hex_state_vt ; + else + state->vt = &sinc_multichan_state_vt ; + + state->private_data = sinc_filter_new (converter_type, state->channels) ; + if (!state->private_data) + { + free (state) ; + *error = SRC_ERR_MALLOC_FAILED ; + return NULL ; + } + + sinc_reset (state) ; + + *error = SRC_ERR_NO_ERROR ; + + return state ; +} + +static void +sinc_reset (SRC_STATE *state) +{ SINC_FILTER *filter ; + + filter = (SINC_FILTER*) state->private_data ; + if (filter == NULL) + return ; + + filter->b_current = filter->b_end = 0 ; + filter->b_real_end = -1 ; + + filter->src_ratio = filter->input_index = 0.0 ; + + memset (filter->buffer, 0, filter->b_len * sizeof (filter->buffer [0])) ; + + /* Set this for a sanity check */ + memset (filter->buffer + filter->b_len, 0xAA, state->channels * sizeof (filter->buffer [0])) ; +} /* sinc_reset */ + +static SRC_STATE * +sinc_copy (SRC_STATE *state) +{ + assert (state != NULL) ; + + if (state->private_data == NULL) + return NULL ; + + SRC_STATE *to = (SRC_STATE *) calloc (1, sizeof (SRC_STATE)) ; + if (!to) + return NULL ; + memcpy (to, state, sizeof (SRC_STATE)) ; + + + SINC_FILTER* from_filter = (SINC_FILTER*) state->private_data ; + SINC_FILTER *to_filter = (SINC_FILTER *) calloc (1, sizeof (SINC_FILTER)) ; + if (!to_filter) + { + free (to) ; + return NULL ; + } + memcpy (to_filter, from_filter, sizeof (SINC_FILTER)) ; + to_filter->buffer = (float *) malloc (sizeof (float) * (from_filter->b_len + state->channels)) ; + if (!to_filter->buffer) + { + free (to) ; + free (to_filter) ; + return NULL ; + } + memcpy (to_filter->buffer, from_filter->buffer, sizeof (float) * (from_filter->b_len + state->channels)) ; + + to->private_data = to_filter ; + + return to ; +} /* sinc_copy */ + +/*======================================================================================== +** Beware all ye who dare pass this point. There be dragons here. +*/ + +static inline double +calc_output_single (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index) +{ double fraction, left, right, icoeff ; + increment_t filter_index, max_filter_index ; + int data_index, coeff_count, indx ; + + /* Convert input parameters into fixed point. */ + max_filter_index = int_to_fp (filter->coeff_half_len) ; + + /* First apply the left half of the filter. */ + filter_index = start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current - coeff_count ; + + if (data_index < 0) /* Avoid underflow access to filter->buffer. */ + { int steps = -data_index ; + /* If the assert triggers we would have to take care not to underflow/overflow */ + assert (steps <= int_div_ceil (filter_index, increment)) ; + filter_index -= increment * steps ; + data_index += steps ; + } + left = 0.0 ; + while (filter_index >= MAKE_INCREMENT_T (0)) + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index < filter->b_len) ; + assert (data_index < filter->b_end) ; + left += icoeff * filter->buffer [data_index] ; + + filter_index -= increment ; + data_index = data_index + 1 ; + } ; + + /* Now apply the right half of the filter. */ + filter_index = increment - start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current + 1 + coeff_count ; + + right = 0.0 ; + do + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index < filter->b_len) ; + assert (data_index < filter->b_end) ; + right += icoeff * filter->buffer [data_index] ; + + filter_index -= increment ; + data_index = data_index - 1 ; + } + while (filter_index > MAKE_INCREMENT_T (0)) ; + + return (left + right) ; +} /* calc_output_single */ + +static SRC_ERROR +sinc_mono_vari_process (SRC_STATE *state, SRC_DATA *data) +{ SINC_FILTER *filter ; + double input_index, src_ratio, count, float_increment, terminate, rem ; + increment_t increment, start_filter_index ; + int half_filter_chan_len, samples_in_hand ; + + if (state->private_data == NULL) + return SRC_ERR_NO_PRIVATE ; + + filter = (SINC_FILTER*) state->private_data ; + + /* If there is not a problem, this will be optimised out. */ + if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0])) + return SRC_ERR_SIZE_INCOMPATIBILITY ; + + filter->in_count = data->input_frames * state->channels ; + filter->out_count = data->output_frames * state->channels ; + filter->in_used = filter->out_gen = 0 ; + + src_ratio = state->last_ratio ; + + if (is_bad_src_ratio (src_ratio)) + return SRC_ERR_BAD_INTERNAL_STATE ; + + /* Check the sample rate ratio wrt the buffer len. */ + count = (filter->coeff_half_len + 2.0) / filter->index_inc ; + if (MIN (state->last_ratio, data->src_ratio) < 1.0) + count /= MIN (state->last_ratio, data->src_ratio) ; + + /* Maximum coefficientson either side of center point. */ + half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ; + + input_index = state->last_position ; + + rem = fmod_one (input_index) ; + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + + terminate = 1.0 / src_ratio + 1e-20 ; + + /* Main processing loop. */ + while (filter->out_gen < filter->out_count) + { + /* Need to reload buffer? */ + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + + if (samples_in_hand <= half_filter_chan_len) + { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0) + return state->error ; + + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + if (samples_in_hand <= half_filter_chan_len) + break ; + } ; + + /* This is the termination condition. */ + if (filter->b_real_end >= 0) + { if (filter->b_current + input_index + terminate > filter->b_real_end) + break ; + } ; + + if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10) + src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ; + + float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ; + increment = double_to_fp (float_increment) ; + + start_filter_index = double_to_fp (input_index * float_increment) ; + + data->data_out [filter->out_gen] = (float) ((float_increment / filter->index_inc) * + calc_output_single (filter, increment, start_filter_index)) ; + filter->out_gen ++ ; + + /* Figure out the next index. */ + input_index += 1.0 / src_ratio ; + rem = fmod_one (input_index) ; + + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + } ; + + state->last_position = input_index ; + + /* Save current ratio rather then target ratio. */ + state->last_ratio = src_ratio ; + + data->input_frames_used = filter->in_used / state->channels ; + data->output_frames_gen = filter->out_gen / state->channels ; + + return SRC_ERR_NO_ERROR ; +} /* sinc_mono_vari_process */ + +static inline void +calc_output_stereo (SINC_FILTER *filter, int channels, increment_t increment, increment_t start_filter_index, double scale, float * output) +{ double fraction, left [2], right [2], icoeff ; + increment_t filter_index, max_filter_index ; + int data_index, coeff_count, indx ; + + /* Convert input parameters into fixed point. */ + max_filter_index = int_to_fp (filter->coeff_half_len) ; + + /* First apply the left half of the filter. */ + filter_index = start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current - channels * coeff_count ; + + if (data_index < 0) /* Avoid underflow access to filter->buffer. */ + { int steps = int_div_ceil (-data_index, 2) ; + /* If the assert triggers we would have to take care not to underflow/overflow */ + assert (steps <= int_div_ceil (filter_index, increment)) ; + filter_index -= increment * steps ; + data_index += steps * 2; + } + left [0] = left [1] = 0.0 ; + while (filter_index >= MAKE_INCREMENT_T (0)) + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + 1 < filter->b_len) ; + assert (data_index + 1 < filter->b_end) ; + for (int ch = 0; ch < 2; ch++) + left [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index + 2 ; + } ; + + /* Now apply the right half of the filter. */ + filter_index = increment - start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current + channels * (1 + coeff_count) ; + + right [0] = right [1] = 0.0 ; + do + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + 1 < filter->b_len) ; + assert (data_index + 1 < filter->b_end) ; + for (int ch = 0; ch < 2; ch++) + right [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index - 2 ; + } + while (filter_index > MAKE_INCREMENT_T (0)) ; + + for (int ch = 0; ch < 2; ch++) + output [ch] = (float) (scale * (left [ch] + right [ch])) ; +} /* calc_output_stereo */ + +SRC_ERROR +sinc_stereo_vari_process (SRC_STATE *state, SRC_DATA *data) +{ SINC_FILTER *filter ; + double input_index, src_ratio, count, float_increment, terminate, rem ; + increment_t increment, start_filter_index ; + int half_filter_chan_len, samples_in_hand ; + + if (state->private_data == NULL) + return SRC_ERR_NO_PRIVATE ; + + filter = (SINC_FILTER*) state->private_data ; + + /* If there is not a problem, this will be optimised out. */ + if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0])) + return SRC_ERR_SIZE_INCOMPATIBILITY ; + + filter->in_count = data->input_frames * state->channels ; + filter->out_count = data->output_frames * state->channels ; + filter->in_used = filter->out_gen = 0 ; + + src_ratio = state->last_ratio ; + + if (is_bad_src_ratio (src_ratio)) + return SRC_ERR_BAD_INTERNAL_STATE ; + + /* Check the sample rate ratio wrt the buffer len. */ + count = (filter->coeff_half_len + 2.0) / filter->index_inc ; + if (MIN (state->last_ratio, data->src_ratio) < 1.0) + count /= MIN (state->last_ratio, data->src_ratio) ; + + /* Maximum coefficientson either side of center point. */ + half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ; + + input_index = state->last_position ; + + rem = fmod_one (input_index) ; + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + + terminate = 1.0 / src_ratio + 1e-20 ; + + /* Main processing loop. */ + while (filter->out_gen < filter->out_count) + { + /* Need to reload buffer? */ + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + + if (samples_in_hand <= half_filter_chan_len) + { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0) + return state->error ; + + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + if (samples_in_hand <= half_filter_chan_len) + break ; + } ; + + /* This is the termination condition. */ + if (filter->b_real_end >= 0) + { if (filter->b_current + input_index + terminate >= filter->b_real_end) + break ; + } ; + + if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10) + src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ; + + float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ; + increment = double_to_fp (float_increment) ; + + start_filter_index = double_to_fp (input_index * float_increment) ; + + calc_output_stereo (filter, state->channels, increment, start_filter_index, float_increment / filter->index_inc, data->data_out + filter->out_gen) ; + filter->out_gen += 2 ; + + /* Figure out the next index. */ + input_index += 1.0 / src_ratio ; + rem = fmod_one (input_index) ; + + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + } ; + + state->last_position = input_index ; + + /* Save current ratio rather then target ratio. */ + state->last_ratio = src_ratio ; + + data->input_frames_used = filter->in_used / state->channels ; + data->output_frames_gen = filter->out_gen / state->channels ; + + return SRC_ERR_NO_ERROR ; +} /* sinc_stereo_vari_process */ + +static inline void +calc_output_quad (SINC_FILTER *filter, int channels, increment_t increment, increment_t start_filter_index, double scale, float * output) +{ double fraction, left [4], right [4], icoeff ; + increment_t filter_index, max_filter_index ; + int data_index, coeff_count, indx ; + + /* Convert input parameters into fixed point. */ + max_filter_index = int_to_fp (filter->coeff_half_len) ; + + /* First apply the left half of the filter. */ + filter_index = start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current - channels * coeff_count ; + + if (data_index < 0) /* Avoid underflow access to filter->buffer. */ + { int steps = int_div_ceil (-data_index, 4) ; + /* If the assert triggers we would have to take care not to underflow/overflow */ + assert (steps <= int_div_ceil (filter_index, increment)) ; + filter_index -= increment * steps ; + data_index += steps * 4; + } + left [0] = left [1] = left [2] = left [3] = 0.0 ; + while (filter_index >= MAKE_INCREMENT_T (0)) + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + 3 < filter->b_len) ; + assert (data_index + 3 < filter->b_end) ; + for (int ch = 0; ch < 4; ch++) + left [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index + 4 ; + } ; + + /* Now apply the right half of the filter. */ + filter_index = increment - start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current + channels * (1 + coeff_count) ; + + right [0] = right [1] = right [2] = right [3] = 0.0 ; + do + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + 3 < filter->b_len) ; + assert (data_index + 3 < filter->b_end) ; + for (int ch = 0; ch < 4; ch++) + right [ch] += icoeff * filter->buffer [data_index + ch] ; + + + filter_index -= increment ; + data_index = data_index - 4 ; + } + while (filter_index > MAKE_INCREMENT_T (0)) ; + + for (int ch = 0; ch < 4; ch++) + output [ch] = (float) (scale * (left [ch] + right [ch])) ; +} /* calc_output_quad */ + +SRC_ERROR +sinc_quad_vari_process (SRC_STATE *state, SRC_DATA *data) +{ SINC_FILTER *filter ; + double input_index, src_ratio, count, float_increment, terminate, rem ; + increment_t increment, start_filter_index ; + int half_filter_chan_len, samples_in_hand ; + + if (state->private_data == NULL) + return SRC_ERR_NO_PRIVATE ; + + filter = (SINC_FILTER*) state->private_data ; + + /* If there is not a problem, this will be optimised out. */ + if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0])) + return SRC_ERR_SIZE_INCOMPATIBILITY ; + + filter->in_count = data->input_frames * state->channels ; + filter->out_count = data->output_frames * state->channels ; + filter->in_used = filter->out_gen = 0 ; + + src_ratio = state->last_ratio ; + + if (is_bad_src_ratio (src_ratio)) + return SRC_ERR_BAD_INTERNAL_STATE ; + + /* Check the sample rate ratio wrt the buffer len. */ + count = (filter->coeff_half_len + 2.0) / filter->index_inc ; + if (MIN (state->last_ratio, data->src_ratio) < 1.0) + count /= MIN (state->last_ratio, data->src_ratio) ; + + /* Maximum coefficientson either side of center point. */ + half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ; + + input_index = state->last_position ; + + rem = fmod_one (input_index) ; + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + + terminate = 1.0 / src_ratio + 1e-20 ; + + /* Main processing loop. */ + while (filter->out_gen < filter->out_count) + { + /* Need to reload buffer? */ + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + + if (samples_in_hand <= half_filter_chan_len) + { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0) + return state->error ; + + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + if (samples_in_hand <= half_filter_chan_len) + break ; + } ; + + /* This is the termination condition. */ + if (filter->b_real_end >= 0) + { if (filter->b_current + input_index + terminate >= filter->b_real_end) + break ; + } ; + + if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10) + src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ; + + float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ; + increment = double_to_fp (float_increment) ; + + start_filter_index = double_to_fp (input_index * float_increment) ; + + calc_output_quad (filter, state->channels, increment, start_filter_index, float_increment / filter->index_inc, data->data_out + filter->out_gen) ; + filter->out_gen += 4 ; + + /* Figure out the next index. */ + input_index += 1.0 / src_ratio ; + rem = fmod_one (input_index) ; + + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + } ; + + state->last_position = input_index ; + + /* Save current ratio rather then target ratio. */ + state->last_ratio = src_ratio ; + + data->input_frames_used = filter->in_used / state->channels ; + data->output_frames_gen = filter->out_gen / state->channels ; + + return SRC_ERR_NO_ERROR ; +} /* sinc_quad_vari_process */ + +static inline void +calc_output_hex (SINC_FILTER *filter, int channels, increment_t increment, increment_t start_filter_index, double scale, float * output) +{ double fraction, left [6], right [6], icoeff ; + increment_t filter_index, max_filter_index ; + int data_index, coeff_count, indx ; + + /* Convert input parameters into fixed point. */ + max_filter_index = int_to_fp (filter->coeff_half_len) ; + + /* First apply the left half of the filter. */ + filter_index = start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current - channels * coeff_count ; + + if (data_index < 0) /* Avoid underflow access to filter->buffer. */ + { int steps = int_div_ceil (-data_index, 6) ; + /* If the assert triggers we would have to take care not to underflow/overflow */ + assert (steps <= int_div_ceil (filter_index, increment)) ; + filter_index -= increment * steps ; + data_index += steps * 6; + } + left [0] = left [1] = left [2] = left [3] = left [4] = left [5] = 0.0 ; + while (filter_index >= MAKE_INCREMENT_T (0)) + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + 5 < filter->b_len) ; + assert (data_index + 5 < filter->b_end) ; + for (int ch = 0; ch < 6; ch++) + left [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index + 6 ; + } ; + + /* Now apply the right half of the filter. */ + filter_index = increment - start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current + channels * (1 + coeff_count) ; + + right [0] = right [1] = right [2] = right [3] = right [4] = right [5] = 0.0 ; + do + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + 5 < filter->b_len) ; + assert (data_index + 5 < filter->b_end) ; + for (int ch = 0; ch < 6; ch++) + right [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index - 6 ; + } + while (filter_index > MAKE_INCREMENT_T (0)) ; + + for (int ch = 0; ch < 6; ch++) + output [ch] = (float) (scale * (left [ch] + right [ch])) ; +} /* calc_output_hex */ + +SRC_ERROR +sinc_hex_vari_process (SRC_STATE *state, SRC_DATA *data) +{ SINC_FILTER *filter ; + double input_index, src_ratio, count, float_increment, terminate, rem ; + increment_t increment, start_filter_index ; + int half_filter_chan_len, samples_in_hand ; + + if (state->private_data == NULL) + return SRC_ERR_NO_PRIVATE ; + + filter = (SINC_FILTER*) state->private_data ; + + /* If there is not a problem, this will be optimised out. */ + if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0])) + return SRC_ERR_SIZE_INCOMPATIBILITY ; + + filter->in_count = data->input_frames * state->channels ; + filter->out_count = data->output_frames * state->channels ; + filter->in_used = filter->out_gen = 0 ; + + src_ratio = state->last_ratio ; + + if (is_bad_src_ratio (src_ratio)) + return SRC_ERR_BAD_INTERNAL_STATE ; + + /* Check the sample rate ratio wrt the buffer len. */ + count = (filter->coeff_half_len + 2.0) / filter->index_inc ; + if (MIN (state->last_ratio, data->src_ratio) < 1.0) + count /= MIN (state->last_ratio, data->src_ratio) ; + + /* Maximum coefficientson either side of center point. */ + half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ; + + input_index = state->last_position ; + + rem = fmod_one (input_index) ; + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + + terminate = 1.0 / src_ratio + 1e-20 ; + + /* Main processing loop. */ + while (filter->out_gen < filter->out_count) + { + /* Need to reload buffer? */ + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + + if (samples_in_hand <= half_filter_chan_len) + { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0) + return state->error ; + + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + if (samples_in_hand <= half_filter_chan_len) + break ; + } ; + + /* This is the termination condition. */ + if (filter->b_real_end >= 0) + { if (filter->b_current + input_index + terminate >= filter->b_real_end) + break ; + } ; + + if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10) + src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ; + + float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ; + increment = double_to_fp (float_increment) ; + + start_filter_index = double_to_fp (input_index * float_increment) ; + + calc_output_hex (filter, state->channels, increment, start_filter_index, float_increment / filter->index_inc, data->data_out + filter->out_gen) ; + filter->out_gen += 6 ; + + /* Figure out the next index. */ + input_index += 1.0 / src_ratio ; + rem = fmod_one (input_index) ; + + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + } ; + + state->last_position = input_index ; + + /* Save current ratio rather then target ratio. */ + state->last_ratio = src_ratio ; + + data->input_frames_used = filter->in_used / state->channels ; + data->output_frames_gen = filter->out_gen / state->channels ; + + return SRC_ERR_NO_ERROR ; +} /* sinc_hex_vari_process */ + +static inline void +calc_output_multi (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int channels, double scale, float * output) +{ double fraction, icoeff ; + /* The following line is 1999 ISO Standard C. If your compiler complains, get a better compiler. */ + double *left, *right ; + increment_t filter_index, max_filter_index ; + int data_index, coeff_count, indx ; + + left = filter->left_calc ; + right = filter->right_calc ; + + /* Convert input parameters into fixed point. */ + max_filter_index = int_to_fp (filter->coeff_half_len) ; + + /* First apply the left half of the filter. */ + filter_index = start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current - channels * coeff_count ; + + if (data_index < 0) /* Avoid underflow access to filter->buffer. */ + { int steps = int_div_ceil (-data_index, channels) ; + /* If the assert triggers we would have to take care not to underflow/overflow */ + assert (steps <= int_div_ceil (filter_index, increment)) ; + filter_index -= increment * steps ; + data_index += steps * channels ; + } + + memset (left, 0, sizeof (left [0]) * channels) ; + + while (filter_index >= MAKE_INCREMENT_T (0)) + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + + assert (data_index >= 0 && data_index + channels - 1 < filter->b_len) ; + assert (data_index + channels - 1 < filter->b_end) ; + for (int ch = 0; ch < channels; ch++) + left [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index + channels ; + } ; + + /* Now apply the right half of the filter. */ + filter_index = increment - start_filter_index ; + coeff_count = (max_filter_index - filter_index) / increment ; + filter_index = filter_index + coeff_count * increment ; + data_index = filter->b_current + channels * (1 + coeff_count) ; + + memset (right, 0, sizeof (right [0]) * channels) ; + do + { fraction = fp_to_double (filter_index) ; + indx = fp_to_int (filter_index) ; + assert (indx >= 0 && indx + 1 < filter->coeff_half_len + 2) ; + icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ; + assert (data_index >= 0 && data_index + channels - 1 < filter->b_len) ; + assert (data_index + channels - 1 < filter->b_end) ; + for (int ch = 0; ch < channels; ch++) + right [ch] += icoeff * filter->buffer [data_index + ch] ; + + filter_index -= increment ; + data_index = data_index - channels ; + } + while (filter_index > MAKE_INCREMENT_T (0)) ; + + for(int ch = 0; ch < channels; ch++) + output [ch] = (float) (scale * (left [ch] + right [ch])) ; + + return ; +} /* calc_output_multi */ + +static SRC_ERROR +sinc_multichan_vari_process (SRC_STATE *state, SRC_DATA *data) +{ SINC_FILTER *filter ; + double input_index, src_ratio, count, float_increment, terminate, rem ; + increment_t increment, start_filter_index ; + int half_filter_chan_len, samples_in_hand ; + + if (state->private_data == NULL) + return SRC_ERR_NO_PRIVATE ; + + filter = (SINC_FILTER*) state->private_data ; + + /* If there is not a problem, this will be optimised out. */ + if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0])) + return SRC_ERR_SIZE_INCOMPATIBILITY ; + + filter->in_count = data->input_frames * state->channels ; + filter->out_count = data->output_frames * state->channels ; + filter->in_used = filter->out_gen = 0 ; + + src_ratio = state->last_ratio ; + + if (is_bad_src_ratio (src_ratio)) + return SRC_ERR_BAD_INTERNAL_STATE ; + + /* Check the sample rate ratio wrt the buffer len. */ + count = (filter->coeff_half_len + 2.0) / filter->index_inc ; + if (MIN (state->last_ratio, data->src_ratio) < 1.0) + count /= MIN (state->last_ratio, data->src_ratio) ; + + /* Maximum coefficientson either side of center point. */ + half_filter_chan_len = state->channels * (int) (lrint (count) + 1) ; + + input_index = state->last_position ; + + rem = fmod_one (input_index) ; + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + + terminate = 1.0 / src_ratio + 1e-20 ; + + /* Main processing loop. */ + while (filter->out_gen < filter->out_count) + { + /* Need to reload buffer? */ + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + + if (samples_in_hand <= half_filter_chan_len) + { if ((state->error = prepare_data (filter, state->channels, data, half_filter_chan_len)) != 0) + return state->error ; + + samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ; + if (samples_in_hand <= half_filter_chan_len) + break ; + } ; + + /* This is the termination condition. */ + if (filter->b_real_end >= 0) + { if (filter->b_current + input_index + terminate >= filter->b_real_end) + break ; + } ; + + if (filter->out_count > 0 && fabs (state->last_ratio - data->src_ratio) > 1e-10) + src_ratio = state->last_ratio + filter->out_gen * (data->src_ratio - state->last_ratio) / filter->out_count ; + + float_increment = filter->index_inc * (src_ratio < 1.0 ? src_ratio : 1.0) ; + increment = double_to_fp (float_increment) ; + + start_filter_index = double_to_fp (input_index * float_increment) ; + + calc_output_multi (filter, increment, start_filter_index, state->channels, float_increment / filter->index_inc, data->data_out + filter->out_gen) ; + filter->out_gen += state->channels ; + + /* Figure out the next index. */ + input_index += 1.0 / src_ratio ; + rem = fmod_one (input_index) ; + + filter->b_current = (filter->b_current + state->channels * lrint (input_index - rem)) % filter->b_len ; + input_index = rem ; + } ; + + state->last_position = input_index ; + + /* Save current ratio rather then target ratio. */ + state->last_ratio = src_ratio ; + + data->input_frames_used = filter->in_used / state->channels ; + data->output_frames_gen = filter->out_gen / state->channels ; + + return SRC_ERR_NO_ERROR ; +} /* sinc_multichan_vari_process */ + +/*---------------------------------------------------------------------------------------- +*/ + +static SRC_ERROR +prepare_data (SINC_FILTER *filter, int channels, SRC_DATA *data, int half_filter_chan_len) +{ int len = 0 ; + + if (filter->b_real_end >= 0) + return SRC_ERR_NO_ERROR ; /* Should be terminating. Just return. */ + + if (data->data_in == NULL) + return SRC_ERR_NO_ERROR ; + + if (filter->b_current == 0) + { /* Initial state. Set up zeros at the start of the buffer and + ** then load new data after that. + */ + len = filter->b_len - 2 * half_filter_chan_len ; + + filter->b_current = filter->b_end = half_filter_chan_len ; + } + else if (filter->b_end + half_filter_chan_len + channels < filter->b_len) + { /* Load data at current end position. */ + len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ; + } + else + { /* Move data at end of buffer back to the start of the buffer. */ + len = filter->b_end - filter->b_current ; + memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len, + (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ; + + filter->b_current = half_filter_chan_len ; + filter->b_end = filter->b_current + len ; + + /* Now load data at current end of buffer. */ + len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ; + } ; + + len = MIN ((int) (filter->in_count - filter->in_used), len) ; + len -= (len % channels) ; + + if (len < 0 || filter->b_end + len > filter->b_len) + return SRC_ERR_SINC_PREPARE_DATA_BAD_LEN ; + + memcpy (filter->buffer + filter->b_end, data->data_in + filter->in_used, + len * sizeof (filter->buffer [0])) ; + + filter->b_end += len ; + filter->in_used += len ; + + if (filter->in_used == filter->in_count && + filter->b_end - filter->b_current < 2 * half_filter_chan_len && data->end_of_input) + { /* Handle the case where all data in the current buffer has been + ** consumed and this is the last buffer. + */ + + if (filter->b_len - filter->b_end < half_filter_chan_len + 5) + { /* If necessary, move data down to the start of the buffer. */ + len = filter->b_end - filter->b_current ; + memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len, + (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ; + + filter->b_current = half_filter_chan_len ; + filter->b_end = filter->b_current + len ; + } ; + + filter->b_real_end = filter->b_end ; + len = half_filter_chan_len + 5 ; + + if (len < 0 || filter->b_end + len > filter->b_len) + len = filter->b_len - filter->b_end ; + + memset (filter->buffer + filter->b_end, 0, len * sizeof (filter->buffer [0])) ; + filter->b_end += len ; + } ; + + return SRC_ERR_NO_ERROR ; +} /* prepare_data */ + +static void +sinc_close (SRC_STATE *state) +{ + if (state) + { + SINC_FILTER *sinc = (SINC_FILTER *) state->private_data ; + if (sinc) + { + if (sinc->buffer) + { + free (sinc->buffer) ; + sinc->buffer = NULL ; + } + free (sinc) ; + sinc = NULL ; + } + free (state) ; + state = NULL ; + } +} /* sinc_close */ |