aboutsummaryrefslogtreecommitdiff
path: root/sys/arm/arm/machdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/arm/arm/machdep.c')
-rw-r--r--sys/arm/arm/machdep.c2005
1 files changed, 2005 insertions, 0 deletions
diff --git a/sys/arm/arm/machdep.c b/sys/arm/arm/machdep.c
new file mode 100644
index 000000000000..34357cde0d51
--- /dev/null
+++ b/sys/arm/arm/machdep.c
@@ -0,0 +1,2005 @@
+/* $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $ */
+
+/*-
+ * Copyright (c) 2004 Olivier Houchard
+ * Copyright (c) 1994-1998 Mark Brinicombe.
+ * Copyright (c) 1994 Brini.
+ * All rights reserved.
+ *
+ * This code is derived from software written for Brini by Mark Brinicombe
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Mark Brinicombe
+ * for the NetBSD Project.
+ * 4. The name of the company nor the name of the author may be used to
+ * endorse or promote products derived from this software without specific
+ * prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * Machine dependent functions for kernel setup
+ *
+ * Created : 17/09/94
+ * Updated : 18/04/01 updated for new wscons
+ */
+
+#include "opt_compat.h"
+#include "opt_ddb.h"
+#include "opt_kstack_pages.h"
+#include "opt_platform.h"
+#include "opt_sched.h"
+#include "opt_timer.h"
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/proc.h>
+#include <sys/systm.h>
+#include <sys/bio.h>
+#include <sys/buf.h>
+#include <sys/bus.h>
+#include <sys/cons.h>
+#include <sys/cpu.h>
+#include <sys/ctype.h>
+#include <sys/devmap.h>
+#include <sys/efi.h>
+#include <sys/exec.h>
+#include <sys/imgact.h>
+#include <sys/kdb.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/linker.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/msgbuf.h>
+#include <sys/mutex.h>
+#include <sys/pcpu.h>
+#include <sys/ptrace.h>
+#include <sys/reboot.h>
+#if defined(LINUX_BOOT_ABI)
+#include <sys/boot.h>
+#endif
+#include <sys/rwlock.h>
+#include <sys/sched.h>
+#include <sys/signalvar.h>
+#include <sys/syscallsubr.h>
+#include <sys/sysctl.h>
+#include <sys/sysent.h>
+#include <sys/sysproto.h>
+#include <sys/uio.h>
+#include <sys/vdso.h>
+
+#include <vm/vm.h>
+#include <vm/pmap.h>
+#include <vm/vm_map.h>
+#include <vm/vm_object.h>
+#include <vm/vm_page.h>
+#include <vm/vm_pager.h>
+
+#include <machine/armreg.h>
+#include <machine/atags.h>
+#include <machine/cpu.h>
+#include <machine/cpuinfo.h>
+#include <machine/debug_monitor.h>
+#include <machine/db_machdep.h>
+#include <machine/frame.h>
+#include <machine/intr.h>
+#include <machine/machdep.h>
+#include <machine/md_var.h>
+#include <machine/metadata.h>
+#include <machine/pcb.h>
+#include <machine/physmem.h>
+#include <machine/platform.h>
+#include <machine/reg.h>
+#include <machine/trap.h>
+#include <machine/undefined.h>
+#include <machine/vfp.h>
+#include <machine/vmparam.h>
+#include <machine/sysarch.h>
+
+#ifdef FDT
+#include <contrib/libfdt/libfdt.h>
+#include <dev/fdt/fdt_common.h>
+#include <dev/ofw/openfirm.h>
+#endif
+
+#ifdef DDB
+#include <ddb/ddb.h>
+
+#if __ARM_ARCH >= 6
+
+DB_SHOW_COMMAND(cp15, db_show_cp15)
+{
+ u_int reg;
+
+ reg = cp15_midr_get();
+ db_printf("Cpu ID: 0x%08x\n", reg);
+ reg = cp15_ctr_get();
+ db_printf("Current Cache Lvl ID: 0x%08x\n",reg);
+
+ reg = cp15_sctlr_get();
+ db_printf("Ctrl: 0x%08x\n",reg);
+ reg = cp15_actlr_get();
+ db_printf("Aux Ctrl: 0x%08x\n",reg);
+
+ reg = cp15_id_pfr0_get();
+ db_printf("Processor Feat 0: 0x%08x\n", reg);
+ reg = cp15_id_pfr1_get();
+ db_printf("Processor Feat 1: 0x%08x\n", reg);
+ reg = cp15_id_dfr0_get();
+ db_printf("Debug Feat 0: 0x%08x\n", reg);
+ reg = cp15_id_afr0_get();
+ db_printf("Auxiliary Feat 0: 0x%08x\n", reg);
+ reg = cp15_id_mmfr0_get();
+ db_printf("Memory Model Feat 0: 0x%08x\n", reg);
+ reg = cp15_id_mmfr1_get();
+ db_printf("Memory Model Feat 1: 0x%08x\n", reg);
+ reg = cp15_id_mmfr2_get();
+ db_printf("Memory Model Feat 2: 0x%08x\n", reg);
+ reg = cp15_id_mmfr3_get();
+ db_printf("Memory Model Feat 3: 0x%08x\n", reg);
+ reg = cp15_ttbr_get();
+ db_printf("TTB0: 0x%08x\n", reg);
+}
+
+DB_SHOW_COMMAND(vtop, db_show_vtop)
+{
+ u_int reg;
+
+ if (have_addr) {
+ cp15_ats1cpr_set(addr);
+ reg = cp15_par_get();
+ db_printf("Physical address reg: 0x%08x\n",reg);
+ } else
+ db_printf("show vtop <virt_addr>\n");
+}
+#endif /* __ARM_ARCH >= 6 */
+#endif /* DDB */
+
+#ifdef DEBUG
+#define debugf(fmt, args...) printf(fmt, ##args)
+#else
+#define debugf(fmt, args...)
+#endif
+
+#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
+ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
+ defined(COMPAT_FREEBSD9)
+#error FreeBSD/arm doesn't provide compatibility with releases prior to 10
+#endif
+
+struct pcpu __pcpu[MAXCPU];
+struct pcpu *pcpup = &__pcpu[0];
+
+static struct trapframe proc0_tf;
+uint32_t cpu_reset_address = 0;
+int cold = 1;
+vm_offset_t vector_page;
+
+int (*_arm_memcpy)(void *, void *, int, int) = NULL;
+int (*_arm_bzero)(void *, int, int) = NULL;
+int _min_memcpy_size = 0;
+int _min_bzero_size = 0;
+
+extern int *end;
+
+#ifdef FDT
+static char *loader_envp;
+
+vm_paddr_t pmap_pa;
+
+#if __ARM_ARCH >= 6
+vm_offset_t systempage;
+vm_offset_t irqstack;
+vm_offset_t undstack;
+vm_offset_t abtstack;
+#else
+/*
+ * This is the number of L2 page tables required for covering max
+ * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
+ * stacks etc.), uprounded to be divisible by 4.
+ */
+#define KERNEL_PT_MAX 78
+
+static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
+
+struct pv_addr systempage;
+static struct pv_addr msgbufpv;
+struct pv_addr irqstack;
+struct pv_addr undstack;
+struct pv_addr abtstack;
+static struct pv_addr kernelstack;
+#endif
+#endif
+
+#if defined(LINUX_BOOT_ABI)
+#define LBABI_MAX_BANKS 10
+
+#define CMDLINE_GUARD "FreeBSD:"
+uint32_t board_id;
+struct arm_lbabi_tag *atag_list;
+char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
+char atags[LBABI_MAX_COMMAND_LINE * 2];
+uint32_t memstart[LBABI_MAX_BANKS];
+uint32_t memsize[LBABI_MAX_BANKS];
+uint32_t membanks;
+#endif
+#ifdef MULTIDELAY
+static delay_func *delay_impl;
+static void *delay_arg;
+#endif
+
+static uint32_t board_revision;
+/* hex representation of uint64_t */
+static char board_serial[32];
+
+SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
+SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
+ &board_revision, 0, "Board revision");
+SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
+ board_serial, 0, "Board serial");
+
+int vfp_exists;
+SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
+ &vfp_exists, 0, "Floating point support enabled");
+
+void
+board_set_serial(uint64_t serial)
+{
+
+ snprintf(board_serial, sizeof(board_serial)-1,
+ "%016jx", serial);
+}
+
+void
+board_set_revision(uint32_t revision)
+{
+
+ board_revision = revision;
+}
+
+void
+sendsig(catcher, ksi, mask)
+ sig_t catcher;
+ ksiginfo_t *ksi;
+ sigset_t *mask;
+{
+ struct thread *td;
+ struct proc *p;
+ struct trapframe *tf;
+ struct sigframe *fp, frame;
+ struct sigacts *psp;
+ struct sysentvec *sysent;
+ int onstack;
+ int sig;
+ int code;
+
+ td = curthread;
+ p = td->td_proc;
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ sig = ksi->ksi_signo;
+ code = ksi->ksi_code;
+ psp = p->p_sigacts;
+ mtx_assert(&psp->ps_mtx, MA_OWNED);
+ tf = td->td_frame;
+ onstack = sigonstack(tf->tf_usr_sp);
+
+ CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
+ catcher, sig);
+
+ /* Allocate and validate space for the signal handler context. */
+ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
+ SIGISMEMBER(psp->ps_sigonstack, sig)) {
+ fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
+ td->td_sigstk.ss_size);
+#if defined(COMPAT_43)
+ td->td_sigstk.ss_flags |= SS_ONSTACK;
+#endif
+ } else
+ fp = (struct sigframe *)td->td_frame->tf_usr_sp;
+
+ /* make room on the stack */
+ fp--;
+
+ /* make the stack aligned */
+ fp = (struct sigframe *)STACKALIGN(fp);
+ /* Populate the siginfo frame. */
+ get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
+ frame.sf_si = ksi->ksi_info;
+ frame.sf_uc.uc_sigmask = *mask;
+ frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
+ ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
+ frame.sf_uc.uc_stack = td->td_sigstk;
+ mtx_unlock(&psp->ps_mtx);
+ PROC_UNLOCK(td->td_proc);
+
+ /* Copy the sigframe out to the user's stack. */
+ if (copyout(&frame, fp, sizeof(*fp)) != 0) {
+ /* Process has trashed its stack. Kill it. */
+ CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
+ PROC_LOCK(p);
+ sigexit(td, SIGILL);
+ }
+
+ /*
+ * Build context to run handler in. We invoke the handler
+ * directly, only returning via the trampoline. Note the
+ * trampoline version numbers are coordinated with machine-
+ * dependent code in libc.
+ */
+
+ tf->tf_r0 = sig;
+ tf->tf_r1 = (register_t)&fp->sf_si;
+ tf->tf_r2 = (register_t)&fp->sf_uc;
+
+ /* the trampoline uses r5 as the uc address */
+ tf->tf_r5 = (register_t)&fp->sf_uc;
+ tf->tf_pc = (register_t)catcher;
+ tf->tf_usr_sp = (register_t)fp;
+ sysent = p->p_sysent;
+ if (sysent->sv_sigcode_base != 0)
+ tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
+ else
+ tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
+ *(sysent->sv_szsigcode));
+ /* Set the mode to enter in the signal handler */
+#if __ARM_ARCH >= 7
+ if ((register_t)catcher & 1)
+ tf->tf_spsr |= PSR_T;
+ else
+ tf->tf_spsr &= ~PSR_T;
+#endif
+
+ CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
+ tf->tf_usr_sp);
+
+ PROC_LOCK(p);
+ mtx_lock(&psp->ps_mtx);
+}
+
+struct kva_md_info kmi;
+
+/*
+ * arm32_vector_init:
+ *
+ * Initialize the vector page, and select whether or not to
+ * relocate the vectors.
+ *
+ * NOTE: We expect the vector page to be mapped at its expected
+ * destination.
+ */
+
+extern unsigned int page0[], page0_data[];
+void
+arm_vector_init(vm_offset_t va, int which)
+{
+ unsigned int *vectors = (int *) va;
+ unsigned int *vectors_data = vectors + (page0_data - page0);
+ int vec;
+
+ /*
+ * Loop through the vectors we're taking over, and copy the
+ * vector's insn and data word.
+ */
+ for (vec = 0; vec < ARM_NVEC; vec++) {
+ if ((which & (1 << vec)) == 0) {
+ /* Don't want to take over this vector. */
+ continue;
+ }
+ vectors[vec] = page0[vec];
+ vectors_data[vec] = page0_data[vec];
+ }
+
+ /* Now sync the vectors. */
+ icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
+
+ vector_page = va;
+#if __ARM_ARCH < 6
+ if (va == ARM_VECTORS_HIGH) {
+ /*
+ * Enable high vectors in the system control reg (SCTLR).
+ *
+ * Assume the MD caller knows what it's doing here, and really
+ * does want the vector page relocated.
+ *
+ * Note: This has to be done here (and not just in
+ * cpu_setup()) because the vector page needs to be
+ * accessible *before* cpu_startup() is called.
+ * Think ddb(9) ...
+ */
+ cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
+ }
+#endif
+}
+
+static void
+cpu_startup(void *dummy)
+{
+ struct pcb *pcb = thread0.td_pcb;
+ const unsigned int mbyte = 1024 * 1024;
+#if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
+ vm_page_t m;
+#endif
+
+ identify_arm_cpu();
+
+ vm_ksubmap_init(&kmi);
+
+ /*
+ * Display the RAM layout.
+ */
+ printf("real memory = %ju (%ju MB)\n",
+ (uintmax_t)arm32_ptob(realmem),
+ (uintmax_t)arm32_ptob(realmem) / mbyte);
+ printf("avail memory = %ju (%ju MB)\n",
+ (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
+ (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
+ if (bootverbose) {
+ arm_physmem_print_tables();
+ devmap_print_table();
+ }
+
+ bufinit();
+ vm_pager_bufferinit();
+ pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
+ USPACE_SVC_STACK_TOP;
+ pmap_set_pcb_pagedir(kernel_pmap, pcb);
+#if __ARM_ARCH < 6
+ vector_page_setprot(VM_PROT_READ);
+ pmap_postinit();
+#ifdef ARM_CACHE_LOCK_ENABLE
+ pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
+ arm_lock_cache_line(ARM_TP_ADDRESS);
+#else
+ m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
+ pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
+#endif
+ *(uint32_t *)ARM_RAS_START = 0;
+ *(uint32_t *)ARM_RAS_END = 0xffffffff;
+#endif
+}
+
+SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
+
+/*
+ * Flush the D-cache for non-DMA I/O so that the I-cache can
+ * be made coherent later.
+ */
+void
+cpu_flush_dcache(void *ptr, size_t len)
+{
+
+ dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
+}
+
+/* Get current clock frequency for the given cpu id. */
+int
+cpu_est_clockrate(int cpu_id, uint64_t *rate)
+{
+
+ return (ENXIO);
+}
+
+void
+cpu_idle(int busy)
+{
+
+ CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
+ spinlock_enter();
+#ifndef NO_EVENTTIMERS
+ if (!busy)
+ cpu_idleclock();
+#endif
+ if (!sched_runnable())
+ cpu_sleep(0);
+#ifndef NO_EVENTTIMERS
+ if (!busy)
+ cpu_activeclock();
+#endif
+ spinlock_exit();
+ CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
+}
+
+int
+cpu_idle_wakeup(int cpu)
+{
+
+ return (0);
+}
+
+/*
+ * Most ARM platforms don't need to do anything special to init their clocks
+ * (they get intialized during normal device attachment), and by not defining a
+ * cpu_initclocks() function they get this generic one. Any platform that needs
+ * to do something special can just provide their own implementation, which will
+ * override this one due to the weak linkage.
+ */
+void
+arm_generic_initclocks(void)
+{
+
+#ifndef NO_EVENTTIMERS
+#ifdef SMP
+ if (PCPU_GET(cpuid) == 0)
+ cpu_initclocks_bsp();
+ else
+ cpu_initclocks_ap();
+#else
+ cpu_initclocks_bsp();
+#endif
+#endif
+}
+__weak_reference(arm_generic_initclocks, cpu_initclocks);
+
+#ifdef MULTIDELAY
+void
+arm_set_delay(delay_func *impl, void *arg)
+{
+
+ KASSERT(impl != NULL, ("No DELAY implementation"));
+ delay_impl = impl;
+ delay_arg = arg;
+}
+
+void
+DELAY(int usec)
+{
+
+ delay_impl(usec, delay_arg);
+}
+#endif
+
+int
+fill_regs(struct thread *td, struct reg *regs)
+{
+ struct trapframe *tf = td->td_frame;
+ bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
+ regs->r_sp = tf->tf_usr_sp;
+ regs->r_lr = tf->tf_usr_lr;
+ regs->r_pc = tf->tf_pc;
+ regs->r_cpsr = tf->tf_spsr;
+ return (0);
+}
+int
+fill_fpregs(struct thread *td, struct fpreg *regs)
+{
+ bzero(regs, sizeof(*regs));
+ return (0);
+}
+
+int
+set_regs(struct thread *td, struct reg *regs)
+{
+ struct trapframe *tf = td->td_frame;
+
+ bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
+ tf->tf_usr_sp = regs->r_sp;
+ tf->tf_usr_lr = regs->r_lr;
+ tf->tf_pc = regs->r_pc;
+ tf->tf_spsr &= ~PSR_FLAGS;
+ tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
+ return (0);
+}
+
+int
+set_fpregs(struct thread *td, struct fpreg *regs)
+{
+ return (0);
+}
+
+int
+fill_dbregs(struct thread *td, struct dbreg *regs)
+{
+ return (0);
+}
+int
+set_dbregs(struct thread *td, struct dbreg *regs)
+{
+ return (0);
+}
+
+
+static int
+ptrace_read_int(struct thread *td, vm_offset_t addr, uint32_t *v)
+{
+
+ if (proc_readmem(td, td->td_proc, addr, v, sizeof(*v)) != sizeof(*v))
+ return (ENOMEM);
+ return (0);
+}
+
+static int
+ptrace_write_int(struct thread *td, vm_offset_t addr, uint32_t v)
+{
+
+ if (proc_writemem(td, td->td_proc, addr, &v, sizeof(v)) != sizeof(v))
+ return (ENOMEM);
+ return (0);
+}
+
+static u_int
+ptrace_get_usr_reg(void *cookie, int reg)
+{
+ int ret;
+ struct thread *td = cookie;
+
+ KASSERT(((reg >= 0) && (reg <= ARM_REG_NUM_PC)),
+ ("reg is outside range"));
+
+ switch(reg) {
+ case ARM_REG_NUM_PC:
+ ret = td->td_frame->tf_pc;
+ break;
+ case ARM_REG_NUM_LR:
+ ret = td->td_frame->tf_usr_lr;
+ break;
+ case ARM_REG_NUM_SP:
+ ret = td->td_frame->tf_usr_sp;
+ break;
+ default:
+ ret = *((register_t*)&td->td_frame->tf_r0 + reg);
+ break;
+ }
+
+ return (ret);
+}
+
+static u_int
+ptrace_get_usr_int(void* cookie, vm_offset_t offset, u_int* val)
+{
+ struct thread *td = cookie;
+ u_int error;
+
+ error = ptrace_read_int(td, offset, val);
+
+ return (error);
+}
+
+/**
+ * This function parses current instruction opcode and decodes
+ * any possible jump (change in PC) which might occur after
+ * the instruction is executed.
+ *
+ * @param td Thread structure of analysed task
+ * @param cur_instr Currently executed instruction
+ * @param alt_next_address Pointer to the variable where
+ * the destination address of the
+ * jump instruction shall be stored.
+ *
+ * @return <0> when jump is possible
+ * <EINVAL> otherwise
+ */
+static int
+ptrace_get_alternative_next(struct thread *td, uint32_t cur_instr,
+ uint32_t *alt_next_address)
+{
+ int error;
+
+ if (inst_branch(cur_instr) || inst_call(cur_instr) ||
+ inst_return(cur_instr)) {
+ error = arm_predict_branch(td, cur_instr, td->td_frame->tf_pc,
+ alt_next_address, ptrace_get_usr_reg, ptrace_get_usr_int);
+
+ return (error);
+ }
+
+ return (EINVAL);
+}
+
+int
+ptrace_single_step(struct thread *td)
+{
+ struct proc *p;
+ int error, error_alt;
+ uint32_t cur_instr, alt_next = 0;
+
+ /* TODO: This needs to be updated for Thumb-2 */
+ if ((td->td_frame->tf_spsr & PSR_T) != 0)
+ return (EINVAL);
+
+ KASSERT(td->td_md.md_ptrace_instr == 0,
+ ("Didn't clear single step"));
+ KASSERT(td->td_md.md_ptrace_instr_alt == 0,
+ ("Didn't clear alternative single step"));
+ p = td->td_proc;
+ PROC_UNLOCK(p);
+
+ error = ptrace_read_int(td, td->td_frame->tf_pc,
+ &cur_instr);
+ if (error)
+ goto out;
+
+ error = ptrace_read_int(td, td->td_frame->tf_pc + INSN_SIZE,
+ &td->td_md.md_ptrace_instr);
+ if (error == 0) {
+ error = ptrace_write_int(td, td->td_frame->tf_pc + INSN_SIZE,
+ PTRACE_BREAKPOINT);
+ if (error) {
+ td->td_md.md_ptrace_instr = 0;
+ } else {
+ td->td_md.md_ptrace_addr = td->td_frame->tf_pc +
+ INSN_SIZE;
+ }
+ }
+
+ error_alt = ptrace_get_alternative_next(td, cur_instr, &alt_next);
+ if (error_alt == 0) {
+ error_alt = ptrace_read_int(td, alt_next,
+ &td->td_md.md_ptrace_instr_alt);
+ if (error_alt) {
+ td->td_md.md_ptrace_instr_alt = 0;
+ } else {
+ error_alt = ptrace_write_int(td, alt_next,
+ PTRACE_BREAKPOINT);
+ if (error_alt)
+ td->td_md.md_ptrace_instr_alt = 0;
+ else
+ td->td_md.md_ptrace_addr_alt = alt_next;
+ }
+ }
+
+out:
+ PROC_LOCK(p);
+ return ((error != 0) && (error_alt != 0));
+}
+
+int
+ptrace_clear_single_step(struct thread *td)
+{
+ struct proc *p;
+
+ /* TODO: This needs to be updated for Thumb-2 */
+ if ((td->td_frame->tf_spsr & PSR_T) != 0)
+ return (EINVAL);
+
+ if (td->td_md.md_ptrace_instr != 0) {
+ p = td->td_proc;
+ PROC_UNLOCK(p);
+ ptrace_write_int(td, td->td_md.md_ptrace_addr,
+ td->td_md.md_ptrace_instr);
+ PROC_LOCK(p);
+ td->td_md.md_ptrace_instr = 0;
+ }
+
+ if (td->td_md.md_ptrace_instr_alt != 0) {
+ p = td->td_proc;
+ PROC_UNLOCK(p);
+ ptrace_write_int(td, td->td_md.md_ptrace_addr_alt,
+ td->td_md.md_ptrace_instr_alt);
+ PROC_LOCK(p);
+ td->td_md.md_ptrace_instr_alt = 0;
+ }
+
+ return (0);
+}
+
+int
+ptrace_set_pc(struct thread *td, unsigned long addr)
+{
+ td->td_frame->tf_pc = addr;
+ return (0);
+}
+
+void
+cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
+{
+}
+
+void
+spinlock_enter(void)
+{
+ struct thread *td;
+ register_t cspr;
+
+ td = curthread;
+ if (td->td_md.md_spinlock_count == 0) {
+ cspr = disable_interrupts(PSR_I | PSR_F);
+ td->td_md.md_spinlock_count = 1;
+ td->td_md.md_saved_cspr = cspr;
+ } else
+ td->td_md.md_spinlock_count++;
+ critical_enter();
+}
+
+void
+spinlock_exit(void)
+{
+ struct thread *td;
+ register_t cspr;
+
+ td = curthread;
+ critical_exit();
+ cspr = td->td_md.md_saved_cspr;
+ td->td_md.md_spinlock_count--;
+ if (td->td_md.md_spinlock_count == 0)
+ restore_interrupts(cspr);
+}
+
+/*
+ * Clear registers on exec
+ */
+void
+exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
+{
+ struct trapframe *tf = td->td_frame;
+
+ memset(tf, 0, sizeof(*tf));
+ tf->tf_usr_sp = stack;
+ tf->tf_usr_lr = imgp->entry_addr;
+ tf->tf_svc_lr = 0x77777777;
+ tf->tf_pc = imgp->entry_addr;
+ tf->tf_spsr = PSR_USR32_MODE;
+}
+
+/*
+ * Get machine context.
+ */
+int
+get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
+{
+ struct trapframe *tf = td->td_frame;
+ __greg_t *gr = mcp->__gregs;
+
+ if (clear_ret & GET_MC_CLEAR_RET) {
+ gr[_REG_R0] = 0;
+ gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
+ } else {
+ gr[_REG_R0] = tf->tf_r0;
+ gr[_REG_CPSR] = tf->tf_spsr;
+ }
+ gr[_REG_R1] = tf->tf_r1;
+ gr[_REG_R2] = tf->tf_r2;
+ gr[_REG_R3] = tf->tf_r3;
+ gr[_REG_R4] = tf->tf_r4;
+ gr[_REG_R5] = tf->tf_r5;
+ gr[_REG_R6] = tf->tf_r6;
+ gr[_REG_R7] = tf->tf_r7;
+ gr[_REG_R8] = tf->tf_r8;
+ gr[_REG_R9] = tf->tf_r9;
+ gr[_REG_R10] = tf->tf_r10;
+ gr[_REG_R11] = tf->tf_r11;
+ gr[_REG_R12] = tf->tf_r12;
+ gr[_REG_SP] = tf->tf_usr_sp;
+ gr[_REG_LR] = tf->tf_usr_lr;
+ gr[_REG_PC] = tf->tf_pc;
+
+ return (0);
+}
+
+/*
+ * Set machine context.
+ *
+ * However, we don't set any but the user modifiable flags, and we won't
+ * touch the cs selector.
+ */
+int
+set_mcontext(struct thread *td, mcontext_t *mcp)
+{
+ struct trapframe *tf = td->td_frame;
+ const __greg_t *gr = mcp->__gregs;
+
+ tf->tf_r0 = gr[_REG_R0];
+ tf->tf_r1 = gr[_REG_R1];
+ tf->tf_r2 = gr[_REG_R2];
+ tf->tf_r3 = gr[_REG_R3];
+ tf->tf_r4 = gr[_REG_R4];
+ tf->tf_r5 = gr[_REG_R5];
+ tf->tf_r6 = gr[_REG_R6];
+ tf->tf_r7 = gr[_REG_R7];
+ tf->tf_r8 = gr[_REG_R8];
+ tf->tf_r9 = gr[_REG_R9];
+ tf->tf_r10 = gr[_REG_R10];
+ tf->tf_r11 = gr[_REG_R11];
+ tf->tf_r12 = gr[_REG_R12];
+ tf->tf_usr_sp = gr[_REG_SP];
+ tf->tf_usr_lr = gr[_REG_LR];
+ tf->tf_pc = gr[_REG_PC];
+ tf->tf_spsr = gr[_REG_CPSR];
+
+ return (0);
+}
+
+/*
+ * MPSAFE
+ */
+int
+sys_sigreturn(td, uap)
+ struct thread *td;
+ struct sigreturn_args /* {
+ const struct __ucontext *sigcntxp;
+ } */ *uap;
+{
+ ucontext_t uc;
+ int spsr;
+
+ if (uap == NULL)
+ return (EFAULT);
+ if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
+ return (EFAULT);
+ /*
+ * Make sure the processor mode has not been tampered with and
+ * interrupts have not been disabled.
+ */
+ spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
+ if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
+ (spsr & (PSR_I | PSR_F)) != 0)
+ return (EINVAL);
+ /* Restore register context. */
+ set_mcontext(td, &uc.uc_mcontext);
+
+ /* Restore signal mask. */
+ kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
+
+ return (EJUSTRETURN);
+}
+
+
+/*
+ * Construct a PCB from a trapframe. This is called from kdb_trap() where
+ * we want to start a backtrace from the function that caused us to enter
+ * the debugger. We have the context in the trapframe, but base the trace
+ * on the PCB. The PCB doesn't have to be perfect, as long as it contains
+ * enough for a backtrace.
+ */
+void
+makectx(struct trapframe *tf, struct pcb *pcb)
+{
+ pcb->pcb_regs.sf_r4 = tf->tf_r4;
+ pcb->pcb_regs.sf_r5 = tf->tf_r5;
+ pcb->pcb_regs.sf_r6 = tf->tf_r6;
+ pcb->pcb_regs.sf_r7 = tf->tf_r7;
+ pcb->pcb_regs.sf_r8 = tf->tf_r8;
+ pcb->pcb_regs.sf_r9 = tf->tf_r9;
+ pcb->pcb_regs.sf_r10 = tf->tf_r10;
+ pcb->pcb_regs.sf_r11 = tf->tf_r11;
+ pcb->pcb_regs.sf_r12 = tf->tf_r12;
+ pcb->pcb_regs.sf_pc = tf->tf_pc;
+ pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
+ pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
+}
+
+/*
+ * Fake up a boot descriptor table
+ */
+vm_offset_t
+fake_preload_metadata(struct arm_boot_params *abp __unused, void *dtb_ptr,
+ size_t dtb_size)
+{
+#ifdef DDB
+ vm_offset_t zstart = 0, zend = 0;
+#endif
+ vm_offset_t lastaddr;
+ int i = 0;
+ static uint32_t fake_preload[35];
+
+ fake_preload[i++] = MODINFO_NAME;
+ fake_preload[i++] = strlen("kernel") + 1;
+ strcpy((char*)&fake_preload[i++], "kernel");
+ i += 1;
+ fake_preload[i++] = MODINFO_TYPE;
+ fake_preload[i++] = strlen("elf kernel") + 1;
+ strcpy((char*)&fake_preload[i++], "elf kernel");
+ i += 2;
+ fake_preload[i++] = MODINFO_ADDR;
+ fake_preload[i++] = sizeof(vm_offset_t);
+ fake_preload[i++] = KERNVIRTADDR;
+ fake_preload[i++] = MODINFO_SIZE;
+ fake_preload[i++] = sizeof(uint32_t);
+ fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
+#ifdef DDB
+ if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
+ fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
+ fake_preload[i++] = sizeof(vm_offset_t);
+ fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
+ fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
+ fake_preload[i++] = sizeof(vm_offset_t);
+ fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
+ lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
+ zend = lastaddr;
+ zstart = *(uint32_t *)(KERNVIRTADDR + 4);
+ db_fetch_ksymtab(zstart, zend);
+ } else
+#endif
+ lastaddr = (vm_offset_t)&end;
+ if (dtb_ptr != NULL) {
+ /* Copy DTB to KVA space and insert it into module chain. */
+ lastaddr = roundup(lastaddr, sizeof(int));
+ fake_preload[i++] = MODINFO_METADATA | MODINFOMD_DTBP;
+ fake_preload[i++] = sizeof(uint32_t);
+ fake_preload[i++] = (uint32_t)lastaddr;
+ memmove((void *)lastaddr, dtb_ptr, dtb_size);
+ lastaddr += dtb_size;
+ lastaddr = roundup(lastaddr, sizeof(int));
+ }
+ fake_preload[i++] = 0;
+ fake_preload[i] = 0;
+ preload_metadata = (void *)fake_preload;
+
+ init_static_kenv(NULL, 0);
+
+ return (lastaddr);
+}
+
+void
+pcpu0_init(void)
+{
+#if __ARM_ARCH >= 6
+ set_curthread(&thread0);
+#endif
+ pcpu_init(pcpup, 0, sizeof(struct pcpu));
+ PCPU_SET(curthread, &thread0);
+}
+
+#if defined(LINUX_BOOT_ABI)
+
+/* Convert the U-Boot command line into FreeBSD kenv and boot options. */
+static void
+cmdline_set_env(char *cmdline, const char *guard)
+{
+ char *cmdline_next, *env;
+ size_t size, guard_len;
+ int i;
+
+ size = strlen(cmdline);
+ /* Skip leading spaces. */
+ for (; isspace(*cmdline) && (size > 0); cmdline++)
+ size--;
+
+ /* Test and remove guard. */
+ if (guard != NULL && guard[0] != '\0') {
+ guard_len = strlen(guard);
+ if (strncasecmp(cmdline, guard, guard_len) != 0)
+ return;
+ cmdline += guard_len;
+ size -= guard_len;
+ }
+
+ /* Skip leading spaces. */
+ for (; isspace(*cmdline) && (size > 0); cmdline++)
+ size--;
+
+ /* Replace ',' with '\0'. */
+ /* TODO: implement escaping for ',' character. */
+ cmdline_next = cmdline;
+ while(strsep(&cmdline_next, ",") != NULL)
+ ;
+ init_static_kenv(cmdline, 0);
+ /* Parse boothowto. */
+ for (i = 0; howto_names[i].ev != NULL; i++) {
+ env = kern_getenv(howto_names[i].ev);
+ if (env != NULL) {
+ if (strtoul(env, NULL, 10) != 0)
+ boothowto |= howto_names[i].mask;
+ freeenv(env);
+ }
+ }
+}
+
+vm_offset_t
+linux_parse_boot_param(struct arm_boot_params *abp)
+{
+ struct arm_lbabi_tag *walker;
+ uint32_t revision;
+ uint64_t serial;
+ int size;
+ vm_offset_t lastaddr;
+#ifdef FDT
+ struct fdt_header *dtb_ptr;
+ uint32_t dtb_size;
+#endif
+
+ /*
+ * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
+ * is atags or dtb pointer. If all of these aren't satisfied,
+ * then punt. Unfortunately, it looks like DT enabled kernels
+ * doesn't uses board type and U-Boot delivers 0 in r1 for them.
+ */
+ if (abp->abp_r0 != 0 || abp->abp_r2 == 0)
+ return (0);
+#ifdef FDT
+ /* Test if r2 point to valid DTB. */
+ dtb_ptr = (struct fdt_header *)abp->abp_r2;
+ if (fdt_check_header(dtb_ptr) == 0) {
+ dtb_size = fdt_totalsize(dtb_ptr);
+ return (fake_preload_metadata(abp, dtb_ptr, dtb_size));
+ }
+#endif
+
+ board_id = abp->abp_r1;
+ walker = (struct arm_lbabi_tag *)abp->abp_r2;
+
+ if (ATAG_TAG(walker) != ATAG_CORE)
+ return 0;
+
+ atag_list = walker;
+ while (ATAG_TAG(walker) != ATAG_NONE) {
+ switch (ATAG_TAG(walker)) {
+ case ATAG_CORE:
+ break;
+ case ATAG_MEM:
+ arm_physmem_hardware_region(walker->u.tag_mem.start,
+ walker->u.tag_mem.size);
+ break;
+ case ATAG_INITRD2:
+ break;
+ case ATAG_SERIAL:
+ serial = walker->u.tag_sn.high;
+ serial <<= 32;
+ serial |= walker->u.tag_sn.low;
+ board_set_serial(serial);
+ break;
+ case ATAG_REVISION:
+ revision = walker->u.tag_rev.rev;
+ board_set_revision(revision);
+ break;
+ case ATAG_CMDLINE:
+ size = ATAG_SIZE(walker) -
+ sizeof(struct arm_lbabi_header);
+ size = min(size, LBABI_MAX_COMMAND_LINE);
+ strncpy(linux_command_line, walker->u.tag_cmd.command,
+ size);
+ linux_command_line[size] = '\0';
+ break;
+ default:
+ break;
+ }
+ walker = ATAG_NEXT(walker);
+ }
+
+ /* Save a copy for later */
+ bcopy(atag_list, atags,
+ (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
+
+ lastaddr = fake_preload_metadata(abp, NULL, 0);
+ cmdline_set_env(linux_command_line, CMDLINE_GUARD);
+ return lastaddr;
+}
+#endif
+
+#if defined(FREEBSD_BOOT_LOADER)
+vm_offset_t
+freebsd_parse_boot_param(struct arm_boot_params *abp)
+{
+ vm_offset_t lastaddr = 0;
+ void *mdp;
+ void *kmdp;
+#ifdef DDB
+ vm_offset_t ksym_start;
+ vm_offset_t ksym_end;
+#endif
+
+ /*
+ * Mask metadata pointer: it is supposed to be on page boundary. If
+ * the first argument (mdp) doesn't point to a valid address the
+ * bootloader must have passed us something else than the metadata
+ * ptr, so we give up. Also give up if we cannot find metadta section
+ * the loader creates that we get all this data out of.
+ */
+
+ if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
+ return 0;
+ preload_metadata = mdp;
+ kmdp = preload_search_by_type("elf kernel");
+ if (kmdp == NULL)
+ return 0;
+
+ boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
+ loader_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
+ init_static_kenv(loader_envp, 0);
+ lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
+#ifdef DDB
+ ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
+ ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
+ db_fetch_ksymtab(ksym_start, ksym_end);
+#endif
+ return lastaddr;
+}
+#endif
+
+vm_offset_t
+default_parse_boot_param(struct arm_boot_params *abp)
+{
+ vm_offset_t lastaddr;
+
+#if defined(LINUX_BOOT_ABI)
+ if ((lastaddr = linux_parse_boot_param(abp)) != 0)
+ return lastaddr;
+#endif
+#if defined(FREEBSD_BOOT_LOADER)
+ if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
+ return lastaddr;
+#endif
+ /* Fall back to hardcoded metadata. */
+ lastaddr = fake_preload_metadata(abp, NULL, 0);
+
+ return lastaddr;
+}
+
+/*
+ * Stub version of the boot parameter parsing routine. We are
+ * called early in initarm, before even VM has been initialized.
+ * This routine needs to preserve any data that the boot loader
+ * has passed in before the kernel starts to grow past the end
+ * of the BSS, traditionally the place boot-loaders put this data.
+ *
+ * Since this is called so early, things that depend on the vm system
+ * being setup (including access to some SoC's serial ports), about
+ * all that can be done in this routine is to copy the arguments.
+ *
+ * This is the default boot parameter parsing routine. Individual
+ * kernels/boards can override this weak function with one of their
+ * own. We just fake metadata...
+ */
+__weak_reference(default_parse_boot_param, parse_boot_param);
+
+/*
+ * Initialize proc0
+ */
+void
+init_proc0(vm_offset_t kstack)
+{
+ proc_linkup0(&proc0, &thread0);
+ thread0.td_kstack = kstack;
+ thread0.td_pcb = (struct pcb *)
+ (thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
+ thread0.td_pcb->pcb_flags = 0;
+ thread0.td_pcb->pcb_vfpcpu = -1;
+ thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
+ thread0.td_frame = &proc0_tf;
+ pcpup->pc_curpcb = thread0.td_pcb;
+}
+
+int
+arm_predict_branch(void *cookie, u_int insn, register_t pc, register_t *new_pc,
+ u_int (*fetch_reg)(void*, int), u_int (*read_int)(void*, vm_offset_t, u_int*))
+{
+ u_int addr, nregs, offset = 0;
+ int error = 0;
+
+ switch ((insn >> 24) & 0xf) {
+ case 0x2: /* add pc, reg1, #value */
+ case 0x0: /* add pc, reg1, reg2, lsl #offset */
+ addr = fetch_reg(cookie, (insn >> 16) & 0xf);
+ if (((insn >> 16) & 0xf) == 15)
+ addr += 8;
+ if (insn & 0x0200000) {
+ offset = (insn >> 7) & 0x1e;
+ offset = (insn & 0xff) << (32 - offset) |
+ (insn & 0xff) >> offset;
+ } else {
+
+ offset = fetch_reg(cookie, insn & 0x0f);
+ if ((insn & 0x0000ff0) != 0x00000000) {
+ if (insn & 0x10)
+ nregs = fetch_reg(cookie,
+ (insn >> 8) & 0xf);
+ else
+ nregs = (insn >> 7) & 0x1f;
+ switch ((insn >> 5) & 3) {
+ case 0:
+ /* lsl */
+ offset = offset << nregs;
+ break;
+ case 1:
+ /* lsr */
+ offset = offset >> nregs;
+ break;
+ default:
+ break; /* XXX */
+ }
+
+ }
+ *new_pc = addr + offset;
+ return (0);
+
+ }
+
+ case 0xa: /* b ... */
+ case 0xb: /* bl ... */
+ addr = ((insn << 2) & 0x03ffffff);
+ if (addr & 0x02000000)
+ addr |= 0xfc000000;
+ *new_pc = (pc + 8 + addr);
+ return (0);
+ case 0x7: /* ldr pc, [pc, reg, lsl #2] */
+ addr = fetch_reg(cookie, insn & 0xf);
+ addr = pc + 8 + (addr << 2);
+ error = read_int(cookie, addr, &addr);
+ *new_pc = addr;
+ return (error);
+ case 0x1: /* mov pc, reg */
+ *new_pc = fetch_reg(cookie, insn & 0xf);
+ return (0);
+ case 0x4:
+ case 0x5: /* ldr pc, [reg] */
+ addr = fetch_reg(cookie, (insn >> 16) & 0xf);
+ /* ldr pc, [reg, #offset] */
+ if (insn & (1 << 24))
+ offset = insn & 0xfff;
+ if (insn & 0x00800000)
+ addr += offset;
+ else
+ addr -= offset;
+ error = read_int(cookie, addr, &addr);
+ *new_pc = addr;
+
+ return (error);
+ case 0x8: /* ldmxx reg, {..., pc} */
+ case 0x9:
+ addr = fetch_reg(cookie, (insn >> 16) & 0xf);
+ nregs = (insn & 0x5555) + ((insn >> 1) & 0x5555);
+ nregs = (nregs & 0x3333) + ((nregs >> 2) & 0x3333);
+ nregs = (nregs + (nregs >> 4)) & 0x0f0f;
+ nregs = (nregs + (nregs >> 8)) & 0x001f;
+ switch ((insn >> 23) & 0x3) {
+ case 0x0: /* ldmda */
+ addr = addr - 0;
+ break;
+ case 0x1: /* ldmia */
+ addr = addr + 0 + ((nregs - 1) << 2);
+ break;
+ case 0x2: /* ldmdb */
+ addr = addr - 4;
+ break;
+ case 0x3: /* ldmib */
+ addr = addr + 4 + ((nregs - 1) << 2);
+ break;
+ }
+ error = read_int(cookie, addr, &addr);
+ *new_pc = addr;
+
+ return (error);
+ default:
+ return (EINVAL);
+ }
+}
+
+#if __ARM_ARCH >= 6
+void
+set_stackptrs(int cpu)
+{
+
+ set_stackptr(PSR_IRQ32_MODE,
+ irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
+ set_stackptr(PSR_ABT32_MODE,
+ abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
+ set_stackptr(PSR_UND32_MODE,
+ undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
+}
+#else
+void
+set_stackptrs(int cpu)
+{
+
+ set_stackptr(PSR_IRQ32_MODE,
+ irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
+ set_stackptr(PSR_ABT32_MODE,
+ abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
+ set_stackptr(PSR_UND32_MODE,
+ undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
+}
+#endif
+
+#ifdef EFI
+static void
+add_efi_map_entries(struct efi_map_header *efihdr, struct mem_region *mr,
+ int *mrcnt)
+{
+ struct efi_md *map, *p;
+ const char *type;
+ size_t efisz, memory_size;
+ int ndesc, i, j;
+
+ static const char *types[] = {
+ "Reserved",
+ "LoaderCode",
+ "LoaderData",
+ "BootServicesCode",
+ "BootServicesData",
+ "RuntimeServicesCode",
+ "RuntimeServicesData",
+ "ConventionalMemory",
+ "UnusableMemory",
+ "ACPIReclaimMemory",
+ "ACPIMemoryNVS",
+ "MemoryMappedIO",
+ "MemoryMappedIOPortSpace",
+ "PalCode",
+ "PersistentMemory"
+ };
+
+ *mrcnt = 0;
+
+ /*
+ * Memory map data provided by UEFI via the GetMemoryMap
+ * Boot Services API.
+ */
+ efisz = roundup2(sizeof(struct efi_map_header), 0x10);
+ map = (struct efi_md *)((uint8_t *)efihdr + efisz);
+
+ if (efihdr->descriptor_size == 0)
+ return;
+ ndesc = efihdr->memory_size / efihdr->descriptor_size;
+
+ if (boothowto & RB_VERBOSE)
+ printf("%23s %12s %12s %8s %4s\n",
+ "Type", "Physical", "Virtual", "#Pages", "Attr");
+
+ memory_size = 0;
+ for (i = 0, j = 0, p = map; i < ndesc; i++,
+ p = efi_next_descriptor(p, efihdr->descriptor_size)) {
+ if (boothowto & RB_VERBOSE) {
+ if (p->md_type < nitems(types))
+ type = types[p->md_type];
+ else
+ type = "<INVALID>";
+ printf("%23s %012llx %12p %08llx ", type, p->md_phys,
+ p->md_virt, p->md_pages);
+ if (p->md_attr & EFI_MD_ATTR_UC)
+ printf("UC ");
+ if (p->md_attr & EFI_MD_ATTR_WC)
+ printf("WC ");
+ if (p->md_attr & EFI_MD_ATTR_WT)
+ printf("WT ");
+ if (p->md_attr & EFI_MD_ATTR_WB)
+ printf("WB ");
+ if (p->md_attr & EFI_MD_ATTR_UCE)
+ printf("UCE ");
+ if (p->md_attr & EFI_MD_ATTR_WP)
+ printf("WP ");
+ if (p->md_attr & EFI_MD_ATTR_RP)
+ printf("RP ");
+ if (p->md_attr & EFI_MD_ATTR_XP)
+ printf("XP ");
+ if (p->md_attr & EFI_MD_ATTR_NV)
+ printf("NV ");
+ if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE)
+ printf("MORE_RELIABLE ");
+ if (p->md_attr & EFI_MD_ATTR_RO)
+ printf("RO ");
+ if (p->md_attr & EFI_MD_ATTR_RT)
+ printf("RUNTIME");
+ printf("\n");
+ }
+
+ switch (p->md_type) {
+ case EFI_MD_TYPE_CODE:
+ case EFI_MD_TYPE_DATA:
+ case EFI_MD_TYPE_BS_CODE:
+ case EFI_MD_TYPE_BS_DATA:
+ case EFI_MD_TYPE_FREE:
+ /*
+ * We're allowed to use any entry with these types.
+ */
+ break;
+ default:
+ continue;
+ }
+
+ j++;
+ if (j >= FDT_MEM_REGIONS)
+ break;
+
+ mr[j].mr_start = p->md_phys;
+ mr[j].mr_size = p->md_pages * PAGE_SIZE;
+ memory_size += mr[j].mr_size;
+ }
+
+ *mrcnt = j;
+}
+#endif /* EFI */
+
+#ifdef FDT
+static char *
+kenv_next(char *cp)
+{
+
+ if (cp != NULL) {
+ while (*cp != 0)
+ cp++;
+ cp++;
+ if (*cp == 0)
+ cp = NULL;
+ }
+ return (cp);
+}
+
+static void
+print_kenv(void)
+{
+ char *cp;
+
+ debugf("loader passed (static) kenv:\n");
+ if (loader_envp == NULL) {
+ debugf(" no env, null ptr\n");
+ return;
+ }
+ debugf(" loader_envp = 0x%08x\n", (uint32_t)loader_envp);
+
+ for (cp = loader_envp; cp != NULL; cp = kenv_next(cp))
+ debugf(" %x %s\n", (uint32_t)cp, cp);
+}
+
+#if __ARM_ARCH < 6
+void *
+initarm(struct arm_boot_params *abp)
+{
+ struct mem_region mem_regions[FDT_MEM_REGIONS];
+ struct pv_addr kernel_l1pt;
+ struct pv_addr dpcpu;
+ vm_offset_t dtbp, freemempos, l2_start, lastaddr;
+ uint64_t memsize;
+ uint32_t l2size;
+ char *env;
+ void *kmdp;
+ u_int l1pagetable;
+ int i, j, err_devmap, mem_regions_sz;
+
+ lastaddr = parse_boot_param(abp);
+ arm_physmem_kernaddr = abp->abp_physaddr;
+
+ memsize = 0;
+
+ cpuinfo_init();
+ set_cpufuncs();
+
+ /*
+ * Find the dtb passed in by the boot loader.
+ */
+ kmdp = preload_search_by_type("elf kernel");
+ if (kmdp != NULL)
+ dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
+ else
+ dtbp = (vm_offset_t)NULL;
+
+#if defined(FDT_DTB_STATIC)
+ /*
+ * In case the device tree blob was not retrieved (from metadata) try
+ * to use the statically embedded one.
+ */
+ if (dtbp == (vm_offset_t)NULL)
+ dtbp = (vm_offset_t)&fdt_static_dtb;
+#endif
+
+ if (OF_install(OFW_FDT, 0) == FALSE)
+ panic("Cannot install FDT");
+
+ if (OF_init((void *)dtbp) != 0)
+ panic("OF_init failed with the found device tree");
+
+ /* Grab physical memory regions information from device tree. */
+ if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
+ panic("Cannot get physical memory regions");
+ arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
+
+ /* Grab reserved memory regions information from device tree. */
+ if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
+ arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
+ EXFLAG_NODUMP | EXFLAG_NOALLOC);
+
+ /* Platform-specific initialisation */
+ platform_probe_and_attach();
+
+ pcpu0_init();
+
+ /* Do basic tuning, hz etc */
+ init_param1();
+
+ /* Calculate number of L2 tables needed for mapping vm_page_array */
+ l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
+ l2size = (l2size >> L1_S_SHIFT) + 1;
+
+ /*
+ * Add one table for end of kernel map, one for stacks, msgbuf and
+ * L1 and L2 tables map and one for vectors map.
+ */
+ l2size += 3;
+
+ /* Make it divisible by 4 */
+ l2size = (l2size + 3) & ~3;
+
+ freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
+
+ /* Define a macro to simplify memory allocation */
+#define valloc_pages(var, np) \
+ alloc_pages((var).pv_va, (np)); \
+ (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
+
+#define alloc_pages(var, np) \
+ (var) = freemempos; \
+ freemempos += (np * PAGE_SIZE); \
+ memset((char *)(var), 0, ((np) * PAGE_SIZE));
+
+ while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
+ freemempos += PAGE_SIZE;
+ valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
+
+ for (i = 0, j = 0; i < l2size; ++i) {
+ if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
+ valloc_pages(kernel_pt_table[i],
+ L2_TABLE_SIZE / PAGE_SIZE);
+ j = i;
+ } else {
+ kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
+ L2_TABLE_SIZE_REAL * (i - j);
+ kernel_pt_table[i].pv_pa =
+ kernel_pt_table[i].pv_va - KERNVIRTADDR +
+ abp->abp_physaddr;
+
+ }
+ }
+ /*
+ * Allocate a page for the system page mapped to 0x00000000
+ * or 0xffff0000. This page will just contain the system vectors
+ * and can be shared by all processes.
+ */
+ valloc_pages(systempage, 1);
+
+ /* Allocate dynamic per-cpu area. */
+ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
+ dpcpu_init((void *)dpcpu.pv_va, 0);
+
+ /* Allocate stacks for all modes */
+ valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
+ valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
+ valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
+ valloc_pages(kernelstack, kstack_pages * MAXCPU);
+ valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
+
+ /*
+ * Now we start construction of the L1 page table
+ * We start by mapping the L2 page tables into the L1.
+ * This means that we can replace L1 mappings later on if necessary
+ */
+ l1pagetable = kernel_l1pt.pv_va;
+
+ /*
+ * Try to map as much as possible of kernel text and data using
+ * 1MB section mapping and for the rest of initial kernel address
+ * space use L2 coarse tables.
+ *
+ * Link L2 tables for mapping remainder of kernel (modulo 1MB)
+ * and kernel structures
+ */
+ l2_start = lastaddr & ~(L1_S_OFFSET);
+ for (i = 0 ; i < l2size - 1; i++)
+ pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
+ &kernel_pt_table[i]);
+
+ pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
+
+ /* Map kernel code and data */
+ pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
+ (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
+ VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
+
+ /* Map L1 directory and allocated L2 page tables */
+ pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
+ L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
+
+ pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
+ kernel_pt_table[0].pv_pa,
+ L2_TABLE_SIZE_REAL * l2size,
+ VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
+
+ /* Map allocated DPCPU, stacks and msgbuf */
+ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
+ freemempos - dpcpu.pv_va,
+ VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
+
+ /* Link and map the vector page */
+ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
+ &kernel_pt_table[l2size - 1]);
+ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
+ VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
+
+ /* Establish static device mappings. */
+ err_devmap = platform_devmap_init();
+ devmap_bootstrap(l1pagetable, NULL);
+ vm_max_kernel_address = platform_lastaddr();
+
+ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
+ pmap_pa = kernel_l1pt.pv_pa;
+ cpu_setttb(kernel_l1pt.pv_pa);
+ cpu_tlb_flushID();
+ cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
+
+ /*
+ * Now that proper page tables are installed, call cpu_setup() to enable
+ * instruction and data caches and other chip-specific features.
+ */
+ cpu_setup();
+
+ /*
+ * Only after the SOC registers block is mapped we can perform device
+ * tree fixups, as they may attempt to read parameters from hardware.
+ */
+ OF_interpret("perform-fixup", 0);
+
+ platform_gpio_init();
+
+ cninit();
+
+ debugf("initarm: console initialized\n");
+ debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
+ debugf(" boothowto = 0x%08x\n", boothowto);
+ debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
+ print_kenv();
+
+ env = kern_getenv("kernelname");
+ if (env != NULL) {
+ strlcpy(kernelname, env, sizeof(kernelname));
+ freeenv(env);
+ }
+
+ if (err_devmap != 0)
+ printf("WARNING: could not fully configure devmap, error=%d\n",
+ err_devmap);
+
+ platform_late_init();
+
+ /*
+ * Pages were allocated during the secondary bootstrap for the
+ * stacks for different CPU modes.
+ * We must now set the r13 registers in the different CPU modes to
+ * point to these stacks.
+ * Since the ARM stacks use STMFD etc. we must set r13 to the top end
+ * of the stack memory.
+ */
+ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
+
+ set_stackptrs(0);
+
+ /*
+ * We must now clean the cache again....
+ * Cleaning may be done by reading new data to displace any
+ * dirty data in the cache. This will have happened in cpu_setttb()
+ * but since we are boot strapping the addresses used for the read
+ * may have just been remapped and thus the cache could be out
+ * of sync. A re-clean after the switch will cure this.
+ * After booting there are no gross relocations of the kernel thus
+ * this problem will not occur after initarm().
+ */
+ cpu_idcache_wbinv_all();
+
+ undefined_init();
+
+ init_proc0(kernelstack.pv_va);
+
+ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
+ pmap_bootstrap(freemempos, &kernel_l1pt);
+ msgbufp = (void *)msgbufpv.pv_va;
+ msgbufinit(msgbufp, msgbufsize);
+ mutex_init();
+
+ /*
+ * Exclude the kernel (and all the things we allocated which immediately
+ * follow the kernel) from the VM allocation pool but not from crash
+ * dumps. virtual_avail is a global variable which tracks the kva we've
+ * "allocated" while setting up pmaps.
+ *
+ * Prepare the list of physical memory available to the vm subsystem.
+ */
+ arm_physmem_exclude_region(abp->abp_physaddr,
+ (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
+ arm_physmem_init_kernel_globals();
+
+ init_param2(physmem);
+ dbg_monitor_init();
+ kdb_init();
+
+ return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
+ sizeof(struct pcb)));
+}
+#else /* __ARM_ARCH < 6 */
+void *
+initarm(struct arm_boot_params *abp)
+{
+ struct mem_region mem_regions[FDT_MEM_REGIONS];
+ vm_paddr_t lastaddr;
+ vm_offset_t dtbp, kernelstack, dpcpu;
+ char *env;
+ void *kmdp;
+ int err_devmap, mem_regions_sz;
+#ifdef EFI
+ struct efi_map_header *efihdr;
+#endif
+
+ /* get last allocated physical address */
+ arm_physmem_kernaddr = abp->abp_physaddr;
+ lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
+
+ set_cpufuncs();
+ cpuinfo_init();
+
+ /*
+ * Find the dtb passed in by the boot loader.
+ */
+ kmdp = preload_search_by_type("elf kernel");
+ dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
+#if defined(FDT_DTB_STATIC)
+ /*
+ * In case the device tree blob was not retrieved (from metadata) try
+ * to use the statically embedded one.
+ */
+ if (dtbp == (vm_offset_t)NULL)
+ dtbp = (vm_offset_t)&fdt_static_dtb;
+#endif
+
+ if (OF_install(OFW_FDT, 0) == FALSE)
+ panic("Cannot install FDT");
+
+ if (OF_init((void *)dtbp) != 0)
+ panic("OF_init failed with the found device tree");
+
+#if defined(LINUX_BOOT_ABI)
+ if (loader_envp == NULL && fdt_get_chosen_bootargs(linux_command_line,
+ LBABI_MAX_COMMAND_LINE) == 0)
+ cmdline_set_env(linux_command_line, CMDLINE_GUARD);
+#endif
+
+#ifdef EFI
+ efihdr = (struct efi_map_header *)preload_search_info(kmdp,
+ MODINFO_METADATA | MODINFOMD_EFI_MAP);
+ if (efihdr != NULL) {
+ add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
+ } else
+#endif
+ {
+ /* Grab physical memory regions information from device tree. */
+ if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
+ panic("Cannot get physical memory regions");
+ }
+ arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
+
+ /* Grab reserved memory regions information from device tree. */
+ if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
+ arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
+ EXFLAG_NODUMP | EXFLAG_NOALLOC);
+
+ /*
+ * Set TEX remapping registers.
+ * Setup kernel page tables and switch to kernel L1 page table.
+ */
+ pmap_set_tex();
+ pmap_bootstrap_prepare(lastaddr);
+
+ /*
+ * Now that proper page tables are installed, call cpu_setup() to enable
+ * instruction and data caches and other chip-specific features.
+ */
+ cpu_setup();
+
+ /* Platform-specific initialisation */
+ platform_probe_and_attach();
+ pcpu0_init();
+
+ /* Do basic tuning, hz etc */
+ init_param1();
+
+ /*
+ * Allocate a page for the system page mapped to 0xffff0000
+ * This page will just contain the system vectors and can be
+ * shared by all processes.
+ */
+ systempage = pmap_preboot_get_pages(1);
+
+ /* Map the vector page. */
+ pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH, 1);
+ if (virtual_end >= ARM_VECTORS_HIGH)
+ virtual_end = ARM_VECTORS_HIGH - 1;
+
+ /* Allocate dynamic per-cpu area. */
+ dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
+ dpcpu_init((void *)dpcpu, 0);
+
+ /* Allocate stacks for all modes */
+ irqstack = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
+ abtstack = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
+ undstack = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
+ kernelstack = pmap_preboot_get_vpages(kstack_pages * MAXCPU);
+
+ /* Allocate message buffer. */
+ msgbufp = (void *)pmap_preboot_get_vpages(
+ round_page(msgbufsize) / PAGE_SIZE);
+
+ /*
+ * Pages were allocated during the secondary bootstrap for the
+ * stacks for different CPU modes.
+ * We must now set the r13 registers in the different CPU modes to
+ * point to these stacks.
+ * Since the ARM stacks use STMFD etc. we must set r13 to the top end
+ * of the stack memory.
+ */
+ set_stackptrs(0);
+ mutex_init();
+
+ /* Establish static device mappings. */
+ err_devmap = platform_devmap_init();
+ devmap_bootstrap(0, NULL);
+ vm_max_kernel_address = platform_lastaddr();
+
+ /*
+ * Only after the SOC registers block is mapped we can perform device
+ * tree fixups, as they may attempt to read parameters from hardware.
+ */
+ OF_interpret("perform-fixup", 0);
+ platform_gpio_init();
+ cninit();
+
+ debugf("initarm: console initialized\n");
+ debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
+ debugf(" boothowto = 0x%08x\n", boothowto);
+ debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
+ debugf(" lastaddr1: 0x%08x\n", lastaddr);
+ print_kenv();
+
+ env = kern_getenv("kernelname");
+ if (env != NULL)
+ strlcpy(kernelname, env, sizeof(kernelname));
+
+ if (err_devmap != 0)
+ printf("WARNING: could not fully configure devmap, error=%d\n",
+ err_devmap);
+
+ platform_late_init();
+
+ /*
+ * We must now clean the cache again....
+ * Cleaning may be done by reading new data to displace any
+ * dirty data in the cache. This will have happened in cpu_setttb()
+ * but since we are boot strapping the addresses used for the read
+ * may have just been remapped and thus the cache could be out
+ * of sync. A re-clean after the switch will cure this.
+ * After booting there are no gross relocations of the kernel thus
+ * this problem will not occur after initarm().
+ */
+ /* Set stack for exception handlers */
+ undefined_init();
+ init_proc0(kernelstack);
+ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
+ enable_interrupts(PSR_A);
+ pmap_bootstrap(0);
+
+ /* Exclude the kernel (and all the things we allocated which immediately
+ * follow the kernel) from the VM allocation pool but not from crash
+ * dumps. virtual_avail is a global variable which tracks the kva we've
+ * "allocated" while setting up pmaps.
+ *
+ * Prepare the list of physical memory available to the vm subsystem.
+ */
+ arm_physmem_exclude_region(abp->abp_physaddr,
+ pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
+ arm_physmem_init_kernel_globals();
+
+ init_param2(physmem);
+ /* Init message buffer. */
+ msgbufinit(msgbufp, msgbufsize);
+ dbg_monitor_init();
+ kdb_init();
+ return ((void *)STACKALIGN(thread0.td_pcb));
+
+}
+
+#endif /* __ARM_ARCH < 6 */
+#endif /* FDT */