aboutsummaryrefslogtreecommitdiff
path: root/sys/arm/arm/pmap-v6.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/arm/arm/pmap-v6.c')
-rw-r--r--sys/arm/arm/pmap-v6.c6956
1 files changed, 6956 insertions, 0 deletions
diff --git a/sys/arm/arm/pmap-v6.c b/sys/arm/arm/pmap-v6.c
new file mode 100644
index 000000000000..c9b939f6ce34
--- /dev/null
+++ b/sys/arm/arm/pmap-v6.c
@@ -0,0 +1,6956 @@
+/*-
+ * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
+ *
+ * Copyright (c) 1991 Regents of the University of California.
+ * Copyright (c) 1994 John S. Dyson
+ * Copyright (c) 1994 David Greenman
+ * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
+ * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
+ * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * the Systems Programming Group of the University of Utah Computer
+ * Science Department and William Jolitz of UUNET Technologies Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
+ */
+/*-
+ * Copyright (c) 2003 Networks Associates Technology, Inc.
+ * All rights reserved.
+ *
+ * This software was developed for the FreeBSD Project by Jake Burkholder,
+ * Safeport Network Services, and Network Associates Laboratories, the
+ * Security Research Division of Network Associates, Inc. under
+ * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
+ * CHATS research program.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/*
+ * Manages physical address maps.
+ *
+ * Since the information managed by this module is
+ * also stored by the logical address mapping module,
+ * this module may throw away valid virtual-to-physical
+ * mappings at almost any time. However, invalidations
+ * of virtual-to-physical mappings must be done as
+ * requested.
+ *
+ * In order to cope with hardware architectures which
+ * make virtual-to-physical map invalidates expensive,
+ * this module may delay invalidate or reduced protection
+ * operations until such time as they are actually
+ * necessary. This module is given full information as
+ * to which processors are currently using which maps,
+ * and to when physical maps must be made correct.
+ */
+
+#include "opt_vm.h"
+#include "opt_pmap.h"
+#include "opt_ddb.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/lock.h>
+#include <sys/proc.h>
+#include <sys/rwlock.h>
+#include <sys/malloc.h>
+#include <sys/vmmeter.h>
+#include <sys/malloc.h>
+#include <sys/mman.h>
+#include <sys/sf_buf.h>
+#include <sys/smp.h>
+#include <sys/sched.h>
+#include <sys/sysctl.h>
+
+#ifdef DDB
+#include <ddb/ddb.h>
+#endif
+
+#include <vm/vm.h>
+#include <vm/uma.h>
+#include <vm/pmap.h>
+#include <vm/vm_param.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_object.h>
+#include <vm/vm_map.h>
+#include <vm/vm_page.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_phys.h>
+#include <vm/vm_extern.h>
+#include <vm/vm_reserv.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+
+#include <machine/md_var.h>
+#include <machine/pmap_var.h>
+#include <machine/cpu.h>
+#include <machine/pcb.h>
+#include <machine/sf_buf.h>
+#ifdef SMP
+#include <machine/smp.h>
+#endif
+#ifndef PMAP_SHPGPERPROC
+#define PMAP_SHPGPERPROC 200
+#endif
+
+#ifndef DIAGNOSTIC
+#define PMAP_INLINE __inline
+#else
+#define PMAP_INLINE
+#endif
+
+#ifdef PMAP_DEBUG
+static void pmap_zero_page_check(vm_page_t m);
+void pmap_debug(int level);
+int pmap_pid_dump(int pid);
+
+#define PDEBUG(_lev_,_stat_) \
+ if (pmap_debug_level >= (_lev_)) \
+ ((_stat_))
+#define dprintf printf
+int pmap_debug_level = 1;
+#else /* PMAP_DEBUG */
+#define PDEBUG(_lev_,_stat_) /* Nothing */
+#define dprintf(x, arg...)
+#endif /* PMAP_DEBUG */
+
+/*
+ * Level 2 page tables map definion ('max' is excluded).
+ */
+
+#define PT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP)
+#define PT2V_MAX_ADDRESS ((vm_offset_t)PT2MAP + PT2MAP_SIZE)
+
+#define UPT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP)
+#define UPT2V_MAX_ADDRESS \
+ ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
+
+/*
+ * Promotion to a 1MB (PTE1) page mapping requires that the corresponding
+ * 4KB (PTE2) page mappings have identical settings for the following fields:
+ */
+#define PTE2_PROMOTE (PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG | \
+ PTE2_NX | PTE2_RO | PTE2_U | PTE2_W | \
+ PTE2_ATTR_MASK)
+
+#define PTE1_PROMOTE (PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG | \
+ PTE1_NX | PTE1_RO | PTE1_U | PTE1_W | \
+ PTE1_ATTR_MASK)
+
+#define ATTR_TO_L1(l2_attr) ((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
+ (((l2_attr) & L2_C) ? L1_S_C : 0) | \
+ (((l2_attr) & L2_B) ? L1_S_B : 0) | \
+ (((l2_attr) & PTE2_A) ? PTE1_A : 0) | \
+ (((l2_attr) & PTE2_NM) ? PTE1_NM : 0) | \
+ (((l2_attr) & PTE2_S) ? PTE1_S : 0) | \
+ (((l2_attr) & PTE2_NG) ? PTE1_NG : 0) | \
+ (((l2_attr) & PTE2_NX) ? PTE1_NX : 0) | \
+ (((l2_attr) & PTE2_RO) ? PTE1_RO : 0) | \
+ (((l2_attr) & PTE2_U) ? PTE1_U : 0) | \
+ (((l2_attr) & PTE2_W) ? PTE1_W : 0))
+
+#define ATTR_TO_L2(l1_attr) ((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
+ (((l1_attr) & L1_S_C) ? L2_C : 0) | \
+ (((l1_attr) & L1_S_B) ? L2_B : 0) | \
+ (((l1_attr) & PTE1_A) ? PTE2_A : 0) | \
+ (((l1_attr) & PTE1_NM) ? PTE2_NM : 0) | \
+ (((l1_attr) & PTE1_S) ? PTE2_S : 0) | \
+ (((l1_attr) & PTE1_NG) ? PTE2_NG : 0) | \
+ (((l1_attr) & PTE1_NX) ? PTE2_NX : 0) | \
+ (((l1_attr) & PTE1_RO) ? PTE2_RO : 0) | \
+ (((l1_attr) & PTE1_U) ? PTE2_U : 0) | \
+ (((l1_attr) & PTE1_W) ? PTE2_W : 0))
+
+/*
+ * PTE2 descriptors creation macros.
+ */
+#define PTE2_ATTR_DEFAULT vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
+#define PTE2_ATTR_PT vm_memattr_to_pte2(pt_memattr)
+
+#define PTE2_KPT(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
+#define PTE2_KPT_NG(pa) PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
+
+#define PTE2_KRW(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
+#define PTE2_KRO(pa) PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
+
+#define PV_STATS
+#ifdef PV_STATS
+#define PV_STAT(x) do { x ; } while (0)
+#else
+#define PV_STAT(x) do { } while (0)
+#endif
+
+/*
+ * The boot_pt1 is used temporary in very early boot stage as L1 page table.
+ * We can init many things with no memory allocation thanks to its static
+ * allocation and this brings two main advantages:
+ * (1) other cores can be started very simply,
+ * (2) various boot loaders can be supported as its arguments can be processed
+ * in virtual address space and can be moved to safe location before
+ * first allocation happened.
+ * Only disadvantage is that boot_pt1 is used only in very early boot stage.
+ * However, the table is uninitialized and so lays in bss. Therefore kernel
+ * image size is not influenced.
+ *
+ * QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
+ * CPU suspend/resume game.
+ */
+extern pt1_entry_t boot_pt1[];
+
+vm_paddr_t base_pt1;
+pt1_entry_t *kern_pt1;
+pt2_entry_t *kern_pt2tab;
+pt2_entry_t *PT2MAP;
+
+static uint32_t ttb_flags;
+static vm_memattr_t pt_memattr;
+ttb_entry_t pmap_kern_ttb;
+
+struct pmap kernel_pmap_store;
+LIST_HEAD(pmaplist, pmap);
+static struct pmaplist allpmaps;
+static struct mtx allpmaps_lock;
+
+vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
+vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
+
+static vm_offset_t kernel_vm_end_new;
+vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
+vm_offset_t vm_max_kernel_address;
+vm_paddr_t kernel_l1pa;
+
+static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
+
+/*
+ * Data for the pv entry allocation mechanism
+ */
+static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
+static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
+static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
+static int shpgperproc = PMAP_SHPGPERPROC;
+
+struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
+int pv_maxchunks; /* How many chunks we have KVA for */
+vm_offset_t pv_vafree; /* freelist stored in the PTE */
+
+vm_paddr_t first_managed_pa;
+#define pa_to_pvh(pa) (&pv_table[pte1_index(pa - first_managed_pa)])
+
+/*
+ * All those kernel PT submaps that BSD is so fond of
+ */
+caddr_t _tmppt = 0;
+
+/*
+ * Crashdump maps.
+ */
+static caddr_t crashdumpmap;
+
+static pt2_entry_t *PMAP1 = NULL, *PMAP2;
+static pt2_entry_t *PADDR1 = NULL, *PADDR2;
+#ifdef DDB
+static pt2_entry_t *PMAP3;
+static pt2_entry_t *PADDR3;
+static int PMAP3cpu __unused; /* for SMP only */
+#endif
+#ifdef SMP
+static int PMAP1cpu;
+static int PMAP1changedcpu;
+SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
+ &PMAP1changedcpu, 0,
+ "Number of times pmap_pte2_quick changed CPU with same PMAP1");
+#endif
+static int PMAP1changed;
+SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
+ &PMAP1changed, 0,
+ "Number of times pmap_pte2_quick changed PMAP1");
+static int PMAP1unchanged;
+SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
+ &PMAP1unchanged, 0,
+ "Number of times pmap_pte2_quick didn't change PMAP1");
+static struct mtx PMAP2mutex;
+
+/*
+ * Internal flags for pmap_enter()'s helper functions.
+ */
+#define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
+#define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
+
+static __inline void pt2_wirecount_init(vm_page_t m);
+static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
+ vm_offset_t va);
+static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1,
+ u_int flags, vm_page_t m);
+void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
+
+/*
+ * Function to set the debug level of the pmap code.
+ */
+#ifdef PMAP_DEBUG
+void
+pmap_debug(int level)
+{
+
+ pmap_debug_level = level;
+ dprintf("pmap_debug: level=%d\n", pmap_debug_level);
+}
+#endif /* PMAP_DEBUG */
+
+/*
+ * This table must corespond with memory attribute configuration in vm.h.
+ * First entry is used for normal system mapping.
+ *
+ * Device memory is always marked as shared.
+ * Normal memory is shared only in SMP .
+ * Not outer shareable bits are not used yet.
+ * Class 6 cannot be used on ARM11.
+ */
+#define TEXDEF_TYPE_SHIFT 0
+#define TEXDEF_TYPE_MASK 0x3
+#define TEXDEF_INNER_SHIFT 2
+#define TEXDEF_INNER_MASK 0x3
+#define TEXDEF_OUTER_SHIFT 4
+#define TEXDEF_OUTER_MASK 0x3
+#define TEXDEF_NOS_SHIFT 6
+#define TEXDEF_NOS_MASK 0x1
+
+#define TEX(t, i, o, s) \
+ ((t) << TEXDEF_TYPE_SHIFT) | \
+ ((i) << TEXDEF_INNER_SHIFT) | \
+ ((o) << TEXDEF_OUTER_SHIFT | \
+ ((s) << TEXDEF_NOS_SHIFT))
+
+static uint32_t tex_class[8] = {
+/* type inner cache outer cache */
+ TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0), /* 0 - ATTR_WB_WA */
+ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 1 - ATTR_NOCACHE */
+ TEX(PRRR_DEV, NMRR_NC, NMRR_NC, 0), /* 2 - ATTR_DEVICE */
+ TEX(PRRR_SO, NMRR_NC, NMRR_NC, 0), /* 3 - ATTR_SO */
+ TEX(PRRR_MEM, NMRR_WT, NMRR_WT, 0), /* 4 - ATTR_WT */
+ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 5 - NOT USED YET */
+ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 6 - NOT USED YET */
+ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 7 - NOT USED YET */
+};
+#undef TEX
+
+static uint32_t pte2_attr_tab[8] = {
+ PTE2_ATTR_WB_WA, /* 0 - VM_MEMATTR_WB_WA */
+ PTE2_ATTR_NOCACHE, /* 1 - VM_MEMATTR_NOCACHE */
+ PTE2_ATTR_DEVICE, /* 2 - VM_MEMATTR_DEVICE */
+ PTE2_ATTR_SO, /* 3 - VM_MEMATTR_SO */
+ PTE2_ATTR_WT, /* 4 - VM_MEMATTR_WRITE_THROUGH */
+ 0, /* 5 - NOT USED YET */
+ 0, /* 6 - NOT USED YET */
+ 0 /* 7 - NOT USED YET */
+};
+CTASSERT(VM_MEMATTR_WB_WA == 0);
+CTASSERT(VM_MEMATTR_NOCACHE == 1);
+CTASSERT(VM_MEMATTR_DEVICE == 2);
+CTASSERT(VM_MEMATTR_SO == 3);
+CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
+#define VM_MEMATTR_END (VM_MEMATTR_WRITE_THROUGH + 1)
+
+boolean_t
+pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
+{
+
+ return (mode >= 0 && mode < VM_MEMATTR_END);
+}
+
+static inline uint32_t
+vm_memattr_to_pte2(vm_memattr_t ma)
+{
+
+ KASSERT((u_int)ma < VM_MEMATTR_END,
+ ("%s: bad vm_memattr_t %d", __func__, ma));
+ return (pte2_attr_tab[(u_int)ma]);
+}
+
+static inline uint32_t
+vm_page_pte2_attr(vm_page_t m)
+{
+
+ return (vm_memattr_to_pte2(m->md.pat_mode));
+}
+
+/*
+ * Convert TEX definition entry to TTB flags.
+ */
+static uint32_t
+encode_ttb_flags(int idx)
+{
+ uint32_t inner, outer, nos, reg;
+
+ inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
+ TEXDEF_INNER_MASK;
+ outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
+ TEXDEF_OUTER_MASK;
+ nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
+ TEXDEF_NOS_MASK;
+
+ reg = nos << 5;
+ reg |= outer << 3;
+ if (cpuinfo.coherent_walk)
+ reg |= (inner & 0x1) << 6;
+ reg |= (inner & 0x2) >> 1;
+#ifdef SMP
+ ARM_SMP_UP(
+ reg |= 1 << 1,
+ );
+#endif
+ return reg;
+}
+
+/*
+ * Set TEX remapping registers in current CPU.
+ */
+void
+pmap_set_tex(void)
+{
+ uint32_t prrr, nmrr;
+ uint32_t type, inner, outer, nos;
+ int i;
+
+#ifdef PMAP_PTE_NOCACHE
+ /* XXX fixme */
+ if (cpuinfo.coherent_walk) {
+ pt_memattr = VM_MEMATTR_WB_WA;
+ ttb_flags = encode_ttb_flags(0);
+ }
+ else {
+ pt_memattr = VM_MEMATTR_NOCACHE;
+ ttb_flags = encode_ttb_flags(1);
+ }
+#else
+ pt_memattr = VM_MEMATTR_WB_WA;
+ ttb_flags = encode_ttb_flags(0);
+#endif
+
+ prrr = 0;
+ nmrr = 0;
+
+ /* Build remapping register from TEX classes. */
+ for (i = 0; i < 8; i++) {
+ type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
+ TEXDEF_TYPE_MASK;
+ inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
+ TEXDEF_INNER_MASK;
+ outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
+ TEXDEF_OUTER_MASK;
+ nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
+ TEXDEF_NOS_MASK;
+
+ prrr |= type << (i * 2);
+ prrr |= nos << (i + 24);
+ nmrr |= inner << (i * 2);
+ nmrr |= outer << (i * 2 + 16);
+ }
+ /* Add shareable bits for device memory. */
+ prrr |= PRRR_DS0 | PRRR_DS1;
+
+ /* Add shareable bits for normal memory in SMP case. */
+#ifdef SMP
+ ARM_SMP_UP(
+ prrr |= PRRR_NS1,
+ );
+#endif
+ cp15_prrr_set(prrr);
+ cp15_nmrr_set(nmrr);
+
+ /* Caches are disabled, so full TLB flush should be enough. */
+ tlb_flush_all_local();
+}
+
+/*
+ * Remap one vm_meattr class to another one. This can be useful as
+ * workaround for SOC errata, e.g. if devices must be accessed using
+ * SO memory class.
+ *
+ * !!! Please note that this function is absolutely last resort thing.
+ * It should not be used under normal circumstances. !!!
+ *
+ * Usage rules:
+ * - it shall be called after pmap_bootstrap_prepare() and before
+ * cpu_mp_start() (thus only on boot CPU). In practice, it's expected
+ * to be called from platform_attach() or platform_late_init().
+ *
+ * - if remapping doesn't change caching mode, or until uncached class
+ * is remapped to any kind of cached one, then no other restriction exists.
+ *
+ * - if pmap_remap_vm_attr() changes caching mode, but both (original and
+ * remapped) remain cached, then caller is resposible for calling
+ * of dcache_wbinv_poc_all().
+ *
+ * - remapping of any kind of cached class to uncached is not permitted.
+ */
+void
+pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
+{
+ int old_idx, new_idx;
+
+ /* Map VM memattrs to indexes to tex_class table. */
+ old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
+ new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
+
+ /* Replace TEX attribute and apply it. */
+ tex_class[old_idx] = tex_class[new_idx];
+ pmap_set_tex();
+}
+
+/*
+ * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
+ * KERNBASE is mapped by first L2 page table in L2 page table page. It
+ * meets same constrain due to PT2MAP being placed just under KERNBASE.
+ */
+CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
+CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
+
+/*
+ * In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
+ * For now, anyhow, the following check must be fulfilled.
+ */
+CTASSERT(PAGE_SIZE == PTE2_SIZE);
+/*
+ * We don't want to mess up MI code with all MMU and PMAP definitions,
+ * so some things, which depend on other ones, are defined independently.
+ * Now, it is time to check that we don't screw up something.
+ */
+CTASSERT(PDRSHIFT == PTE1_SHIFT);
+/*
+ * Check L1 and L2 page table entries definitions consistency.
+ */
+CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
+CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
+/*
+ * Check L2 page tables page consistency.
+ */
+CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
+CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
+/*
+ * Check PT2TAB consistency.
+ * PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
+ * This should be done without remainder.
+ */
+CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
+
+/*
+ * A PT2MAP magic.
+ *
+ * All level 2 page tables (PT2s) are mapped continuously and accordingly
+ * into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
+ * be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
+ * must be used together, but not necessary at once. The first PT2 in a page
+ * must map things on correctly aligned address and the others must follow
+ * in right order.
+ */
+#define NB_IN_PT2TAB (PT2TAB_ENTRIES * sizeof(pt2_entry_t))
+#define NPT2_IN_PT2TAB (NB_IN_PT2TAB / NB_IN_PT2)
+#define NPG_IN_PT2TAB (NB_IN_PT2TAB / PAGE_SIZE)
+
+/*
+ * Check PT2TAB consistency.
+ * NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
+ * NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
+ * The both should be done without remainder.
+ */
+CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
+CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
+/*
+ * The implementation was made general, however, with the assumption
+ * bellow in mind. In case of another value of NPG_IN_PT2TAB,
+ * the code should be once more rechecked.
+ */
+CTASSERT(NPG_IN_PT2TAB == 1);
+
+/*
+ * Get offset of PT2 in a page
+ * associated with given PT1 index.
+ */
+static __inline u_int
+page_pt2off(u_int pt1_idx)
+{
+
+ return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
+}
+
+/*
+ * Get physical address of PT2
+ * associated with given PT2s page and PT1 index.
+ */
+static __inline vm_paddr_t
+page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
+{
+
+ return (pgpa + page_pt2off(pt1_idx));
+}
+
+/*
+ * Get first entry of PT2
+ * associated with given PT2s page and PT1 index.
+ */
+static __inline pt2_entry_t *
+page_pt2(vm_offset_t pgva, u_int pt1_idx)
+{
+
+ return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
+}
+
+/*
+ * Get virtual address of PT2s page (mapped in PT2MAP)
+ * which holds PT2 which holds entry which maps given virtual address.
+ */
+static __inline vm_offset_t
+pt2map_pt2pg(vm_offset_t va)
+{
+
+ va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
+ return ((vm_offset_t)pt2map_entry(va));
+}
+
+/*****************************************************************************
+ *
+ * THREE pmap initialization milestones exist:
+ *
+ * locore.S
+ * -> fundamental init (including MMU) in ASM
+ *
+ * initarm()
+ * -> fundamental init continues in C
+ * -> first available physical address is known
+ *
+ * pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
+ * -> basic (safe) interface for physical address allocation is made
+ * -> basic (safe) interface for virtual mapping is made
+ * -> limited not SMP coherent work is possible
+ *
+ * -> more fundamental init continues in C
+ * -> locks and some more things are available
+ * -> all fundamental allocations and mappings are done
+ *
+ * pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
+ * -> phys_avail[] and virtual_avail is set
+ * -> control is passed to vm subsystem
+ * -> physical and virtual address allocation are off limit
+ * -> low level mapping functions, some SMP coherent,
+ * are available, which cannot be used before vm subsystem
+ * is being inited
+ *
+ * mi_startup()
+ * -> vm subsystem is being inited
+ *
+ * pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
+ * -> pmap is fully inited
+ *
+ *****************************************************************************/
+
+/*****************************************************************************
+ *
+ * PMAP first stage initialization and utility functions
+ * for pre-bootstrap epoch.
+ *
+ * After pmap_bootstrap_prepare() is called, the following functions
+ * can be used:
+ *
+ * (1) strictly only for this stage functions for physical page allocations,
+ * virtual space allocations, and mappings:
+ *
+ * vm_paddr_t pmap_preboot_get_pages(u_int num);
+ * void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
+ * vm_offset_t pmap_preboot_reserve_pages(u_int num);
+ * vm_offset_t pmap_preboot_get_vpages(u_int num);
+ * void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
+ * vm_prot_t prot, vm_memattr_t attr);
+ *
+ * (2) for all stages:
+ *
+ * vm_paddr_t pmap_kextract(vm_offset_t va);
+ *
+ * NOTE: This is not SMP coherent stage.
+ *
+ *****************************************************************************/
+
+#define KERNEL_P2V(pa) \
+ ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
+#define KERNEL_V2P(va) \
+ ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
+
+static vm_paddr_t last_paddr;
+
+/*
+ * Pre-bootstrap epoch page allocator.
+ */
+vm_paddr_t
+pmap_preboot_get_pages(u_int num)
+{
+ vm_paddr_t ret;
+
+ ret = last_paddr;
+ last_paddr += num * PAGE_SIZE;
+
+ return (ret);
+}
+
+/*
+ * The fundamental initialization of PMAP stuff.
+ *
+ * Some things already happened in locore.S and some things could happen
+ * before pmap_bootstrap_prepare() is called, so let's recall what is done:
+ * 1. Caches are disabled.
+ * 2. We are running on virtual addresses already with 'boot_pt1'
+ * as L1 page table.
+ * 3. So far, all virtual addresses can be converted to physical ones and
+ * vice versa by the following macros:
+ * KERNEL_P2V(pa) .... physical to virtual ones,
+ * KERNEL_V2P(va) .... virtual to physical ones.
+ *
+ * What is done herein:
+ * 1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
+ * 2. PT2MAP magic is brought to live.
+ * 3. Basic preboot functions for page allocations and mappings can be used.
+ * 4. Everything is prepared for L1 cache enabling.
+ *
+ * Variations:
+ * 1. To use second TTB register, so kernel and users page tables will be
+ * separated. This way process forking - pmap_pinit() - could be faster,
+ * it saves physical pages and KVA per a process, and it's simple change.
+ * However, it will lead, due to hardware matter, to the following:
+ * (a) 2G space for kernel and 2G space for users.
+ * (b) 1G space for kernel in low addresses and 3G for users above it.
+ * A question is: Is the case (b) really an option? Note that case (b)
+ * does save neither physical memory and KVA.
+ */
+void
+pmap_bootstrap_prepare(vm_paddr_t last)
+{
+ vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
+ vm_offset_t pt2pg_va;
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p;
+ u_int i;
+ uint32_t l1_attr;
+
+ /*
+ * Now, we are going to make real kernel mapping. Note that we are
+ * already running on some mapping made in locore.S and we expect
+ * that it's large enough to ensure nofault access to physical memory
+ * allocated herein before switch.
+ *
+ * As kernel image and everything needed before are and will be mapped
+ * by section mappings, we align last physical address to PTE1_SIZE.
+ */
+ last_paddr = pte1_roundup(last);
+
+ /*
+ * Allocate and zero page(s) for kernel L1 page table.
+ *
+ * Note that it's first allocation on space which was PTE1_SIZE
+ * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
+ */
+ base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
+ kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
+ bzero((void*)kern_pt1, NB_IN_PT1);
+ pte1_sync_range(kern_pt1, NB_IN_PT1);
+
+ /* Allocate and zero page(s) for kernel PT2TAB. */
+ pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
+ kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
+ bzero(kern_pt2tab, NB_IN_PT2TAB);
+ pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
+
+ /* Allocate and zero page(s) for kernel L2 page tables. */
+ pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
+ pt2pg_va = KERNEL_P2V(pt2pg_pa);
+ size = NKPT2PG * PAGE_SIZE;
+ bzero((void*)pt2pg_va, size);
+ pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
+
+ /*
+ * Add a physical memory segment (vm_phys_seg) corresponding to the
+ * preallocated pages for kernel L2 page tables so that vm_page
+ * structures representing these pages will be created. The vm_page
+ * structures are required for promotion of the corresponding kernel
+ * virtual addresses to section mappings.
+ */
+ vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
+
+ /*
+ * Insert allocated L2 page table pages to PT2TAB and make
+ * link to all PT2s in L1 page table. See how kernel_vm_end
+ * is initialized.
+ *
+ * We play simple and safe. So every KVA will have underlaying
+ * L2 page table, even kernel image mapped by sections.
+ */
+ pte2p = kern_pt2tab_entry(KERNBASE);
+ for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
+ pt2tab_store(pte2p++, PTE2_KPT(pa));
+
+ pte1p = kern_pte1(KERNBASE);
+ for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
+ pte1_store(pte1p++, PTE1_LINK(pa));
+
+ /* Make section mappings for kernel. */
+ l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
+ pte1p = kern_pte1(KERNBASE);
+ for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
+ pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
+
+ /*
+ * Get free and aligned space for PT2MAP and make L1 page table links
+ * to L2 page tables held in PT2TAB.
+ *
+ * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
+ * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
+ * each entry in PT2TAB maps all PT2s in a page. This implies that
+ * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
+ */
+ PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
+ pte1p = kern_pte1((vm_offset_t)PT2MAP);
+ for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
+ pte1_store(pte1p++, PTE1_LINK(pa));
+ }
+
+ /*
+ * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
+ * Each pmap will hold own PT2TAB, so the mapping should be not global.
+ */
+ pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
+ for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
+ pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
+ }
+
+ /*
+ * Choose correct L2 page table and make mappings for allocations
+ * made herein which replaces temporary locore.S mappings after a while.
+ * Note that PT2MAP cannot be used until we switch to kern_pt1.
+ *
+ * Note, that these allocations started aligned on 1M section and
+ * kernel PT1 was allocated first. Making of mappings must follow
+ * order of physical allocations as we've used KERNEL_P2V() macro
+ * for virtual addresses resolution.
+ */
+ pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
+ pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
+
+ pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
+
+ /* Make mapping for kernel L1 page table. */
+ for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
+ pte2_store(pte2p++, PTE2_KPT(pa));
+
+ /* Make mapping for kernel PT2TAB. */
+ for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
+ pte2_store(pte2p++, PTE2_KPT(pa));
+
+ /* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
+ pmap_kern_ttb = base_pt1 | ttb_flags;
+ cpuinfo_reinit_mmu(pmap_kern_ttb);
+ /*
+ * Initialize the first available KVA. As kernel image is mapped by
+ * sections, we are leaving some gap behind.
+ */
+ virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
+}
+
+/*
+ * Setup L2 page table page for given KVA.
+ * Used in pre-bootstrap epoch.
+ *
+ * Note that we have allocated NKPT2PG pages for L2 page tables in advance
+ * and used them for mapping KVA starting from KERNBASE. However, this is not
+ * enough. Vectors and devices need L2 page tables too. Note that they are
+ * even above VM_MAX_KERNEL_ADDRESS.
+ */
+static __inline vm_paddr_t
+pmap_preboot_pt2pg_setup(vm_offset_t va)
+{
+ pt2_entry_t *pte2p, pte2;
+ vm_paddr_t pt2pg_pa;
+
+ /* Get associated entry in PT2TAB. */
+ pte2p = kern_pt2tab_entry(va);
+
+ /* Just return, if PT2s page exists already. */
+ pte2 = pt2tab_load(pte2p);
+ if (pte2_is_valid(pte2))
+ return (pte2_pa(pte2));
+
+ KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
+ ("%s: NKPT2PG too small", __func__));
+
+ /*
+ * Allocate page for PT2s and insert it to PT2TAB.
+ * In other words, map it into PT2MAP space.
+ */
+ pt2pg_pa = pmap_preboot_get_pages(1);
+ pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
+
+ /* Zero all PT2s in allocated page. */
+ bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
+ pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
+
+ return (pt2pg_pa);
+}
+
+/*
+ * Setup L2 page table for given KVA.
+ * Used in pre-bootstrap epoch.
+ */
+static void
+pmap_preboot_pt2_setup(vm_offset_t va)
+{
+ pt1_entry_t *pte1p;
+ vm_paddr_t pt2pg_pa, pt2_pa;
+
+ /* Setup PT2's page. */
+ pt2pg_pa = pmap_preboot_pt2pg_setup(va);
+ pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
+
+ /* Insert PT2 to PT1. */
+ pte1p = kern_pte1(va);
+ pte1_store(pte1p, PTE1_LINK(pt2_pa));
+}
+
+/*
+ * Get L2 page entry associated with given KVA.
+ * Used in pre-bootstrap epoch.
+ */
+static __inline pt2_entry_t*
+pmap_preboot_vtopte2(vm_offset_t va)
+{
+ pt1_entry_t *pte1p;
+
+ /* Setup PT2 if needed. */
+ pte1p = kern_pte1(va);
+ if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
+ pmap_preboot_pt2_setup(va);
+
+ return (pt2map_entry(va));
+}
+
+/*
+ * Pre-bootstrap epoch page(s) mapping(s).
+ */
+void
+pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
+{
+ u_int i;
+ pt2_entry_t *pte2p;
+
+ /* Map all the pages. */
+ for (i = 0; i < num; i++) {
+ pte2p = pmap_preboot_vtopte2(va);
+ pte2_store(pte2p, PTE2_KRW(pa));
+ va += PAGE_SIZE;
+ pa += PAGE_SIZE;
+ }
+}
+
+/*
+ * Pre-bootstrap epoch virtual space alocator.
+ */
+vm_offset_t
+pmap_preboot_reserve_pages(u_int num)
+{
+ u_int i;
+ vm_offset_t start, va;
+ pt2_entry_t *pte2p;
+
+ /* Allocate virtual space. */
+ start = va = virtual_avail;
+ virtual_avail += num * PAGE_SIZE;
+
+ /* Zero the mapping. */
+ for (i = 0; i < num; i++) {
+ pte2p = pmap_preboot_vtopte2(va);
+ pte2_store(pte2p, 0);
+ va += PAGE_SIZE;
+ }
+
+ return (start);
+}
+
+/*
+ * Pre-bootstrap epoch page(s) allocation and mapping(s).
+ */
+vm_offset_t
+pmap_preboot_get_vpages(u_int num)
+{
+ vm_paddr_t pa;
+ vm_offset_t va;
+
+ /* Allocate physical page(s). */
+ pa = pmap_preboot_get_pages(num);
+
+ /* Allocate virtual space. */
+ va = virtual_avail;
+ virtual_avail += num * PAGE_SIZE;
+
+ /* Map and zero all. */
+ pmap_preboot_map_pages(pa, va, num);
+ bzero((void *)va, num * PAGE_SIZE);
+
+ return (va);
+}
+
+/*
+ * Pre-bootstrap epoch page mapping(s) with attributes.
+ */
+void
+pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
+ vm_prot_t prot, vm_memattr_t attr)
+{
+ u_int num;
+ u_int l1_attr, l1_prot, l2_prot, l2_attr;
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p;
+
+ l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
+ l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
+ l2_attr = vm_memattr_to_pte2(attr);
+ l1_prot = ATTR_TO_L1(l2_prot);
+ l1_attr = ATTR_TO_L1(l2_attr);
+
+ /* Map all the pages. */
+ num = round_page(size);
+ while (num > 0) {
+ if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
+ pte1p = kern_pte1(va);
+ pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
+ va += PTE1_SIZE;
+ pa += PTE1_SIZE;
+ num -= PTE1_SIZE;
+ } else {
+ pte2p = pmap_preboot_vtopte2(va);
+ pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
+ va += PAGE_SIZE;
+ pa += PAGE_SIZE;
+ num -= PAGE_SIZE;
+ }
+ }
+}
+
+/*
+ * Extract from the kernel page table the physical address
+ * that is mapped by the given virtual address "va".
+ */
+vm_paddr_t
+pmap_kextract(vm_offset_t va)
+{
+ vm_paddr_t pa;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+
+ pte1 = pte1_load(kern_pte1(va));
+ if (pte1_is_section(pte1)) {
+ pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
+ } else if (pte1_is_link(pte1)) {
+ /*
+ * We should beware of concurrent promotion that changes
+ * pte1 at this point. However, it's not a problem as PT2
+ * page is preserved by promotion in PT2TAB. So even if
+ * it happens, using of PT2MAP is still safe.
+ *
+ * QQQ: However, concurrent removing is a problem which
+ * ends in abort on PT2MAP space. Locking must be used
+ * to deal with this.
+ */
+ pte2 = pte2_load(pt2map_entry(va));
+ pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
+ }
+ else {
+ panic("%s: va %#x pte1 %#x", __func__, va, pte1);
+ }
+ return (pa);
+}
+
+/*
+ * Extract from the kernel page table the physical address
+ * that is mapped by the given virtual address "va". Also
+ * return L2 page table entry which maps the address.
+ *
+ * This is only intended to be used for panic dumps.
+ */
+vm_paddr_t
+pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
+{
+ vm_paddr_t pa;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+
+ pte1 = pte1_load(kern_pte1(va));
+ if (pte1_is_section(pte1)) {
+ pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
+ pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
+ } else if (pte1_is_link(pte1)) {
+ pte2 = pte2_load(pt2map_entry(va));
+ pa = pte2_pa(pte2);
+ } else {
+ pte2 = 0;
+ pa = 0;
+ }
+ if (pte2p != NULL)
+ *pte2p = pte2;
+ return (pa);
+}
+
+/*****************************************************************************
+ *
+ * PMAP second stage initialization and utility functions
+ * for bootstrap epoch.
+ *
+ * After pmap_bootstrap() is called, the following functions for
+ * mappings can be used:
+ *
+ * void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
+ * void pmap_kremove(vm_offset_t va);
+ * vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
+ * int prot);
+ *
+ * NOTE: This is not SMP coherent stage. And physical page allocation is not
+ * allowed during this stage.
+ *
+ *****************************************************************************/
+
+/*
+ * Initialize kernel PMAP locks and lists, kernel_pmap itself, and
+ * reserve various virtual spaces for temporary mappings.
+ */
+void
+pmap_bootstrap(vm_offset_t firstaddr)
+{
+ pt2_entry_t *unused __unused;
+ struct pcpu *pc;
+
+ /*
+ * Initialize the kernel pmap (which is statically allocated).
+ */
+ PMAP_LOCK_INIT(kernel_pmap);
+ kernel_l1pa = (vm_paddr_t)kern_pt1; /* for libkvm */
+ kernel_pmap->pm_pt1 = kern_pt1;
+ kernel_pmap->pm_pt2tab = kern_pt2tab;
+ CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
+ TAILQ_INIT(&kernel_pmap->pm_pvchunk);
+
+ /*
+ * Initialize the global pv list lock.
+ */
+ rw_init(&pvh_global_lock, "pmap pv global");
+
+ LIST_INIT(&allpmaps);
+
+ /*
+ * Request a spin mutex so that changes to allpmaps cannot be
+ * preempted by smp_rendezvous_cpus().
+ */
+ mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
+ mtx_lock_spin(&allpmaps_lock);
+ LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
+ mtx_unlock_spin(&allpmaps_lock);
+
+ /*
+ * Reserve some special page table entries/VA space for temporary
+ * mapping of pages.
+ */
+#define SYSMAP(c, p, v, n) do { \
+ v = (c)pmap_preboot_reserve_pages(n); \
+ p = pt2map_entry((vm_offset_t)v); \
+ } while (0)
+
+ /*
+ * Local CMAP1/CMAP2 are used for zeroing and copying pages.
+ * Local CMAP2 is also used for data cache cleaning.
+ */
+ pc = get_pcpu();
+ mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
+ SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
+ SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
+ SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
+
+ /*
+ * Crashdump maps.
+ */
+ SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
+
+ /*
+ * _tmppt is used for reading arbitrary physical pages via /dev/mem.
+ */
+ SYSMAP(caddr_t, unused, _tmppt, 1);
+
+ /*
+ * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
+ * respectively. PADDR3 is used by pmap_pte2_ddb().
+ */
+ SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
+ SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
+#ifdef DDB
+ SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
+#endif
+ mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
+
+ /*
+ * Note that in very short time in initarm(), we are going to
+ * initialize phys_avail[] array and no further page allocation
+ * can happen after that until vm subsystem will be initialized.
+ */
+ kernel_vm_end_new = kernel_vm_end;
+ virtual_end = vm_max_kernel_address;
+}
+
+static void
+pmap_init_reserved_pages(void)
+{
+ struct pcpu *pc;
+ vm_offset_t pages;
+ int i;
+
+ CPU_FOREACH(i) {
+ pc = pcpu_find(i);
+ /*
+ * Skip if the mapping has already been initialized,
+ * i.e. this is the BSP.
+ */
+ if (pc->pc_cmap1_addr != 0)
+ continue;
+ mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
+ pages = kva_alloc(PAGE_SIZE * 3);
+ if (pages == 0)
+ panic("%s: unable to allocate KVA", __func__);
+ pc->pc_cmap1_pte2p = pt2map_entry(pages);
+ pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
+ pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
+ pc->pc_cmap1_addr = (caddr_t)pages;
+ pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
+ pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
+ }
+}
+SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
+
+/*
+ * The function can already be use in second initialization stage.
+ * As such, the function DOES NOT call pmap_growkernel() where PT2
+ * allocation can happen. So if used, be sure that PT2 for given
+ * virtual address is allocated already!
+ *
+ * Add a wired page to the kva.
+ * Note: not SMP coherent.
+ */
+static __inline void
+pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
+ uint32_t attr)
+{
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p;
+
+ pte1p = kern_pte1(va);
+ if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
+ /*
+ * This is a very low level function, so PT2 and particularly
+ * PT2PG associated with given virtual address must be already
+ * allocated. It's a pain mainly during pmap initialization
+ * stage. However, called after pmap initialization with
+ * virtual address not under kernel_vm_end will lead to
+ * the same misery.
+ */
+ if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
+ panic("%s: kernel PT2 not allocated!", __func__);
+ }
+
+ pte2p = pt2map_entry(va);
+ pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
+}
+
+PMAP_INLINE void
+pmap_kenter(vm_offset_t va, vm_paddr_t pa)
+{
+
+ pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
+}
+
+/*
+ * Remove a page from the kernel pagetables.
+ * Note: not SMP coherent.
+ */
+PMAP_INLINE void
+pmap_kremove(vm_offset_t va)
+{
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p;
+
+ pte1p = kern_pte1(va);
+ if (pte1_is_section(pte1_load(pte1p))) {
+ pte1_clear(pte1p);
+ } else {
+ pte2p = pt2map_entry(va);
+ pte2_clear(pte2p);
+ }
+}
+
+/*
+ * Share new kernel PT2PG with all pmaps.
+ * The caller is responsible for maintaining TLB consistency.
+ */
+static void
+pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
+{
+ pmap_t pmap;
+ pt2_entry_t *pte2p;
+
+ mtx_lock_spin(&allpmaps_lock);
+ LIST_FOREACH(pmap, &allpmaps, pm_list) {
+ pte2p = pmap_pt2tab_entry(pmap, va);
+ pt2tab_store(pte2p, npte2);
+ }
+ mtx_unlock_spin(&allpmaps_lock);
+}
+
+/*
+ * Share new kernel PTE1 with all pmaps.
+ * The caller is responsible for maintaining TLB consistency.
+ */
+static void
+pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
+{
+ pmap_t pmap;
+ pt1_entry_t *pte1p;
+
+ mtx_lock_spin(&allpmaps_lock);
+ LIST_FOREACH(pmap, &allpmaps, pm_list) {
+ pte1p = pmap_pte1(pmap, va);
+ pte1_store(pte1p, npte1);
+ }
+ mtx_unlock_spin(&allpmaps_lock);
+}
+
+/*
+ * Used to map a range of physical addresses into kernel
+ * virtual address space.
+ *
+ * The value passed in '*virt' is a suggested virtual address for
+ * the mapping. Architectures which can support a direct-mapped
+ * physical to virtual region can return the appropriate address
+ * within that region, leaving '*virt' unchanged. Other
+ * architectures should map the pages starting at '*virt' and
+ * update '*virt' with the first usable address after the mapped
+ * region.
+ *
+ * NOTE: Read the comments above pmap_kenter_prot_attr() as
+ * the function is used herein!
+ */
+vm_offset_t
+pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
+{
+ vm_offset_t va, sva;
+ vm_paddr_t pte1_offset;
+ pt1_entry_t npte1;
+ uint32_t l1prot, l2prot;
+ uint32_t l1attr, l2attr;
+
+ PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
+ " prot = %d\n", __func__, *virt, start, end, end - start, prot));
+
+ l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
+ l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
+ l1prot = ATTR_TO_L1(l2prot);
+
+ l2attr = PTE2_ATTR_DEFAULT;
+ l1attr = ATTR_TO_L1(l2attr);
+
+ va = *virt;
+ /*
+ * Does the physical address range's size and alignment permit at
+ * least one section mapping to be created?
+ */
+ pte1_offset = start & PTE1_OFFSET;
+ if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
+ PTE1_SIZE) {
+ /*
+ * Increase the starting virtual address so that its alignment
+ * does not preclude the use of section mappings.
+ */
+ if ((va & PTE1_OFFSET) < pte1_offset)
+ va = pte1_trunc(va) + pte1_offset;
+ else if ((va & PTE1_OFFSET) > pte1_offset)
+ va = pte1_roundup(va) + pte1_offset;
+ }
+ sva = va;
+ while (start < end) {
+ if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
+ KASSERT((va & PTE1_OFFSET) == 0,
+ ("%s: misaligned va %#x", __func__, va));
+ npte1 = PTE1_KERN(start, l1prot, l1attr);
+ pmap_kenter_pte1(va, npte1);
+ va += PTE1_SIZE;
+ start += PTE1_SIZE;
+ } else {
+ pmap_kenter_prot_attr(va, start, l2prot, l2attr);
+ va += PAGE_SIZE;
+ start += PAGE_SIZE;
+ }
+ }
+ tlb_flush_range(sva, va - sva);
+ *virt = va;
+ return (sva);
+}
+
+/*
+ * Make a temporary mapping for a physical address.
+ * This is only intended to be used for panic dumps.
+ */
+void *
+pmap_kenter_temporary(vm_paddr_t pa, int i)
+{
+ vm_offset_t va;
+
+ /* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
+
+ va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
+ pmap_kenter(va, pa);
+ tlb_flush_local(va);
+ return ((void *)crashdumpmap);
+}
+
+/*************************************
+ *
+ * TLB & cache maintenance routines.
+ *
+ *************************************/
+
+/*
+ * We inline these within pmap.c for speed.
+ */
+PMAP_INLINE void
+pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
+{
+
+ if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
+ tlb_flush(va);
+}
+
+PMAP_INLINE void
+pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
+{
+
+ if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
+ tlb_flush_range(sva, size);
+}
+
+/*
+ * Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
+ * Requirements:
+ * - Must deal with pages in order to ensure that none of the PTE2_* bits
+ * are ever set, PTE2_V in particular.
+ * - Assumes we can write to pte2s without pte2_store() atomic ops.
+ * - Assumes nothing will ever test these addresses for 0 to indicate
+ * no mapping instead of correctly checking PTE2_V.
+ * - Assumes a vm_offset_t will fit in a pte2 (true for arm).
+ * Because PTE2_V is never set, there can be no mappings to invalidate.
+ */
+static vm_offset_t
+pmap_pte2list_alloc(vm_offset_t *head)
+{
+ pt2_entry_t *pte2p;
+ vm_offset_t va;
+
+ va = *head;
+ if (va == 0)
+ panic("pmap_ptelist_alloc: exhausted ptelist KVA");
+ pte2p = pt2map_entry(va);
+ *head = *pte2p;
+ if (*head & PTE2_V)
+ panic("%s: va with PTE2_V set!", __func__);
+ *pte2p = 0;
+ return (va);
+}
+
+static void
+pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
+{
+ pt2_entry_t *pte2p;
+
+ if (va & PTE2_V)
+ panic("%s: freeing va with PTE2_V set!", __func__);
+ pte2p = pt2map_entry(va);
+ *pte2p = *head; /* virtual! PTE2_V is 0 though */
+ *head = va;
+}
+
+static void
+pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
+{
+ int i;
+ vm_offset_t va;
+
+ *head = 0;
+ for (i = npages - 1; i >= 0; i--) {
+ va = (vm_offset_t)base + i * PAGE_SIZE;
+ pmap_pte2list_free(head, va);
+ }
+}
+
+/*****************************************************************************
+ *
+ * PMAP third and final stage initialization.
+ *
+ * After pmap_init() is called, PMAP subsystem is fully initialized.
+ *
+ *****************************************************************************/
+
+SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
+ "VM/pmap parameters");
+
+SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
+ "Max number of PV entries");
+SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
+ "Page share factor per proc");
+
+static u_long nkpt2pg = NKPT2PG;
+SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
+ &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
+
+static int sp_enabled = 1;
+SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
+ &sp_enabled, 0, "Are large page mappings enabled?");
+
+bool
+pmap_ps_enabled(pmap_t pmap __unused)
+{
+
+ return (sp_enabled != 0);
+}
+
+static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
+ "1MB page mapping counters");
+
+static u_long pmap_pte1_demotions;
+SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
+ &pmap_pte1_demotions, 0, "1MB page demotions");
+
+static u_long pmap_pte1_mappings;
+SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
+ &pmap_pte1_mappings, 0, "1MB page mappings");
+
+static u_long pmap_pte1_p_failures;
+SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
+ &pmap_pte1_p_failures, 0, "1MB page promotion failures");
+
+static u_long pmap_pte1_promotions;
+SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
+ &pmap_pte1_promotions, 0, "1MB page promotions");
+
+static u_long pmap_pte1_kern_demotions;
+SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
+ &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
+
+static u_long pmap_pte1_kern_promotions;
+SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
+ &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
+
+static __inline ttb_entry_t
+pmap_ttb_get(pmap_t pmap)
+{
+
+ return (vtophys(pmap->pm_pt1) | ttb_flags);
+}
+
+/*
+ * Initialize a vm_page's machine-dependent fields.
+ *
+ * Variations:
+ * 1. Pages for L2 page tables are always not managed. So, pv_list and
+ * pt2_wirecount can share same physical space. However, proper
+ * initialization on a page alloc for page tables and reinitialization
+ * on the page free must be ensured.
+ */
+void
+pmap_page_init(vm_page_t m)
+{
+
+ TAILQ_INIT(&m->md.pv_list);
+ pt2_wirecount_init(m);
+ m->md.pat_mode = VM_MEMATTR_DEFAULT;
+}
+
+/*
+ * Virtualization for faster way how to zero whole page.
+ */
+static __inline void
+pagezero(void *page)
+{
+
+ bzero(page, PAGE_SIZE);
+}
+
+/*
+ * Zero L2 page table page.
+ * Use same KVA as in pmap_zero_page().
+ */
+static __inline vm_paddr_t
+pmap_pt2pg_zero(vm_page_t m)
+{
+ pt2_entry_t *cmap2_pte2p;
+ vm_paddr_t pa;
+ struct pcpu *pc;
+
+ pa = VM_PAGE_TO_PHYS(m);
+
+ /*
+ * XXX: For now, we map whole page even if it's already zero,
+ * to sync it even if the sync is only DSB.
+ */
+ sched_pin();
+ pc = get_pcpu();
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
+ vm_page_pte2_attr(m)));
+ /* Even VM_ALLOC_ZERO request is only advisory. */
+ if ((m->flags & PG_ZERO) == 0)
+ pagezero(pc->pc_cmap2_addr);
+ pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+
+ /*
+ * Unpin the thread before releasing the lock. Otherwise the thread
+ * could be rescheduled while still bound to the current CPU, only
+ * to unpin itself immediately upon resuming execution.
+ */
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+
+ return (pa);
+}
+
+/*
+ * Init just allocated page as L2 page table(s) holder
+ * and return its physical address.
+ */
+static __inline vm_paddr_t
+pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
+{
+ vm_paddr_t pa;
+ pt2_entry_t *pte2p;
+
+ /* Check page attributes. */
+ if (m->md.pat_mode != pt_memattr)
+ pmap_page_set_memattr(m, pt_memattr);
+
+ /* Zero page and init wire counts. */
+ pa = pmap_pt2pg_zero(m);
+ pt2_wirecount_init(m);
+
+ /*
+ * Map page to PT2MAP address space for given pmap.
+ * Note that PT2MAP space is shared with all pmaps.
+ */
+ if (pmap == kernel_pmap)
+ pmap_kenter_pt2tab(va, PTE2_KPT(pa));
+ else {
+ pte2p = pmap_pt2tab_entry(pmap, va);
+ pt2tab_store(pte2p, PTE2_KPT_NG(pa));
+ }
+
+ return (pa);
+}
+
+/*
+ * Initialize the pmap module.
+ * Called by vm_init, to initialize any structures that the pmap
+ * system needs to map virtual memory.
+ */
+void
+pmap_init(void)
+{
+ vm_size_t s;
+ pt2_entry_t *pte2p, pte2;
+ u_int i, pte1_idx, pv_npg;
+
+ PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
+
+ /*
+ * Initialize the vm page array entries for kernel pmap's
+ * L2 page table pages allocated in advance.
+ */
+ pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
+ pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
+ for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
+ vm_paddr_t pa;
+ vm_page_t m;
+
+ pte2 = pte2_load(pte2p);
+ KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
+
+ pa = pte2_pa(pte2);
+ m = PHYS_TO_VM_PAGE(pa);
+ KASSERT(m >= vm_page_array &&
+ m < &vm_page_array[vm_page_array_size],
+ ("%s: L2 page table page is out of range", __func__));
+
+ m->pindex = pte1_idx;
+ m->phys_addr = pa;
+ pte1_idx += NPT2_IN_PG;
+ }
+
+ /*
+ * Initialize the address space (zone) for the pv entries. Set a
+ * high water mark so that the system can recover from excessive
+ * numbers of pv entries.
+ */
+ TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
+ pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
+ TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
+ pv_entry_max = roundup(pv_entry_max, _NPCPV);
+ pv_entry_high_water = 9 * (pv_entry_max / 10);
+
+ /*
+ * Are large page mappings enabled?
+ */
+ TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
+ if (sp_enabled) {
+ KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
+ ("%s: can't assign to pagesizes[1]", __func__));
+ pagesizes[1] = PTE1_SIZE;
+ }
+
+ /*
+ * Calculate the size of the pv head table for sections.
+ * Handle the possibility that "vm_phys_segs[...].end" is zero.
+ * Note that the table is only for sections which could be promoted.
+ */
+ first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
+ pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
+ - first_managed_pa) / PTE1_SIZE + 1;
+
+ /*
+ * Allocate memory for the pv head table for sections.
+ */
+ s = (vm_size_t)(pv_npg * sizeof(struct md_page));
+ s = round_page(s);
+ pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
+ for (i = 0; i < pv_npg; i++)
+ TAILQ_INIT(&pv_table[i].pv_list);
+
+ pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
+ pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
+ if (pv_chunkbase == NULL)
+ panic("%s: not enough kvm for pv chunks", __func__);
+ pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
+}
+
+/*
+ * Add a list of wired pages to the kva
+ * this routine is only used for temporary
+ * kernel mappings that do not need to have
+ * page modification or references recorded.
+ * Note that old mappings are simply written
+ * over. The page *must* be wired.
+ * Note: SMP coherent. Uses a ranged shootdown IPI.
+ */
+void
+pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
+{
+ u_int anychanged;
+ pt2_entry_t *epte2p, *pte2p, pte2;
+ vm_page_t m;
+ vm_paddr_t pa;
+
+ anychanged = 0;
+ pte2p = pt2map_entry(sva);
+ epte2p = pte2p + count;
+ while (pte2p < epte2p) {
+ m = *ma++;
+ pa = VM_PAGE_TO_PHYS(m);
+ pte2 = pte2_load(pte2p);
+ if ((pte2_pa(pte2) != pa) ||
+ (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
+ anychanged++;
+ pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
+ vm_page_pte2_attr(m)));
+ }
+ pte2p++;
+ }
+ if (__predict_false(anychanged))
+ tlb_flush_range(sva, count * PAGE_SIZE);
+}
+
+/*
+ * This routine tears out page mappings from the
+ * kernel -- it is meant only for temporary mappings.
+ * Note: SMP coherent. Uses a ranged shootdown IPI.
+ */
+void
+pmap_qremove(vm_offset_t sva, int count)
+{
+ vm_offset_t va;
+
+ va = sva;
+ while (count-- > 0) {
+ pmap_kremove(va);
+ va += PAGE_SIZE;
+ }
+ tlb_flush_range(sva, va - sva);
+}
+
+/*
+ * Are we current address space or kernel?
+ */
+static __inline int
+pmap_is_current(pmap_t pmap)
+{
+
+ return (pmap == kernel_pmap ||
+ (pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
+}
+
+/*
+ * If the given pmap is not the current or kernel pmap, the returned
+ * pte2 must be released by passing it to pmap_pte2_release().
+ */
+static pt2_entry_t *
+pmap_pte2(pmap_t pmap, vm_offset_t va)
+{
+ pt1_entry_t pte1;
+ vm_paddr_t pt2pg_pa;
+
+ pte1 = pte1_load(pmap_pte1(pmap, va));
+ if (pte1_is_section(pte1))
+ panic("%s: attempt to map PTE1", __func__);
+ if (pte1_is_link(pte1)) {
+ /* Are we current address space or kernel? */
+ if (pmap_is_current(pmap))
+ return (pt2map_entry(va));
+ /* Note that L2 page table size is not equal to PAGE_SIZE. */
+ pt2pg_pa = trunc_page(pte1_link_pa(pte1));
+ mtx_lock(&PMAP2mutex);
+ if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
+ pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
+ tlb_flush((vm_offset_t)PADDR2);
+ }
+ return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
+ }
+ return (NULL);
+}
+
+/*
+ * Releases a pte2 that was obtained from pmap_pte2().
+ * Be prepared for the pte2p being NULL.
+ */
+static __inline void
+pmap_pte2_release(pt2_entry_t *pte2p)
+{
+
+ if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
+ mtx_unlock(&PMAP2mutex);
+ }
+}
+
+/*
+ * Super fast pmap_pte2 routine best used when scanning
+ * the pv lists. This eliminates many coarse-grained
+ * invltlb calls. Note that many of the pv list
+ * scans are across different pmaps. It is very wasteful
+ * to do an entire tlb flush for checking a single mapping.
+ *
+ * If the given pmap is not the current pmap, pvh_global_lock
+ * must be held and curthread pinned to a CPU.
+ */
+static pt2_entry_t *
+pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
+{
+ pt1_entry_t pte1;
+ vm_paddr_t pt2pg_pa;
+
+ pte1 = pte1_load(pmap_pte1(pmap, va));
+ if (pte1_is_section(pte1))
+ panic("%s: attempt to map PTE1", __func__);
+ if (pte1_is_link(pte1)) {
+ /* Are we current address space or kernel? */
+ if (pmap_is_current(pmap))
+ return (pt2map_entry(va));
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ KASSERT(curthread->td_pinned > 0,
+ ("%s: curthread not pinned", __func__));
+ /* Note that L2 page table size is not equal to PAGE_SIZE. */
+ pt2pg_pa = trunc_page(pte1_link_pa(pte1));
+ if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
+ pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
+#ifdef SMP
+ PMAP1cpu = PCPU_GET(cpuid);
+#endif
+ tlb_flush_local((vm_offset_t)PADDR1);
+ PMAP1changed++;
+ } else
+#ifdef SMP
+ if (PMAP1cpu != PCPU_GET(cpuid)) {
+ PMAP1cpu = PCPU_GET(cpuid);
+ tlb_flush_local((vm_offset_t)PADDR1);
+ PMAP1changedcpu++;
+ } else
+#endif
+ PMAP1unchanged++;
+ return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
+ }
+ return (NULL);
+}
+
+/*
+ * Routine: pmap_extract
+ * Function:
+ * Extract the physical page address associated
+ * with the given map/virtual_address pair.
+ */
+vm_paddr_t
+pmap_extract(pmap_t pmap, vm_offset_t va)
+{
+ vm_paddr_t pa;
+ pt1_entry_t pte1;
+ pt2_entry_t *pte2p;
+
+ PMAP_LOCK(pmap);
+ pte1 = pte1_load(pmap_pte1(pmap, va));
+ if (pte1_is_section(pte1))
+ pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
+ else if (pte1_is_link(pte1)) {
+ pte2p = pmap_pte2(pmap, va);
+ pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
+ pmap_pte2_release(pte2p);
+ } else
+ pa = 0;
+ PMAP_UNLOCK(pmap);
+ return (pa);
+}
+
+/*
+ * Routine: pmap_extract_and_hold
+ * Function:
+ * Atomically extract and hold the physical page
+ * with the given pmap and virtual address pair
+ * if that mapping permits the given protection.
+ */
+vm_page_t
+pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
+{
+ vm_paddr_t pa;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2, *pte2p;
+ vm_page_t m;
+
+ m = NULL;
+ PMAP_LOCK(pmap);
+ pte1 = pte1_load(pmap_pte1(pmap, va));
+ if (pte1_is_section(pte1)) {
+ if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
+ pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
+ m = PHYS_TO_VM_PAGE(pa);
+ if (!vm_page_wire_mapped(m))
+ m = NULL;
+ }
+ } else if (pte1_is_link(pte1)) {
+ pte2p = pmap_pte2(pmap, va);
+ pte2 = pte2_load(pte2p);
+ pmap_pte2_release(pte2p);
+ if (pte2_is_valid(pte2) &&
+ (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
+ pa = pte2_pa(pte2);
+ m = PHYS_TO_VM_PAGE(pa);
+ if (!vm_page_wire_mapped(m))
+ m = NULL;
+ }
+ }
+ PMAP_UNLOCK(pmap);
+ return (m);
+}
+
+/*
+ * Grow the number of kernel L2 page table entries, if needed.
+ */
+void
+pmap_growkernel(vm_offset_t addr)
+{
+ vm_page_t m;
+ vm_paddr_t pt2pg_pa, pt2_pa;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+
+ PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
+ /*
+ * All the time kernel_vm_end is first KVA for which underlying
+ * L2 page table is either not allocated or linked from L1 page table
+ * (not considering sections). Except for two possible cases:
+ *
+ * (1) in the very beginning as long as pmap_growkernel() was
+ * not called, it could be first unused KVA (which is not
+ * rounded up to PTE1_SIZE),
+ *
+ * (2) when all KVA space is mapped and vm_map_max(kernel_map)
+ * address is not rounded up to PTE1_SIZE. (For example,
+ * it could be 0xFFFFFFFF.)
+ */
+ kernel_vm_end = pte1_roundup(kernel_vm_end);
+ mtx_assert(&kernel_map->system_mtx, MA_OWNED);
+ addr = roundup2(addr, PTE1_SIZE);
+ if (addr - 1 >= vm_map_max(kernel_map))
+ addr = vm_map_max(kernel_map);
+ while (kernel_vm_end < addr) {
+ pte1 = pte1_load(kern_pte1(kernel_vm_end));
+ if (pte1_is_valid(pte1)) {
+ kernel_vm_end += PTE1_SIZE;
+ if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
+ kernel_vm_end = vm_map_max(kernel_map);
+ break;
+ }
+ continue;
+ }
+
+ /*
+ * kernel_vm_end_new is used in pmap_pinit() when kernel
+ * mappings are entered to new pmap all at once to avoid race
+ * between pmap_kenter_pte1() and kernel_vm_end increase.
+ * The same aplies to pmap_kenter_pt2tab().
+ */
+ kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
+
+ pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
+ if (!pte2_is_valid(pte2)) {
+ /*
+ * Install new PT2s page into kernel PT2TAB.
+ */
+ m = vm_page_alloc(NULL,
+ pte1_index(kernel_vm_end) & ~PT2PG_MASK,
+ VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
+ VM_ALLOC_WIRED | VM_ALLOC_ZERO);
+ if (m == NULL)
+ panic("%s: no memory to grow kernel", __func__);
+ /*
+ * QQQ: To link all new L2 page tables from L1 page
+ * table now and so pmap_kenter_pte1() them
+ * at once together with pmap_kenter_pt2tab()
+ * could be nice speed up. However,
+ * pmap_growkernel() does not happen so often...
+ * QQQ: The other TTBR is another option.
+ */
+ pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
+ m);
+ } else
+ pt2pg_pa = pte2_pa(pte2);
+
+ pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
+ pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
+
+ kernel_vm_end = kernel_vm_end_new;
+ if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
+ kernel_vm_end = vm_map_max(kernel_map);
+ break;
+ }
+ }
+}
+
+static int
+kvm_size(SYSCTL_HANDLER_ARGS)
+{
+ unsigned long ksize = vm_max_kernel_address - KERNBASE;
+
+ return (sysctl_handle_long(oidp, &ksize, 0, req));
+}
+SYSCTL_PROC(_vm, OID_AUTO, kvm_size,
+ CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU",
+ "Size of KVM");
+
+static int
+kvm_free(SYSCTL_HANDLER_ARGS)
+{
+ unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
+
+ return (sysctl_handle_long(oidp, &kfree, 0, req));
+}
+SYSCTL_PROC(_vm, OID_AUTO, kvm_free,
+ CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU",
+ "Amount of KVM free");
+
+/***********************************************
+ *
+ * Pmap allocation/deallocation routines.
+ *
+ ***********************************************/
+
+/*
+ * Initialize the pmap for the swapper process.
+ */
+void
+pmap_pinit0(pmap_t pmap)
+{
+ PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
+
+ PMAP_LOCK_INIT(pmap);
+
+ /*
+ * Kernel page table directory and pmap stuff around is already
+ * initialized, we are using it right now and here. So, finish
+ * only PMAP structures initialization for process0 ...
+ *
+ * Since the L1 page table and PT2TAB is shared with the kernel pmap,
+ * which is already included in the list "allpmaps", this pmap does
+ * not need to be inserted into that list.
+ */
+ pmap->pm_pt1 = kern_pt1;
+ pmap->pm_pt2tab = kern_pt2tab;
+ CPU_ZERO(&pmap->pm_active);
+ PCPU_SET(curpmap, pmap);
+ TAILQ_INIT(&pmap->pm_pvchunk);
+ bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
+ CPU_SET(0, &pmap->pm_active);
+}
+
+static __inline void
+pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
+ vm_offset_t eva)
+{
+ u_int idx, count;
+
+ idx = pte1_index(sva);
+ count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
+ bcopy(spte1p + idx, dpte1p + idx, count);
+}
+
+static __inline void
+pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
+ vm_offset_t eva)
+{
+ u_int idx, count;
+
+ idx = pt2tab_index(sva);
+ count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
+ bcopy(spte2p + idx, dpte2p + idx, count);
+}
+
+/*
+ * Initialize a preallocated and zeroed pmap structure,
+ * such as one in a vmspace structure.
+ */
+int
+pmap_pinit(pmap_t pmap)
+{
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p;
+ vm_paddr_t pa, pt2tab_pa;
+ u_int i;
+
+ PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
+ pmap->pm_pt1));
+
+ /*
+ * No need to allocate L2 page table space yet but we do need
+ * a valid L1 page table and PT2TAB table.
+ *
+ * Install shared kernel mappings to these tables. It's a little
+ * tricky as some parts of KVA are reserved for vectors, devices,
+ * and whatever else. These parts are supposed to be above
+ * vm_max_kernel_address. Thus two regions should be installed:
+ *
+ * (1) <KERNBASE, kernel_vm_end),
+ * (2) <vm_max_kernel_address, 0xFFFFFFFF>.
+ *
+ * QQQ: The second region should be stable enough to be installed
+ * only once in time when the tables are allocated.
+ * QQQ: Maybe copy of both regions at once could be faster ...
+ * QQQ: Maybe the other TTBR is an option.
+ *
+ * Finally, install own PT2TAB table to these tables.
+ */
+
+ if (pmap->pm_pt1 == NULL) {
+ pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(NB_IN_PT1,
+ M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr);
+ if (pmap->pm_pt1 == NULL)
+ return (0);
+ }
+ if (pmap->pm_pt2tab == NULL) {
+ /*
+ * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
+ * only, what should be the only size for 32 bit systems,
+ * then we could allocate it with vm_page_alloc() and all
+ * the stuff needed as other L2 page table pages.
+ * (2) Note that a process PT2TAB is special L2 page table
+ * page. Its mapping in kernel_arena is permanent and can
+ * be used no matter which process is current. Its mapping
+ * in PT2MAP can be used only for current process.
+ */
+ pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(NB_IN_PT2TAB,
+ M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
+ if (pmap->pm_pt2tab == NULL) {
+ /*
+ * QQQ: As struct pmap is allocated from UMA with
+ * UMA_ZONE_NOFREE flag, it's important to leave
+ * no allocation in pmap if initialization failed.
+ */
+ kmem_free((vm_offset_t)pmap->pm_pt1, NB_IN_PT1);
+ pmap->pm_pt1 = NULL;
+ return (0);
+ }
+ /*
+ * QQQ: Each L2 page table page vm_page_t has pindex set to
+ * pte1 index of virtual address mapped by this page.
+ * It's not valid for non kernel PT2TABs themselves.
+ * The pindex of these pages can not be altered because
+ * of the way how they are allocated now. However, it
+ * should not be a problem.
+ */
+ }
+
+ mtx_lock_spin(&allpmaps_lock);
+ /*
+ * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
+ * kernel_vm_end_new is used here instead of kernel_vm_end.
+ */
+ pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
+ kernel_vm_end_new - 1);
+ pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
+ 0xFFFFFFFF);
+ pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
+ kernel_vm_end_new - 1);
+ pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
+ 0xFFFFFFFF);
+ LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
+ mtx_unlock_spin(&allpmaps_lock);
+
+ /*
+ * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
+ * I.e. self reference mapping. The PT2TAB is private, however mapped
+ * into shared PT2MAP space, so the mapping should be not global.
+ */
+ pt2tab_pa = vtophys(pmap->pm_pt2tab);
+ pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
+ for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
+ pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
+ }
+
+ /* Insert PT2MAP PT2s into pmap PT1. */
+ pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
+ for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
+ pte1_store(pte1p++, PTE1_LINK(pa));
+ }
+
+ /*
+ * Now synchronize new mapping which was made above.
+ */
+ pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
+ pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
+
+ CPU_ZERO(&pmap->pm_active);
+ TAILQ_INIT(&pmap->pm_pvchunk);
+ bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
+
+ return (1);
+}
+
+#ifdef INVARIANTS
+static boolean_t
+pt2tab_user_is_empty(pt2_entry_t *tab)
+{
+ u_int i, end;
+
+ end = pt2tab_index(VM_MAXUSER_ADDRESS);
+ for (i = 0; i < end; i++)
+ if (tab[i] != 0) return (FALSE);
+ return (TRUE);
+}
+#endif
+/*
+ * Release any resources held by the given physical map.
+ * Called when a pmap initialized by pmap_pinit is being released.
+ * Should only be called if the map contains no valid mappings.
+ */
+void
+pmap_release(pmap_t pmap)
+{
+#ifdef INVARIANTS
+ vm_offset_t start, end;
+#endif
+ KASSERT(pmap->pm_stats.resident_count == 0,
+ ("%s: pmap resident count %ld != 0", __func__,
+ pmap->pm_stats.resident_count));
+ KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
+ ("%s: has allocated user PT2(s)", __func__));
+ KASSERT(CPU_EMPTY(&pmap->pm_active),
+ ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
+
+ mtx_lock_spin(&allpmaps_lock);
+ LIST_REMOVE(pmap, pm_list);
+ mtx_unlock_spin(&allpmaps_lock);
+
+#ifdef INVARIANTS
+ start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
+ end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
+ bzero((char *)pmap->pm_pt1 + start, end - start);
+
+ start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
+ end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
+ bzero((char *)pmap->pm_pt2tab + start, end - start);
+#endif
+ /*
+ * We are leaving PT1 and PT2TAB allocated on released pmap,
+ * so hopefully UMA vmspace_zone will always be inited with
+ * UMA_ZONE_NOFREE flag.
+ */
+}
+
+/*********************************************************
+ *
+ * L2 table pages and their pages management routines.
+ *
+ *********************************************************/
+
+/*
+ * Virtual interface for L2 page table wire counting.
+ *
+ * Each L2 page table in a page has own counter which counts a number of
+ * valid mappings in a table. Global page counter counts mappings in all
+ * tables in a page plus a single itself mapping in PT2TAB.
+ *
+ * During a promotion we leave the associated L2 page table counter
+ * untouched, so the table (strictly speaking a page which holds it)
+ * is never freed if promoted.
+ *
+ * If a page m->ref_count == 1 then no valid mappings exist in any L2 page
+ * table in the page and the page itself is only mapped in PT2TAB.
+ */
+
+static __inline void
+pt2_wirecount_init(vm_page_t m)
+{
+ u_int i;
+
+ /*
+ * Note: A page m is allocated with VM_ALLOC_WIRED flag and
+ * m->ref_count should be already set correctly.
+ * So, there is no need to set it again herein.
+ */
+ for (i = 0; i < NPT2_IN_PG; i++)
+ m->md.pt2_wirecount[i] = 0;
+}
+
+static __inline void
+pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
+{
+
+ /*
+ * Note: A just modificated pte2 (i.e. already allocated)
+ * is acquiring one extra reference which must be
+ * explicitly cleared. It influences the KASSERTs herein.
+ * All L2 page tables in a page always belong to the same
+ * pmap, so we allow only one extra reference for the page.
+ */
+ KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
+ ("%s: PT2 is overflowing ...", __func__));
+ KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
+ ("%s: PT2PG is overflowing ...", __func__));
+
+ m->ref_count++;
+ m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
+}
+
+static __inline void
+pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
+{
+
+ KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
+ ("%s: PT2 is underflowing ...", __func__));
+ KASSERT(m->ref_count > 1,
+ ("%s: PT2PG is underflowing ...", __func__));
+
+ m->ref_count--;
+ m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
+}
+
+static __inline void
+pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
+{
+
+ KASSERT(count <= NPTE2_IN_PT2,
+ ("%s: invalid count %u", __func__, count));
+ KASSERT(m->ref_count > m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
+ ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count,
+ m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
+
+ m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
+ m->ref_count += count;
+ m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
+
+ KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
+ ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count));
+}
+
+static __inline uint32_t
+pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
+{
+
+ return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
+}
+
+static __inline boolean_t
+pt2_is_empty(vm_page_t m, vm_offset_t va)
+{
+
+ return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
+}
+
+static __inline boolean_t
+pt2_is_full(vm_page_t m, vm_offset_t va)
+{
+
+ return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
+ NPTE2_IN_PT2);
+}
+
+static __inline boolean_t
+pt2pg_is_empty(vm_page_t m)
+{
+
+ return (m->ref_count == 1);
+}
+
+/*
+ * This routine is called if the L2 page table
+ * is not mapped correctly.
+ */
+static vm_page_t
+_pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
+{
+ uint32_t pte1_idx;
+ pt1_entry_t *pte1p;
+ pt2_entry_t pte2;
+ vm_page_t m;
+ vm_paddr_t pt2pg_pa, pt2_pa;
+
+ pte1_idx = pte1_index(va);
+ pte1p = pmap->pm_pt1 + pte1_idx;
+
+ KASSERT(pte1_load(pte1p) == 0,
+ ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
+ pte1_load(pte1p)));
+
+ pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
+ if (!pte2_is_valid(pte2)) {
+ /*
+ * Install new PT2s page into pmap PT2TAB.
+ */
+ m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
+ VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
+ if (m == NULL) {
+ if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
+ PMAP_UNLOCK(pmap);
+ rw_wunlock(&pvh_global_lock);
+ vm_wait(NULL);
+ rw_wlock(&pvh_global_lock);
+ PMAP_LOCK(pmap);
+ }
+
+ /*
+ * Indicate the need to retry. While waiting,
+ * the L2 page table page may have been allocated.
+ */
+ return (NULL);
+ }
+ pmap->pm_stats.resident_count++;
+ pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
+ } else {
+ pt2pg_pa = pte2_pa(pte2);
+ m = PHYS_TO_VM_PAGE(pt2pg_pa);
+ }
+
+ pt2_wirecount_inc(m, pte1_idx);
+ pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
+ pte1_store(pte1p, PTE1_LINK(pt2_pa));
+
+ return (m);
+}
+
+static vm_page_t
+pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
+{
+ u_int pte1_idx;
+ pt1_entry_t *pte1p, pte1;
+ vm_page_t m;
+
+ pte1_idx = pte1_index(va);
+retry:
+ pte1p = pmap->pm_pt1 + pte1_idx;
+ pte1 = pte1_load(pte1p);
+
+ /*
+ * This supports switching from a 1MB page to a
+ * normal 4K page.
+ */
+ if (pte1_is_section(pte1)) {
+ (void)pmap_demote_pte1(pmap, pte1p, va);
+ /*
+ * Reload pte1 after demotion.
+ *
+ * Note: Demotion can even fail as either PT2 is not find for
+ * the virtual address or PT2PG can not be allocated.
+ */
+ pte1 = pte1_load(pte1p);
+ }
+
+ /*
+ * If the L2 page table page is mapped, we just increment the
+ * hold count, and activate it.
+ */
+ if (pte1_is_link(pte1)) {
+ m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
+ pt2_wirecount_inc(m, pte1_idx);
+ } else {
+ /*
+ * Here if the PT2 isn't mapped, or if it has
+ * been deallocated.
+ */
+ m = _pmap_allocpte2(pmap, va, flags);
+ if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
+ goto retry;
+ }
+
+ return (m);
+}
+
+/*
+ * Schedule the specified unused L2 page table page to be freed. Specifically,
+ * add the page to the specified list of pages that will be released to the
+ * physical memory manager after the TLB has been updated.
+ */
+static __inline void
+pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
+{
+
+ /*
+ * Put page on a list so that it is released after
+ * *ALL* TLB shootdown is done
+ */
+#ifdef PMAP_DEBUG
+ pmap_zero_page_check(m);
+#endif
+ m->flags |= PG_ZERO;
+ SLIST_INSERT_HEAD(free, m, plinks.s.ss);
+}
+
+/*
+ * Unwire L2 page tables page.
+ */
+static void
+pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
+{
+ pt1_entry_t *pte1p, opte1 __unused;
+ pt2_entry_t *pte2p;
+ uint32_t i;
+
+ KASSERT(pt2pg_is_empty(m),
+ ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
+
+ /*
+ * Unmap all L2 page tables in the page from L1 page table.
+ *
+ * QQQ: Individual L2 page tables (except the last one) can be unmapped
+ * earlier. However, we are doing that this way.
+ */
+ KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
+ ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
+ pte1p = pmap->pm_pt1 + m->pindex;
+ for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
+ KASSERT(m->md.pt2_wirecount[i] == 0,
+ ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
+ opte1 = pte1_load(pte1p);
+ if (pte1_is_link(opte1)) {
+ pte1_clear(pte1p);
+ /*
+ * Flush intermediate TLB cache.
+ */
+ pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
+ }
+#ifdef INVARIANTS
+ else
+ KASSERT((opte1 == 0) || pte1_is_section(opte1),
+ ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
+ pmap, va, opte1, i));
+#endif
+ }
+
+ /*
+ * Unmap the page from PT2TAB.
+ */
+ pte2p = pmap_pt2tab_entry(pmap, va);
+ (void)pt2tab_load_clear(pte2p);
+ pmap_tlb_flush(pmap, pt2map_pt2pg(va));
+
+ m->ref_count = 0;
+ pmap->pm_stats.resident_count--;
+
+ /*
+ * This barrier is so that the ordinary store unmapping
+ * the L2 page table page is globally performed before TLB shoot-
+ * down is begun.
+ */
+ wmb();
+ vm_wire_sub(1);
+}
+
+/*
+ * Decrements a L2 page table page's wire count, which is used to record the
+ * number of valid page table entries within the page. If the wire count
+ * drops to zero, then the page table page is unmapped. Returns TRUE if the
+ * page table page was unmapped and FALSE otherwise.
+ */
+static __inline boolean_t
+pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
+{
+ pt2_wirecount_dec(m, pte1_index(va));
+ if (pt2pg_is_empty(m)) {
+ /*
+ * QQQ: Wire count is zero, so whole page should be zero and
+ * we can set PG_ZERO flag to it.
+ * Note that when promotion is enabled, it takes some
+ * more efforts. See pmap_unwire_pt2_all() below.
+ */
+ pmap_unwire_pt2pg(pmap, va, m);
+ pmap_add_delayed_free_list(m, free);
+ return (TRUE);
+ } else
+ return (FALSE);
+}
+
+/*
+ * Drop a L2 page table page's wire count at once, which is used to record
+ * the number of valid L2 page table entries within the page. If the wire
+ * count drops to zero, then the L2 page table page is unmapped.
+ */
+static __inline void
+pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
+ struct spglist *free)
+{
+ u_int pte1_idx = pte1_index(va);
+
+ KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
+ ("%s: PT2 page's pindex is wrong", __func__));
+ KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx),
+ ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count,
+ pt2_wirecount_get(m, pte1_idx)));
+
+ /*
+ * It's possible that the L2 page table was never used.
+ * It happened in case that a section was created without promotion.
+ */
+ if (pt2_is_full(m, va)) {
+ pt2_wirecount_set(m, pte1_idx, 0);
+
+ /*
+ * QQQ: We clear L2 page table now, so when L2 page table page
+ * is going to be freed, we can set it PG_ZERO flag ...
+ * This function is called only on section mappings, so
+ * hopefully it's not to big overload.
+ *
+ * XXX: If pmap is current, existing PT2MAP mapping could be
+ * used for zeroing.
+ */
+ pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
+ }
+#ifdef INVARIANTS
+ else
+ KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
+ __func__, pt2_wirecount_get(m, pte1_idx)));
+#endif
+ if (pt2pg_is_empty(m)) {
+ pmap_unwire_pt2pg(pmap, va, m);
+ pmap_add_delayed_free_list(m, free);
+ }
+}
+
+/*
+ * After removing a L2 page table entry, this routine is used to
+ * conditionally free the page, and manage the hold/wire counts.
+ */
+static boolean_t
+pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
+{
+ pt1_entry_t pte1;
+ vm_page_t mpte;
+
+ if (va >= VM_MAXUSER_ADDRESS)
+ return (FALSE);
+ pte1 = pte1_load(pmap_pte1(pmap, va));
+ mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
+ return (pmap_unwire_pt2(pmap, va, mpte, free));
+}
+
+/*************************************
+ *
+ * Page management routines.
+ *
+ *************************************/
+
+CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
+CTASSERT(_NPCM == 11);
+CTASSERT(_NPCPV == 336);
+
+static __inline struct pv_chunk *
+pv_to_chunk(pv_entry_t pv)
+{
+
+ return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
+}
+
+#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
+
+#define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
+#define PC_FREE10 0x0000fffful /* Free values for index 10 */
+
+static const uint32_t pc_freemask[_NPCM] = {
+ PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
+ PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
+ PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
+ PC_FREE0_9, PC_FREE10
+};
+
+SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
+ "Current number of pv entries");
+
+#ifdef PV_STATS
+static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
+
+SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
+ "Current number of pv entry chunks");
+SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
+ "Current number of pv entry chunks allocated");
+SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
+ "Current number of pv entry chunks frees");
+SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
+ 0, "Number of times tried to get a chunk page but failed.");
+
+static long pv_entry_frees, pv_entry_allocs;
+static int pv_entry_spare;
+
+SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
+ "Current number of pv entry frees");
+SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
+ 0, "Current number of pv entry allocs");
+SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
+ "Current number of spare pv entries");
+#endif
+
+/*
+ * Is given page managed?
+ */
+static __inline bool
+is_managed(vm_paddr_t pa)
+{
+ vm_page_t m;
+
+ m = PHYS_TO_VM_PAGE(pa);
+ if (m == NULL)
+ return (false);
+ return ((m->oflags & VPO_UNMANAGED) == 0);
+}
+
+static __inline bool
+pte1_is_managed(pt1_entry_t pte1)
+{
+
+ return (is_managed(pte1_pa(pte1)));
+}
+
+static __inline bool
+pte2_is_managed(pt2_entry_t pte2)
+{
+
+ return (is_managed(pte2_pa(pte2)));
+}
+
+/*
+ * We are in a serious low memory condition. Resort to
+ * drastic measures to free some pages so we can allocate
+ * another pv entry chunk.
+ */
+static vm_page_t
+pmap_pv_reclaim(pmap_t locked_pmap)
+{
+ struct pch newtail;
+ struct pv_chunk *pc;
+ struct md_page *pvh;
+ pt1_entry_t *pte1p;
+ pmap_t pmap;
+ pt2_entry_t *pte2p, tpte2;
+ pv_entry_t pv;
+ vm_offset_t va;
+ vm_page_t m, m_pc;
+ struct spglist free;
+ uint32_t inuse;
+ int bit, field, freed;
+
+ PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
+ pmap = NULL;
+ m_pc = NULL;
+ SLIST_INIT(&free);
+ TAILQ_INIT(&newtail);
+ while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
+ SLIST_EMPTY(&free))) {
+ TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
+ if (pmap != pc->pc_pmap) {
+ if (pmap != NULL) {
+ if (pmap != locked_pmap)
+ PMAP_UNLOCK(pmap);
+ }
+ pmap = pc->pc_pmap;
+ /* Avoid deadlock and lock recursion. */
+ if (pmap > locked_pmap)
+ PMAP_LOCK(pmap);
+ else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
+ pmap = NULL;
+ TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
+ continue;
+ }
+ }
+
+ /*
+ * Destroy every non-wired, 4 KB page mapping in the chunk.
+ */
+ freed = 0;
+ for (field = 0; field < _NPCM; field++) {
+ for (inuse = ~pc->pc_map[field] & pc_freemask[field];
+ inuse != 0; inuse &= ~(1UL << bit)) {
+ bit = ffs(inuse) - 1;
+ pv = &pc->pc_pventry[field * 32 + bit];
+ va = pv->pv_va;
+ pte1p = pmap_pte1(pmap, va);
+ if (pte1_is_section(pte1_load(pte1p)))
+ continue;
+ pte2p = pmap_pte2(pmap, va);
+ tpte2 = pte2_load(pte2p);
+ if ((tpte2 & PTE2_W) == 0)
+ tpte2 = pte2_load_clear(pte2p);
+ pmap_pte2_release(pte2p);
+ if ((tpte2 & PTE2_W) != 0)
+ continue;
+ KASSERT(tpte2 != 0,
+ ("pmap_pv_reclaim: pmap %p va %#x zero pte",
+ pmap, va));
+ pmap_tlb_flush(pmap, va);
+ m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
+ if (pte2_is_dirty(tpte2))
+ vm_page_dirty(m);
+ if ((tpte2 & PTE2_A) != 0)
+ vm_page_aflag_set(m, PGA_REFERENCED);
+ TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
+ if (TAILQ_EMPTY(&m->md.pv_list) &&
+ (m->flags & PG_FICTITIOUS) == 0) {
+ pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
+ if (TAILQ_EMPTY(&pvh->pv_list)) {
+ vm_page_aflag_clear(m,
+ PGA_WRITEABLE);
+ }
+ }
+ pc->pc_map[field] |= 1UL << bit;
+ pmap_unuse_pt2(pmap, va, &free);
+ freed++;
+ }
+ }
+ if (freed == 0) {
+ TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
+ continue;
+ }
+ /* Every freed mapping is for a 4 KB page. */
+ pmap->pm_stats.resident_count -= freed;
+ PV_STAT(pv_entry_frees += freed);
+ PV_STAT(pv_entry_spare += freed);
+ pv_entry_count -= freed;
+ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
+ for (field = 0; field < _NPCM; field++)
+ if (pc->pc_map[field] != pc_freemask[field]) {
+ TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
+ pc_list);
+ TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
+
+ /*
+ * One freed pv entry in locked_pmap is
+ * sufficient.
+ */
+ if (pmap == locked_pmap)
+ goto out;
+ break;
+ }
+ if (field == _NPCM) {
+ PV_STAT(pv_entry_spare -= _NPCPV);
+ PV_STAT(pc_chunk_count--);
+ PV_STAT(pc_chunk_frees++);
+ /* Entire chunk is free; return it. */
+ m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
+ pmap_qremove((vm_offset_t)pc, 1);
+ pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
+ break;
+ }
+ }
+out:
+ TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
+ if (pmap != NULL) {
+ if (pmap != locked_pmap)
+ PMAP_UNLOCK(pmap);
+ }
+ if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
+ m_pc = SLIST_FIRST(&free);
+ SLIST_REMOVE_HEAD(&free, plinks.s.ss);
+ /* Recycle a freed page table page. */
+ m_pc->ref_count = 1;
+ vm_wire_add(1);
+ }
+ vm_page_free_pages_toq(&free, false);
+ return (m_pc);
+}
+
+static void
+free_pv_chunk(struct pv_chunk *pc)
+{
+ vm_page_t m;
+
+ TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
+ PV_STAT(pv_entry_spare -= _NPCPV);
+ PV_STAT(pc_chunk_count--);
+ PV_STAT(pc_chunk_frees++);
+ /* entire chunk is free, return it */
+ m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
+ pmap_qremove((vm_offset_t)pc, 1);
+ vm_page_unwire_noq(m);
+ vm_page_free(m);
+ pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
+}
+
+/*
+ * Free the pv_entry back to the free list.
+ */
+static void
+free_pv_entry(pmap_t pmap, pv_entry_t pv)
+{
+ struct pv_chunk *pc;
+ int idx, field, bit;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ PV_STAT(pv_entry_frees++);
+ PV_STAT(pv_entry_spare++);
+ pv_entry_count--;
+ pc = pv_to_chunk(pv);
+ idx = pv - &pc->pc_pventry[0];
+ field = idx / 32;
+ bit = idx % 32;
+ pc->pc_map[field] |= 1ul << bit;
+ for (idx = 0; idx < _NPCM; idx++)
+ if (pc->pc_map[idx] != pc_freemask[idx]) {
+ /*
+ * 98% of the time, pc is already at the head of the
+ * list. If it isn't already, move it to the head.
+ */
+ if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
+ pc)) {
+ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
+ TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
+ pc_list);
+ }
+ return;
+ }
+ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
+ free_pv_chunk(pc);
+}
+
+/*
+ * Get a new pv_entry, allocating a block from the system
+ * when needed.
+ */
+static pv_entry_t
+get_pv_entry(pmap_t pmap, boolean_t try)
+{
+ static const struct timeval printinterval = { 60, 0 };
+ static struct timeval lastprint;
+ int bit, field;
+ pv_entry_t pv;
+ struct pv_chunk *pc;
+ vm_page_t m;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ PV_STAT(pv_entry_allocs++);
+ pv_entry_count++;
+ if (pv_entry_count > pv_entry_high_water)
+ if (ratecheck(&lastprint, &printinterval))
+ printf("Approaching the limit on PV entries, consider "
+ "increasing either the vm.pmap.shpgperproc or the "
+ "vm.pmap.pv_entries tunable.\n");
+retry:
+ pc = TAILQ_FIRST(&pmap->pm_pvchunk);
+ if (pc != NULL) {
+ for (field = 0; field < _NPCM; field++) {
+ if (pc->pc_map[field]) {
+ bit = ffs(pc->pc_map[field]) - 1;
+ break;
+ }
+ }
+ if (field < _NPCM) {
+ pv = &pc->pc_pventry[field * 32 + bit];
+ pc->pc_map[field] &= ~(1ul << bit);
+ /* If this was the last item, move it to tail */
+ for (field = 0; field < _NPCM; field++)
+ if (pc->pc_map[field] != 0) {
+ PV_STAT(pv_entry_spare--);
+ return (pv); /* not full, return */
+ }
+ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
+ TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
+ PV_STAT(pv_entry_spare--);
+ return (pv);
+ }
+ }
+ /*
+ * Access to the pte2list "pv_vafree" is synchronized by the pvh
+ * global lock. If "pv_vafree" is currently non-empty, it will
+ * remain non-empty until pmap_pte2list_alloc() completes.
+ */
+ if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
+ VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
+ if (try) {
+ pv_entry_count--;
+ PV_STAT(pc_chunk_tryfail++);
+ return (NULL);
+ }
+ m = pmap_pv_reclaim(pmap);
+ if (m == NULL)
+ goto retry;
+ }
+ PV_STAT(pc_chunk_count++);
+ PV_STAT(pc_chunk_allocs++);
+ pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
+ pmap_qenter((vm_offset_t)pc, &m, 1);
+ pc->pc_pmap = pmap;
+ pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
+ for (field = 1; field < _NPCM; field++)
+ pc->pc_map[field] = pc_freemask[field];
+ TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
+ pv = &pc->pc_pventry[0];
+ TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
+ PV_STAT(pv_entry_spare += _NPCPV - 1);
+ return (pv);
+}
+
+/*
+ * Create a pv entry for page at pa for
+ * (pmap, va).
+ */
+static void
+pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
+{
+ pv_entry_t pv;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ pv = get_pv_entry(pmap, FALSE);
+ pv->pv_va = va;
+ TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
+}
+
+static __inline pv_entry_t
+pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
+{
+ pv_entry_t pv;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
+ if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
+ TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
+ break;
+ }
+ }
+ return (pv);
+}
+
+static void
+pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
+{
+ pv_entry_t pv;
+
+ pv = pmap_pvh_remove(pvh, pmap, va);
+ KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
+ free_pv_entry(pmap, pv);
+}
+
+static void
+pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
+{
+ struct md_page *pvh;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ pmap_pvh_free(&m->md, pmap, va);
+ if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
+ pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
+ if (TAILQ_EMPTY(&pvh->pv_list))
+ vm_page_aflag_clear(m, PGA_WRITEABLE);
+ }
+}
+
+static void
+pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
+{
+ struct md_page *pvh;
+ pv_entry_t pv;
+ vm_offset_t va_last;
+ vm_page_t m;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ KASSERT((pa & PTE1_OFFSET) == 0,
+ ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
+
+ /*
+ * Transfer the 1mpage's pv entry for this mapping to the first
+ * page's pv list.
+ */
+ pvh = pa_to_pvh(pa);
+ va = pte1_trunc(va);
+ pv = pmap_pvh_remove(pvh, pmap, va);
+ KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
+ m = PHYS_TO_VM_PAGE(pa);
+ TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
+ /* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
+ va_last = va + PTE1_SIZE - PAGE_SIZE;
+ do {
+ m++;
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("pmap_pv_demote_pte1: page %p is not managed", m));
+ va += PAGE_SIZE;
+ pmap_insert_entry(pmap, va, m);
+ } while (va < va_last);
+}
+
+#if VM_NRESERVLEVEL > 0
+static void
+pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
+{
+ struct md_page *pvh;
+ pv_entry_t pv;
+ vm_offset_t va_last;
+ vm_page_t m;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ KASSERT((pa & PTE1_OFFSET) == 0,
+ ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
+
+ /*
+ * Transfer the first page's pv entry for this mapping to the
+ * 1mpage's pv list. Aside from avoiding the cost of a call
+ * to get_pv_entry(), a transfer avoids the possibility that
+ * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
+ * removes one of the mappings that is being promoted.
+ */
+ m = PHYS_TO_VM_PAGE(pa);
+ va = pte1_trunc(va);
+ pv = pmap_pvh_remove(&m->md, pmap, va);
+ KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
+ pvh = pa_to_pvh(pa);
+ TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
+ /* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
+ va_last = va + PTE1_SIZE - PAGE_SIZE;
+ do {
+ m++;
+ va += PAGE_SIZE;
+ pmap_pvh_free(&m->md, pmap, va);
+ } while (va < va_last);
+}
+#endif
+
+/*
+ * Conditionally create a pv entry.
+ */
+static boolean_t
+pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
+{
+ pv_entry_t pv;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ if (pv_entry_count < pv_entry_high_water &&
+ (pv = get_pv_entry(pmap, TRUE)) != NULL) {
+ pv->pv_va = va;
+ TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
+ return (TRUE);
+ } else
+ return (FALSE);
+}
+
+/*
+ * Create the pv entries for each of the pages within a section.
+ */
+static bool
+pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags)
+{
+ struct md_page *pvh;
+ pv_entry_t pv;
+ bool noreclaim;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
+ if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
+ (pv = get_pv_entry(pmap, noreclaim)) == NULL)
+ return (false);
+ pv->pv_va = va;
+ pvh = pa_to_pvh(pte1_pa(pte1));
+ TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
+ return (true);
+}
+
+static inline void
+pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
+{
+
+ /* Kill all the small mappings or the big one only. */
+ if (pte1_is_section(npte1))
+ pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
+ else
+ pmap_tlb_flush(pmap, pte1_trunc(va));
+}
+
+/*
+ * Update kernel pte1 on all pmaps.
+ *
+ * The following function is called only on one cpu with disabled interrupts.
+ * In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
+ * nobody can invoke explicit hardware table walk during the update of pte1.
+ * Unsolicited hardware table walk can still happen, invoked by speculative
+ * data or instruction prefetch or even by speculative hardware table walk.
+ *
+ * The break-before-make approach should be implemented here. However, it's
+ * not so easy to do that for kernel mappings as it would be unhappy to unmap
+ * itself unexpectedly but voluntarily.
+ */
+static void
+pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
+{
+ pmap_t pmap;
+ pt1_entry_t *pte1p;
+
+ /*
+ * Get current pmap. Interrupts should be disabled here
+ * so PCPU_GET() is done atomically.
+ */
+ pmap = PCPU_GET(curpmap);
+ if (pmap == NULL)
+ pmap = kernel_pmap;
+
+ /*
+ * (1) Change pte1 on current pmap.
+ * (2) Flush all obsolete TLB entries on current CPU.
+ * (3) Change pte1 on all pmaps.
+ * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
+ */
+
+ pte1p = pmap_pte1(pmap, va);
+ pte1_store(pte1p, npte1);
+
+ /* Kill all the small mappings or the big one only. */
+ if (pte1_is_section(npte1)) {
+ pmap_pte1_kern_promotions++;
+ tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
+ } else {
+ pmap_pte1_kern_demotions++;
+ tlb_flush_local(pte1_trunc(va));
+ }
+
+ /*
+ * In SMP case, this function is called when all cpus are at smp
+ * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
+ * In UP case, the function is called with this lock locked.
+ */
+ LIST_FOREACH(pmap, &allpmaps, pm_list) {
+ pte1p = pmap_pte1(pmap, va);
+ pte1_store(pte1p, npte1);
+ }
+
+#ifdef SMP
+ /* Kill all the small mappings or the big one only. */
+ if (pte1_is_section(npte1))
+ tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
+ else
+ tlb_flush(pte1_trunc(va));
+#endif
+}
+
+#ifdef SMP
+struct pte1_action {
+ vm_offset_t va;
+ pt1_entry_t npte1;
+ u_int update; /* CPU that updates the PTE1 */
+};
+
+static void
+pmap_update_pte1_action(void *arg)
+{
+ struct pte1_action *act = arg;
+
+ if (act->update == PCPU_GET(cpuid))
+ pmap_update_pte1_kernel(act->va, act->npte1);
+}
+
+/*
+ * Change pte1 on current pmap.
+ * Note that kernel pte1 must be changed on all pmaps.
+ *
+ * According to the architecture reference manual published by ARM,
+ * the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
+ * According to this manual, UNPREDICTABLE behaviours must never happen in
+ * a viable system. In contrast, on x86 processors, it is not specified which
+ * TLB entry mapping the virtual address will be used, but the MMU doesn't
+ * generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
+ * Black).
+ *
+ * It's a problem when either promotion or demotion is being done. The pte1
+ * update and appropriate TLB flush must be done atomically in general.
+ */
+static void
+pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
+ pt1_entry_t npte1)
+{
+
+ if (pmap == kernel_pmap) {
+ struct pte1_action act;
+
+ sched_pin();
+ act.va = va;
+ act.npte1 = npte1;
+ act.update = PCPU_GET(cpuid);
+ smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
+ pmap_update_pte1_action, NULL, &act);
+ sched_unpin();
+ } else {
+ register_t cspr;
+
+ /*
+ * Use break-before-make approach for changing userland
+ * mappings. It can cause L1 translation aborts on other
+ * cores in SMP case. So, special treatment is implemented
+ * in pmap_fault(). To reduce the likelihood that another core
+ * will be affected by the broken mapping, disable interrupts
+ * until the mapping change is completed.
+ */
+ cspr = disable_interrupts(PSR_I | PSR_F);
+ pte1_clear(pte1p);
+ pmap_tlb_flush_pte1(pmap, va, npte1);
+ pte1_store(pte1p, npte1);
+ restore_interrupts(cspr);
+ }
+}
+#else
+static void
+pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
+ pt1_entry_t npte1)
+{
+
+ if (pmap == kernel_pmap) {
+ mtx_lock_spin(&allpmaps_lock);
+ pmap_update_pte1_kernel(va, npte1);
+ mtx_unlock_spin(&allpmaps_lock);
+ } else {
+ register_t cspr;
+
+ /*
+ * Use break-before-make approach for changing userland
+ * mappings. It's absolutely safe in UP case when interrupts
+ * are disabled.
+ */
+ cspr = disable_interrupts(PSR_I | PSR_F);
+ pte1_clear(pte1p);
+ pmap_tlb_flush_pte1(pmap, va, npte1);
+ pte1_store(pte1p, npte1);
+ restore_interrupts(cspr);
+ }
+}
+#endif
+
+#if VM_NRESERVLEVEL > 0
+/*
+ * Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
+ * within a single page table page (PT2) to a single 1MB page mapping.
+ * For promotion to occur, two conditions must be met: (1) the 4KB page
+ * mappings must map aligned, contiguous physical memory and (2) the 4KB page
+ * mappings must have identical characteristics.
+ *
+ * Managed (PG_MANAGED) mappings within the kernel address space are not
+ * promoted. The reason is that kernel PTE1s are replicated in each pmap but
+ * pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
+ * read the PTE1 from the kernel pmap.
+ */
+static void
+pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
+{
+ pt1_entry_t npte1;
+ pt2_entry_t *fpte2p, fpte2, fpte2_fav;
+ pt2_entry_t *pte2p, pte2;
+ vm_offset_t pteva __unused;
+ vm_page_t m __unused;
+
+ PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
+ pmap, va, pte1_load(pte1p), pte1p));
+
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+
+ /*
+ * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
+ * either invalid, unused, or does not map the first 4KB physical page
+ * within a 1MB page.
+ */
+ fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
+ fpte2 = pte2_load(fpte2p);
+ if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
+ (PTE2_A | PTE2_V)) {
+ pmap_pte1_p_failures++;
+ CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
+ __func__, va, pmap);
+ return;
+ }
+ if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
+ pmap_pte1_p_failures++;
+ CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
+ __func__, va, pmap);
+ return;
+ }
+ if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
+ /*
+ * When page is not modified, PTE2_RO can be set without
+ * a TLB invalidation.
+ */
+ fpte2 |= PTE2_RO;
+ pte2_store(fpte2p, fpte2);
+ }
+
+ /*
+ * Examine each of the other PTE2s in the specified PT2. Abort if this
+ * PTE2 maps an unexpected 4KB physical page or does not have identical
+ * characteristics to the first PTE2.
+ */
+ fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
+ fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
+ for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
+ pte2 = pte2_load(pte2p);
+ if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
+ pmap_pte1_p_failures++;
+ CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
+ __func__, va, pmap);
+ return;
+ }
+ if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
+ /*
+ * When page is not modified, PTE2_RO can be set
+ * without a TLB invalidation. See note above.
+ */
+ pte2 |= PTE2_RO;
+ pte2_store(pte2p, pte2);
+ pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
+ PTE2_FRAME);
+ CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
+ __func__, pteva, pmap);
+ }
+ if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
+ pmap_pte1_p_failures++;
+ CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
+ __func__, va, pmap);
+ return;
+ }
+
+ fpte2_fav -= PTE2_SIZE;
+ }
+ /*
+ * The page table page in its current state will stay in PT2TAB
+ * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
+ * or destroyed by pmap_remove_pte1().
+ *
+ * Note that L2 page table size is not equal to PAGE_SIZE.
+ */
+ m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
+ KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
+ ("%s: PT2 page is out of range", __func__));
+ KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
+ ("%s: PT2 page's pindex is wrong", __func__));
+
+ /*
+ * Get pte1 from pte2 format.
+ */
+ npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
+
+ /*
+ * Promote the pv entries.
+ */
+ if (pte2_is_managed(fpte2))
+ pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
+
+ /*
+ * Promote the mappings.
+ */
+ pmap_change_pte1(pmap, pte1p, va, npte1);
+
+ pmap_pte1_promotions++;
+ CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
+ __func__, va, pmap);
+
+ PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
+ __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
+}
+#endif /* VM_NRESERVLEVEL > 0 */
+
+/*
+ * Zero L2 page table page.
+ */
+static __inline void
+pmap_clear_pt2(pt2_entry_t *fpte2p)
+{
+ pt2_entry_t *pte2p;
+
+ for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
+ pte2_clear(pte2p);
+
+}
+
+/*
+ * Removes a 1MB page mapping from the kernel pmap.
+ */
+static void
+pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
+{
+ vm_page_t m;
+ uint32_t pte1_idx;
+ pt2_entry_t *fpte2p;
+ vm_paddr_t pt2_pa;
+
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ m = pmap_pt2_page(pmap, va);
+ if (m == NULL)
+ /*
+ * QQQ: Is this function called only on promoted pte1?
+ * We certainly do section mappings directly
+ * (without promotion) in kernel !!!
+ */
+ panic("%s: missing pt2 page", __func__);
+
+ pte1_idx = pte1_index(va);
+
+ /*
+ * Initialize the L2 page table.
+ */
+ fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
+ pmap_clear_pt2(fpte2p);
+
+ /*
+ * Remove the mapping.
+ */
+ pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
+ pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
+
+ /*
+ * QQQ: We do not need to invalidate PT2MAP mapping
+ * as we did not change it. I.e. the L2 page table page
+ * was and still is mapped the same way.
+ */
+}
+
+/*
+ * Do the things to unmap a section in a process
+ */
+static void
+pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
+ struct spglist *free)
+{
+ pt1_entry_t opte1;
+ struct md_page *pvh;
+ vm_offset_t eva, va;
+ vm_page_t m;
+
+ PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
+ pte1_load(pte1p), pte1p));
+
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ KASSERT((sva & PTE1_OFFSET) == 0,
+ ("%s: sva is not 1mpage aligned", __func__));
+
+ /*
+ * Clear and invalidate the mapping. It should occupy one and only TLB
+ * entry. So, pmap_tlb_flush() called with aligned address should be
+ * sufficient.
+ */
+ opte1 = pte1_load_clear(pte1p);
+ pmap_tlb_flush(pmap, sva);
+
+ if (pte1_is_wired(opte1))
+ pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
+ pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
+ if (pte1_is_managed(opte1)) {
+ pvh = pa_to_pvh(pte1_pa(opte1));
+ pmap_pvh_free(pvh, pmap, sva);
+ eva = sva + PTE1_SIZE;
+ for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
+ va < eva; va += PAGE_SIZE, m++) {
+ if (pte1_is_dirty(opte1))
+ vm_page_dirty(m);
+ if (opte1 & PTE1_A)
+ vm_page_aflag_set(m, PGA_REFERENCED);
+ if (TAILQ_EMPTY(&m->md.pv_list) &&
+ TAILQ_EMPTY(&pvh->pv_list))
+ vm_page_aflag_clear(m, PGA_WRITEABLE);
+ }
+ }
+ if (pmap == kernel_pmap) {
+ /*
+ * L2 page table(s) can't be removed from kernel map as
+ * kernel counts on it (stuff around pmap_growkernel()).
+ */
+ pmap_remove_kernel_pte1(pmap, pte1p, sva);
+ } else {
+ /*
+ * Get associated L2 page table page.
+ * It's possible that the page was never allocated.
+ */
+ m = pmap_pt2_page(pmap, sva);
+ if (m != NULL)
+ pmap_unwire_pt2_all(pmap, sva, m, free);
+ }
+}
+
+/*
+ * Fills L2 page table page with mappings to consecutive physical pages.
+ */
+static __inline void
+pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
+{
+ pt2_entry_t *pte2p;
+
+ for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
+ pte2_store(pte2p, npte2);
+ npte2 += PTE2_SIZE;
+ }
+}
+
+/*
+ * Tries to demote a 1MB page mapping. If demotion fails, the
+ * 1MB page mapping is invalidated.
+ */
+static boolean_t
+pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
+{
+ pt1_entry_t opte1, npte1;
+ pt2_entry_t *fpte2p, npte2;
+ vm_paddr_t pt2pg_pa, pt2_pa;
+ vm_page_t m;
+ struct spglist free;
+ uint32_t pte1_idx, isnew = 0;
+
+ PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
+ pmap, va, pte1_load(pte1p), pte1p));
+
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+
+ opte1 = pte1_load(pte1p);
+ KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
+
+ if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
+ KASSERT(!pte1_is_wired(opte1),
+ ("%s: PT2 page for a wired mapping is missing", __func__));
+
+ /*
+ * Invalidate the 1MB page mapping and return
+ * "failure" if the mapping was never accessed or the
+ * allocation of the new page table page fails.
+ */
+ if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
+ pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
+ VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
+ SLIST_INIT(&free);
+ pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
+ vm_page_free_pages_toq(&free, false);
+ CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
+ __func__, va, pmap);
+ return (FALSE);
+ }
+ if (va < VM_MAXUSER_ADDRESS)
+ pmap->pm_stats.resident_count++;
+
+ isnew = 1;
+
+ /*
+ * We init all L2 page tables in the page even if
+ * we are going to change everything for one L2 page
+ * table in a while.
+ */
+ pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
+ } else {
+ if (va < VM_MAXUSER_ADDRESS) {
+ if (pt2_is_empty(m, va))
+ isnew = 1; /* Demoting section w/o promotion. */
+#ifdef INVARIANTS
+ else
+ KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
+ " count %u", __func__,
+ pt2_wirecount_get(m, pte1_index(va))));
+#endif
+ }
+ }
+
+ pt2pg_pa = VM_PAGE_TO_PHYS(m);
+ pte1_idx = pte1_index(va);
+ /*
+ * If the pmap is current, then the PT2MAP can provide access to
+ * the page table page (promoted L2 page tables are not unmapped).
+ * Otherwise, temporarily map the L2 page table page (m) into
+ * the kernel's address space at either PADDR1 or PADDR2.
+ *
+ * Note that L2 page table size is not equal to PAGE_SIZE.
+ */
+ if (pmap_is_current(pmap))
+ fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
+ else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
+ if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
+ pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
+#ifdef SMP
+ PMAP1cpu = PCPU_GET(cpuid);
+#endif
+ tlb_flush_local((vm_offset_t)PADDR1);
+ PMAP1changed++;
+ } else
+#ifdef SMP
+ if (PMAP1cpu != PCPU_GET(cpuid)) {
+ PMAP1cpu = PCPU_GET(cpuid);
+ tlb_flush_local((vm_offset_t)PADDR1);
+ PMAP1changedcpu++;
+ } else
+#endif
+ PMAP1unchanged++;
+ fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
+ } else {
+ mtx_lock(&PMAP2mutex);
+ if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
+ pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
+ tlb_flush((vm_offset_t)PADDR2);
+ }
+ fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
+ }
+ pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
+ npte1 = PTE1_LINK(pt2_pa);
+
+ KASSERT((opte1 & PTE1_A) != 0,
+ ("%s: opte1 is missing PTE1_A", __func__));
+ KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
+ ("%s: opte1 has PTE1_NM", __func__));
+
+ /*
+ * Get pte2 from pte1 format.
+ */
+ npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
+
+ /*
+ * If the L2 page table page is new, initialize it. If the mapping
+ * has changed attributes, update the page table entries.
+ */
+ if (isnew != 0) {
+ pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
+ pmap_fill_pt2(fpte2p, npte2);
+ } else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
+ (npte2 & PTE2_PROMOTE))
+ pmap_fill_pt2(fpte2p, npte2);
+
+ KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
+ ("%s: fpte2p and npte2 map different physical addresses",
+ __func__));
+
+ if (fpte2p == PADDR2)
+ mtx_unlock(&PMAP2mutex);
+
+ /*
+ * Demote the mapping. This pmap is locked. The old PTE1 has
+ * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
+ * has not PTE1_NM set. Thus, there is no danger of a race with
+ * another processor changing the setting of PTE1_A and/or PTE1_NM
+ * between the read above and the store below.
+ */
+ pmap_change_pte1(pmap, pte1p, va, npte1);
+
+ /*
+ * Demote the pv entry. This depends on the earlier demotion
+ * of the mapping. Specifically, the (re)creation of a per-
+ * page pv entry might trigger the execution of pmap_pv_reclaim(),
+ * which might reclaim a newly (re)created per-page pv entry
+ * and destroy the associated mapping. In order to destroy
+ * the mapping, the PTE1 must have already changed from mapping
+ * the 1mpage to referencing the page table page.
+ */
+ if (pte1_is_managed(opte1))
+ pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
+
+ pmap_pte1_demotions++;
+ CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
+ __func__, va, pmap);
+
+ PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
+ __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
+ return (TRUE);
+}
+
+/*
+ * Insert the given physical page (p) at
+ * the specified virtual address (v) in the
+ * target physical map with the protection requested.
+ *
+ * If specified, the page will be wired down, meaning
+ * that the related pte can not be reclaimed.
+ *
+ * NB: This is the only routine which MAY NOT lazy-evaluate
+ * or lose information. That is, this routine must actually
+ * insert this page into the given map NOW.
+ */
+int
+pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
+ u_int flags, int8_t psind)
+{
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p;
+ pt2_entry_t npte2, opte2;
+ pv_entry_t pv;
+ vm_paddr_t opa, pa;
+ vm_page_t mpte2, om;
+ int rv;
+
+ va = trunc_page(va);
+ KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
+ KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
+ ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
+ va));
+ KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
+ va >= kmi.clean_eva,
+ ("%s: managed mapping within the clean submap", __func__));
+ if ((m->oflags & VPO_UNMANAGED) == 0)
+ VM_PAGE_OBJECT_BUSY_ASSERT(m);
+ KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
+ ("%s: flags %u has reserved bits set", __func__, flags));
+ pa = VM_PAGE_TO_PHYS(m);
+ npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m));
+ if ((flags & VM_PROT_WRITE) == 0)
+ npte2 |= PTE2_NM;
+ if ((prot & VM_PROT_WRITE) == 0)
+ npte2 |= PTE2_RO;
+ KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO,
+ ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__));
+ if ((prot & VM_PROT_EXECUTE) == 0)
+ npte2 |= PTE2_NX;
+ if ((flags & PMAP_ENTER_WIRED) != 0)
+ npte2 |= PTE2_W;
+ if (va < VM_MAXUSER_ADDRESS)
+ npte2 |= PTE2_U;
+ if (pmap != kernel_pmap)
+ npte2 |= PTE2_NG;
+
+ rw_wlock(&pvh_global_lock);
+ PMAP_LOCK(pmap);
+ sched_pin();
+ if (psind == 1) {
+ /* Assert the required virtual and physical alignment. */
+ KASSERT((va & PTE1_OFFSET) == 0,
+ ("%s: va unaligned", __func__));
+ KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__));
+ rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) |
+ PTE1_V, flags, m);
+ goto out;
+ }
+
+ /*
+ * In the case that a page table page is not
+ * resident, we are creating it here.
+ */
+ if (va < VM_MAXUSER_ADDRESS) {
+ mpte2 = pmap_allocpte2(pmap, va, flags);
+ if (mpte2 == NULL) {
+ KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
+ ("pmap_allocpte2 failed with sleep allowed"));
+ rv = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ } else
+ mpte2 = NULL;
+ pte1p = pmap_pte1(pmap, va);
+ if (pte1_is_section(pte1_load(pte1p)))
+ panic("%s: attempted on 1MB page", __func__);
+ pte2p = pmap_pte2_quick(pmap, va);
+ if (pte2p == NULL)
+ panic("%s: invalid L1 page table entry va=%#x", __func__, va);
+
+ om = NULL;
+ opte2 = pte2_load(pte2p);
+ opa = pte2_pa(opte2);
+ /*
+ * Mapping has not changed, must be protection or wiring change.
+ */
+ if (pte2_is_valid(opte2) && (opa == pa)) {
+ /*
+ * Wiring change, just update stats. We don't worry about
+ * wiring PT2 pages as they remain resident as long as there
+ * are valid mappings in them. Hence, if a user page is wired,
+ * the PT2 page will be also.
+ */
+ if (pte2_is_wired(npte2) && !pte2_is_wired(opte2))
+ pmap->pm_stats.wired_count++;
+ else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2))
+ pmap->pm_stats.wired_count--;
+
+ /*
+ * Remove extra pte2 reference
+ */
+ if (mpte2)
+ pt2_wirecount_dec(mpte2, pte1_index(va));
+ if ((m->oflags & VPO_UNMANAGED) == 0)
+ om = m;
+ goto validate;
+ }
+
+ /*
+ * QQQ: We think that changing physical address on writeable mapping
+ * is not safe. Well, maybe on kernel address space with correct
+ * locking, it can make a sense. However, we have no idea why
+ * anyone should do that on user address space. Are we wrong?
+ */
+ KASSERT((opa == 0) || (opa == pa) ||
+ !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
+ ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
+ __func__, pmap, va, opte2, opa, pa, flags, prot));
+
+ pv = NULL;
+
+ /*
+ * Mapping has changed, invalidate old range and fall through to
+ * handle validating new mapping.
+ */
+ if (opa) {
+ if (pte2_is_wired(opte2))
+ pmap->pm_stats.wired_count--;
+ om = PHYS_TO_VM_PAGE(opa);
+ if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0)
+ om = NULL;
+ if (om != NULL)
+ pv = pmap_pvh_remove(&om->md, pmap, va);
+
+ /*
+ * Remove extra pte2 reference
+ */
+ if (mpte2 != NULL)
+ pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
+ } else
+ pmap->pm_stats.resident_count++;
+
+ /*
+ * Enter on the PV list if part of our managed memory.
+ */
+ if ((m->oflags & VPO_UNMANAGED) == 0) {
+ if (pv == NULL) {
+ pv = get_pv_entry(pmap, FALSE);
+ pv->pv_va = va;
+ }
+ TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
+ } else if (pv != NULL)
+ free_pv_entry(pmap, pv);
+
+ /*
+ * Increment counters
+ */
+ if (pte2_is_wired(npte2))
+ pmap->pm_stats.wired_count++;
+
+validate:
+ /*
+ * Now validate mapping with desired protection/wiring.
+ */
+ if (prot & VM_PROT_WRITE) {
+ if ((m->oflags & VPO_UNMANAGED) == 0)
+ vm_page_aflag_set(m, PGA_WRITEABLE);
+ }
+
+ /*
+ * If the mapping or permission bits are different, we need
+ * to update the pte2.
+ *
+ * QQQ: Think again and again what to do
+ * if the mapping is going to be changed!
+ */
+ if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
+ /*
+ * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
+ * is set. Do it now, before the mapping is stored and made
+ * valid for hardware table walk. If done later, there is a race
+ * for other threads of current process in lazy loading case.
+ * Don't do it for kernel memory which is mapped with exec
+ * permission even if the memory isn't going to hold executable
+ * code. The only time when icache sync is needed is after
+ * kernel module is loaded and the relocation info is processed.
+ * And it's done in elf_cpu_load_file().
+ *
+ * QQQ: (1) Does it exist any better way where
+ * or how to sync icache?
+ * (2) Now, we do it on a page basis.
+ */
+ if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
+ m->md.pat_mode == VM_MEMATTR_WB_WA &&
+ (opa != pa || (opte2 & PTE2_NX)))
+ cache_icache_sync_fresh(va, pa, PAGE_SIZE);
+
+ if (opte2 & PTE2_V) {
+ /* Change mapping with break-before-make approach. */
+ opte2 = pte2_load_clear(pte2p);
+ pmap_tlb_flush(pmap, va);
+ pte2_store(pte2p, npte2);
+ if (om != NULL) {
+ KASSERT((om->oflags & VPO_UNMANAGED) == 0,
+ ("%s: om %p unmanaged", __func__, om));
+ if ((opte2 & PTE2_A) != 0)
+ vm_page_aflag_set(om, PGA_REFERENCED);
+ if (pte2_is_dirty(opte2))
+ vm_page_dirty(om);
+ if (TAILQ_EMPTY(&om->md.pv_list) &&
+ ((om->flags & PG_FICTITIOUS) != 0 ||
+ TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
+ vm_page_aflag_clear(om, PGA_WRITEABLE);
+ }
+ } else
+ pte2_store(pte2p, npte2);
+ }
+#if 0
+ else {
+ /*
+ * QQQ: In time when both access and not mofified bits are
+ * emulated by software, this should not happen. Some
+ * analysis is need, if this really happen. Missing
+ * tlb flush somewhere could be the reason.
+ */
+ panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
+ va, opte2, npte2);
+ }
+#endif
+
+#if VM_NRESERVLEVEL > 0
+ /*
+ * If both the L2 page table page and the reservation are fully
+ * populated, then attempt promotion.
+ */
+ if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
+ sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
+ vm_reserv_level_iffullpop(m) == 0)
+ pmap_promote_pte1(pmap, pte1p, va);
+#endif
+
+ rv = KERN_SUCCESS;
+out:
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ PMAP_UNLOCK(pmap);
+ return (rv);
+}
+
+/*
+ * Do the things to unmap a page in a process.
+ */
+static int
+pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
+ struct spglist *free)
+{
+ pt2_entry_t opte2;
+ vm_page_t m;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+
+ /* Clear and invalidate the mapping. */
+ opte2 = pte2_load_clear(pte2p);
+ pmap_tlb_flush(pmap, va);
+
+ KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
+ __func__, pmap, va, opte2));
+
+ if (opte2 & PTE2_W)
+ pmap->pm_stats.wired_count -= 1;
+ pmap->pm_stats.resident_count -= 1;
+ if (pte2_is_managed(opte2)) {
+ m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
+ if (pte2_is_dirty(opte2))
+ vm_page_dirty(m);
+ if (opte2 & PTE2_A)
+ vm_page_aflag_set(m, PGA_REFERENCED);
+ pmap_remove_entry(pmap, m, va);
+ }
+ return (pmap_unuse_pt2(pmap, va, free));
+}
+
+/*
+ * Remove a single page from a process address space.
+ */
+static void
+pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
+{
+ pt2_entry_t *pte2p;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ KASSERT(curthread->td_pinned > 0,
+ ("%s: curthread not pinned", __func__));
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
+ !pte2_is_valid(pte2_load(pte2p)))
+ return;
+ pmap_remove_pte2(pmap, pte2p, va, free);
+}
+
+/*
+ * Remove the given range of addresses from the specified map.
+ *
+ * It is assumed that the start and end are properly
+ * rounded to the page size.
+ */
+void
+pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
+{
+ vm_offset_t nextva;
+ pt1_entry_t *pte1p, pte1;
+ pt2_entry_t *pte2p, pte2;
+ struct spglist free;
+
+ /*
+ * Perform an unsynchronized read. This is, however, safe.
+ */
+ if (pmap->pm_stats.resident_count == 0)
+ return;
+
+ SLIST_INIT(&free);
+
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ PMAP_LOCK(pmap);
+
+ /*
+ * Special handling of removing one page. A very common
+ * operation and easy to short circuit some code.
+ */
+ if (sva + PAGE_SIZE == eva) {
+ pte1 = pte1_load(pmap_pte1(pmap, sva));
+ if (pte1_is_link(pte1)) {
+ pmap_remove_page(pmap, sva, &free);
+ goto out;
+ }
+ }
+
+ for (; sva < eva; sva = nextva) {
+ /*
+ * Calculate address for next L2 page table.
+ */
+ nextva = pte1_trunc(sva + PTE1_SIZE);
+ if (nextva < sva)
+ nextva = eva;
+ if (pmap->pm_stats.resident_count == 0)
+ break;
+
+ pte1p = pmap_pte1(pmap, sva);
+ pte1 = pte1_load(pte1p);
+
+ /*
+ * Weed out invalid mappings. Note: we assume that the L1 page
+ * table is always allocated, and in kernel virtual.
+ */
+ if (pte1 == 0)
+ continue;
+
+ if (pte1_is_section(pte1)) {
+ /*
+ * Are we removing the entire large page? If not,
+ * demote the mapping and fall through.
+ */
+ if (sva + PTE1_SIZE == nextva && eva >= nextva) {
+ pmap_remove_pte1(pmap, pte1p, sva, &free);
+ continue;
+ } else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
+ /* The large page mapping was destroyed. */
+ continue;
+ }
+#ifdef INVARIANTS
+ else {
+ /* Update pte1 after demotion. */
+ pte1 = pte1_load(pte1p);
+ }
+#endif
+ }
+
+ KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
+ " is not link", __func__, pmap, sva, pte1, pte1p));
+
+ /*
+ * Limit our scan to either the end of the va represented
+ * by the current L2 page table page, or to the end of the
+ * range being removed.
+ */
+ if (nextva > eva)
+ nextva = eva;
+
+ for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
+ pte2p++, sva += PAGE_SIZE) {
+ pte2 = pte2_load(pte2p);
+ if (!pte2_is_valid(pte2))
+ continue;
+ if (pmap_remove_pte2(pmap, pte2p, sva, &free))
+ break;
+ }
+ }
+out:
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ PMAP_UNLOCK(pmap);
+ vm_page_free_pages_toq(&free, false);
+}
+
+/*
+ * Routine: pmap_remove_all
+ * Function:
+ * Removes this physical page from
+ * all physical maps in which it resides.
+ * Reflects back modify bits to the pager.
+ *
+ * Notes:
+ * Original versions of this routine were very
+ * inefficient because they iteratively called
+ * pmap_remove (slow...)
+ */
+
+void
+pmap_remove_all(vm_page_t m)
+{
+ struct md_page *pvh;
+ pv_entry_t pv;
+ pmap_t pmap;
+ pt2_entry_t *pte2p, opte2;
+ pt1_entry_t *pte1p;
+ vm_offset_t va;
+ struct spglist free;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+ SLIST_INIT(&free);
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ if ((m->flags & PG_FICTITIOUS) != 0)
+ goto small_mappings;
+ pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
+ while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
+ va = pv->pv_va;
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, va);
+ (void)pmap_demote_pte1(pmap, pte1p, va);
+ PMAP_UNLOCK(pmap);
+ }
+small_mappings:
+ while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pmap->pm_stats.resident_count--;
+ pte1p = pmap_pte1(pmap, pv->pv_va);
+ KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
+ "a 1mpage in page %p's pv list", __func__, m));
+ pte2p = pmap_pte2_quick(pmap, pv->pv_va);
+ opte2 = pte2_load_clear(pte2p);
+ pmap_tlb_flush(pmap, pv->pv_va);
+ KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
+ __func__, pmap, pv->pv_va));
+ if (pte2_is_wired(opte2))
+ pmap->pm_stats.wired_count--;
+ if (opte2 & PTE2_A)
+ vm_page_aflag_set(m, PGA_REFERENCED);
+
+ /*
+ * Update the vm_page_t clean and reference bits.
+ */
+ if (pte2_is_dirty(opte2))
+ vm_page_dirty(m);
+ pmap_unuse_pt2(pmap, pv->pv_va, &free);
+ TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
+ free_pv_entry(pmap, pv);
+ PMAP_UNLOCK(pmap);
+ }
+ vm_page_aflag_clear(m, PGA_WRITEABLE);
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ vm_page_free_pages_toq(&free, false);
+}
+
+/*
+ * Just subroutine for pmap_remove_pages() to reasonably satisfy
+ * good coding style, a.k.a. 80 character line width limit hell.
+ */
+static __inline void
+pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
+ struct spglist *free)
+{
+ vm_paddr_t pa;
+ vm_page_t m, mt, mpt2pg;
+ struct md_page *pvh;
+
+ pa = pte1_pa(pte1);
+ m = PHYS_TO_VM_PAGE(pa);
+
+ KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
+ __func__, m, m->phys_addr, pa));
+ KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
+ m < &vm_page_array[vm_page_array_size],
+ ("%s: bad pte1 %#x", __func__, pte1));
+
+ if (pte1_is_dirty(pte1)) {
+ for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
+ vm_page_dirty(mt);
+ }
+
+ pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
+ pvh = pa_to_pvh(pa);
+ TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
+ if (TAILQ_EMPTY(&pvh->pv_list)) {
+ for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
+ if (TAILQ_EMPTY(&mt->md.pv_list))
+ vm_page_aflag_clear(mt, PGA_WRITEABLE);
+ }
+ mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
+ if (mpt2pg != NULL)
+ pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
+}
+
+/*
+ * Just subroutine for pmap_remove_pages() to reasonably satisfy
+ * good coding style, a.k.a. 80 character line width limit hell.
+ */
+static __inline void
+pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
+ struct spglist *free)
+{
+ vm_paddr_t pa;
+ vm_page_t m;
+ struct md_page *pvh;
+
+ pa = pte2_pa(pte2);
+ m = PHYS_TO_VM_PAGE(pa);
+
+ KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
+ __func__, m, m->phys_addr, pa));
+ KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
+ m < &vm_page_array[vm_page_array_size],
+ ("%s: bad pte2 %#x", __func__, pte2));
+
+ if (pte2_is_dirty(pte2))
+ vm_page_dirty(m);
+
+ pmap->pm_stats.resident_count--;
+ TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
+ if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
+ pvh = pa_to_pvh(pa);
+ if (TAILQ_EMPTY(&pvh->pv_list))
+ vm_page_aflag_clear(m, PGA_WRITEABLE);
+ }
+ pmap_unuse_pt2(pmap, pv->pv_va, free);
+}
+
+/*
+ * Remove all pages from specified address space this aids process
+ * exit speeds. Also, this code is special cased for current process
+ * only, but can have the more generic (and slightly slower) mode enabled.
+ * This is much faster than pmap_remove in the case of running down
+ * an entire address space.
+ */
+void
+pmap_remove_pages(pmap_t pmap)
+{
+ pt1_entry_t *pte1p, pte1;
+ pt2_entry_t *pte2p, pte2;
+ pv_entry_t pv;
+ struct pv_chunk *pc, *npc;
+ struct spglist free;
+ int field, idx;
+ int32_t bit;
+ uint32_t inuse, bitmask;
+ boolean_t allfree;
+
+ /*
+ * Assert that the given pmap is only active on the current
+ * CPU. Unfortunately, we cannot block another CPU from
+ * activating the pmap while this function is executing.
+ */
+ KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
+ ("%s: non-current pmap %p", __func__, pmap));
+#if defined(SMP) && defined(INVARIANTS)
+ {
+ cpuset_t other_cpus;
+
+ sched_pin();
+ other_cpus = pmap->pm_active;
+ CPU_CLR(PCPU_GET(cpuid), &other_cpus);
+ sched_unpin();
+ KASSERT(CPU_EMPTY(&other_cpus),
+ ("%s: pmap %p active on other cpus", __func__, pmap));
+ }
+#endif
+ SLIST_INIT(&free);
+ rw_wlock(&pvh_global_lock);
+ PMAP_LOCK(pmap);
+ sched_pin();
+ TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
+ KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
+ __func__, pmap, pc->pc_pmap));
+ allfree = TRUE;
+ for (field = 0; field < _NPCM; field++) {
+ inuse = (~(pc->pc_map[field])) & pc_freemask[field];
+ while (inuse != 0) {
+ bit = ffs(inuse) - 1;
+ bitmask = 1UL << bit;
+ idx = field * 32 + bit;
+ pv = &pc->pc_pventry[idx];
+ inuse &= ~bitmask;
+
+ /*
+ * Note that we cannot remove wired pages
+ * from a process' mapping at this time
+ */
+ pte1p = pmap_pte1(pmap, pv->pv_va);
+ pte1 = pte1_load(pte1p);
+ if (pte1_is_section(pte1)) {
+ if (pte1_is_wired(pte1)) {
+ allfree = FALSE;
+ continue;
+ }
+ pte1_clear(pte1p);
+ pmap_remove_pte1_quick(pmap, pte1, pv,
+ &free);
+ }
+ else if (pte1_is_link(pte1)) {
+ pte2p = pt2map_entry(pv->pv_va);
+ pte2 = pte2_load(pte2p);
+
+ if (!pte2_is_valid(pte2)) {
+ printf("%s: pmap %p va %#x "
+ "pte2 %#x\n", __func__,
+ pmap, pv->pv_va, pte2);
+ panic("bad pte2");
+ }
+
+ if (pte2_is_wired(pte2)) {
+ allfree = FALSE;
+ continue;
+ }
+ pte2_clear(pte2p);
+ pmap_remove_pte2_quick(pmap, pte2, pv,
+ &free);
+ } else {
+ printf("%s: pmap %p va %#x pte1 %#x\n",
+ __func__, pmap, pv->pv_va, pte1);
+ panic("bad pte1");
+ }
+
+ /* Mark free */
+ PV_STAT(pv_entry_frees++);
+ PV_STAT(pv_entry_spare++);
+ pv_entry_count--;
+ pc->pc_map[field] |= bitmask;
+ }
+ }
+ if (allfree) {
+ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
+ free_pv_chunk(pc);
+ }
+ }
+ tlb_flush_all_ng_local();
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ PMAP_UNLOCK(pmap);
+ vm_page_free_pages_toq(&free, false);
+}
+
+/*
+ * This code makes some *MAJOR* assumptions:
+ * 1. Current pmap & pmap exists.
+ * 2. Not wired.
+ * 3. Read access.
+ * 4. No L2 page table pages.
+ * but is *MUCH* faster than pmap_enter...
+ */
+static vm_page_t
+pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
+ vm_prot_t prot, vm_page_t mpt2pg)
+{
+ pt2_entry_t *pte2p, pte2;
+ vm_paddr_t pa;
+ struct spglist free;
+ uint32_t l2prot;
+
+ KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
+ (m->oflags & VPO_UNMANAGED) != 0,
+ ("%s: managed mapping within the clean submap", __func__));
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+
+ /*
+ * In the case that a L2 page table page is not
+ * resident, we are creating it here.
+ */
+ if (va < VM_MAXUSER_ADDRESS) {
+ u_int pte1_idx;
+ pt1_entry_t pte1, *pte1p;
+ vm_paddr_t pt2_pa;
+
+ /*
+ * Get L1 page table things.
+ */
+ pte1_idx = pte1_index(va);
+ pte1p = pmap_pte1(pmap, va);
+ pte1 = pte1_load(pte1p);
+
+ if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
+ /*
+ * Each of NPT2_IN_PG L2 page tables on the page can
+ * come here. Make sure that associated L1 page table
+ * link is established.
+ *
+ * QQQ: It comes that we don't establish all links to
+ * L2 page tables for newly allocated L2 page
+ * tables page.
+ */
+ KASSERT(!pte1_is_section(pte1),
+ ("%s: pte1 %#x is section", __func__, pte1));
+ if (!pte1_is_link(pte1)) {
+ pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
+ pte1_idx);
+ pte1_store(pte1p, PTE1_LINK(pt2_pa));
+ }
+ pt2_wirecount_inc(mpt2pg, pte1_idx);
+ } else {
+ /*
+ * If the L2 page table page is mapped, we just
+ * increment the hold count, and activate it.
+ */
+ if (pte1_is_section(pte1)) {
+ return (NULL);
+ } else if (pte1_is_link(pte1)) {
+ mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
+ pt2_wirecount_inc(mpt2pg, pte1_idx);
+ } else {
+ mpt2pg = _pmap_allocpte2(pmap, va,
+ PMAP_ENTER_NOSLEEP);
+ if (mpt2pg == NULL)
+ return (NULL);
+ }
+ }
+ } else {
+ mpt2pg = NULL;
+ }
+
+ /*
+ * This call to pt2map_entry() makes the assumption that we are
+ * entering the page into the current pmap. In order to support
+ * quick entry into any pmap, one would likely use pmap_pte2_quick().
+ * But that isn't as quick as pt2map_entry().
+ */
+ pte2p = pt2map_entry(va);
+ pte2 = pte2_load(pte2p);
+ if (pte2_is_valid(pte2)) {
+ if (mpt2pg != NULL) {
+ /*
+ * Remove extra pte2 reference
+ */
+ pt2_wirecount_dec(mpt2pg, pte1_index(va));
+ mpt2pg = NULL;
+ }
+ return (NULL);
+ }
+
+ /*
+ * Enter on the PV list if part of our managed memory.
+ */
+ if ((m->oflags & VPO_UNMANAGED) == 0 &&
+ !pmap_try_insert_pv_entry(pmap, va, m)) {
+ if (mpt2pg != NULL) {
+ SLIST_INIT(&free);
+ if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
+ pmap_tlb_flush(pmap, va);
+ vm_page_free_pages_toq(&free, false);
+ }
+
+ mpt2pg = NULL;
+ }
+ return (NULL);
+ }
+
+ /*
+ * Increment counters
+ */
+ pmap->pm_stats.resident_count++;
+
+ /*
+ * Now validate mapping with RO protection
+ */
+ pa = VM_PAGE_TO_PHYS(m);
+ l2prot = PTE2_RO | PTE2_NM;
+ if (va < VM_MAXUSER_ADDRESS)
+ l2prot |= PTE2_U | PTE2_NG;
+ if ((prot & VM_PROT_EXECUTE) == 0)
+ l2prot |= PTE2_NX;
+ else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
+ /*
+ * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
+ * is set. QQQ: For more info, see comments in pmap_enter().
+ */
+ cache_icache_sync_fresh(va, pa, PAGE_SIZE);
+ }
+ pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
+
+ return (mpt2pg);
+}
+
+void
+pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
+{
+
+ rw_wlock(&pvh_global_lock);
+ PMAP_LOCK(pmap);
+ (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
+ rw_wunlock(&pvh_global_lock);
+ PMAP_UNLOCK(pmap);
+}
+
+/*
+ * Tries to create a read- and/or execute-only 1 MB page mapping. Returns
+ * true if successful. Returns false if (1) a mapping already exists at the
+ * specified virtual address or (2) a PV entry cannot be allocated without
+ * reclaiming another PV entry.
+ */
+static bool
+pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
+{
+ pt1_entry_t pte1;
+ vm_paddr_t pa;
+
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ pa = VM_PAGE_TO_PHYS(m);
+ pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m)));
+ if ((prot & VM_PROT_EXECUTE) == 0)
+ pte1 |= PTE1_NX;
+ if (va < VM_MAXUSER_ADDRESS)
+ pte1 |= PTE1_U;
+ if (pmap != kernel_pmap)
+ pte1 |= PTE1_NG;
+ return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP |
+ PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS);
+}
+
+/*
+ * Tries to create the specified 1 MB page mapping. Returns KERN_SUCCESS if
+ * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
+ * otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
+ * a mapping already exists at the specified virtual address. Returns
+ * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry
+ * allocation failed.
+ */
+static int
+pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags,
+ vm_page_t m)
+{
+ struct spglist free;
+ pt1_entry_t opte1, *pte1p;
+ pt2_entry_t pte2, *pte2p;
+ vm_offset_t cur, end;
+ vm_page_t mt;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 ||
+ (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO),
+ ("%s: pte1 has inconsistent NM and RO attributes", __func__));
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ pte1p = pmap_pte1(pmap, va);
+ opte1 = pte1_load(pte1p);
+ if (pte1_is_valid(opte1)) {
+ if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
+ CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
+ __func__, va, pmap);
+ return (KERN_FAILURE);
+ }
+ /* Break the existing mapping(s). */
+ SLIST_INIT(&free);
+ if (pte1_is_section(opte1)) {
+ /*
+ * If the section resulted from a promotion, then a
+ * reserved PT page could be freed.
+ */
+ pmap_remove_pte1(pmap, pte1p, va, &free);
+ } else {
+ sched_pin();
+ end = va + PTE1_SIZE;
+ for (cur = va, pte2p = pmap_pte2_quick(pmap, va);
+ cur != end; cur += PAGE_SIZE, pte2p++) {
+ pte2 = pte2_load(pte2p);
+ if (!pte2_is_valid(pte2))
+ continue;
+ if (pmap_remove_pte2(pmap, pte2p, cur, &free))
+ break;
+ }
+ sched_unpin();
+ }
+ vm_page_free_pages_toq(&free, false);
+ }
+ if ((m->oflags & VPO_UNMANAGED) == 0) {
+ /*
+ * Abort this mapping if its PV entry could not be created.
+ */
+ if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) {
+ CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
+ __func__, va, pmap);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+ if ((pte1 & PTE1_RO) == 0) {
+ for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
+ vm_page_aflag_set(mt, PGA_WRITEABLE);
+ }
+ }
+
+ /*
+ * Increment counters.
+ */
+ if (pte1_is_wired(pte1))
+ pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE;
+ pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
+
+ /*
+ * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
+ * is set. QQQ: For more info, see comments in pmap_enter().
+ */
+ if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA &&
+ pmap != kernel_pmap && (!pte1_is_section(opte1) ||
+ pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0))
+ cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE);
+
+ /*
+ * Map the section.
+ */
+ pte1_store(pte1p, pte1);
+
+ pmap_pte1_mappings++;
+ CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
+ pmap);
+ return (KERN_SUCCESS);
+}
+
+/*
+ * Maps a sequence of resident pages belonging to the same object.
+ * The sequence begins with the given page m_start. This page is
+ * mapped at the given virtual address start. Each subsequent page is
+ * mapped at a virtual address that is offset from start by the same
+ * amount as the page is offset from m_start within the object. The
+ * last page in the sequence is the page with the largest offset from
+ * m_start that can be mapped at a virtual address less than the given
+ * virtual address end. Not every virtual page between start and end
+ * is mapped; only those for which a resident page exists with the
+ * corresponding offset from m_start are mapped.
+ */
+void
+pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
+ vm_page_t m_start, vm_prot_t prot)
+{
+ vm_offset_t va;
+ vm_page_t m, mpt2pg;
+ vm_pindex_t diff, psize;
+
+ PDEBUG(6, printf("%s: pmap %p start %#x end %#x m %p prot %#x\n",
+ __func__, pmap, start, end, m_start, prot));
+
+ VM_OBJECT_ASSERT_LOCKED(m_start->object);
+ psize = atop(end - start);
+ mpt2pg = NULL;
+ m = m_start;
+ rw_wlock(&pvh_global_lock);
+ PMAP_LOCK(pmap);
+ while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
+ va = start + ptoa(diff);
+ if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
+ m->psind == 1 && sp_enabled &&
+ pmap_enter_1mpage(pmap, va, m, prot))
+ m = &m[PTE1_SIZE / PAGE_SIZE - 1];
+ else
+ mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
+ mpt2pg);
+ m = TAILQ_NEXT(m, listq);
+ }
+ rw_wunlock(&pvh_global_lock);
+ PMAP_UNLOCK(pmap);
+}
+
+/*
+ * This code maps large physical mmap regions into the
+ * processor address space. Note that some shortcuts
+ * are taken, but the code works.
+ */
+void
+pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
+ vm_pindex_t pindex, vm_size_t size)
+{
+ pt1_entry_t *pte1p;
+ vm_paddr_t pa, pte2_pa;
+ vm_page_t p;
+ vm_memattr_t pat_mode;
+ u_int l1attr, l1prot;
+
+ VM_OBJECT_ASSERT_WLOCKED(object);
+ KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
+ ("%s: non-device object", __func__));
+ if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
+ if (!vm_object_populate(object, pindex, pindex + atop(size)))
+ return;
+ p = vm_page_lookup(object, pindex);
+ KASSERT(p->valid == VM_PAGE_BITS_ALL,
+ ("%s: invalid page %p", __func__, p));
+ pat_mode = p->md.pat_mode;
+
+ /*
+ * Abort the mapping if the first page is not physically
+ * aligned to a 1MB page boundary.
+ */
+ pte2_pa = VM_PAGE_TO_PHYS(p);
+ if (pte2_pa & PTE1_OFFSET)
+ return;
+
+ /*
+ * Skip the first page. Abort the mapping if the rest of
+ * the pages are not physically contiguous or have differing
+ * memory attributes.
+ */
+ p = TAILQ_NEXT(p, listq);
+ for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
+ pa += PAGE_SIZE) {
+ KASSERT(p->valid == VM_PAGE_BITS_ALL,
+ ("%s: invalid page %p", __func__, p));
+ if (pa != VM_PAGE_TO_PHYS(p) ||
+ pat_mode != p->md.pat_mode)
+ return;
+ p = TAILQ_NEXT(p, listq);
+ }
+
+ /*
+ * Map using 1MB pages.
+ *
+ * QQQ: Well, we are mapping a section, so same condition must
+ * be hold like during promotion. It looks that only RW mapping
+ * is done here, so readonly mapping must be done elsewhere.
+ */
+ l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
+ l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
+ PMAP_LOCK(pmap);
+ for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
+ pte1p = pmap_pte1(pmap, addr);
+ if (!pte1_is_valid(pte1_load(pte1p))) {
+ pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
+ pmap->pm_stats.resident_count += PTE1_SIZE /
+ PAGE_SIZE;
+ pmap_pte1_mappings++;
+ }
+ /* Else continue on if the PTE1 is already valid. */
+ addr += PTE1_SIZE;
+ }
+ PMAP_UNLOCK(pmap);
+ }
+}
+
+/*
+ * Do the things to protect a 1mpage in a process.
+ */
+static void
+pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
+ vm_prot_t prot)
+{
+ pt1_entry_t npte1, opte1;
+ vm_offset_t eva, va;
+ vm_page_t m;
+
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+ KASSERT((sva & PTE1_OFFSET) == 0,
+ ("%s: sva is not 1mpage aligned", __func__));
+
+ opte1 = npte1 = pte1_load(pte1p);
+ if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
+ eva = sva + PTE1_SIZE;
+ for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
+ va < eva; va += PAGE_SIZE, m++)
+ vm_page_dirty(m);
+ }
+ if ((prot & VM_PROT_WRITE) == 0)
+ npte1 |= PTE1_RO | PTE1_NM;
+ if ((prot & VM_PROT_EXECUTE) == 0)
+ npte1 |= PTE1_NX;
+
+ /*
+ * QQQ: Herein, execute permission is never set.
+ * It only can be cleared. So, no icache
+ * syncing is needed.
+ */
+
+ if (npte1 != opte1) {
+ pte1_store(pte1p, npte1);
+ pmap_tlb_flush(pmap, sva);
+ }
+}
+
+/*
+ * Set the physical protection on the
+ * specified range of this map as requested.
+ */
+void
+pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
+{
+ boolean_t pv_lists_locked;
+ vm_offset_t nextva;
+ pt1_entry_t *pte1p, pte1;
+ pt2_entry_t *pte2p, opte2, npte2;
+
+ KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
+ if (prot == VM_PROT_NONE) {
+ pmap_remove(pmap, sva, eva);
+ return;
+ }
+
+ if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
+ (VM_PROT_WRITE | VM_PROT_EXECUTE))
+ return;
+
+ if (pmap_is_current(pmap))
+ pv_lists_locked = FALSE;
+ else {
+ pv_lists_locked = TRUE;
+resume:
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ }
+
+ PMAP_LOCK(pmap);
+ for (; sva < eva; sva = nextva) {
+ /*
+ * Calculate address for next L2 page table.
+ */
+ nextva = pte1_trunc(sva + PTE1_SIZE);
+ if (nextva < sva)
+ nextva = eva;
+
+ pte1p = pmap_pte1(pmap, sva);
+ pte1 = pte1_load(pte1p);
+
+ /*
+ * Weed out invalid mappings. Note: we assume that L1 page
+ * page table is always allocated, and in kernel virtual.
+ */
+ if (pte1 == 0)
+ continue;
+
+ if (pte1_is_section(pte1)) {
+ /*
+ * Are we protecting the entire large page? If not,
+ * demote the mapping and fall through.
+ */
+ if (sva + PTE1_SIZE == nextva && eva >= nextva) {
+ pmap_protect_pte1(pmap, pte1p, sva, prot);
+ continue;
+ } else {
+ if (!pv_lists_locked) {
+ pv_lists_locked = TRUE;
+ if (!rw_try_wlock(&pvh_global_lock)) {
+ PMAP_UNLOCK(pmap);
+ goto resume;
+ }
+ sched_pin();
+ }
+ if (!pmap_demote_pte1(pmap, pte1p, sva)) {
+ /*
+ * The large page mapping
+ * was destroyed.
+ */
+ continue;
+ }
+#ifdef INVARIANTS
+ else {
+ /* Update pte1 after demotion */
+ pte1 = pte1_load(pte1p);
+ }
+#endif
+ }
+ }
+
+ KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
+ " is not link", __func__, pmap, sva, pte1, pte1p));
+
+ /*
+ * Limit our scan to either the end of the va represented
+ * by the current L2 page table page, or to the end of the
+ * range being protected.
+ */
+ if (nextva > eva)
+ nextva = eva;
+
+ for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
+ sva += PAGE_SIZE) {
+ vm_page_t m;
+
+ opte2 = npte2 = pte2_load(pte2p);
+ if (!pte2_is_valid(opte2))
+ continue;
+
+ if ((prot & VM_PROT_WRITE) == 0) {
+ if (pte2_is_managed(opte2) &&
+ pte2_is_dirty(opte2)) {
+ m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
+ vm_page_dirty(m);
+ }
+ npte2 |= PTE2_RO | PTE2_NM;
+ }
+
+ if ((prot & VM_PROT_EXECUTE) == 0)
+ npte2 |= PTE2_NX;
+
+ /*
+ * QQQ: Herein, execute permission is never set.
+ * It only can be cleared. So, no icache
+ * syncing is needed.
+ */
+
+ if (npte2 != opte2) {
+ pte2_store(pte2p, npte2);
+ pmap_tlb_flush(pmap, sva);
+ }
+ }
+ }
+ if (pv_lists_locked) {
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ }
+ PMAP_UNLOCK(pmap);
+}
+
+/*
+ * pmap_pvh_wired_mappings:
+ *
+ * Return the updated number "count" of managed mappings that are wired.
+ */
+static int
+pmap_pvh_wired_mappings(struct md_page *pvh, int count)
+{
+ pmap_t pmap;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+ pv_entry_t pv;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ sched_pin();
+ TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
+ if (pte1_is_section(pte1)) {
+ if (pte1_is_wired(pte1))
+ count++;
+ } else {
+ KASSERT(pte1_is_link(pte1),
+ ("%s: pte1 %#x is not link", __func__, pte1));
+ pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
+ if (pte2_is_wired(pte2))
+ count++;
+ }
+ PMAP_UNLOCK(pmap);
+ }
+ sched_unpin();
+ return (count);
+}
+
+/*
+ * pmap_page_wired_mappings:
+ *
+ * Return the number of managed mappings to the given physical page
+ * that are wired.
+ */
+int
+pmap_page_wired_mappings(vm_page_t m)
+{
+ int count;
+
+ count = 0;
+ if ((m->oflags & VPO_UNMANAGED) != 0)
+ return (count);
+ rw_wlock(&pvh_global_lock);
+ count = pmap_pvh_wired_mappings(&m->md, count);
+ if ((m->flags & PG_FICTITIOUS) == 0) {
+ count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
+ count);
+ }
+ rw_wunlock(&pvh_global_lock);
+ return (count);
+}
+
+/*
+ * Returns TRUE if any of the given mappings were used to modify
+ * physical memory. Otherwise, returns FALSE. Both page and 1mpage
+ * mappings are supported.
+ */
+static boolean_t
+pmap_is_modified_pvh(struct md_page *pvh)
+{
+ pv_entry_t pv;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+ pmap_t pmap;
+ boolean_t rv;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ rv = FALSE;
+ sched_pin();
+ TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
+ if (pte1_is_section(pte1)) {
+ rv = pte1_is_dirty(pte1);
+ } else {
+ KASSERT(pte1_is_link(pte1),
+ ("%s: pte1 %#x is not link", __func__, pte1));
+ pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
+ rv = pte2_is_dirty(pte2);
+ }
+ PMAP_UNLOCK(pmap);
+ if (rv)
+ break;
+ }
+ sched_unpin();
+ return (rv);
+}
+
+/*
+ * pmap_is_modified:
+ *
+ * Return whether or not the specified physical page was modified
+ * in any physical maps.
+ */
+boolean_t
+pmap_is_modified(vm_page_t m)
+{
+ boolean_t rv;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+
+ /*
+ * If the page is not busied then this check is racy.
+ */
+ if (!pmap_page_is_write_mapped(m))
+ return (FALSE);
+ rw_wlock(&pvh_global_lock);
+ rv = pmap_is_modified_pvh(&m->md) ||
+ ((m->flags & PG_FICTITIOUS) == 0 &&
+ pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
+ rw_wunlock(&pvh_global_lock);
+ return (rv);
+}
+
+/*
+ * pmap_is_prefaultable:
+ *
+ * Return whether or not the specified virtual address is eligible
+ * for prefault.
+ */
+boolean_t
+pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
+{
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+ boolean_t rv;
+
+ rv = FALSE;
+ PMAP_LOCK(pmap);
+ pte1 = pte1_load(pmap_pte1(pmap, addr));
+ if (pte1_is_link(pte1)) {
+ pte2 = pte2_load(pt2map_entry(addr));
+ rv = !pte2_is_valid(pte2) ;
+ }
+ PMAP_UNLOCK(pmap);
+ return (rv);
+}
+
+/*
+ * Returns TRUE if any of the given mappings were referenced and FALSE
+ * otherwise. Both page and 1mpage mappings are supported.
+ */
+static boolean_t
+pmap_is_referenced_pvh(struct md_page *pvh)
+{
+
+ pv_entry_t pv;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+ pmap_t pmap;
+ boolean_t rv;
+
+ rw_assert(&pvh_global_lock, RA_WLOCKED);
+ rv = FALSE;
+ sched_pin();
+ TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
+ if (pte1_is_section(pte1)) {
+ rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
+ } else {
+ pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
+ rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
+ }
+ PMAP_UNLOCK(pmap);
+ if (rv)
+ break;
+ }
+ sched_unpin();
+ return (rv);
+}
+
+/*
+ * pmap_is_referenced:
+ *
+ * Return whether or not the specified physical page was referenced
+ * in any physical maps.
+ */
+boolean_t
+pmap_is_referenced(vm_page_t m)
+{
+ boolean_t rv;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+ rw_wlock(&pvh_global_lock);
+ rv = pmap_is_referenced_pvh(&m->md) ||
+ ((m->flags & PG_FICTITIOUS) == 0 &&
+ pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
+ rw_wunlock(&pvh_global_lock);
+ return (rv);
+}
+
+/*
+ * pmap_ts_referenced:
+ *
+ * Return a count of reference bits for a page, clearing those bits.
+ * It is not necessary for every reference bit to be cleared, but it
+ * is necessary that 0 only be returned when there are truly no
+ * reference bits set.
+ *
+ * As an optimization, update the page's dirty field if a modified bit is
+ * found while counting reference bits. This opportunistic update can be
+ * performed at low cost and can eliminate the need for some future calls
+ * to pmap_is_modified(). However, since this function stops after
+ * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
+ * dirty pages. Those dirty pages will only be detected by a future call
+ * to pmap_is_modified().
+ */
+int
+pmap_ts_referenced(vm_page_t m)
+{
+ struct md_page *pvh;
+ pv_entry_t pv, pvf;
+ pmap_t pmap;
+ pt1_entry_t *pte1p, opte1;
+ pt2_entry_t *pte2p, opte2;
+ vm_paddr_t pa;
+ int rtval = 0;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+ pa = VM_PAGE_TO_PHYS(m);
+ pvh = pa_to_pvh(pa);
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ if ((m->flags & PG_FICTITIOUS) != 0 ||
+ (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
+ goto small_mappings;
+ pv = pvf;
+ do {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, pv->pv_va);
+ opte1 = pte1_load(pte1p);
+ if (pte1_is_dirty(opte1)) {
+ /*
+ * Although "opte1" is mapping a 1MB page, because
+ * this function is called at a 4KB page granularity,
+ * we only update the 4KB page under test.
+ */
+ vm_page_dirty(m);
+ }
+ if ((opte1 & PTE1_A) != 0) {
+ /*
+ * Since this reference bit is shared by 256 4KB pages,
+ * it should not be cleared every time it is tested.
+ * Apply a simple "hash" function on the physical page
+ * number, the virtual section number, and the pmap
+ * address to select one 4KB page out of the 256
+ * on which testing the reference bit will result
+ * in clearing that bit. This function is designed
+ * to avoid the selection of the same 4KB page
+ * for every 1MB page mapping.
+ *
+ * On demotion, a mapping that hasn't been referenced
+ * is simply destroyed. To avoid the possibility of a
+ * subsequent page fault on a demoted wired mapping,
+ * always leave its reference bit set. Moreover,
+ * since the section is wired, the current state of
+ * its reference bit won't affect page replacement.
+ */
+ if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
+ (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
+ !pte1_is_wired(opte1)) {
+ pte1_clear_bit(pte1p, PTE1_A);
+ pmap_tlb_flush(pmap, pv->pv_va);
+ }
+ rtval++;
+ }
+ PMAP_UNLOCK(pmap);
+ /* Rotate the PV list if it has more than one entry. */
+ if (TAILQ_NEXT(pv, pv_next) != NULL) {
+ TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
+ TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
+ }
+ if (rtval >= PMAP_TS_REFERENCED_MAX)
+ goto out;
+ } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
+small_mappings:
+ if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
+ goto out;
+ pv = pvf;
+ do {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, pv->pv_va);
+ KASSERT(pte1_is_link(pte1_load(pte1p)),
+ ("%s: not found a link in page %p's pv list", __func__, m));
+
+ pte2p = pmap_pte2_quick(pmap, pv->pv_va);
+ opte2 = pte2_load(pte2p);
+ if (pte2_is_dirty(opte2))
+ vm_page_dirty(m);
+ if ((opte2 & PTE2_A) != 0) {
+ pte2_clear_bit(pte2p, PTE2_A);
+ pmap_tlb_flush(pmap, pv->pv_va);
+ rtval++;
+ }
+ PMAP_UNLOCK(pmap);
+ /* Rotate the PV list if it has more than one entry. */
+ if (TAILQ_NEXT(pv, pv_next) != NULL) {
+ TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
+ TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
+ }
+ } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
+ PMAP_TS_REFERENCED_MAX);
+out:
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ return (rtval);
+}
+
+/*
+ * Clear the wired attribute from the mappings for the specified range of
+ * addresses in the given pmap. Every valid mapping within that range
+ * must have the wired attribute set. In contrast, invalid mappings
+ * cannot have the wired attribute set, so they are ignored.
+ *
+ * The wired attribute of the page table entry is not a hardware feature,
+ * so there is no need to invalidate any TLB entries.
+ */
+void
+pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
+{
+ vm_offset_t nextva;
+ pt1_entry_t *pte1p, pte1;
+ pt2_entry_t *pte2p, pte2;
+ boolean_t pv_lists_locked;
+
+ if (pmap_is_current(pmap))
+ pv_lists_locked = FALSE;
+ else {
+ pv_lists_locked = TRUE;
+resume:
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ }
+ PMAP_LOCK(pmap);
+ for (; sva < eva; sva = nextva) {
+ nextva = pte1_trunc(sva + PTE1_SIZE);
+ if (nextva < sva)
+ nextva = eva;
+
+ pte1p = pmap_pte1(pmap, sva);
+ pte1 = pte1_load(pte1p);
+
+ /*
+ * Weed out invalid mappings. Note: we assume that L1 page
+ * page table is always allocated, and in kernel virtual.
+ */
+ if (pte1 == 0)
+ continue;
+
+ if (pte1_is_section(pte1)) {
+ if (!pte1_is_wired(pte1))
+ panic("%s: pte1 %#x not wired", __func__, pte1);
+
+ /*
+ * Are we unwiring the entire large page? If not,
+ * demote the mapping and fall through.
+ */
+ if (sva + PTE1_SIZE == nextva && eva >= nextva) {
+ pte1_clear_bit(pte1p, PTE1_W);
+ pmap->pm_stats.wired_count -= PTE1_SIZE /
+ PAGE_SIZE;
+ continue;
+ } else {
+ if (!pv_lists_locked) {
+ pv_lists_locked = TRUE;
+ if (!rw_try_wlock(&pvh_global_lock)) {
+ PMAP_UNLOCK(pmap);
+ /* Repeat sva. */
+ goto resume;
+ }
+ sched_pin();
+ }
+ if (!pmap_demote_pte1(pmap, pte1p, sva))
+ panic("%s: demotion failed", __func__);
+#ifdef INVARIANTS
+ else {
+ /* Update pte1 after demotion */
+ pte1 = pte1_load(pte1p);
+ }
+#endif
+ }
+ }
+
+ KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
+ " is not link", __func__, pmap, sva, pte1, pte1p));
+
+ /*
+ * Limit our scan to either the end of the va represented
+ * by the current L2 page table page, or to the end of the
+ * range being protected.
+ */
+ if (nextva > eva)
+ nextva = eva;
+
+ for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
+ sva += PAGE_SIZE) {
+ pte2 = pte2_load(pte2p);
+ if (!pte2_is_valid(pte2))
+ continue;
+ if (!pte2_is_wired(pte2))
+ panic("%s: pte2 %#x is missing PTE2_W",
+ __func__, pte2);
+
+ /*
+ * PTE2_W must be cleared atomically. Although the pmap
+ * lock synchronizes access to PTE2_W, another processor
+ * could be changing PTE2_NM and/or PTE2_A concurrently.
+ */
+ pte2_clear_bit(pte2p, PTE2_W);
+ pmap->pm_stats.wired_count--;
+ }
+ }
+ if (pv_lists_locked) {
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ }
+ PMAP_UNLOCK(pmap);
+}
+
+/*
+ * Clear the write and modified bits in each of the given page's mappings.
+ */
+void
+pmap_remove_write(vm_page_t m)
+{
+ struct md_page *pvh;
+ pv_entry_t next_pv, pv;
+ pmap_t pmap;
+ pt1_entry_t *pte1p;
+ pt2_entry_t *pte2p, opte2;
+ vm_offset_t va;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+ vm_page_assert_busied(m);
+
+ if (!pmap_page_is_write_mapped(m))
+ return;
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ if ((m->flags & PG_FICTITIOUS) != 0)
+ goto small_mappings;
+ pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
+ TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
+ va = pv->pv_va;
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, va);
+ if (!(pte1_load(pte1p) & PTE1_RO))
+ (void)pmap_demote_pte1(pmap, pte1p, va);
+ PMAP_UNLOCK(pmap);
+ }
+small_mappings:
+ TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, pv->pv_va);
+ KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
+ " a section in page %p's pv list", __func__, m));
+ pte2p = pmap_pte2_quick(pmap, pv->pv_va);
+ opte2 = pte2_load(pte2p);
+ if (!(opte2 & PTE2_RO)) {
+ pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
+ if (pte2_is_dirty(opte2))
+ vm_page_dirty(m);
+ pmap_tlb_flush(pmap, pv->pv_va);
+ }
+ PMAP_UNLOCK(pmap);
+ }
+ vm_page_aflag_clear(m, PGA_WRITEABLE);
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+}
+
+/*
+ * Apply the given advice to the specified range of addresses within the
+ * given pmap. Depending on the advice, clear the referenced and/or
+ * modified flags in each mapping and set the mapped page's dirty field.
+ */
+void
+pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
+{
+ pt1_entry_t *pte1p, opte1;
+ pt2_entry_t *pte2p, pte2;
+ vm_offset_t pdnxt;
+ vm_page_t m;
+ boolean_t pv_lists_locked;
+
+ if (advice != MADV_DONTNEED && advice != MADV_FREE)
+ return;
+ if (pmap_is_current(pmap))
+ pv_lists_locked = FALSE;
+ else {
+ pv_lists_locked = TRUE;
+resume:
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ }
+ PMAP_LOCK(pmap);
+ for (; sva < eva; sva = pdnxt) {
+ pdnxt = pte1_trunc(sva + PTE1_SIZE);
+ if (pdnxt < sva)
+ pdnxt = eva;
+ pte1p = pmap_pte1(pmap, sva);
+ opte1 = pte1_load(pte1p);
+ if (!pte1_is_valid(opte1)) /* XXX */
+ continue;
+ else if (pte1_is_section(opte1)) {
+ if (!pte1_is_managed(opte1))
+ continue;
+ if (!pv_lists_locked) {
+ pv_lists_locked = TRUE;
+ if (!rw_try_wlock(&pvh_global_lock)) {
+ PMAP_UNLOCK(pmap);
+ goto resume;
+ }
+ sched_pin();
+ }
+ if (!pmap_demote_pte1(pmap, pte1p, sva)) {
+ /*
+ * The large page mapping was destroyed.
+ */
+ continue;
+ }
+
+ /*
+ * Unless the page mappings are wired, remove the
+ * mapping to a single page so that a subsequent
+ * access may repromote. Since the underlying L2 page
+ * table is fully populated, this removal never
+ * frees a L2 page table page.
+ */
+ if (!pte1_is_wired(opte1)) {
+ pte2p = pmap_pte2_quick(pmap, sva);
+ KASSERT(pte2_is_valid(pte2_load(pte2p)),
+ ("%s: invalid PTE2", __func__));
+ pmap_remove_pte2(pmap, pte2p, sva, NULL);
+ }
+ }
+ if (pdnxt > eva)
+ pdnxt = eva;
+ for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
+ sva += PAGE_SIZE) {
+ pte2 = pte2_load(pte2p);
+ if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
+ continue;
+ else if (pte2_is_dirty(pte2)) {
+ if (advice == MADV_DONTNEED) {
+ /*
+ * Future calls to pmap_is_modified()
+ * can be avoided by making the page
+ * dirty now.
+ */
+ m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
+ vm_page_dirty(m);
+ }
+ pte2_set_bit(pte2p, PTE2_NM);
+ pte2_clear_bit(pte2p, PTE2_A);
+ } else if ((pte2 & PTE2_A) != 0)
+ pte2_clear_bit(pte2p, PTE2_A);
+ else
+ continue;
+ pmap_tlb_flush(pmap, sva);
+ }
+ }
+ if (pv_lists_locked) {
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ }
+ PMAP_UNLOCK(pmap);
+}
+
+/*
+ * Clear the modify bits on the specified physical page.
+ */
+void
+pmap_clear_modify(vm_page_t m)
+{
+ struct md_page *pvh;
+ pv_entry_t next_pv, pv;
+ pmap_t pmap;
+ pt1_entry_t *pte1p, opte1;
+ pt2_entry_t *pte2p, opte2;
+ vm_offset_t va;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+ vm_page_assert_busied(m);
+
+ if (!pmap_page_is_write_mapped(m))
+ return;
+ rw_wlock(&pvh_global_lock);
+ sched_pin();
+ if ((m->flags & PG_FICTITIOUS) != 0)
+ goto small_mappings;
+ pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
+ TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
+ va = pv->pv_va;
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, va);
+ opte1 = pte1_load(pte1p);
+ if (!(opte1 & PTE1_RO)) {
+ if (pmap_demote_pte1(pmap, pte1p, va) &&
+ !pte1_is_wired(opte1)) {
+ /*
+ * Write protect the mapping to a
+ * single page so that a subsequent
+ * write access may repromote.
+ */
+ va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
+ pte2p = pmap_pte2_quick(pmap, va);
+ opte2 = pte2_load(pte2p);
+ if ((opte2 & PTE2_V)) {
+ pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
+ vm_page_dirty(m);
+ pmap_tlb_flush(pmap, va);
+ }
+ }
+ }
+ PMAP_UNLOCK(pmap);
+ }
+small_mappings:
+ TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
+ pmap = PV_PMAP(pv);
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, pv->pv_va);
+ KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
+ " a section in page %p's pv list", __func__, m));
+ pte2p = pmap_pte2_quick(pmap, pv->pv_va);
+ if (pte2_is_dirty(pte2_load(pte2p))) {
+ pte2_set_bit(pte2p, PTE2_NM);
+ pmap_tlb_flush(pmap, pv->pv_va);
+ }
+ PMAP_UNLOCK(pmap);
+ }
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+}
+
+/*
+ * Sets the memory attribute for the specified page.
+ */
+void
+pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
+{
+ pt2_entry_t *cmap2_pte2p;
+ vm_memattr_t oma;
+ vm_paddr_t pa;
+ struct pcpu *pc;
+
+ oma = m->md.pat_mode;
+ m->md.pat_mode = ma;
+
+ CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
+ VM_PAGE_TO_PHYS(m), oma, ma);
+ if ((m->flags & PG_FICTITIOUS) != 0)
+ return;
+#if 0
+ /*
+ * If "m" is a normal page, flush it from the cache.
+ *
+ * First, try to find an existing mapping of the page by sf
+ * buffer. sf_buf_invalidate_cache() modifies mapping and
+ * flushes the cache.
+ */
+ if (sf_buf_invalidate_cache(m, oma))
+ return;
+#endif
+ /*
+ * If page is not mapped by sf buffer, map the page
+ * transient and do invalidation.
+ */
+ if (ma != oma) {
+ pa = VM_PAGE_TO_PHYS(m);
+ sched_pin();
+ pc = get_pcpu();
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
+ vm_memattr_to_pte2(ma)));
+ dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+ }
+}
+
+/*
+ * Miscellaneous support routines follow
+ */
+
+/*
+ * Returns TRUE if the given page is mapped individually or as part of
+ * a 1mpage. Otherwise, returns FALSE.
+ */
+boolean_t
+pmap_page_is_mapped(vm_page_t m)
+{
+ boolean_t rv;
+
+ if ((m->oflags & VPO_UNMANAGED) != 0)
+ return (FALSE);
+ rw_wlock(&pvh_global_lock);
+ rv = !TAILQ_EMPTY(&m->md.pv_list) ||
+ ((m->flags & PG_FICTITIOUS) == 0 &&
+ !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
+ rw_wunlock(&pvh_global_lock);
+ return (rv);
+}
+
+/*
+ * Returns true if the pmap's pv is one of the first
+ * 16 pvs linked to from this page. This count may
+ * be changed upwards or downwards in the future; it
+ * is only necessary that true be returned for a small
+ * subset of pmaps for proper page aging.
+ */
+boolean_t
+pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
+{
+ struct md_page *pvh;
+ pv_entry_t pv;
+ int loops = 0;
+ boolean_t rv;
+
+ KASSERT((m->oflags & VPO_UNMANAGED) == 0,
+ ("%s: page %p is not managed", __func__, m));
+ rv = FALSE;
+ rw_wlock(&pvh_global_lock);
+ TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
+ if (PV_PMAP(pv) == pmap) {
+ rv = TRUE;
+ break;
+ }
+ loops++;
+ if (loops >= 16)
+ break;
+ }
+ if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
+ pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
+ TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
+ if (PV_PMAP(pv) == pmap) {
+ rv = TRUE;
+ break;
+ }
+ loops++;
+ if (loops >= 16)
+ break;
+ }
+ }
+ rw_wunlock(&pvh_global_lock);
+ return (rv);
+}
+
+/*
+ * pmap_zero_page zeros the specified hardware page by mapping
+ * the page into KVM and using bzero to clear its contents.
+ */
+void
+pmap_zero_page(vm_page_t m)
+{
+ pt2_entry_t *cmap2_pte2p;
+ struct pcpu *pc;
+
+ sched_pin();
+ pc = get_pcpu();
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
+ vm_page_pte2_attr(m)));
+ pagezero(pc->pc_cmap2_addr);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+}
+
+/*
+ * pmap_zero_page_area zeros the specified hardware page by mapping
+ * the page into KVM and using bzero to clear its contents.
+ *
+ * off and size may not cover an area beyond a single hardware page.
+ */
+void
+pmap_zero_page_area(vm_page_t m, int off, int size)
+{
+ pt2_entry_t *cmap2_pte2p;
+ struct pcpu *pc;
+
+ sched_pin();
+ pc = get_pcpu();
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
+ vm_page_pte2_attr(m)));
+ if (off == 0 && size == PAGE_SIZE)
+ pagezero(pc->pc_cmap2_addr);
+ else
+ bzero(pc->pc_cmap2_addr + off, size);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+}
+
+/*
+ * pmap_copy_page copies the specified (machine independent)
+ * page by mapping the page into virtual memory and using
+ * bcopy to copy the page, one machine dependent page at a
+ * time.
+ */
+void
+pmap_copy_page(vm_page_t src, vm_page_t dst)
+{
+ pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
+ struct pcpu *pc;
+
+ sched_pin();
+ pc = get_pcpu();
+ cmap1_pte2p = pc->pc_cmap1_pte2p;
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap1_pte2p) != 0)
+ panic("%s: CMAP1 busy", __func__);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
+ PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
+ PTE2_AP_KRW, vm_page_pte2_attr(dst)));
+ bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
+ pte2_clear(cmap1_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+}
+
+int unmapped_buf_allowed = 1;
+
+void
+pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
+ vm_offset_t b_offset, int xfersize)
+{
+ pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
+ vm_page_t a_pg, b_pg;
+ char *a_cp, *b_cp;
+ vm_offset_t a_pg_offset, b_pg_offset;
+ struct pcpu *pc;
+ int cnt;
+
+ sched_pin();
+ pc = get_pcpu();
+ cmap1_pte2p = pc->pc_cmap1_pte2p;
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap1_pte2p) != 0)
+ panic("pmap_copy_pages: CMAP1 busy");
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("pmap_copy_pages: CMAP2 busy");
+ while (xfersize > 0) {
+ a_pg = ma[a_offset >> PAGE_SHIFT];
+ a_pg_offset = a_offset & PAGE_MASK;
+ cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
+ b_pg = mb[b_offset >> PAGE_SHIFT];
+ b_pg_offset = b_offset & PAGE_MASK;
+ cnt = min(cnt, PAGE_SIZE - b_pg_offset);
+ pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
+ PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
+ tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
+ PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
+ tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
+ a_cp = pc->pc_cmap1_addr + a_pg_offset;
+ b_cp = pc->pc_cmap2_addr + b_pg_offset;
+ bcopy(a_cp, b_cp, cnt);
+ a_offset += cnt;
+ b_offset += cnt;
+ xfersize -= cnt;
+ }
+ pte2_clear(cmap1_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+}
+
+vm_offset_t
+pmap_quick_enter_page(vm_page_t m)
+{
+ struct pcpu *pc;
+ pt2_entry_t *pte2p;
+
+ critical_enter();
+ pc = get_pcpu();
+ pte2p = pc->pc_qmap_pte2p;
+
+ KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
+
+ pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
+ vm_page_pte2_attr(m)));
+ return (pc->pc_qmap_addr);
+}
+
+void
+pmap_quick_remove_page(vm_offset_t addr)
+{
+ struct pcpu *pc;
+ pt2_entry_t *pte2p;
+
+ pc = get_pcpu();
+ pte2p = pc->pc_qmap_pte2p;
+
+ KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
+ KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
+
+ pte2_clear(pte2p);
+ tlb_flush(pc->pc_qmap_addr);
+ critical_exit();
+}
+
+/*
+ * Copy the range specified by src_addr/len
+ * from the source map to the range dst_addr/len
+ * in the destination map.
+ *
+ * This routine is only advisory and need not do anything.
+ */
+void
+pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
+ vm_offset_t src_addr)
+{
+ struct spglist free;
+ vm_offset_t addr;
+ vm_offset_t end_addr = src_addr + len;
+ vm_offset_t nextva;
+
+ if (dst_addr != src_addr)
+ return;
+
+ if (!pmap_is_current(src_pmap))
+ return;
+
+ rw_wlock(&pvh_global_lock);
+ if (dst_pmap < src_pmap) {
+ PMAP_LOCK(dst_pmap);
+ PMAP_LOCK(src_pmap);
+ } else {
+ PMAP_LOCK(src_pmap);
+ PMAP_LOCK(dst_pmap);
+ }
+ sched_pin();
+ for (addr = src_addr; addr < end_addr; addr = nextva) {
+ pt2_entry_t *src_pte2p, *dst_pte2p;
+ vm_page_t dst_mpt2pg, src_mpt2pg;
+ pt1_entry_t src_pte1;
+ u_int pte1_idx;
+
+ KASSERT(addr < VM_MAXUSER_ADDRESS,
+ ("%s: invalid to pmap_copy page tables", __func__));
+
+ nextva = pte1_trunc(addr + PTE1_SIZE);
+ if (nextva < addr)
+ nextva = end_addr;
+
+ pte1_idx = pte1_index(addr);
+ src_pte1 = src_pmap->pm_pt1[pte1_idx];
+ if (pte1_is_section(src_pte1)) {
+ if ((addr & PTE1_OFFSET) != 0 ||
+ (addr + PTE1_SIZE) > end_addr)
+ continue;
+ if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
+ (!pte1_is_managed(src_pte1) ||
+ pmap_pv_insert_pte1(dst_pmap, addr, src_pte1,
+ PMAP_ENTER_NORECLAIM))) {
+ dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
+ ~PTE1_W;
+ dst_pmap->pm_stats.resident_count +=
+ PTE1_SIZE / PAGE_SIZE;
+ pmap_pte1_mappings++;
+ }
+ continue;
+ } else if (!pte1_is_link(src_pte1))
+ continue;
+
+ src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
+
+ /*
+ * We leave PT2s to be linked from PT1 even if they are not
+ * referenced until all PT2s in a page are without reference.
+ *
+ * QQQ: It could be changed ...
+ */
+#if 0 /* single_pt2_link_is_cleared */
+ KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
+ ("%s: source page table page is unused", __func__));
+#else
+ if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
+ continue;
+#endif
+ if (nextva > end_addr)
+ nextva = end_addr;
+
+ src_pte2p = pt2map_entry(addr);
+ while (addr < nextva) {
+ pt2_entry_t temp_pte2;
+ temp_pte2 = pte2_load(src_pte2p);
+ /*
+ * we only virtual copy managed pages
+ */
+ if (pte2_is_managed(temp_pte2)) {
+ dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
+ PMAP_ENTER_NOSLEEP);
+ if (dst_mpt2pg == NULL)
+ goto out;
+ dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
+ if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
+ pmap_try_insert_pv_entry(dst_pmap, addr,
+ PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
+ /*
+ * Clear the wired, modified, and
+ * accessed (referenced) bits
+ * during the copy.
+ */
+ temp_pte2 &= ~(PTE2_W | PTE2_A);
+ temp_pte2 |= PTE2_NM;
+ pte2_store(dst_pte2p, temp_pte2);
+ dst_pmap->pm_stats.resident_count++;
+ } else {
+ SLIST_INIT(&free);
+ if (pmap_unwire_pt2(dst_pmap, addr,
+ dst_mpt2pg, &free)) {
+ pmap_tlb_flush(dst_pmap, addr);
+ vm_page_free_pages_toq(&free,
+ false);
+ }
+ goto out;
+ }
+ if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
+ pt2_wirecount_get(src_mpt2pg, pte1_idx))
+ break;
+ }
+ addr += PAGE_SIZE;
+ src_pte2p++;
+ }
+ }
+out:
+ sched_unpin();
+ rw_wunlock(&pvh_global_lock);
+ PMAP_UNLOCK(src_pmap);
+ PMAP_UNLOCK(dst_pmap);
+}
+
+/*
+ * Increase the starting virtual address of the given mapping if a
+ * different alignment might result in more section mappings.
+ */
+void
+pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
+ vm_offset_t *addr, vm_size_t size)
+{
+ vm_offset_t pte1_offset;
+
+ if (size < PTE1_SIZE)
+ return;
+ if (object != NULL && (object->flags & OBJ_COLORED) != 0)
+ offset += ptoa(object->pg_color);
+ pte1_offset = offset & PTE1_OFFSET;
+ if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
+ (*addr & PTE1_OFFSET) == pte1_offset)
+ return;
+ if ((*addr & PTE1_OFFSET) < pte1_offset)
+ *addr = pte1_trunc(*addr) + pte1_offset;
+ else
+ *addr = pte1_roundup(*addr) + pte1_offset;
+}
+
+void
+pmap_activate(struct thread *td)
+{
+ pmap_t pmap, oldpmap;
+ u_int cpuid, ttb;
+
+ PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
+
+ critical_enter();
+ pmap = vmspace_pmap(td->td_proc->p_vmspace);
+ oldpmap = PCPU_GET(curpmap);
+ cpuid = PCPU_GET(cpuid);
+
+#if defined(SMP)
+ CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
+ CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
+#else
+ CPU_CLR(cpuid, &oldpmap->pm_active);
+ CPU_SET(cpuid, &pmap->pm_active);
+#endif
+
+ ttb = pmap_ttb_get(pmap);
+
+ /*
+ * pmap_activate is for the current thread on the current cpu
+ */
+ td->td_pcb->pcb_pagedir = ttb;
+ cp15_ttbr_set(ttb);
+ PCPU_SET(curpmap, pmap);
+ critical_exit();
+}
+
+/*
+ * Perform the pmap work for mincore(2). If the page is not both referenced and
+ * modified by this pmap, returns its physical address so that the caller can
+ * find other mappings.
+ */
+int
+pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
+{
+ pt1_entry_t *pte1p, pte1;
+ pt2_entry_t *pte2p, pte2;
+ vm_paddr_t pa;
+ bool managed;
+ int val;
+
+ PMAP_LOCK(pmap);
+ pte1p = pmap_pte1(pmap, addr);
+ pte1 = pte1_load(pte1p);
+ if (pte1_is_section(pte1)) {
+ pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
+ managed = pte1_is_managed(pte1);
+ val = MINCORE_PSIND(1) | MINCORE_INCORE;
+ if (pte1_is_dirty(pte1))
+ val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
+ if (pte1 & PTE1_A)
+ val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
+ } else if (pte1_is_link(pte1)) {
+ pte2p = pmap_pte2(pmap, addr);
+ pte2 = pte2_load(pte2p);
+ pmap_pte2_release(pte2p);
+ pa = pte2_pa(pte2);
+ managed = pte2_is_managed(pte2);
+ val = MINCORE_INCORE;
+ if (pte2_is_dirty(pte2))
+ val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
+ if (pte2 & PTE2_A)
+ val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
+ } else {
+ managed = false;
+ val = 0;
+ }
+ if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
+ (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
+ *pap = pa;
+ }
+ PMAP_UNLOCK(pmap);
+ return (val);
+}
+
+void
+pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
+{
+ vm_offset_t sva;
+ uint32_t l2attr;
+
+ KASSERT((size & PAGE_MASK) == 0,
+ ("%s: device mapping not page-sized", __func__));
+
+ sva = va;
+ l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
+ while (size != 0) {
+ pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
+ va += PAGE_SIZE;
+ pa += PAGE_SIZE;
+ size -= PAGE_SIZE;
+ }
+ tlb_flush_range(sva, va - sva);
+}
+
+void
+pmap_kremove_device(vm_offset_t va, vm_size_t size)
+{
+ vm_offset_t sva;
+
+ KASSERT((size & PAGE_MASK) == 0,
+ ("%s: device mapping not page-sized", __func__));
+
+ sva = va;
+ while (size != 0) {
+ pmap_kremove(va);
+ va += PAGE_SIZE;
+ size -= PAGE_SIZE;
+ }
+ tlb_flush_range(sva, va - sva);
+}
+
+void
+pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
+{
+
+ pcb->pcb_pagedir = pmap_ttb_get(pmap);
+}
+
+/*
+ * Clean L1 data cache range by physical address.
+ * The range must be within a single page.
+ */
+static void
+pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
+{
+ pt2_entry_t *cmap2_pte2p;
+ struct pcpu *pc;
+
+ KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
+ ("%s: not on single page", __func__));
+
+ sched_pin();
+ pc = get_pcpu();
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
+ dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+}
+
+/*
+ * Sync instruction cache range which is not mapped yet.
+ */
+void
+cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
+{
+ uint32_t len, offset;
+ vm_page_t m;
+
+ /* Write back d-cache on given address range. */
+ offset = pa & PAGE_MASK;
+ for ( ; size != 0; size -= len, pa += len, offset = 0) {
+ len = min(PAGE_SIZE - offset, size);
+ m = PHYS_TO_VM_PAGE(pa);
+ KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
+ __func__, pa));
+ pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
+ }
+ /*
+ * I-cache is VIPT. Only way how to flush all virtual mappings
+ * on given physical address is to invalidate all i-cache.
+ */
+ icache_inv_all();
+}
+
+void
+pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
+{
+
+ /* Write back d-cache on given address range. */
+ if (va >= VM_MIN_KERNEL_ADDRESS) {
+ dcache_wb_pou(va, size);
+ } else {
+ uint32_t len, offset;
+ vm_paddr_t pa;
+ vm_page_t m;
+
+ offset = va & PAGE_MASK;
+ for ( ; size != 0; size -= len, va += len, offset = 0) {
+ pa = pmap_extract(pmap, va); /* offset is preserved */
+ len = min(PAGE_SIZE - offset, size);
+ m = PHYS_TO_VM_PAGE(pa);
+ KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
+ __func__, pa));
+ pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
+ }
+ }
+ /*
+ * I-cache is VIPT. Only way how to flush all virtual mappings
+ * on given physical address is to invalidate all i-cache.
+ */
+ icache_inv_all();
+}
+
+/*
+ * The implementation of pmap_fault() uses IN_RANGE2() macro which
+ * depends on the fact that given range size is a power of 2.
+ */
+CTASSERT(powerof2(NB_IN_PT1));
+CTASSERT(powerof2(PT2MAP_SIZE));
+
+#define IN_RANGE2(addr, start, size) \
+ ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
+
+/*
+ * Handle access and R/W emulation faults.
+ */
+int
+pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
+{
+ pt1_entry_t *pte1p, pte1;
+ pt2_entry_t *pte2p, pte2;
+
+ if (pmap == NULL)
+ pmap = kernel_pmap;
+
+ /*
+ * In kernel, we should never get abort with FAR which is in range of
+ * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
+ * and print out a useful abort message and even get to the debugger
+ * otherwise it likely ends with never ending loop of aborts.
+ */
+ if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
+ /*
+ * All L1 tables should always be mapped and present.
+ * However, we check only current one herein. For user mode,
+ * only permission abort from malicious user is not fatal.
+ * And alignment abort as it may have higher priority.
+ */
+ if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
+ CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
+ __func__, pmap, pmap->pm_pt1, far);
+ panic("%s: pm_pt1 abort", __func__);
+ }
+ return (KERN_INVALID_ADDRESS);
+ }
+ if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
+ /*
+ * PT2MAP should be always mapped and present in current
+ * L1 table. However, only existing L2 tables are mapped
+ * in PT2MAP. For user mode, only L2 translation abort and
+ * permission abort from malicious user is not fatal.
+ * And alignment abort as it may have higher priority.
+ */
+ if (!usermode || (idx != FAULT_ALIGN &&
+ idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
+ CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
+ __func__, pmap, PT2MAP, far);
+ panic("%s: PT2MAP abort", __func__);
+ }
+ return (KERN_INVALID_ADDRESS);
+ }
+
+ /*
+ * A pmap lock is used below for handling of access and R/W emulation
+ * aborts. They were handled by atomic operations before so some
+ * analysis of new situation is needed to answer the following question:
+ * Is it safe to use the lock even for these aborts?
+ *
+ * There may happen two cases in general:
+ *
+ * (1) Aborts while the pmap lock is locked already - this should not
+ * happen as pmap lock is not recursive. However, under pmap lock only
+ * internal kernel data should be accessed and such data should be
+ * mapped with A bit set and NM bit cleared. If double abort happens,
+ * then a mapping of data which has caused it must be fixed. Further,
+ * all new mappings are always made with A bit set and the bit can be
+ * cleared only on managed mappings.
+ *
+ * (2) Aborts while another lock(s) is/are locked - this already can
+ * happen. However, there is no difference here if it's either access or
+ * R/W emulation abort, or if it's some other abort.
+ */
+
+ PMAP_LOCK(pmap);
+#ifdef INVARIANTS
+ pte1 = pte1_load(pmap_pte1(pmap, far));
+ if (pte1_is_link(pte1)) {
+ /*
+ * Check in advance that associated L2 page table is mapped into
+ * PT2MAP space. Note that faulty access to not mapped L2 page
+ * table is caught in more general check above where "far" is
+ * checked that it does not lay in PT2MAP space. Note also that
+ * L1 page table and PT2TAB always exist and are mapped.
+ */
+ pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
+ if (!pte2_is_valid(pte2))
+ panic("%s: missing L2 page table (%p, %#x)",
+ __func__, pmap, far);
+ }
+#endif
+#ifdef SMP
+ /*
+ * Special treatment is due to break-before-make approach done when
+ * pte1 is updated for userland mapping during section promotion or
+ * demotion. If not caught here, pmap_enter() can find a section
+ * mapping on faulting address. That is not allowed.
+ */
+ if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+#endif
+ /*
+ * Accesss bits for page and section. Note that the entry
+ * is not in TLB yet, so TLB flush is not necessary.
+ *
+ * QQQ: This is hardware emulation, we do not call userret()
+ * for aborts from user mode.
+ */
+ if (idx == FAULT_ACCESS_L2) {
+ pte1 = pte1_load(pmap_pte1(pmap, far));
+ if (pte1_is_link(pte1)) {
+ /* L2 page table should exist and be mapped. */
+ pte2p = pt2map_entry(far);
+ pte2 = pte2_load(pte2p);
+ if (pte2_is_valid(pte2)) {
+ pte2_store(pte2p, pte2 | PTE2_A);
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ } else {
+ /*
+ * We got L2 access fault but PTE1 is not a link.
+ * Probably some race happened, do nothing.
+ */
+ CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
+ __func__, pmap, far);
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ }
+ if (idx == FAULT_ACCESS_L1) {
+ pte1p = pmap_pte1(pmap, far);
+ pte1 = pte1_load(pte1p);
+ if (pte1_is_section(pte1)) {
+ pte1_store(pte1p, pte1 | PTE1_A);
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ } else {
+ /*
+ * We got L1 access fault but PTE1 is not section
+ * mapping. Probably some race happened, do nothing.
+ */
+ CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
+ __func__, pmap, far);
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ }
+
+ /*
+ * Handle modify bits for page and section. Note that the modify
+ * bit is emulated by software. So PTEx_RO is software read only
+ * bit and PTEx_NM flag is real hardware read only bit.
+ *
+ * QQQ: This is hardware emulation, we do not call userret()
+ * for aborts from user mode.
+ */
+ if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
+ pte1 = pte1_load(pmap_pte1(pmap, far));
+ if (pte1_is_link(pte1)) {
+ /* L2 page table should exist and be mapped. */
+ pte2p = pt2map_entry(far);
+ pte2 = pte2_load(pte2p);
+ if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
+ (pte2 & PTE2_NM)) {
+ pte2_store(pte2p, pte2 & ~PTE2_NM);
+ tlb_flush(trunc_page(far));
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ } else {
+ /*
+ * We got L2 permission fault but PTE1 is not a link.
+ * Probably some race happened, do nothing.
+ */
+ CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
+ __func__, pmap, far);
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ }
+ if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
+ pte1p = pmap_pte1(pmap, far);
+ pte1 = pte1_load(pte1p);
+ if (pte1_is_section(pte1)) {
+ if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
+ pte1_store(pte1p, pte1 & ~PTE1_NM);
+ tlb_flush(pte1_trunc(far));
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ } else {
+ /*
+ * We got L1 permission fault but PTE1 is not section
+ * mapping. Probably some race happened, do nothing.
+ */
+ CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
+ __func__, pmap, far);
+ PMAP_UNLOCK(pmap);
+ return (KERN_SUCCESS);
+ }
+ }
+
+ /*
+ * QQQ: The previous code, mainly fast handling of access and
+ * modify bits aborts, could be moved to ASM. Now we are
+ * starting to deal with not fast aborts.
+ */
+ PMAP_UNLOCK(pmap);
+ return (KERN_FAILURE);
+}
+
+#if defined(PMAP_DEBUG)
+/*
+ * Reusing of KVA used in pmap_zero_page function !!!
+ */
+static void
+pmap_zero_page_check(vm_page_t m)
+{
+ pt2_entry_t *cmap2_pte2p;
+ uint32_t *p, *end;
+ struct pcpu *pc;
+
+ sched_pin();
+ pc = get_pcpu();
+ cmap2_pte2p = pc->pc_cmap2_pte2p;
+ mtx_lock(&pc->pc_cmap_lock);
+ if (pte2_load(cmap2_pte2p) != 0)
+ panic("%s: CMAP2 busy", __func__);
+ pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
+ vm_page_pte2_attr(m)));
+ end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
+ for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
+ if (*p != 0)
+ panic("%s: page %p not zero, va: %p", __func__, m,
+ pc->pc_cmap2_addr);
+ pte2_clear(cmap2_pte2p);
+ tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
+ sched_unpin();
+ mtx_unlock(&pc->pc_cmap_lock);
+}
+
+int
+pmap_pid_dump(int pid)
+{
+ pmap_t pmap;
+ struct proc *p;
+ int npte2 = 0;
+ int i, j, index;
+
+ sx_slock(&allproc_lock);
+ FOREACH_PROC_IN_SYSTEM(p) {
+ if (p->p_pid != pid || p->p_vmspace == NULL)
+ continue;
+ index = 0;
+ pmap = vmspace_pmap(p->p_vmspace);
+ for (i = 0; i < NPTE1_IN_PT1; i++) {
+ pt1_entry_t pte1;
+ pt2_entry_t *pte2p, pte2;
+ vm_offset_t base, va;
+ vm_paddr_t pa;
+ vm_page_t m;
+
+ base = i << PTE1_SHIFT;
+ pte1 = pte1_load(&pmap->pm_pt1[i]);
+
+ if (pte1_is_section(pte1)) {
+ /*
+ * QQQ: Do something here!
+ */
+ } else if (pte1_is_link(pte1)) {
+ for (j = 0; j < NPTE2_IN_PT2; j++) {
+ va = base + (j << PAGE_SHIFT);
+ if (va >= VM_MIN_KERNEL_ADDRESS) {
+ if (index) {
+ index = 0;
+ printf("\n");
+ }
+ sx_sunlock(&allproc_lock);
+ return (npte2);
+ }
+ pte2p = pmap_pte2(pmap, va);
+ pte2 = pte2_load(pte2p);
+ pmap_pte2_release(pte2p);
+ if (!pte2_is_valid(pte2))
+ continue;
+
+ pa = pte2_pa(pte2);
+ m = PHYS_TO_VM_PAGE(pa);
+ printf("va: 0x%x, pa: 0x%x, w: %d, "
+ "f: 0x%x", va, pa,
+ m->ref_count, m->flags);
+ npte2++;
+ index++;
+ if (index >= 2) {
+ index = 0;
+ printf("\n");
+ } else {
+ printf(" ");
+ }
+ }
+ }
+ }
+ }
+ sx_sunlock(&allproc_lock);
+ return (npte2);
+}
+
+#endif
+
+#ifdef DDB
+static pt2_entry_t *
+pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
+{
+ pt1_entry_t pte1;
+ vm_paddr_t pt2pg_pa;
+
+ pte1 = pte1_load(pmap_pte1(pmap, va));
+ if (!pte1_is_link(pte1))
+ return (NULL);
+
+ if (pmap_is_current(pmap))
+ return (pt2map_entry(va));
+
+ /* Note that L2 page table size is not equal to PAGE_SIZE. */
+ pt2pg_pa = trunc_page(pte1_link_pa(pte1));
+ if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
+ pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
+#ifdef SMP
+ PMAP3cpu = PCPU_GET(cpuid);
+#endif
+ tlb_flush_local((vm_offset_t)PADDR3);
+ }
+#ifdef SMP
+ else if (PMAP3cpu != PCPU_GET(cpuid)) {
+ PMAP3cpu = PCPU_GET(cpuid);
+ tlb_flush_local((vm_offset_t)PADDR3);
+ }
+#endif
+ return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
+}
+
+static void
+dump_pmap(pmap_t pmap)
+{
+
+ printf("pmap %p\n", pmap);
+ printf(" pm_pt1: %p\n", pmap->pm_pt1);
+ printf(" pm_pt2tab: %p\n", pmap->pm_pt2tab);
+ printf(" pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
+}
+
+DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
+{
+
+ pmap_t pmap;
+ LIST_FOREACH(pmap, &allpmaps, pm_list) {
+ dump_pmap(pmap);
+ }
+}
+
+static int
+pte2_class(pt2_entry_t pte2)
+{
+ int cls;
+
+ cls = (pte2 >> 2) & 0x03;
+ cls |= (pte2 >> 4) & 0x04;
+ return (cls);
+}
+
+static void
+dump_section(pmap_t pmap, uint32_t pte1_idx)
+{
+}
+
+static void
+dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
+{
+ uint32_t i;
+ vm_offset_t va;
+ pt2_entry_t *pte2p, pte2;
+ vm_page_t m;
+
+ va = pte1_idx << PTE1_SHIFT;
+ pte2p = pmap_pte2_ddb(pmap, va);
+ for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
+ pte2 = pte2_load(pte2p);
+ if (pte2 == 0)
+ continue;
+ if (!pte2_is_valid(pte2)) {
+ printf(" 0x%08X: 0x%08X", va, pte2);
+ if (!invalid_ok)
+ printf(" - not valid !!!");
+ printf("\n");
+ continue;
+ }
+ m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
+ printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
+ pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
+ if (m != NULL) {
+ printf(" v:%d w:%d f:0x%04X\n", m->valid,
+ m->ref_count, m->flags);
+ } else {
+ printf("\n");
+ }
+ }
+}
+
+static __inline boolean_t
+is_pv_chunk_space(vm_offset_t va)
+{
+
+ if ((((vm_offset_t)pv_chunkbase) <= va) &&
+ (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
+ return (TRUE);
+ return (FALSE);
+}
+
+DB_SHOW_COMMAND(pmap, pmap_pmap_print)
+{
+ /* XXX convert args. */
+ pmap_t pmap = (pmap_t)addr;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+ vm_offset_t va, eva;
+ vm_page_t m;
+ uint32_t i;
+ boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
+
+ if (have_addr) {
+ pmap_t pm;
+
+ LIST_FOREACH(pm, &allpmaps, pm_list)
+ if (pm == pmap) break;
+ if (pm == NULL) {
+ printf("given pmap %p is not in allpmaps list\n", pmap);
+ return;
+ }
+ } else
+ pmap = PCPU_GET(curpmap);
+
+ eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
+ dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
+
+ printf("pmap: 0x%08X\n", (uint32_t)pmap);
+ printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
+ printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
+
+ for(i = 0; i < NPTE1_IN_PT1; i++) {
+ pte1 = pte1_load(&pmap->pm_pt1[i]);
+ if (pte1 == 0)
+ continue;
+ va = i << PTE1_SHIFT;
+ if (va >= eva)
+ break;
+
+ if (pte1_is_section(pte1)) {
+ printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
+ !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
+ dump_section(pmap, i);
+ } else if (pte1_is_link(pte1)) {
+ dump_link_ok = TRUE;
+ invalid_ok = FALSE;
+ pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
+ m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
+ printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
+ va, pte1, pte2, m);
+ if (is_pv_chunk_space(va)) {
+ printf(" - pv_chunk space");
+ if (dump_pv_chunk)
+ invalid_ok = TRUE;
+ else
+ dump_link_ok = FALSE;
+ }
+ else if (m != NULL)
+ printf(" w:%d w2:%u", m->ref_count,
+ pt2_wirecount_get(m, pte1_index(va)));
+ if (pte2 == 0)
+ printf(" !!! pt2tab entry is ZERO");
+ else if (pte2_pa(pte1) != pte2_pa(pte2))
+ printf(" !!! pt2tab entry is DIFFERENT - m: %p",
+ PHYS_TO_VM_PAGE(pte2_pa(pte2)));
+ printf("\n");
+ if (dump_link_ok)
+ dump_link(pmap, i, invalid_ok);
+ } else
+ printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
+ }
+}
+
+static void
+dump_pt2tab(pmap_t pmap)
+{
+ uint32_t i;
+ pt2_entry_t pte2;
+ vm_offset_t va;
+ vm_paddr_t pa;
+ vm_page_t m;
+
+ printf("PT2TAB:\n");
+ for (i = 0; i < PT2TAB_ENTRIES; i++) {
+ pte2 = pte2_load(&pmap->pm_pt2tab[i]);
+ if (!pte2_is_valid(pte2))
+ continue;
+ va = i << PT2TAB_SHIFT;
+ pa = pte2_pa(pte2);
+ m = PHYS_TO_VM_PAGE(pa);
+ printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
+ pte2_class(pte2), !!(pte2 & PTE2_S), m);
+ if (m != NULL)
+ printf(" , w: %d, f: 0x%04X pidx: %lld",
+ m->ref_count, m->flags, m->pindex);
+ printf("\n");
+ }
+}
+
+DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
+{
+ /* XXX convert args. */
+ pmap_t pmap = (pmap_t)addr;
+ pt1_entry_t pte1;
+ pt2_entry_t pte2;
+ vm_offset_t va;
+ uint32_t i, start;
+
+ if (have_addr) {
+ printf("supported only on current pmap\n");
+ return;
+ }
+
+ pmap = PCPU_GET(curpmap);
+ printf("curpmap: 0x%08X\n", (uint32_t)pmap);
+ printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
+ printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
+
+ start = pte1_index((vm_offset_t)PT2MAP);
+ for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
+ pte1 = pte1_load(&pmap->pm_pt1[i]);
+ if (pte1 == 0)
+ continue;
+ va = i << PTE1_SHIFT;
+ if (pte1_is_section(pte1)) {
+ printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
+ !!(pte1 & PTE1_S));
+ dump_section(pmap, i);
+ } else if (pte1_is_link(pte1)) {
+ pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
+ printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
+ pte1, pte2);
+ if (pte2 == 0)
+ printf(" !!! pt2tab entry is ZERO\n");
+ } else
+ printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
+ }
+ dump_pt2tab(pmap);
+}
+#endif