aboutsummaryrefslogtreecommitdiff
path: root/sys/arm/arm/unwind.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/arm/arm/unwind.c')
-rw-r--r--sys/arm/arm/unwind.c575
1 files changed, 575 insertions, 0 deletions
diff --git a/sys/arm/arm/unwind.c b/sys/arm/arm/unwind.c
new file mode 100644
index 000000000000..bf8ffddfd2c2
--- /dev/null
+++ b/sys/arm/arm/unwind.c
@@ -0,0 +1,575 @@
+/*
+ * Copyright 2013-2014 Andrew Turner.
+ * Copyright 2013-2014 Ian Lepore.
+ * Copyright 2013-2014 Rui Paulo.
+ * Copyright 2013 Eitan Adler.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/kernel.h>
+#include <sys/linker.h>
+#include <sys/malloc.h>
+#include <sys/queue.h>
+#include <sys/systm.h>
+
+#include <machine/machdep.h>
+#include <machine/stack.h>
+
+#include "linker_if.h"
+
+/*
+ * Definitions for the instruction interpreter.
+ *
+ * The ARM EABI specifies how to perform the frame unwinding in the
+ * Exception Handling ABI for the ARM Architecture document. To perform
+ * the unwind we need to know the initial frame pointer, stack pointer,
+ * link register and program counter. We then find the entry within the
+ * index table that points to the function the program counter is within.
+ * This gives us either a list of three instructions to process, a 31-bit
+ * relative offset to a table of instructions, or a value telling us
+ * we can't unwind any further.
+ *
+ * When we have the instructions to process we need to decode them
+ * following table 4 in section 9.3. This describes a collection of bit
+ * patterns to encode that steps to take to update the stack pointer and
+ * link register to the correct values at the start of the function.
+ */
+
+/* A special case when we are unable to unwind past this function */
+#define EXIDX_CANTUNWIND 1
+
+/*
+ * Entry types.
+ * These are the only entry types that have been seen in the kernel.
+ */
+#define ENTRY_MASK 0xff000000
+#define ENTRY_ARM_SU16 0x80000000
+#define ENTRY_ARM_LU16 0x81000000
+
+/* Instruction masks. */
+#define INSN_VSP_MASK 0xc0
+#define INSN_VSP_SIZE_MASK 0x3f
+#define INSN_STD_MASK 0xf0
+#define INSN_STD_DATA_MASK 0x0f
+#define INSN_POP_TYPE_MASK 0x08
+#define INSN_POP_COUNT_MASK 0x07
+#define INSN_VSP_LARGE_INC_MASK 0xff
+
+/* Instruction definitions */
+#define INSN_VSP_INC 0x00
+#define INSN_VSP_DEC 0x40
+#define INSN_POP_MASKED 0x80
+#define INSN_VSP_REG 0x90
+#define INSN_POP_COUNT 0xa0
+#define INSN_FINISH 0xb0
+#define INSN_POP_REGS 0xb1
+#define INSN_VSP_LARGE_INC 0xb2
+
+/* An item in the exception index table */
+struct unwind_idx {
+ uint32_t offset;
+ uint32_t insn;
+};
+
+/*
+ * Local cache of unwind info for loaded modules.
+ *
+ * To unwind the stack through the code in a loaded module, we need to access
+ * the module's exidx unwind data. To locate that data, one must search the
+ * elf section headers for the SHT_ARM_EXIDX section. Those headers are
+ * available at the time the module is being loaded, but are discarded by time
+ * the load process has completed. Code in kern/link_elf.c locates the data we
+ * need and stores it into the linker_file structure before calling the arm
+ * machdep routine for handling loaded modules (in arm/elf_machdep.c). That
+ * function calls into this code to pass along the unwind info, which we save
+ * into one of these module_info structures.
+ *
+ * Because we have to help stack(9) gather stack info at any time, including in
+ * contexts where sleeping is not allowed, we cannot use linker_file_foreach()
+ * to walk the kernel's list of linker_file structs, because doing so requires
+ * acquiring an exclusive sx_lock. So instead, we keep a local list of these
+ * structures, one for each loaded module (and one for the kernel itself that we
+ * synthesize at init time). New entries are added to the end of this list as
+ * needed, but entries are never deleted from the list. Instead, they are
+ * cleared out in-place to mark them as unused. That means the code doing stack
+ * unwinding can always safely walk the list without locking, because the
+ * structure of the list never changes in a way that would cause the walker to
+ * follow a bad link.
+ *
+ * A cleared-out entry on the list has module start=UINTPTR_MAX and end=0, so
+ * start <= addr < end cannot be true for any value of addr being searched for.
+ * We also don't have to worry about races where we look up the unwind info just
+ * before a module is unloaded and try to access it concurrently with or just
+ * after the unloading happens in another thread, because that means the path of
+ * execution leads through a now-unloaded module, and that's already well into
+ * undefined-behavior territory.
+ *
+ * List entries marked as unused get reused when new modules are loaded. We
+ * don't worry about holding a few unused bytes of memory in the list after
+ * unloading a module.
+ */
+struct module_info {
+ uintptr_t module_start; /* Start of loaded module */
+ uintptr_t module_end; /* End of loaded module */
+ uintptr_t exidx_start; /* Start of unwind data */
+ uintptr_t exidx_end; /* End of unwind data */
+ STAILQ_ENTRY(module_info)
+ link; /* Link to next entry */
+};
+static STAILQ_HEAD(, module_info) module_list;
+
+/*
+ * Hide ugly casting in somewhat-less-ugly macros.
+ * CADDR - cast a pointer or number to caddr_t.
+ * UADDR - cast a pointer or number to uintptr_t.
+ */
+#define CADDR(addr) ((caddr_t)(void*)(uintptr_t)(addr))
+#define UADDR(addr) ((uintptr_t)(addr))
+
+/*
+ * Clear the info in an existing module_info entry on the list. The
+ * module_start/end addresses are set to values that cannot match any real
+ * memory address. The entry remains on the list, but will be ignored until it
+ * is populated with new data.
+ */
+static void
+clear_module_info(struct module_info *info)
+{
+ info->module_start = UINTPTR_MAX;
+ info->module_end = 0;
+}
+
+/*
+ * Populate an existing module_info entry (which is already on the list) with
+ * the info for a new module.
+ */
+static void
+populate_module_info(struct module_info *info, linker_file_t lf)
+{
+
+ /*
+ * Careful! The module_start and module_end fields must not be set
+ * until all other data in the structure is valid.
+ */
+ info->exidx_start = UADDR(lf->exidx_addr);
+ info->exidx_end = UADDR(lf->exidx_addr) + lf->exidx_size;
+ info->module_start = UADDR(lf->address);
+ info->module_end = UADDR(lf->address) + lf->size;
+}
+
+/*
+ * Create a new empty module_info entry and add it to the tail of the list.
+ */
+static struct module_info *
+create_module_info(void)
+{
+ struct module_info *info;
+
+ info = malloc(sizeof(*info), M_CACHE, M_WAITOK | M_ZERO);
+ clear_module_info(info);
+ STAILQ_INSERT_TAIL(&module_list, info, link);
+ return (info);
+}
+
+/*
+ * Search for a module_info entry on the list whose address range contains the
+ * given address. If the search address is zero (no module will be loaded at
+ * zero), then we're looking for an empty item to reuse, which is indicated by
+ * module_start being set to UINTPTR_MAX in the entry.
+ */
+static struct module_info *
+find_module_info(uintptr_t addr)
+{
+ struct module_info *info;
+
+ STAILQ_FOREACH(info, &module_list, link) {
+ if ((addr >= info->module_start && addr < info->module_end) ||
+ (addr == 0 && info->module_start == UINTPTR_MAX))
+ return (info);
+ }
+ return (NULL);
+}
+
+/*
+ * Handle the loading of a new module by populating a module_info for it. This
+ * is called for both preloaded and dynamically loaded modules.
+ */
+void
+unwind_module_loaded(struct linker_file *lf)
+{
+ struct module_info *info;
+
+ /*
+ * A module that contains only data may have no unwind info; don't
+ * create any module info for it.
+ */
+ if (lf->exidx_size == 0)
+ return;
+
+ /*
+ * Find an unused entry in the existing list to reuse. If we don't find
+ * one, create a new one and link it into the list. This is the only
+ * place the module_list is modified. Adding a new entry to the list
+ * will not perturb any other threads currently walking the list. This
+ * function is invoked while kern_linker is still holding its lock
+ * to prevent its module list from being modified, so we don't have to
+ * worry about racing other threads doing an insert concurrently.
+ */
+ if ((info = find_module_info(0)) == NULL) {
+ info = create_module_info();
+ }
+ populate_module_info(info, lf);
+}
+
+/* Handle the unloading of a module. */
+void
+unwind_module_unloaded(struct linker_file *lf)
+{
+ struct module_info *info;
+
+ /*
+ * A module that contains only data may have no unwind info and there
+ * won't be a list entry for it.
+ */
+ if (lf->exidx_size == 0)
+ return;
+
+ /*
+ * When a module is unloaded, we clear the info out of its entry in the
+ * module list, making that entry available for later reuse.
+ */
+ if ((info = find_module_info(UADDR(lf->address))) == NULL) {
+ printf("arm unwind: module '%s' not on list at unload time\n",
+ lf->filename);
+ return;
+ }
+ clear_module_info(info);
+}
+
+/*
+ * Initialization must run fairly early, as soon as malloc(9) is available, and
+ * definitely before witness, which uses stack(9). We synthesize a module_info
+ * entry for the kernel, because unwind_module_loaded() doesn't get called for
+ * it. Also, it is unlike other modules in that the elf metadata for locating
+ * the unwind tables might be stripped, so instead we have to use the
+ * _exidx_start/end symbols created by ldscript.arm.
+ */
+static int
+module_info_init(void *arg __unused)
+{
+ struct linker_file thekernel;
+
+ STAILQ_INIT(&module_list);
+
+ thekernel.filename = "kernel";
+ thekernel.address = CADDR(&_start);
+ thekernel.size = UADDR(&_end) - UADDR(&_start);
+ thekernel.exidx_addr = CADDR(&_exidx_start);
+ thekernel.exidx_size = UADDR(&_exidx_end) - UADDR(&_exidx_start);
+ populate_module_info(create_module_info(), &thekernel);
+
+ return (0);
+}
+SYSINIT(unwind_init, SI_SUB_KMEM, SI_ORDER_ANY, module_info_init, NULL);
+
+/* Expand a 31-bit signed value to a 32-bit signed value */
+static __inline int32_t
+expand_prel31(uint32_t prel31)
+{
+
+ return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2;
+}
+
+/*
+ * Perform a binary search of the index table to find the function
+ * with the largest address that doesn't exceed addr.
+ */
+static struct unwind_idx *
+find_index(uint32_t addr)
+{
+ struct module_info *info;
+ unsigned int min, mid, max;
+ struct unwind_idx *start;
+ struct unwind_idx *item;
+ int32_t prel31_addr;
+ uint32_t func_addr;
+
+ info = find_module_info(addr);
+ if (info == NULL)
+ return NULL;
+
+ min = 0;
+ max = (info->exidx_end - info->exidx_start) / sizeof(struct unwind_idx);
+ start = (struct unwind_idx *)CADDR(info->exidx_start);
+
+ while (min != max) {
+ mid = min + (max - min + 1) / 2;
+
+ item = &start[mid];
+
+ prel31_addr = expand_prel31(item->offset);
+ func_addr = (uint32_t)&item->offset + prel31_addr;
+
+ if (func_addr <= addr) {
+ min = mid;
+ } else {
+ max = mid - 1;
+ }
+ }
+
+ return &start[min];
+}
+
+/* Reads the next byte from the instruction list */
+static uint8_t
+unwind_exec_read_byte(struct unwind_state *state)
+{
+ uint8_t insn;
+
+ /* Read the unwind instruction */
+ insn = (*state->insn) >> (state->byte * 8);
+
+ /* Update the location of the next instruction */
+ if (state->byte == 0) {
+ state->byte = 3;
+ state->insn++;
+ state->entries--;
+ } else
+ state->byte--;
+
+ return insn;
+}
+
+/* Executes the next instruction on the list */
+static int
+unwind_exec_insn(struct unwind_state *state)
+{
+ unsigned int insn;
+ uint32_t *vsp = (uint32_t *)state->registers[SP];
+ int update_vsp = 0;
+
+ /* This should never happen */
+ if (state->entries == 0)
+ return 1;
+
+ /* Read the next instruction */
+ insn = unwind_exec_read_byte(state);
+
+ if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
+ state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
+
+ } else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
+ state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
+
+ } else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
+ unsigned int mask, reg;
+
+ /* Load the mask */
+ mask = unwind_exec_read_byte(state);
+ mask |= (insn & INSN_STD_DATA_MASK) << 8;
+
+ /* We have a refuse to unwind instruction */
+ if (mask == 0)
+ return 1;
+
+ /* Update SP */
+ update_vsp = 1;
+
+ /* Load the registers */
+ for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
+ if (mask & 1) {
+ state->registers[reg] = *vsp++;
+ state->update_mask |= 1 << reg;
+
+ /* If we have updated SP kep its value */
+ if (reg == SP)
+ update_vsp = 0;
+ }
+ }
+
+ } else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
+ ((insn & INSN_STD_DATA_MASK) != 13) &&
+ ((insn & INSN_STD_DATA_MASK) != 15)) {
+ /* sp = register */
+ state->registers[SP] =
+ state->registers[insn & INSN_STD_DATA_MASK];
+
+ } else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
+ unsigned int count, reg;
+
+ /* Read how many registers to load */
+ count = insn & INSN_POP_COUNT_MASK;
+
+ /* Update sp */
+ update_vsp = 1;
+
+ /* Pop the registers */
+ for (reg = 4; reg <= 4 + count; reg++) {
+ state->registers[reg] = *vsp++;
+ state->update_mask |= 1 << reg;
+ }
+
+ /* Check if we are in the pop r14 version */
+ if ((insn & INSN_POP_TYPE_MASK) != 0) {
+ state->registers[14] = *vsp++;
+ }
+
+ } else if (insn == INSN_FINISH) {
+ /* Stop processing */
+ state->entries = 0;
+
+ } else if (insn == INSN_POP_REGS) {
+ unsigned int mask, reg;
+
+ mask = unwind_exec_read_byte(state);
+ if (mask == 0 || (mask & 0xf0) != 0)
+ return 1;
+
+ /* Update SP */
+ update_vsp = 1;
+
+ /* Load the registers */
+ for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
+ if (mask & 1) {
+ state->registers[reg] = *vsp++;
+ state->update_mask |= 1 << reg;
+ }
+ }
+
+ } else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
+ unsigned int uleb128;
+
+ /* Read the increment value */
+ uleb128 = unwind_exec_read_byte(state);
+
+ state->registers[SP] += 0x204 + (uleb128 << 2);
+
+ } else {
+ /* We hit a new instruction that needs to be implemented */
+#if 0
+ db_printf("Unhandled instruction %.2x\n", insn);
+#endif
+ return 1;
+ }
+
+ if (update_vsp) {
+ state->registers[SP] = (uint32_t)vsp;
+ }
+
+#if 0
+ db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n",
+ state->registers[FP], state->registers[SP], state->registers[LR],
+ state->registers[PC]);
+#endif
+
+ return 0;
+}
+
+/* Performs the unwind of a function */
+static int
+unwind_tab(struct unwind_state *state)
+{
+ uint32_t entry;
+
+ /* Set PC to a known value */
+ state->registers[PC] = 0;
+
+ /* Read the personality */
+ entry = *state->insn & ENTRY_MASK;
+
+ if (entry == ENTRY_ARM_SU16) {
+ state->byte = 2;
+ state->entries = 1;
+ } else if (entry == ENTRY_ARM_LU16) {
+ state->byte = 1;
+ state->entries = ((*state->insn >> 16) & 0xFF) + 1;
+ } else {
+#if 0
+ db_printf("Unknown entry: %x\n", entry);
+#endif
+ return 1;
+ }
+
+ while (state->entries > 0) {
+ if (unwind_exec_insn(state) != 0)
+ return 1;
+ }
+
+ /*
+ * The program counter was not updated, load it from the link register.
+ */
+ if (state->registers[PC] == 0) {
+ state->registers[PC] = state->registers[LR];
+
+ /*
+ * If the program counter changed, flag it in the update mask.
+ */
+ if (state->start_pc != state->registers[PC])
+ state->update_mask |= 1 << PC;
+ }
+
+ return 0;
+}
+
+/*
+ * Unwind a single stack frame.
+ * Return 0 on success or 1 if the stack cannot be unwound any further.
+ *
+ * XXX The can_lock argument is no longer germane; a sweep of callers should be
+ * made to remove it after this new code has proven itself for a while.
+ */
+int
+unwind_stack_one(struct unwind_state *state, int can_lock __unused)
+{
+ struct unwind_idx *index;
+
+ /* Reset the mask of updated registers */
+ state->update_mask = 0;
+
+ /* The pc value is correct and will be overwritten, save it */
+ state->start_pc = state->registers[PC];
+
+ /* Find the item to run */
+ index = find_index(state->start_pc);
+ if (index == NULL || index->insn == EXIDX_CANTUNWIND)
+ return 1;
+
+ if (index->insn & (1U << 31)) {
+ /* The data is within the instruction */
+ state->insn = &index->insn;
+ } else {
+ /* A prel31 offset to the unwind table */
+ state->insn = (uint32_t *)
+ ((uintptr_t)&index->insn +
+ expand_prel31(index->insn));
+ }
+
+ /* Run the unwind function, return its finished/not-finished status. */
+ return (unwind_tab(state));
+}