aboutsummaryrefslogtreecommitdiff
path: root/sys/cam/cam_iosched.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/cam/cam_iosched.c')
-rw-r--r--sys/cam/cam_iosched.c1970
1 files changed, 1970 insertions, 0 deletions
diff --git a/sys/cam/cam_iosched.c b/sys/cam/cam_iosched.c
new file mode 100644
index 000000000000..c2b36e3d1236
--- /dev/null
+++ b/sys/cam/cam_iosched.c
@@ -0,0 +1,1970 @@
+/*-
+ * CAM IO Scheduler Interface
+ *
+ * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
+ *
+ * Copyright (c) 2015 Netflix, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions, and the following disclaimer,
+ * without modification, immediately at the beginning of the file.
+ * 2. The name of the author may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#include "opt_cam.h"
+#include "opt_ddb.h"
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/bio.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/mutex.h>
+#include <sys/sbuf.h>
+#include <sys/sysctl.h>
+
+#include <cam/cam.h>
+#include <cam/cam_ccb.h>
+#include <cam/cam_periph.h>
+#include <cam/cam_xpt_periph.h>
+#include <cam/cam_xpt_internal.h>
+#include <cam/cam_iosched.h>
+
+#include <ddb/ddb.h>
+
+static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
+ "CAM I/O Scheduler buffers");
+
+/*
+ * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
+ * over the bioq_* interface, with notions of separate calls for normal I/O and
+ * for trims.
+ *
+ * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
+ * steer the rate of one type of traffic to help other types of traffic (eg
+ * limit writes when read latency deteriorates on SSDs).
+ */
+
+#ifdef CAM_IOSCHED_DYNAMIC
+
+static int do_dynamic_iosched = 1;
+TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
+SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
+ &do_dynamic_iosched, 1,
+ "Enable Dynamic I/O scheduler optimizations.");
+
+/*
+ * For an EMA, with an alpha of alpha, we know
+ * alpha = 2 / (N + 1)
+ * or
+ * N = 1 + (2 / alpha)
+ * where N is the number of samples that 86% of the current
+ * EMA is derived from.
+ *
+ * So we invent[*] alpha_bits:
+ * alpha_bits = -log_2(alpha)
+ * alpha = 2^-alpha_bits
+ * So
+ * N = 1 + 2^(alpha_bits + 1)
+ *
+ * The default 9 gives a 1025 lookback for 86% of the data.
+ * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
+ *
+ * [*] Steal from the load average code and many other places.
+ * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
+ */
+static int alpha_bits = 9;
+TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
+SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
+ &alpha_bits, 1,
+ "Bits in EMA's alpha.");
+
+struct iop_stats;
+struct cam_iosched_softc;
+
+int iosched_debug = 0;
+
+typedef enum {
+ none = 0, /* No limits */
+ queue_depth, /* Limit how many ops we queue to SIM */
+ iops, /* Limit # of IOPS to the drive */
+ bandwidth, /* Limit bandwidth to the drive */
+ limiter_max
+} io_limiter;
+
+static const char *cam_iosched_limiter_names[] =
+ { "none", "queue_depth", "iops", "bandwidth" };
+
+/*
+ * Called to initialize the bits of the iop_stats structure relevant to the
+ * limiter. Called just after the limiter is set.
+ */
+typedef int l_init_t(struct iop_stats *);
+
+/*
+ * Called every tick.
+ */
+typedef int l_tick_t(struct iop_stats *);
+
+/*
+ * Called to see if the limiter thinks this IOP can be allowed to
+ * proceed. If so, the limiter assumes that the IOP proceeded
+ * and makes any accounting of it that's needed.
+ */
+typedef int l_iop_t(struct iop_stats *, struct bio *);
+
+/*
+ * Called when an I/O completes so the limiter can update its
+ * accounting. Pending I/Os may complete in any order (even when
+ * sent to the hardware at the same time), so the limiter may not
+ * make any assumptions other than this I/O has completed. If it
+ * returns 1, then xpt_schedule() needs to be called again.
+ */
+typedef int l_iodone_t(struct iop_stats *, struct bio *);
+
+static l_iop_t cam_iosched_qd_iop;
+static l_iop_t cam_iosched_qd_caniop;
+static l_iodone_t cam_iosched_qd_iodone;
+
+static l_init_t cam_iosched_iops_init;
+static l_tick_t cam_iosched_iops_tick;
+static l_iop_t cam_iosched_iops_caniop;
+static l_iop_t cam_iosched_iops_iop;
+
+static l_init_t cam_iosched_bw_init;
+static l_tick_t cam_iosched_bw_tick;
+static l_iop_t cam_iosched_bw_caniop;
+static l_iop_t cam_iosched_bw_iop;
+
+struct limswitch {
+ l_init_t *l_init;
+ l_tick_t *l_tick;
+ l_iop_t *l_iop;
+ l_iop_t *l_caniop;
+ l_iodone_t *l_iodone;
+} limsw[] =
+{
+ { /* none */
+ .l_init = NULL,
+ .l_tick = NULL,
+ .l_iop = NULL,
+ .l_iodone= NULL,
+ },
+ { /* queue_depth */
+ .l_init = NULL,
+ .l_tick = NULL,
+ .l_caniop = cam_iosched_qd_caniop,
+ .l_iop = cam_iosched_qd_iop,
+ .l_iodone= cam_iosched_qd_iodone,
+ },
+ { /* iops */
+ .l_init = cam_iosched_iops_init,
+ .l_tick = cam_iosched_iops_tick,
+ .l_caniop = cam_iosched_iops_caniop,
+ .l_iop = cam_iosched_iops_iop,
+ .l_iodone= NULL,
+ },
+ { /* bandwidth */
+ .l_init = cam_iosched_bw_init,
+ .l_tick = cam_iosched_bw_tick,
+ .l_caniop = cam_iosched_bw_caniop,
+ .l_iop = cam_iosched_bw_iop,
+ .l_iodone= NULL,
+ },
+};
+
+struct iop_stats {
+ /*
+ * sysctl state for this subnode.
+ */
+ struct sysctl_ctx_list sysctl_ctx;
+ struct sysctl_oid *sysctl_tree;
+
+ /*
+ * Information about the current rate limiters, if any
+ */
+ io_limiter limiter; /* How are I/Os being limited */
+ int min; /* Low range of limit */
+ int max; /* High range of limit */
+ int current; /* Current rate limiter */
+ int l_value1; /* per-limiter scratch value 1. */
+ int l_value2; /* per-limiter scratch value 2. */
+
+ /*
+ * Debug information about counts of I/Os that have gone through the
+ * scheduler.
+ */
+ int pending; /* I/Os pending in the hardware */
+ int queued; /* number currently in the queue */
+ int total; /* Total for all time -- wraps */
+ int in; /* number queued all time -- wraps */
+ int out; /* number completed all time -- wraps */
+ int errs; /* Number of I/Os completed with error -- wraps */
+
+ /*
+ * Statistics on different bits of the process.
+ */
+ /* Exp Moving Average, see alpha_bits for more details */
+ sbintime_t ema;
+ sbintime_t emvar;
+ sbintime_t sd; /* Last computed sd */
+
+ uint32_t state_flags;
+#define IOP_RATE_LIMITED 1u
+
+#define LAT_BUCKETS 15 /* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
+ uint64_t latencies[LAT_BUCKETS];
+
+ struct cam_iosched_softc *softc;
+};
+
+
+typedef enum {
+ set_max = 0, /* current = max */
+ read_latency, /* Steer read latency by throttling writes */
+ cl_max /* Keep last */
+} control_type;
+
+static const char *cam_iosched_control_type_names[] =
+ { "set_max", "read_latency" };
+
+struct control_loop {
+ /*
+ * sysctl state for this subnode.
+ */
+ struct sysctl_ctx_list sysctl_ctx;
+ struct sysctl_oid *sysctl_tree;
+
+ sbintime_t next_steer; /* Time of next steer */
+ sbintime_t steer_interval; /* How often do we steer? */
+ sbintime_t lolat;
+ sbintime_t hilat;
+ int alpha;
+ control_type type; /* What type of control? */
+ int last_count; /* Last I/O count */
+
+ struct cam_iosched_softc *softc;
+};
+
+#endif
+
+struct cam_iosched_softc {
+ struct bio_queue_head bio_queue;
+ struct bio_queue_head trim_queue;
+ /* scheduler flags < 16, user flags >= 16 */
+ uint32_t flags;
+ int sort_io_queue;
+ int trim_goal; /* # of trims to queue before sending */
+ int trim_ticks; /* Max ticks to hold trims */
+ int last_trim_tick; /* Last 'tick' time ld a trim */
+ int queued_trims; /* Number of trims in the queue */
+#ifdef CAM_IOSCHED_DYNAMIC
+ int read_bias; /* Read bias setting */
+ int current_read_bias; /* Current read bias state */
+ int total_ticks;
+ int load; /* EMA of 'load average' of disk / 2^16 */
+
+ struct bio_queue_head write_queue;
+ struct iop_stats read_stats, write_stats, trim_stats;
+ struct sysctl_ctx_list sysctl_ctx;
+ struct sysctl_oid *sysctl_tree;
+
+ int quanta; /* Number of quanta per second */
+ struct callout ticker; /* Callout for our quota system */
+ struct cam_periph *periph; /* cam periph associated with this device */
+ uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
+ sbintime_t last_time; /* Last time we ticked */
+ struct control_loop cl;
+ sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */
+ cam_iosched_latfcn_t latfcn;
+ void *latarg;
+#endif
+};
+
+#ifdef CAM_IOSCHED_DYNAMIC
+/*
+ * helper functions to call the limsw functions.
+ */
+static int
+cam_iosched_limiter_init(struct iop_stats *ios)
+{
+ int lim = ios->limiter;
+
+ /* maybe this should be a kassert */
+ if (lim < none || lim >= limiter_max)
+ return EINVAL;
+
+ if (limsw[lim].l_init)
+ return limsw[lim].l_init(ios);
+
+ return 0;
+}
+
+static int
+cam_iosched_limiter_tick(struct iop_stats *ios)
+{
+ int lim = ios->limiter;
+
+ /* maybe this should be a kassert */
+ if (lim < none || lim >= limiter_max)
+ return EINVAL;
+
+ if (limsw[lim].l_tick)
+ return limsw[lim].l_tick(ios);
+
+ return 0;
+}
+
+static int
+cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
+{
+ int lim = ios->limiter;
+
+ /* maybe this should be a kassert */
+ if (lim < none || lim >= limiter_max)
+ return EINVAL;
+
+ if (limsw[lim].l_iop)
+ return limsw[lim].l_iop(ios, bp);
+
+ return 0;
+}
+
+static int
+cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
+{
+ int lim = ios->limiter;
+
+ /* maybe this should be a kassert */
+ if (lim < none || lim >= limiter_max)
+ return EINVAL;
+
+ if (limsw[lim].l_caniop)
+ return limsw[lim].l_caniop(ios, bp);
+
+ return 0;
+}
+
+static int
+cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
+{
+ int lim = ios->limiter;
+
+ /* maybe this should be a kassert */
+ if (lim < none || lim >= limiter_max)
+ return 0;
+
+ if (limsw[lim].l_iodone)
+ return limsw[lim].l_iodone(ios, bp);
+
+ return 0;
+}
+
+/*
+ * Functions to implement the different kinds of limiters
+ */
+
+static int
+cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
+{
+
+ if (ios->current <= 0 || ios->pending < ios->current)
+ return 0;
+
+ return EAGAIN;
+}
+
+static int
+cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
+{
+
+ if (ios->current <= 0 || ios->pending < ios->current)
+ return 0;
+
+ return EAGAIN;
+}
+
+static int
+cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
+{
+
+ if (ios->current <= 0 || ios->pending != ios->current)
+ return 0;
+
+ return 1;
+}
+
+static int
+cam_iosched_iops_init(struct iop_stats *ios)
+{
+
+ ios->l_value1 = ios->current / ios->softc->quanta;
+ if (ios->l_value1 <= 0)
+ ios->l_value1 = 1;
+ ios->l_value2 = 0;
+
+ return 0;
+}
+
+static int
+cam_iosched_iops_tick(struct iop_stats *ios)
+{
+ int new_ios;
+
+ /*
+ * Allow at least one IO per tick until all
+ * the IOs for this interval have been spent.
+ */
+ new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
+ if (new_ios < 1 && ios->l_value2 < ios->current) {
+ new_ios = 1;
+ ios->l_value2++;
+ }
+
+ /*
+ * If this a new accounting interval, discard any "unspent" ios
+ * granted in the previous interval. Otherwise add the new ios to
+ * the previously granted ones that haven't been spent yet.
+ */
+ if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
+ ios->l_value1 = new_ios;
+ ios->l_value2 = 1;
+ } else {
+ ios->l_value1 += new_ios;
+ }
+
+
+ return 0;
+}
+
+static int
+cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
+{
+
+ /*
+ * So if we have any more IOPs left, allow it,
+ * otherwise wait. If current iops is 0, treat that
+ * as unlimited as a failsafe.
+ */
+ if (ios->current > 0 && ios->l_value1 <= 0)
+ return EAGAIN;
+ return 0;
+}
+
+static int
+cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
+{
+ int rv;
+
+ rv = cam_iosched_limiter_caniop(ios, bp);
+ if (rv == 0)
+ ios->l_value1--;
+
+ return rv;
+}
+
+static int
+cam_iosched_bw_init(struct iop_stats *ios)
+{
+
+ /* ios->current is in kB/s, so scale to bytes */
+ ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
+
+ return 0;
+}
+
+static int
+cam_iosched_bw_tick(struct iop_stats *ios)
+{
+ int bw;
+
+ /*
+ * If we're in the hole for available quota from
+ * the last time, then add the quantum for this.
+ * If we have any left over from last quantum,
+ * then too bad, that's lost. Also, ios->current
+ * is in kB/s, so scale.
+ *
+ * We also allow up to 4 quanta of credits to
+ * accumulate to deal with burstiness. 4 is extremely
+ * arbitrary.
+ */
+ bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
+ if (ios->l_value1 < bw * 4)
+ ios->l_value1 += bw;
+
+ return 0;
+}
+
+static int
+cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
+{
+ /*
+ * So if we have any more bw quota left, allow it,
+ * otherwise wait. Note, we'll go negative and that's
+ * OK. We'll just get a little less next quota.
+ *
+ * Note on going negative: that allows us to process
+ * requests in order better, since we won't allow
+ * shorter reads to get around the long one that we
+ * don't have the quota to do just yet. It also prevents
+ * starvation by being a little more permissive about
+ * what we let through this quantum (to prevent the
+ * starvation), at the cost of getting a little less
+ * next quantum.
+ *
+ * Also note that if the current limit is <= 0,
+ * we treat it as unlimited as a failsafe.
+ */
+ if (ios->current > 0 && ios->l_value1 <= 0)
+ return EAGAIN;
+
+
+ return 0;
+}
+
+static int
+cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
+{
+ int rv;
+
+ rv = cam_iosched_limiter_caniop(ios, bp);
+ if (rv == 0)
+ ios->l_value1 -= bp->bio_length;
+
+ return rv;
+}
+
+static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
+
+static void
+cam_iosched_ticker(void *arg)
+{
+ struct cam_iosched_softc *isc = arg;
+ sbintime_t now, delta;
+ int pending;
+
+ callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
+
+ now = sbinuptime();
+ delta = now - isc->last_time;
+ isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
+ isc->last_time = now;
+
+ cam_iosched_cl_maybe_steer(&isc->cl);
+
+ cam_iosched_limiter_tick(&isc->read_stats);
+ cam_iosched_limiter_tick(&isc->write_stats);
+ cam_iosched_limiter_tick(&isc->trim_stats);
+
+ cam_iosched_schedule(isc, isc->periph);
+
+ /*
+ * isc->load is an EMA of the pending I/Os at each tick. The number of
+ * pending I/Os is the sum of the I/Os queued to the hardware, and those
+ * in the software queue that could be queued to the hardware if there
+ * were slots.
+ *
+ * ios_stats.pending is a count of requests in the SIM right now for
+ * each of these types of I/O. So the total pending count is the sum of
+ * these I/Os and the sum of the queued I/Os still in the software queue
+ * for those operations that aren't being rate limited at the moment.
+ *
+ * The reason for the rate limiting bit is because those I/Os
+ * aren't part of the software queued load (since we could
+ * give them to hardware, but choose not to).
+ *
+ * Note: due to a bug in counting pending TRIM in the device, we
+ * don't include them in this count. We count each BIO_DELETE in
+ * the pending count, but the periph drivers collapse them down
+ * into one TRIM command. That one trim command gets the completion
+ * so the counts get off.
+ */
+ pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
+ pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
+ !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
+ !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
+ pending <<= 16;
+ pending /= isc->periph->path->device->ccbq.total_openings;
+
+ isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
+
+ isc->total_ticks++;
+}
+
+
+static void
+cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
+{
+
+ clp->next_steer = sbinuptime();
+ clp->softc = isc;
+ clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
+ clp->lolat = 5 * SBT_1MS;
+ clp->hilat = 15 * SBT_1MS;
+ clp->alpha = 20; /* Alpha == gain. 20 = .2 */
+ clp->type = set_max;
+}
+
+static void
+cam_iosched_cl_maybe_steer(struct control_loop *clp)
+{
+ struct cam_iosched_softc *isc;
+ sbintime_t now, lat;
+ int old;
+
+ isc = clp->softc;
+ now = isc->last_time;
+ if (now < clp->next_steer)
+ return;
+
+ clp->next_steer = now + clp->steer_interval;
+ switch (clp->type) {
+ case set_max:
+ if (isc->write_stats.current != isc->write_stats.max)
+ printf("Steering write from %d kBps to %d kBps\n",
+ isc->write_stats.current, isc->write_stats.max);
+ isc->read_stats.current = isc->read_stats.max;
+ isc->write_stats.current = isc->write_stats.max;
+ isc->trim_stats.current = isc->trim_stats.max;
+ break;
+ case read_latency:
+ old = isc->write_stats.current;
+ lat = isc->read_stats.ema;
+ /*
+ * Simple PLL-like engine. Since we're steering to a range for
+ * the SP (set point) that makes things a little more
+ * complicated. In addition, we're not directly controlling our
+ * PV (process variable), the read latency, but instead are
+ * manipulating the write bandwidth limit for our MV
+ * (manipulation variable), analysis of this code gets a bit
+ * messy. Also, the MV is a very noisy control surface for read
+ * latency since it is affected by many hidden processes inside
+ * the device which change how responsive read latency will be
+ * in reaction to changes in write bandwidth. Unlike the classic
+ * boiler control PLL. this may result in over-steering while
+ * the SSD takes its time to react to the new, lower load. This
+ * is why we use a relatively low alpha of between .1 and .25 to
+ * compensate for this effect. At .1, it takes ~22 steering
+ * intervals to back off by a factor of 10. At .2 it only takes
+ * ~10. At .25 it only takes ~8. However some preliminary data
+ * from the SSD drives suggests a reasponse time in 10's of
+ * seconds before latency drops regardless of the new write
+ * rate. Careful observation will be required to tune this
+ * effectively.
+ *
+ * Also, when there's no read traffic, we jack up the write
+ * limit too regardless of the last read latency. 10 is
+ * somewhat arbitrary.
+ */
+ if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
+ isc->write_stats.current = isc->write_stats.current *
+ (100 + clp->alpha) / 100; /* Scale up */
+ else if (lat > clp->hilat)
+ isc->write_stats.current = isc->write_stats.current *
+ (100 - clp->alpha) / 100; /* Scale down */
+ clp->last_count = isc->read_stats.total;
+
+ /*
+ * Even if we don't steer, per se, enforce the min/max limits as
+ * those may have changed.
+ */
+ if (isc->write_stats.current < isc->write_stats.min)
+ isc->write_stats.current = isc->write_stats.min;
+ if (isc->write_stats.current > isc->write_stats.max)
+ isc->write_stats.current = isc->write_stats.max;
+ if (old != isc->write_stats.current && iosched_debug)
+ printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
+ old, isc->write_stats.current,
+ (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
+ break;
+ case cl_max:
+ break;
+ }
+}
+#endif
+
+/*
+ * Trim or similar currently pending completion. Should only be set for
+ * those drivers wishing only one Trim active at a time.
+ */
+#define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
+ /* Callout active, and needs to be torn down */
+#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
+
+ /* Periph drivers set these flags to indicate work */
+#define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
+
+#ifdef CAM_IOSCHED_DYNAMIC
+static void
+cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
+ sbintime_t sim_latency, int cmd, size_t size);
+#endif
+
+static inline bool
+cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
+{
+ return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
+}
+
+static inline bool
+cam_iosched_has_io(struct cam_iosched_softc *isc)
+{
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (do_dynamic_iosched) {
+ struct bio *rbp = bioq_first(&isc->bio_queue);
+ struct bio *wbp = bioq_first(&isc->write_queue);
+ bool can_write = wbp != NULL &&
+ cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
+ bool can_read = rbp != NULL &&
+ cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
+ if (iosched_debug > 2) {
+ printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
+ printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
+ printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
+ }
+ return can_read || can_write;
+ }
+#endif
+ return bioq_first(&isc->bio_queue) != NULL;
+}
+
+static inline bool
+cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
+{
+ struct bio *bp;
+
+ bp = bioq_first(&isc->trim_queue);
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (do_dynamic_iosched) {
+ /*
+ * If we're limiting trims, then defer action on trims
+ * for a bit.
+ */
+ if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
+ return false;
+ }
+#endif
+
+ /*
+ * If we've set a trim_goal, then if we exceed that allow trims
+ * to be passed back to the driver. If we've also set a tick timeout
+ * allow trims back to the driver. Otherwise, don't allow trims yet.
+ */
+ if (isc->trim_goal > 0) {
+ if (isc->queued_trims >= isc->trim_goal)
+ return true;
+ if (isc->queued_trims > 0 &&
+ isc->trim_ticks > 0 &&
+ ticks - isc->last_trim_tick > isc->trim_ticks)
+ return true;
+ return false;
+ }
+
+ /* NB: Should perhaps have a max trim active independent of I/O limiters */
+ return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
+}
+
+#define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
+ (isc)->sort_io_queue : cam_sort_io_queues)
+
+
+static inline bool
+cam_iosched_has_work(struct cam_iosched_softc *isc)
+{
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (iosched_debug > 2)
+ printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
+ cam_iosched_has_more_trim(isc),
+ cam_iosched_has_flagged_work(isc));
+#endif
+
+ return cam_iosched_has_io(isc) ||
+ cam_iosched_has_more_trim(isc) ||
+ cam_iosched_has_flagged_work(isc);
+}
+
+#ifdef CAM_IOSCHED_DYNAMIC
+static void
+cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
+{
+
+ ios->limiter = none;
+ ios->in = 0;
+ ios->max = ios->current = 300000;
+ ios->min = 1;
+ ios->out = 0;
+ ios->errs = 0;
+ ios->pending = 0;
+ ios->queued = 0;
+ ios->total = 0;
+ ios->ema = 0;
+ ios->emvar = 0;
+ ios->softc = isc;
+ cam_iosched_limiter_init(ios);
+}
+
+static int
+cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
+{
+ char buf[16];
+ struct iop_stats *ios;
+ struct cam_iosched_softc *isc;
+ int value, i, error;
+ const char *p;
+
+ ios = arg1;
+ isc = ios->softc;
+ value = ios->limiter;
+ if (value < none || value >= limiter_max)
+ p = "UNKNOWN";
+ else
+ p = cam_iosched_limiter_names[value];
+
+ strlcpy(buf, p, sizeof(buf));
+ error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
+ if (error != 0 || req->newptr == NULL)
+ return error;
+
+ cam_periph_lock(isc->periph);
+
+ for (i = none; i < limiter_max; i++) {
+ if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
+ continue;
+ ios->limiter = i;
+ error = cam_iosched_limiter_init(ios);
+ if (error != 0) {
+ ios->limiter = value;
+ cam_periph_unlock(isc->periph);
+ return error;
+ }
+ /* Note: disk load averate requires ticker to be always running */
+ callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
+ isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
+
+ cam_periph_unlock(isc->periph);
+ return 0;
+ }
+
+ cam_periph_unlock(isc->periph);
+ return EINVAL;
+}
+
+static int
+cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
+{
+ char buf[16];
+ struct control_loop *clp;
+ struct cam_iosched_softc *isc;
+ int value, i, error;
+ const char *p;
+
+ clp = arg1;
+ isc = clp->softc;
+ value = clp->type;
+ if (value < none || value >= cl_max)
+ p = "UNKNOWN";
+ else
+ p = cam_iosched_control_type_names[value];
+
+ strlcpy(buf, p, sizeof(buf));
+ error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
+ if (error != 0 || req->newptr == NULL)
+ return error;
+
+ for (i = set_max; i < cl_max; i++) {
+ if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
+ continue;
+ cam_periph_lock(isc->periph);
+ clp->type = i;
+ cam_periph_unlock(isc->periph);
+ return 0;
+ }
+
+ return EINVAL;
+}
+
+static int
+cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
+{
+ char buf[16];
+ sbintime_t value;
+ int error;
+ uint64_t us;
+
+ value = *(sbintime_t *)arg1;
+ us = (uint64_t)value / SBT_1US;
+ snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
+ error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
+ if (error != 0 || req->newptr == NULL)
+ return error;
+ us = strtoul(buf, NULL, 10);
+ if (us == 0)
+ return EINVAL;
+ *(sbintime_t *)arg1 = us * SBT_1US;
+ return 0;
+}
+
+static int
+cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
+{
+ int i, error;
+ struct sbuf sb;
+ uint64_t *latencies;
+
+ latencies = arg1;
+ sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
+
+ for (i = 0; i < LAT_BUCKETS - 1; i++)
+ sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
+ sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
+ error = sbuf_finish(&sb);
+ sbuf_delete(&sb);
+
+ return (error);
+}
+
+static int
+cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
+{
+ int *quanta;
+ int error, value;
+
+ quanta = (unsigned *)arg1;
+ value = *quanta;
+
+ error = sysctl_handle_int(oidp, (int *)&value, 0, req);
+ if ((error != 0) || (req->newptr == NULL))
+ return (error);
+
+ if (value < 1 || value > hz)
+ return (EINVAL);
+
+ *quanta = value;
+
+ return (0);
+}
+
+static void
+cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
+{
+ struct sysctl_oid_list *n;
+ struct sysctl_ctx_list *ctx;
+
+ ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
+ SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
+ CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
+ n = SYSCTL_CHILDREN(ios->sysctl_tree);
+ ctx = &ios->sysctl_ctx;
+
+ SYSCTL_ADD_UQUAD(ctx, n,
+ OID_AUTO, "ema", CTLFLAG_RD,
+ &ios->ema,
+ "Fast Exponentially Weighted Moving Average");
+ SYSCTL_ADD_UQUAD(ctx, n,
+ OID_AUTO, "emvar", CTLFLAG_RD,
+ &ios->emvar,
+ "Fast Exponentially Weighted Moving Variance");
+
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "pending", CTLFLAG_RD,
+ &ios->pending, 0,
+ "Instantaneous # of pending transactions");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "count", CTLFLAG_RD,
+ &ios->total, 0,
+ "# of transactions submitted to hardware");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "queued", CTLFLAG_RD,
+ &ios->queued, 0,
+ "# of transactions in the queue");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "in", CTLFLAG_RD,
+ &ios->in, 0,
+ "# of transactions queued to driver");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "out", CTLFLAG_RD,
+ &ios->out, 0,
+ "# of transactions completed (including with error)");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "errs", CTLFLAG_RD,
+ &ios->errs, 0,
+ "# of transactions completed with an error");
+
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "limiter",
+ CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
+ ios, 0, cam_iosched_limiter_sysctl, "A",
+ "Current limiting type.");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "min", CTLFLAG_RW,
+ &ios->min, 0,
+ "min resource");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "max", CTLFLAG_RW,
+ &ios->max, 0,
+ "max resource");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "current", CTLFLAG_RW,
+ &ios->current, 0,
+ "current resource");
+
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "latencies",
+ CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
+ &ios->latencies, 0,
+ cam_iosched_sysctl_latencies, "A",
+ "Array of power of 2 latency from 1ms to 1.024s");
+}
+
+static void
+cam_iosched_iop_stats_fini(struct iop_stats *ios)
+{
+ if (ios->sysctl_tree)
+ if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
+ printf("can't remove iosched sysctl stats context\n");
+}
+
+static void
+cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
+{
+ struct sysctl_oid_list *n;
+ struct sysctl_ctx_list *ctx;
+ struct control_loop *clp;
+
+ clp = &isc->cl;
+ clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
+ SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
+ CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
+ n = SYSCTL_CHILDREN(clp->sysctl_tree);
+ ctx = &clp->sysctl_ctx;
+
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "type",
+ CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
+ clp, 0, cam_iosched_control_type_sysctl, "A",
+ "Control loop algorithm");
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "steer_interval",
+ CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
+ &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
+ "How often to steer (in us)");
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "lolat",
+ CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
+ &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
+ "Low water mark for Latency (in us)");
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "hilat",
+ CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
+ &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
+ "Hi water mark for Latency (in us)");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "alpha", CTLFLAG_RW,
+ &clp->alpha, 0,
+ "Alpha for PLL (x100) aka gain");
+}
+
+static void
+cam_iosched_cl_sysctl_fini(struct control_loop *clp)
+{
+ if (clp->sysctl_tree)
+ if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
+ printf("can't remove iosched sysctl control loop context\n");
+}
+#endif
+
+/*
+ * Allocate the iosched structure. This also insulates callers from knowing
+ * sizeof struct cam_iosched_softc.
+ */
+int
+cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
+{
+
+ *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
+ if (*iscp == NULL)
+ return ENOMEM;
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (iosched_debug)
+ printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
+#endif
+ (*iscp)->sort_io_queue = -1;
+ bioq_init(&(*iscp)->bio_queue);
+ bioq_init(&(*iscp)->trim_queue);
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (do_dynamic_iosched) {
+ bioq_init(&(*iscp)->write_queue);
+ (*iscp)->read_bias = 100;
+ (*iscp)->current_read_bias = 100;
+ (*iscp)->quanta = min(hz, 200);
+ cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
+ cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
+ cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
+ (*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */
+ (*iscp)->last_time = sbinuptime();
+ callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
+ (*iscp)->periph = periph;
+ cam_iosched_cl_init(&(*iscp)->cl, *iscp);
+ callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
+ (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
+ }
+#endif
+
+ return 0;
+}
+
+/*
+ * Reclaim all used resources. This assumes that other folks have
+ * drained the requests in the hardware. Maybe an unwise assumption.
+ */
+void
+cam_iosched_fini(struct cam_iosched_softc *isc)
+{
+ if (isc) {
+ cam_iosched_flush(isc, NULL, ENXIO);
+#ifdef CAM_IOSCHED_DYNAMIC
+ cam_iosched_iop_stats_fini(&isc->read_stats);
+ cam_iosched_iop_stats_fini(&isc->write_stats);
+ cam_iosched_iop_stats_fini(&isc->trim_stats);
+ cam_iosched_cl_sysctl_fini(&isc->cl);
+ if (isc->sysctl_tree)
+ if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
+ printf("can't remove iosched sysctl stats context\n");
+ if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
+ callout_drain(&isc->ticker);
+ isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
+ }
+#endif
+ free(isc, M_CAMSCHED);
+ }
+}
+
+/*
+ * After we're sure we're attaching a device, go ahead and add
+ * hooks for any sysctl we may wish to honor.
+ */
+void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
+ struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
+{
+ struct sysctl_oid_list *n;
+
+ n = SYSCTL_CHILDREN(node);
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
+ &isc->sort_io_queue, 0,
+ "Sort IO queue to try and optimise disk access patterns");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "trim_goal", CTLFLAG_RW,
+ &isc->trim_goal, 0,
+ "Number of trims to try to accumulate before sending to hardware");
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "trim_ticks", CTLFLAG_RW,
+ &isc->trim_goal, 0,
+ "IO Schedul qaunta to hold back trims for when accumulating");
+
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (!do_dynamic_iosched)
+ return;
+
+ isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
+ SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
+ CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
+ n = SYSCTL_CHILDREN(isc->sysctl_tree);
+ ctx = &isc->sysctl_ctx;
+
+ cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
+ cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
+ cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
+ cam_iosched_cl_sysctl_init(isc);
+
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "read_bias", CTLFLAG_RW,
+ &isc->read_bias, 100,
+ "How biased towards read should we be independent of limits");
+
+ SYSCTL_ADD_PROC(ctx, n,
+ OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
+ &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
+ "How many quanta per second do we slice the I/O up into");
+
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "total_ticks", CTLFLAG_RD,
+ &isc->total_ticks, 0,
+ "Total number of ticks we've done");
+
+ SYSCTL_ADD_INT(ctx, n,
+ OID_AUTO, "load", CTLFLAG_RD,
+ &isc->load, 0,
+ "scaled load average / 100");
+
+ SYSCTL_ADD_U64(ctx, n,
+ OID_AUTO, "latency_trigger", CTLFLAG_RW,
+ &isc->max_lat, 0,
+ "Latency treshold to trigger callbacks");
+#endif
+}
+
+void
+cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
+ cam_iosched_latfcn_t fnp, void *argp)
+{
+#ifdef CAM_IOSCHED_DYNAMIC
+ isc->latfcn = fnp;
+ isc->latarg = argp;
+#endif
+}
+
+/*
+ * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
+ * that will be queued up before iosched will "release" the trims to the client
+ * driver to wo with what they will (usually combine as many as possible). If we
+ * don't get this many, after trim_ticks we'll submit the I/O anyway with
+ * whatever we have. We do need an I/O of some kind of to clock the deferred
+ * trims out to disk. Since we will eventually get a write for the super block
+ * or something before we shutdown, the trims will complete. To be safe, when a
+ * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
+ * enough in the past so we'll present the BIO_DELETEs to the client driver.
+ * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
+ * and then a BIO_DELETE is sent down. No know client does this, and there's
+ * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
+ * but no client depends on the ordering being honored.
+ *
+ * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
+ * flushing on shutdown. I think there's bufs that would be dependent on the BIO
+ * finishing to write out at least metadata, so we'll be fine. To be safe, keep
+ * the number of ticks low (less than maybe 10s) to avoid shutdown races.
+ */
+
+void
+cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
+{
+
+ isc->trim_goal = goal;
+}
+
+void
+cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
+{
+
+ isc->trim_ticks = trim_ticks;
+}
+
+/*
+ * Flush outstanding I/O. Consumers of this library don't know all the
+ * queues we may keep, so this allows all I/O to be flushed in one
+ * convenient call.
+ */
+void
+cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
+{
+ bioq_flush(&isc->bio_queue, stp, err);
+ bioq_flush(&isc->trim_queue, stp, err);
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (do_dynamic_iosched)
+ bioq_flush(&isc->write_queue, stp, err);
+#endif
+}
+
+#ifdef CAM_IOSCHED_DYNAMIC
+static struct bio *
+cam_iosched_get_write(struct cam_iosched_softc *isc)
+{
+ struct bio *bp;
+
+ /*
+ * We control the write rate by controlling how many requests we send
+ * down to the drive at any one time. Fewer requests limits the
+ * effects of both starvation when the requests take a while and write
+ * amplification when each request is causing more than one write to
+ * the NAND media. Limiting the queue depth like this will also limit
+ * the write throughput and give and reads that want to compete to
+ * compete unfairly.
+ */
+ bp = bioq_first(&isc->write_queue);
+ if (bp == NULL) {
+ if (iosched_debug > 3)
+ printf("No writes present in write_queue\n");
+ return NULL;
+ }
+
+ /*
+ * If pending read, prefer that based on current read bias
+ * setting.
+ */
+ if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
+ if (iosched_debug)
+ printf(
+ "Reads present and current_read_bias is %d queued "
+ "writes %d queued reads %d\n",
+ isc->current_read_bias, isc->write_stats.queued,
+ isc->read_stats.queued);
+ isc->current_read_bias--;
+ /* We're not limiting writes, per se, just doing reads first */
+ return NULL;
+ }
+
+ /*
+ * See if our current limiter allows this I/O.
+ */
+ if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
+ if (iosched_debug)
+ printf("Can't write because limiter says no.\n");
+ isc->write_stats.state_flags |= IOP_RATE_LIMITED;
+ return NULL;
+ }
+
+ /*
+ * Let's do this: We've passed all the gates and we're a go
+ * to schedule the I/O in the SIM.
+ */
+ isc->current_read_bias = isc->read_bias;
+ bioq_remove(&isc->write_queue, bp);
+ if (bp->bio_cmd == BIO_WRITE) {
+ isc->write_stats.queued--;
+ isc->write_stats.total++;
+ isc->write_stats.pending++;
+ }
+ if (iosched_debug > 9)
+ printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
+ isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
+ return bp;
+}
+#endif
+
+/*
+ * Put back a trim that you weren't able to actually schedule this time.
+ */
+void
+cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
+{
+ bioq_insert_head(&isc->trim_queue, bp);
+ if (isc->queued_trims == 0)
+ isc->last_trim_tick = ticks;
+ isc->queued_trims++;
+#ifdef CAM_IOSCHED_DYNAMIC
+ isc->trim_stats.queued++;
+ isc->trim_stats.total--; /* since we put it back, don't double count */
+ isc->trim_stats.pending--;
+#endif
+}
+
+/*
+ * gets the next trim from the trim queue.
+ *
+ * Assumes we're called with the periph lock held. It removes this
+ * trim from the queue and the device must explicitly reinsert it
+ * should the need arise.
+ */
+struct bio *
+cam_iosched_next_trim(struct cam_iosched_softc *isc)
+{
+ struct bio *bp;
+
+ bp = bioq_first(&isc->trim_queue);
+ if (bp == NULL)
+ return NULL;
+ bioq_remove(&isc->trim_queue, bp);
+ isc->queued_trims--;
+ isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */
+#ifdef CAM_IOSCHED_DYNAMIC
+ isc->trim_stats.queued--;
+ isc->trim_stats.total++;
+ isc->trim_stats.pending++;
+#endif
+ return bp;
+}
+
+/*
+ * gets an available trim from the trim queue, if there's no trim
+ * already pending. It removes this trim from the queue and the device
+ * must explicitly reinsert it should the need arise.
+ *
+ * Assumes we're called with the periph lock held.
+ */
+struct bio *
+cam_iosched_get_trim(struct cam_iosched_softc *isc)
+{
+#ifdef CAM_IOSCHED_DYNAMIC
+ struct bio *bp;
+#endif
+
+ if (!cam_iosched_has_more_trim(isc))
+ return NULL;
+#ifdef CAM_IOSCHED_DYNAMIC
+ bp = bioq_first(&isc->trim_queue);
+ if (bp == NULL)
+ return NULL;
+
+ /*
+ * If pending read, prefer that based on current read bias setting. The
+ * read bias is shared for both writes and TRIMs, but on TRIMs the bias
+ * is for a combined TRIM not a single TRIM request that's come in.
+ */
+ if (do_dynamic_iosched) {
+ if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
+ if (iosched_debug)
+ printf("Reads present and current_read_bias is %d"
+ " queued trims %d queued reads %d\n",
+ isc->current_read_bias, isc->trim_stats.queued,
+ isc->read_stats.queued);
+ isc->current_read_bias--;
+ /* We're not limiting TRIMS, per se, just doing reads first */
+ return NULL;
+ }
+ /*
+ * We're going to do a trim, so reset the bias.
+ */
+ isc->current_read_bias = isc->read_bias;
+ }
+
+ /*
+ * See if our current limiter allows this I/O. Because we only call this
+ * here, and not in next_trim, the 'bandwidth' limits for trims won't
+ * work, while the iops or max queued limits will work. It's tricky
+ * because we want the limits to be from the perspective of the
+ * "commands sent to the device." To make iops work, we need to check
+ * only here (since we want all the ops we combine to count as one). To
+ * make bw limits work, we'd need to check in next_trim, but that would
+ * have the effect of limiting the iops as seen from the upper layers.
+ */
+ if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
+ if (iosched_debug)
+ printf("Can't trim because limiter says no.\n");
+ isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
+ return NULL;
+ }
+ isc->current_read_bias = isc->read_bias;
+ isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
+ /* cam_iosched_next_trim below keeps proper book */
+#endif
+ return cam_iosched_next_trim(isc);
+}
+
+/*
+ * Determine what the next bit of work to do is for the periph. The
+ * default implementation looks to see if we have trims to do, but no
+ * trims outstanding. If so, we do that. Otherwise we see if we have
+ * other work. If we do, then we do that. Otherwise why were we called?
+ */
+struct bio *
+cam_iosched_next_bio(struct cam_iosched_softc *isc)
+{
+ struct bio *bp;
+
+ /*
+ * See if we have a trim that can be scheduled. We can only send one
+ * at a time down, so this takes that into account.
+ *
+ * XXX newer TRIM commands are queueable. Revisit this when we
+ * implement them.
+ */
+ if ((bp = cam_iosched_get_trim(isc)) != NULL)
+ return bp;
+
+#ifdef CAM_IOSCHED_DYNAMIC
+ /*
+ * See if we have any pending writes, and room in the queue for them,
+ * and if so, those are next.
+ */
+ if (do_dynamic_iosched) {
+ if ((bp = cam_iosched_get_write(isc)) != NULL)
+ return bp;
+ }
+#endif
+
+ /*
+ * next, see if there's other, normal I/O waiting. If so return that.
+ */
+ if ((bp = bioq_first(&isc->bio_queue)) == NULL)
+ return NULL;
+
+#ifdef CAM_IOSCHED_DYNAMIC
+ /*
+ * For the dynamic scheduler, bio_queue is only for reads, so enforce
+ * the limits here. Enforce only for reads.
+ */
+ if (do_dynamic_iosched) {
+ if (bp->bio_cmd == BIO_READ &&
+ cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
+ isc->read_stats.state_flags |= IOP_RATE_LIMITED;
+ return NULL;
+ }
+ }
+ isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
+#endif
+ bioq_remove(&isc->bio_queue, bp);
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (do_dynamic_iosched) {
+ if (bp->bio_cmd == BIO_READ) {
+ isc->read_stats.queued--;
+ isc->read_stats.total++;
+ isc->read_stats.pending++;
+ } else
+ printf("Found bio_cmd = %#x\n", bp->bio_cmd);
+ }
+ if (iosched_debug > 9)
+ printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
+#endif
+ return bp;
+}
+
+/*
+ * Driver has been given some work to do by the block layer. Tell the
+ * scheduler about it and have it queue the work up. The scheduler module
+ * will then return the currently most useful bit of work later, possibly
+ * deferring work for various reasons.
+ */
+void
+cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
+{
+
+ /*
+ * A BIO_SPEEDUP from the uppper layers means that they have a block
+ * shortage. At the present, this is only sent when we're trying to
+ * allocate blocks, but have a shortage before giving up. bio_length is
+ * the size of their shortage. We will complete just enough BIO_DELETEs
+ * in the queue to satisfy the need. If bio_length is 0, we'll complete
+ * them all. This allows the scheduler to delay BIO_DELETEs to improve
+ * read/write performance without worrying about the upper layers. When
+ * it's possibly a problem, we respond by pretending the BIO_DELETEs
+ * just worked. We can't do anything about the BIO_DELETEs in the
+ * hardware, though. We have to wait for them to complete.
+ */
+ if (bp->bio_cmd == BIO_SPEEDUP) {
+ off_t len;
+ struct bio *nbp;
+
+ len = 0;
+ while (bioq_first(&isc->trim_queue) &&
+ (bp->bio_length == 0 || len < bp->bio_length)) {
+ nbp = bioq_takefirst(&isc->trim_queue);
+ len += nbp->bio_length;
+ nbp->bio_error = 0;
+ biodone(nbp);
+ }
+ if (bp->bio_length > 0) {
+ if (bp->bio_length > len)
+ bp->bio_resid = bp->bio_length - len;
+ else
+ bp->bio_resid = 0;
+ }
+ bp->bio_error = 0;
+ biodone(bp);
+ return;
+ }
+
+ /*
+ * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
+ * set the last tick time to one less than the current ticks minus the
+ * delay to force the BIO_DELETEs to be presented to the client driver.
+ */
+ if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
+ isc->last_trim_tick = ticks - isc->trim_ticks - 1;
+
+ /*
+ * Put all trims on the trim queue. Otherwise put the work on the bio
+ * queue.
+ */
+ if (bp->bio_cmd == BIO_DELETE) {
+ bioq_insert_tail(&isc->trim_queue, bp);
+ if (isc->queued_trims == 0)
+ isc->last_trim_tick = ticks;
+ isc->queued_trims++;
+#ifdef CAM_IOSCHED_DYNAMIC
+ isc->trim_stats.in++;
+ isc->trim_stats.queued++;
+#endif
+ }
+#ifdef CAM_IOSCHED_DYNAMIC
+ else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
+ if (cam_iosched_sort_queue(isc))
+ bioq_disksort(&isc->write_queue, bp);
+ else
+ bioq_insert_tail(&isc->write_queue, bp);
+ if (iosched_debug > 9)
+ printf("Qw : %p %#x\n", bp, bp->bio_cmd);
+ if (bp->bio_cmd == BIO_WRITE) {
+ isc->write_stats.in++;
+ isc->write_stats.queued++;
+ }
+ }
+#endif
+ else {
+ if (cam_iosched_sort_queue(isc))
+ bioq_disksort(&isc->bio_queue, bp);
+ else
+ bioq_insert_tail(&isc->bio_queue, bp);
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (iosched_debug > 9)
+ printf("Qr : %p %#x\n", bp, bp->bio_cmd);
+ if (bp->bio_cmd == BIO_READ) {
+ isc->read_stats.in++;
+ isc->read_stats.queued++;
+ } else if (bp->bio_cmd == BIO_WRITE) {
+ isc->write_stats.in++;
+ isc->write_stats.queued++;
+ }
+#endif
+ }
+}
+
+/*
+ * If we have work, get it scheduled. Called with the periph lock held.
+ */
+void
+cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
+{
+
+ if (cam_iosched_has_work(isc))
+ xpt_schedule(periph, CAM_PRIORITY_NORMAL);
+}
+
+/*
+ * Complete a trim request. Mark that we no longer have one in flight.
+ */
+void
+cam_iosched_trim_done(struct cam_iosched_softc *isc)
+{
+
+ isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
+}
+
+/*
+ * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
+ * might use notes in the ccb for statistics.
+ */
+int
+cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
+ union ccb *done_ccb)
+{
+ int retval = 0;
+#ifdef CAM_IOSCHED_DYNAMIC
+ if (!do_dynamic_iosched)
+ return retval;
+
+ if (iosched_debug > 10)
+ printf("done: %p %#x\n", bp, bp->bio_cmd);
+ if (bp->bio_cmd == BIO_WRITE) {
+ retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
+ if ((bp->bio_flags & BIO_ERROR) != 0)
+ isc->write_stats.errs++;
+ isc->write_stats.out++;
+ isc->write_stats.pending--;
+ } else if (bp->bio_cmd == BIO_READ) {
+ retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
+ if ((bp->bio_flags & BIO_ERROR) != 0)
+ isc->read_stats.errs++;
+ isc->read_stats.out++;
+ isc->read_stats.pending--;
+ } else if (bp->bio_cmd == BIO_DELETE) {
+ if ((bp->bio_flags & BIO_ERROR) != 0)
+ isc->trim_stats.errs++;
+ isc->trim_stats.out++;
+ isc->trim_stats.pending--;
+ } else if (bp->bio_cmd != BIO_FLUSH) {
+ if (iosched_debug)
+ printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
+ }
+
+ if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL) {
+ sbintime_t sim_latency;
+
+ sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
+
+ cam_iosched_io_metric_update(isc, sim_latency,
+ bp->bio_cmd, bp->bio_bcount);
+ /*
+ * Debugging code: allow callbacks to the periph driver when latency max
+ * is exceeded. This can be useful for triggering external debugging actions.
+ */
+ if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
+ isc->latfcn(isc->latarg, sim_latency, bp);
+ }
+
+#endif
+ return retval;
+}
+
+/*
+ * Tell the io scheduler that you've pushed a trim down into the sim.
+ * This also tells the I/O scheduler not to push any more trims down, so
+ * some periphs do not call it if they can cope with multiple trims in flight.
+ */
+void
+cam_iosched_submit_trim(struct cam_iosched_softc *isc)
+{
+
+ isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
+}
+
+/*
+ * Change the sorting policy hint for I/O transactions for this device.
+ */
+void
+cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
+{
+
+ isc->sort_io_queue = val;
+}
+
+int
+cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
+{
+ return isc->flags & flags;
+}
+
+void
+cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
+{
+ isc->flags |= flags;
+}
+
+void
+cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
+{
+ isc->flags &= ~flags;
+}
+
+#ifdef CAM_IOSCHED_DYNAMIC
+/*
+ * After the method presented in Jack Crenshaw's 1998 article "Integer
+ * Square Roots," reprinted at
+ * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
+ * and well worth the read. Briefly, we find the power of 4 that's the
+ * largest smaller than val. We then check each smaller power of 4 to
+ * see if val is still bigger. The right shifts at each step divide
+ * the result by 2 which after successive application winds up
+ * accumulating the right answer. It could also have been accumulated
+ * using a separate root counter, but this code is smaller and faster
+ * than that method. This method is also integer size invariant.
+ * It returns floor(sqrt((float)val)), or the largest integer less than
+ * or equal to the square root.
+ */
+static uint64_t
+isqrt64(uint64_t val)
+{
+ uint64_t res = 0;
+ uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
+
+ /*
+ * Find the largest power of 4 smaller than val.
+ */
+ while (bit > val)
+ bit >>= 2;
+
+ /*
+ * Accumulate the answer, one bit at a time (we keep moving
+ * them over since 2 is the square root of 4 and we test
+ * powers of 4). We accumulate where we find the bit, but
+ * the successive shifts land the bit in the right place
+ * by the end.
+ */
+ while (bit != 0) {
+ if (val >= res + bit) {
+ val -= res + bit;
+ res = (res >> 1) + bit;
+ } else
+ res >>= 1;
+ bit >>= 2;
+ }
+
+ return res;
+}
+
+static sbintime_t latencies[LAT_BUCKETS - 1] = {
+ SBT_1MS << 0,
+ SBT_1MS << 1,
+ SBT_1MS << 2,
+ SBT_1MS << 3,
+ SBT_1MS << 4,
+ SBT_1MS << 5,
+ SBT_1MS << 6,
+ SBT_1MS << 7,
+ SBT_1MS << 8,
+ SBT_1MS << 9,
+ SBT_1MS << 10,
+ SBT_1MS << 11,
+ SBT_1MS << 12,
+ SBT_1MS << 13 /* 8.192s */
+};
+
+static void
+cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
+{
+ sbintime_t y, deltasq, delta;
+ int i;
+
+ /*
+ * Keep counts for latency. We do it by power of two buckets.
+ * This helps us spot outlier behavior obscured by averages.
+ */
+ for (i = 0; i < LAT_BUCKETS - 1; i++) {
+ if (sim_latency < latencies[i]) {
+ iop->latencies[i]++;
+ break;
+ }
+ }
+ if (i == LAT_BUCKETS - 1)
+ iop->latencies[i]++; /* Put all > 1024ms values into the last bucket. */
+
+ /*
+ * Classic exponentially decaying average with a tiny alpha
+ * (2 ^ -alpha_bits). For more info see the NIST statistical
+ * handbook.
+ *
+ * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
+ * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
+ * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
+ * alpha = 1 / (1 << alpha_bits)
+ * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
+ * = y_t/b - e/b + be/b
+ * = (y_t - e + be) / b
+ * = (e + d) / b
+ *
+ * Since alpha is a power of two, we can compute this w/o any mult or
+ * division.
+ *
+ * Variance can also be computed. Usually, it would be expressed as follows:
+ * diff_t = y_t - ema_t-1
+ * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
+ * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
+ * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
+ * = e - e/b + dd/b + dd/bb
+ * = (bbe - be + bdd + dd) / bb
+ * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
+ */
+ /*
+ * XXX possible numeric issues
+ * o We assume right shifted integers do the right thing, since that's
+ * implementation defined. You can change the right shifts to / (1LL << alpha).
+ * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
+ * for emvar. This puts a ceiling of 13 bits on alpha since we need a
+ * few tens of seconds of representation.
+ * o We mitigate alpha issues by never setting it too high.
+ */
+ y = sim_latency;
+ delta = (y - iop->ema); /* d */
+ iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
+
+ /*
+ * Were we to naively plow ahead at this point, we wind up with many numerical
+ * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
+ * us with microsecond level precision in the input, so the same in the
+ * output. It means we can't overflow deltasq unless delta > 4k seconds. It
+ * also means that emvar can be up 46 bits 40 of which are fraction, which
+ * gives us a way to measure up to ~8s in the SD before the computation goes
+ * unstable. Even the worst hard disk rarely has > 1s service time in the
+ * drive. It does mean we have to shift left 12 bits after taking the
+ * square root to compute the actual standard deviation estimate. This loss of
+ * precision is preferable to needing int128 types to work. The above numbers
+ * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
+ * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
+ */
+ delta >>= 12;
+ deltasq = delta * delta; /* dd */
+ iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
+ ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
+ deltasq) /* dd */
+ >> (2 * alpha_bits); /* div bb */
+ iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
+}
+
+static void
+cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
+ sbintime_t sim_latency, int cmd, size_t size)
+{
+ /* xxx Do we need to scale based on the size of the I/O ? */
+ switch (cmd) {
+ case BIO_READ:
+ cam_iosched_update(&isc->read_stats, sim_latency);
+ break;
+ case BIO_WRITE:
+ cam_iosched_update(&isc->write_stats, sim_latency);
+ break;
+ case BIO_DELETE:
+ cam_iosched_update(&isc->trim_stats, sim_latency);
+ break;
+ default:
+ break;
+ }
+}
+
+#ifdef DDB
+static int biolen(struct bio_queue_head *bq)
+{
+ int i = 0;
+ struct bio *bp;
+
+ TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
+ i++;
+ }
+ return i;
+}
+
+/*
+ * Show the internal state of the I/O scheduler.
+ */
+DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
+{
+ struct cam_iosched_softc *isc;
+
+ if (!have_addr) {
+ db_printf("Need addr\n");
+ return;
+ }
+ isc = (struct cam_iosched_softc *)addr;
+ db_printf("pending_reads: %d\n", isc->read_stats.pending);
+ db_printf("min_reads: %d\n", isc->read_stats.min);
+ db_printf("max_reads: %d\n", isc->read_stats.max);
+ db_printf("reads: %d\n", isc->read_stats.total);
+ db_printf("in_reads: %d\n", isc->read_stats.in);
+ db_printf("out_reads: %d\n", isc->read_stats.out);
+ db_printf("queued_reads: %d\n", isc->read_stats.queued);
+ db_printf("Read Q len %d\n", biolen(&isc->bio_queue));
+ db_printf("pending_writes: %d\n", isc->write_stats.pending);
+ db_printf("min_writes: %d\n", isc->write_stats.min);
+ db_printf("max_writes: %d\n", isc->write_stats.max);
+ db_printf("writes: %d\n", isc->write_stats.total);
+ db_printf("in_writes: %d\n", isc->write_stats.in);
+ db_printf("out_writes: %d\n", isc->write_stats.out);
+ db_printf("queued_writes: %d\n", isc->write_stats.queued);
+ db_printf("Write Q len %d\n", biolen(&isc->write_queue));
+ db_printf("pending_trims: %d\n", isc->trim_stats.pending);
+ db_printf("min_trims: %d\n", isc->trim_stats.min);
+ db_printf("max_trims: %d\n", isc->trim_stats.max);
+ db_printf("trims: %d\n", isc->trim_stats.total);
+ db_printf("in_trims: %d\n", isc->trim_stats.in);
+ db_printf("out_trims: %d\n", isc->trim_stats.out);
+ db_printf("queued_trims: %d\n", isc->trim_stats.queued);
+ db_printf("Trim Q len %d\n", biolen(&isc->trim_queue));
+ db_printf("read_bias: %d\n", isc->read_bias);
+ db_printf("current_read_bias: %d\n", isc->current_read_bias);
+ db_printf("Trim active? %s\n",
+ (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
+}
+#endif
+#endif