aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c')
-rw-r--r--sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c8542
1 files changed, 8542 insertions, 0 deletions
diff --git a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c
new file mode 100644
index 000000000000..0a62df056071
--- /dev/null
+++ b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c
@@ -0,0 +1,8542 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2018, Joyent, Inc.
+ * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
+ * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
+ * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
+ */
+
+/*
+ * DVA-based Adjustable Replacement Cache
+ *
+ * While much of the theory of operation used here is
+ * based on the self-tuning, low overhead replacement cache
+ * presented by Megiddo and Modha at FAST 2003, there are some
+ * significant differences:
+ *
+ * 1. The Megiddo and Modha model assumes any page is evictable.
+ * Pages in its cache cannot be "locked" into memory. This makes
+ * the eviction algorithm simple: evict the last page in the list.
+ * This also make the performance characteristics easy to reason
+ * about. Our cache is not so simple. At any given moment, some
+ * subset of the blocks in the cache are un-evictable because we
+ * have handed out a reference to them. Blocks are only evictable
+ * when there are no external references active. This makes
+ * eviction far more problematic: we choose to evict the evictable
+ * blocks that are the "lowest" in the list.
+ *
+ * There are times when it is not possible to evict the requested
+ * space. In these circumstances we are unable to adjust the cache
+ * size. To prevent the cache growing unbounded at these times we
+ * implement a "cache throttle" that slows the flow of new data
+ * into the cache until we can make space available.
+ *
+ * 2. The Megiddo and Modha model assumes a fixed cache size.
+ * Pages are evicted when the cache is full and there is a cache
+ * miss. Our model has a variable sized cache. It grows with
+ * high use, but also tries to react to memory pressure from the
+ * operating system: decreasing its size when system memory is
+ * tight.
+ *
+ * 3. The Megiddo and Modha model assumes a fixed page size. All
+ * elements of the cache are therefore exactly the same size. So
+ * when adjusting the cache size following a cache miss, its simply
+ * a matter of choosing a single page to evict. In our model, we
+ * have variable sized cache blocks (rangeing from 512 bytes to
+ * 128K bytes). We therefore choose a set of blocks to evict to make
+ * space for a cache miss that approximates as closely as possible
+ * the space used by the new block.
+ *
+ * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
+ * by N. Megiddo & D. Modha, FAST 2003
+ */
+
+/*
+ * The locking model:
+ *
+ * A new reference to a cache buffer can be obtained in two
+ * ways: 1) via a hash table lookup using the DVA as a key,
+ * or 2) via one of the ARC lists. The arc_read() interface
+ * uses method 1, while the internal ARC algorithms for
+ * adjusting the cache use method 2. We therefore provide two
+ * types of locks: 1) the hash table lock array, and 2) the
+ * ARC list locks.
+ *
+ * Buffers do not have their own mutexes, rather they rely on the
+ * hash table mutexes for the bulk of their protection (i.e. most
+ * fields in the arc_buf_hdr_t are protected by these mutexes).
+ *
+ * buf_hash_find() returns the appropriate mutex (held) when it
+ * locates the requested buffer in the hash table. It returns
+ * NULL for the mutex if the buffer was not in the table.
+ *
+ * buf_hash_remove() expects the appropriate hash mutex to be
+ * already held before it is invoked.
+ *
+ * Each ARC state also has a mutex which is used to protect the
+ * buffer list associated with the state. When attempting to
+ * obtain a hash table lock while holding an ARC list lock you
+ * must use: mutex_tryenter() to avoid deadlock. Also note that
+ * the active state mutex must be held before the ghost state mutex.
+ *
+ * It as also possible to register a callback which is run when the
+ * arc_meta_limit is reached and no buffers can be safely evicted. In
+ * this case the arc user should drop a reference on some arc buffers so
+ * they can be reclaimed and the arc_meta_limit honored. For example,
+ * when using the ZPL each dentry holds a references on a znode. These
+ * dentries must be pruned before the arc buffer holding the znode can
+ * be safely evicted.
+ *
+ * Note that the majority of the performance stats are manipulated
+ * with atomic operations.
+ *
+ * The L2ARC uses the l2ad_mtx on each vdev for the following:
+ *
+ * - L2ARC buflist creation
+ * - L2ARC buflist eviction
+ * - L2ARC write completion, which walks L2ARC buflists
+ * - ARC header destruction, as it removes from L2ARC buflists
+ * - ARC header release, as it removes from L2ARC buflists
+ */
+
+/*
+ * ARC operation:
+ *
+ * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
+ * This structure can point either to a block that is still in the cache or to
+ * one that is only accessible in an L2 ARC device, or it can provide
+ * information about a block that was recently evicted. If a block is
+ * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
+ * information to retrieve it from the L2ARC device. This information is
+ * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
+ * that is in this state cannot access the data directly.
+ *
+ * Blocks that are actively being referenced or have not been evicted
+ * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
+ * the arc_buf_hdr_t that will point to the data block in memory. A block can
+ * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
+ * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
+ * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
+ *
+ * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
+ * ability to store the physical data (b_pabd) associated with the DVA of the
+ * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
+ * it will match its on-disk compression characteristics. This behavior can be
+ * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
+ * compressed ARC functionality is disabled, the b_pabd will point to an
+ * uncompressed version of the on-disk data.
+ *
+ * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
+ * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
+ * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
+ * consumer. The ARC will provide references to this data and will keep it
+ * cached until it is no longer in use. The ARC caches only the L1ARC's physical
+ * data block and will evict any arc_buf_t that is no longer referenced. The
+ * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
+ * "overhead_size" kstat.
+ *
+ * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
+ * compressed form. The typical case is that consumers will want uncompressed
+ * data, and when that happens a new data buffer is allocated where the data is
+ * decompressed for them to use. Currently the only consumer who wants
+ * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
+ * exists on disk. When this happens, the arc_buf_t's data buffer is shared
+ * with the arc_buf_hdr_t.
+ *
+ * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
+ * first one is owned by a compressed send consumer (and therefore references
+ * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
+ * used by any other consumer (and has its own uncompressed copy of the data
+ * buffer).
+ *
+ * arc_buf_hdr_t
+ * +-----------+
+ * | fields |
+ * | common to |
+ * | L1- and |
+ * | L2ARC |
+ * +-----------+
+ * | l2arc_buf_hdr_t
+ * | |
+ * +-----------+
+ * | l1arc_buf_hdr_t
+ * | | arc_buf_t
+ * | b_buf +------------>+-----------+ arc_buf_t
+ * | b_pabd +-+ |b_next +---->+-----------+
+ * +-----------+ | |-----------| |b_next +-->NULL
+ * | |b_comp = T | +-----------+
+ * | |b_data +-+ |b_comp = F |
+ * | +-----------+ | |b_data +-+
+ * +->+------+ | +-----------+ |
+ * compressed | | | |
+ * data | |<--------------+ | uncompressed
+ * +------+ compressed, | data
+ * shared +-->+------+
+ * data | |
+ * | |
+ * +------+
+ *
+ * When a consumer reads a block, the ARC must first look to see if the
+ * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
+ * arc_buf_t and either copies uncompressed data into a new data buffer from an
+ * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
+ * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
+ * hdr is compressed and the desired compression characteristics of the
+ * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
+ * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
+ * the last buffer in the hdr's b_buf list, however a shared compressed buf can
+ * be anywhere in the hdr's list.
+ *
+ * The diagram below shows an example of an uncompressed ARC hdr that is
+ * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
+ * the last element in the buf list):
+ *
+ * arc_buf_hdr_t
+ * +-----------+
+ * | |
+ * | |
+ * | |
+ * +-----------+
+ * l2arc_buf_hdr_t| |
+ * | |
+ * +-----------+
+ * l1arc_buf_hdr_t| |
+ * | | arc_buf_t (shared)
+ * | b_buf +------------>+---------+ arc_buf_t
+ * | | |b_next +---->+---------+
+ * | b_pabd +-+ |---------| |b_next +-->NULL
+ * +-----------+ | | | +---------+
+ * | |b_data +-+ | |
+ * | +---------+ | |b_data +-+
+ * +->+------+ | +---------+ |
+ * | | | |
+ * uncompressed | | | |
+ * data +------+ | |
+ * ^ +->+------+ |
+ * | uncompressed | | |
+ * | data | | |
+ * | +------+ |
+ * +---------------------------------+
+ *
+ * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
+ * since the physical block is about to be rewritten. The new data contents
+ * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
+ * it may compress the data before writing it to disk. The ARC will be called
+ * with the transformed data and will bcopy the transformed on-disk block into
+ * a newly allocated b_pabd. Writes are always done into buffers which have
+ * either been loaned (and hence are new and don't have other readers) or
+ * buffers which have been released (and hence have their own hdr, if there
+ * were originally other readers of the buf's original hdr). This ensures that
+ * the ARC only needs to update a single buf and its hdr after a write occurs.
+ *
+ * When the L2ARC is in use, it will also take advantage of the b_pabd. The
+ * L2ARC will always write the contents of b_pabd to the L2ARC. This means
+ * that when compressed ARC is enabled that the L2ARC blocks are identical
+ * to the on-disk block in the main data pool. This provides a significant
+ * advantage since the ARC can leverage the bp's checksum when reading from the
+ * L2ARC to determine if the contents are valid. However, if the compressed
+ * ARC is disabled, then the L2ARC's block must be transformed to look
+ * like the physical block in the main data pool before comparing the
+ * checksum and determining its validity.
+ */
+
+#include <sys/spa.h>
+#include <sys/zio.h>
+#include <sys/spa_impl.h>
+#include <sys/zio_compress.h>
+#include <sys/zio_checksum.h>
+#include <sys/zfs_context.h>
+#include <sys/arc.h>
+#include <sys/refcount.h>
+#include <sys/vdev.h>
+#include <sys/vdev_impl.h>
+#include <sys/dsl_pool.h>
+#include <sys/zio_checksum.h>
+#include <sys/multilist.h>
+#include <sys/abd.h>
+#ifdef _KERNEL
+#include <sys/dnlc.h>
+#include <sys/racct.h>
+#endif
+#include <sys/callb.h>
+#include <sys/kstat.h>
+#include <sys/trim_map.h>
+#include <sys/zthr.h>
+#include <zfs_fletcher.h>
+#include <sys/sdt.h>
+#include <sys/aggsum.h>
+#include <sys/cityhash.h>
+
+#include <machine/vmparam.h>
+
+#ifdef illumos
+#ifndef _KERNEL
+/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
+boolean_t arc_watch = B_FALSE;
+int arc_procfd;
+#endif
+#endif /* illumos */
+
+/*
+ * This thread's job is to keep enough free memory in the system, by
+ * calling arc_kmem_reap_now() plus arc_shrink(), which improves
+ * arc_available_memory().
+ */
+static zthr_t *arc_reap_zthr;
+
+/*
+ * This thread's job is to keep arc_size under arc_c, by calling
+ * arc_adjust(), which improves arc_is_overflowing().
+ */
+static zthr_t *arc_adjust_zthr;
+
+static kmutex_t arc_adjust_lock;
+static kcondvar_t arc_adjust_waiters_cv;
+static boolean_t arc_adjust_needed = B_FALSE;
+
+static kmutex_t arc_dnlc_evicts_lock;
+static kcondvar_t arc_dnlc_evicts_cv;
+static boolean_t arc_dnlc_evicts_thread_exit;
+
+uint_t arc_reduce_dnlc_percent = 3;
+
+/*
+ * The number of headers to evict in arc_evict_state_impl() before
+ * dropping the sublist lock and evicting from another sublist. A lower
+ * value means we're more likely to evict the "correct" header (i.e. the
+ * oldest header in the arc state), but comes with higher overhead
+ * (i.e. more invocations of arc_evict_state_impl()).
+ */
+int zfs_arc_evict_batch_limit = 10;
+
+/* number of seconds before growing cache again */
+int arc_grow_retry = 60;
+
+/*
+ * Minimum time between calls to arc_kmem_reap_soon(). Note that this will
+ * be converted to ticks, so with the default hz=100, a setting of 15 ms
+ * will actually wait 2 ticks, or 20ms.
+ */
+int arc_kmem_cache_reap_retry_ms = 1000;
+
+/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
+int zfs_arc_overflow_shift = 8;
+
+/* shift of arc_c for calculating both min and max arc_p */
+int arc_p_min_shift = 4;
+
+/* log2(fraction of arc to reclaim) */
+int arc_shrink_shift = 7;
+
+/*
+ * log2(fraction of ARC which must be free to allow growing).
+ * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
+ * when reading a new block into the ARC, we will evict an equal-sized block
+ * from the ARC.
+ *
+ * This must be less than arc_shrink_shift, so that when we shrink the ARC,
+ * we will still not allow it to grow.
+ */
+int arc_no_grow_shift = 5;
+
+
+/*
+ * minimum lifespan of a prefetch block in clock ticks
+ * (initialized in arc_init())
+ */
+static int zfs_arc_min_prefetch_ms = 1;
+static int zfs_arc_min_prescient_prefetch_ms = 6;
+
+/*
+ * If this percent of memory is free, don't throttle.
+ */
+int arc_lotsfree_percent = 10;
+
+static boolean_t arc_initialized;
+extern boolean_t zfs_prefetch_disable;
+
+/*
+ * The arc has filled available memory and has now warmed up.
+ */
+static boolean_t arc_warm;
+
+/*
+ * log2 fraction of the zio arena to keep free.
+ */
+int arc_zio_arena_free_shift = 2;
+
+/*
+ * These tunables are for performance analysis.
+ */
+uint64_t zfs_arc_max;
+uint64_t zfs_arc_min;
+uint64_t zfs_arc_meta_limit = 0;
+uint64_t zfs_arc_meta_min = 0;
+uint64_t zfs_arc_dnode_limit = 0;
+uint64_t zfs_arc_dnode_reduce_percent = 10;
+int zfs_arc_grow_retry = 0;
+int zfs_arc_shrink_shift = 0;
+int zfs_arc_no_grow_shift = 0;
+int zfs_arc_p_min_shift = 0;
+uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
+u_int zfs_arc_free_target = 0;
+
+/* Absolute min for arc min / max is 16MB. */
+static uint64_t arc_abs_min = 16 << 20;
+
+/*
+ * ARC dirty data constraints for arc_tempreserve_space() throttle
+ */
+uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
+uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
+uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
+
+boolean_t zfs_compressed_arc_enabled = B_TRUE;
+
+static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
+static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
+static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
+static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
+static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
+
+#if defined(__FreeBSD__) && defined(_KERNEL)
+static void
+arc_free_target_init(void *unused __unused)
+{
+
+ zfs_arc_free_target = vm_cnt.v_free_target;
+}
+SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
+ arc_free_target_init, NULL);
+
+TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
+TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
+TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
+TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
+TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
+SYSCTL_DECL(_vfs_zfs);
+SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
+ 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
+SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
+ 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
+SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
+ 0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
+ "log2(fraction of ARC which must be free to allow growing)");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
+ &zfs_arc_average_blocksize, 0,
+ "ARC average blocksize");
+SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
+ &arc_shrink_shift, 0,
+ "log2(fraction of arc to reclaim)");
+SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
+ &arc_grow_retry, 0,
+ "Wait in seconds before considering growing ARC");
+SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
+ &zfs_compressed_arc_enabled, 0,
+ "Enable compressed ARC");
+SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_kmem_cache_reap_retry_ms, CTLFLAG_RWTUN,
+ &arc_kmem_cache_reap_retry_ms, 0,
+ "Interval between ARC kmem_cache reapings");
+
+/*
+ * We don't have a tunable for arc_free_target due to the dependency on
+ * pagedaemon initialisation.
+ */
+SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
+ CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
+ sysctl_vfs_zfs_arc_free_target, "IU",
+ "Desired number of free pages below which ARC triggers reclaim");
+
+static int
+sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
+{
+ u_int val;
+ int err;
+
+ val = zfs_arc_free_target;
+ err = sysctl_handle_int(oidp, &val, 0, req);
+ if (err != 0 || req->newptr == NULL)
+ return (err);
+
+ if (val < minfree)
+ return (EINVAL);
+ if (val > vm_cnt.v_page_count)
+ return (EINVAL);
+
+ zfs_arc_free_target = val;
+
+ return (0);
+}
+
+/*
+ * Must be declared here, before the definition of corresponding kstat
+ * macro which uses the same names will confuse the compiler.
+ */
+SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
+ CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
+ sysctl_vfs_zfs_arc_meta_limit, "QU",
+ "ARC metadata limit");
+#endif
+
+/*
+ * Note that buffers can be in one of 6 states:
+ * ARC_anon - anonymous (discussed below)
+ * ARC_mru - recently used, currently cached
+ * ARC_mru_ghost - recentely used, no longer in cache
+ * ARC_mfu - frequently used, currently cached
+ * ARC_mfu_ghost - frequently used, no longer in cache
+ * ARC_l2c_only - exists in L2ARC but not other states
+ * When there are no active references to the buffer, they are
+ * are linked onto a list in one of these arc states. These are
+ * the only buffers that can be evicted or deleted. Within each
+ * state there are multiple lists, one for meta-data and one for
+ * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
+ * etc.) is tracked separately so that it can be managed more
+ * explicitly: favored over data, limited explicitly.
+ *
+ * Anonymous buffers are buffers that are not associated with
+ * a DVA. These are buffers that hold dirty block copies
+ * before they are written to stable storage. By definition,
+ * they are "ref'd" and are considered part of arc_mru
+ * that cannot be freed. Generally, they will aquire a DVA
+ * as they are written and migrate onto the arc_mru list.
+ *
+ * The ARC_l2c_only state is for buffers that are in the second
+ * level ARC but no longer in any of the ARC_m* lists. The second
+ * level ARC itself may also contain buffers that are in any of
+ * the ARC_m* states - meaning that a buffer can exist in two
+ * places. The reason for the ARC_l2c_only state is to keep the
+ * buffer header in the hash table, so that reads that hit the
+ * second level ARC benefit from these fast lookups.
+ */
+
+typedef struct arc_state {
+ /*
+ * list of evictable buffers
+ */
+ multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
+ /*
+ * total amount of evictable data in this state
+ */
+ refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
+ /*
+ * total amount of data in this state; this includes: evictable,
+ * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
+ */
+ refcount_t arcs_size;
+ /*
+ * supports the "dbufs" kstat
+ */
+ arc_state_type_t arcs_state;
+} arc_state_t;
+
+/*
+ * Percentage that can be consumed by dnodes of ARC meta buffers.
+ */
+int zfs_arc_meta_prune = 10000;
+unsigned long zfs_arc_dnode_limit_percent = 10;
+int zfs_arc_meta_strategy = ARC_STRATEGY_META_ONLY;
+int zfs_arc_meta_adjust_restarts = 4096;
+
+SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_meta_strategy, CTLFLAG_RWTUN,
+ &zfs_arc_meta_strategy, 0,
+ "ARC metadata reclamation strategy "
+ "(0 = metadata only, 1 = balance data and metadata)");
+
+/* The 6 states: */
+static arc_state_t ARC_anon;
+static arc_state_t ARC_mru;
+static arc_state_t ARC_mru_ghost;
+static arc_state_t ARC_mfu;
+static arc_state_t ARC_mfu_ghost;
+static arc_state_t ARC_l2c_only;
+
+typedef struct arc_stats {
+ kstat_named_t arcstat_hits;
+ kstat_named_t arcstat_misses;
+ kstat_named_t arcstat_demand_data_hits;
+ kstat_named_t arcstat_demand_data_misses;
+ kstat_named_t arcstat_demand_metadata_hits;
+ kstat_named_t arcstat_demand_metadata_misses;
+ kstat_named_t arcstat_prefetch_data_hits;
+ kstat_named_t arcstat_prefetch_data_misses;
+ kstat_named_t arcstat_prefetch_metadata_hits;
+ kstat_named_t arcstat_prefetch_metadata_misses;
+ kstat_named_t arcstat_mru_hits;
+ kstat_named_t arcstat_mru_ghost_hits;
+ kstat_named_t arcstat_mfu_hits;
+ kstat_named_t arcstat_mfu_ghost_hits;
+ kstat_named_t arcstat_allocated;
+ kstat_named_t arcstat_deleted;
+ /*
+ * Number of buffers that could not be evicted because the hash lock
+ * was held by another thread. The lock may not necessarily be held
+ * by something using the same buffer, since hash locks are shared
+ * by multiple buffers.
+ */
+ kstat_named_t arcstat_mutex_miss;
+ /*
+ * Number of buffers skipped when updating the access state due to the
+ * header having already been released after acquiring the hash lock.
+ */
+ kstat_named_t arcstat_access_skip;
+ /*
+ * Number of buffers skipped because they have I/O in progress, are
+ * indirect prefetch buffers that have not lived long enough, or are
+ * not from the spa we're trying to evict from.
+ */
+ kstat_named_t arcstat_evict_skip;
+ /*
+ * Number of times arc_evict_state() was unable to evict enough
+ * buffers to reach it's target amount.
+ */
+ kstat_named_t arcstat_evict_not_enough;
+ kstat_named_t arcstat_evict_l2_cached;
+ kstat_named_t arcstat_evict_l2_eligible;
+ kstat_named_t arcstat_evict_l2_ineligible;
+ kstat_named_t arcstat_evict_l2_skip;
+ kstat_named_t arcstat_hash_elements;
+ kstat_named_t arcstat_hash_elements_max;
+ kstat_named_t arcstat_hash_collisions;
+ kstat_named_t arcstat_hash_chains;
+ kstat_named_t arcstat_hash_chain_max;
+ kstat_named_t arcstat_p;
+ kstat_named_t arcstat_c;
+ kstat_named_t arcstat_c_min;
+ kstat_named_t arcstat_c_max;
+ /* Not updated directly; only synced in arc_kstat_update. */
+ kstat_named_t arcstat_size;
+ /*
+ * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
+ * Note that the compressed bytes may match the uncompressed bytes
+ * if the block is either not compressed or compressed arc is disabled.
+ */
+ kstat_named_t arcstat_compressed_size;
+ /*
+ * Uncompressed size of the data stored in b_pabd. If compressed
+ * arc is disabled then this value will be identical to the stat
+ * above.
+ */
+ kstat_named_t arcstat_uncompressed_size;
+ /*
+ * Number of bytes stored in all the arc_buf_t's. This is classified
+ * as "overhead" since this data is typically short-lived and will
+ * be evicted from the arc when it becomes unreferenced unless the
+ * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
+ * values have been set (see comment in dbuf.c for more information).
+ */
+ kstat_named_t arcstat_overhead_size;
+ /*
+ * Number of bytes consumed by internal ARC structures necessary
+ * for tracking purposes; these structures are not actually
+ * backed by ARC buffers. This includes arc_buf_hdr_t structures
+ * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
+ * caches), and arc_buf_t structures (allocated via arc_buf_t
+ * cache).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_hdr_size;
+ /*
+ * Number of bytes consumed by ARC buffers of type equal to
+ * ARC_BUFC_DATA. This is generally consumed by buffers backing
+ * on disk user data (e.g. plain file contents).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_data_size;
+ /*
+ * Number of bytes consumed by ARC buffers of type equal to
+ * ARC_BUFC_METADATA. This is generally consumed by buffers
+ * backing on disk data that is used for internal ZFS
+ * structures (e.g. ZAP, dnode, indirect blocks, etc).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_metadata_size;
+ /*
+ * Number of bytes consumed by dmu_buf_impl_t objects.
+ */
+ kstat_named_t arcstat_dbuf_size;
+ /*
+ * Number of bytes consumed by dnode_t objects.
+ */
+ kstat_named_t arcstat_dnode_size;
+ /*
+ * Number of bytes consumed by bonus buffers.
+ */
+ kstat_named_t arcstat_bonus_size;
+#if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
+ /*
+ * Sum of the previous three counters, provided for compatibility.
+ */
+ kstat_named_t arcstat_other_size;
+#endif
+ /*
+ * Total number of bytes consumed by ARC buffers residing in the
+ * arc_anon state. This includes *all* buffers in the arc_anon
+ * state; e.g. data, metadata, evictable, and unevictable buffers
+ * are all included in this value.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_anon_size;
+ /*
+ * Number of bytes consumed by ARC buffers that meet the
+ * following criteria: backing buffers of type ARC_BUFC_DATA,
+ * residing in the arc_anon state, and are eligible for eviction
+ * (e.g. have no outstanding holds on the buffer).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_anon_evictable_data;
+ /*
+ * Number of bytes consumed by ARC buffers that meet the
+ * following criteria: backing buffers of type ARC_BUFC_METADATA,
+ * residing in the arc_anon state, and are eligible for eviction
+ * (e.g. have no outstanding holds on the buffer).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_anon_evictable_metadata;
+ /*
+ * Total number of bytes consumed by ARC buffers residing in the
+ * arc_mru state. This includes *all* buffers in the arc_mru
+ * state; e.g. data, metadata, evictable, and unevictable buffers
+ * are all included in this value.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mru_size;
+ /*
+ * Number of bytes consumed by ARC buffers that meet the
+ * following criteria: backing buffers of type ARC_BUFC_DATA,
+ * residing in the arc_mru state, and are eligible for eviction
+ * (e.g. have no outstanding holds on the buffer).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mru_evictable_data;
+ /*
+ * Number of bytes consumed by ARC buffers that meet the
+ * following criteria: backing buffers of type ARC_BUFC_METADATA,
+ * residing in the arc_mru state, and are eligible for eviction
+ * (e.g. have no outstanding holds on the buffer).
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mru_evictable_metadata;
+ /*
+ * Total number of bytes that *would have been* consumed by ARC
+ * buffers in the arc_mru_ghost state. The key thing to note
+ * here, is the fact that this size doesn't actually indicate
+ * RAM consumption. The ghost lists only consist of headers and
+ * don't actually have ARC buffers linked off of these headers.
+ * Thus, *if* the headers had associated ARC buffers, these
+ * buffers *would have* consumed this number of bytes.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mru_ghost_size;
+ /*
+ * Number of bytes that *would have been* consumed by ARC
+ * buffers that are eligible for eviction, of type
+ * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mru_ghost_evictable_data;
+ /*
+ * Number of bytes that *would have been* consumed by ARC
+ * buffers that are eligible for eviction, of type
+ * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mru_ghost_evictable_metadata;
+ /*
+ * Total number of bytes consumed by ARC buffers residing in the
+ * arc_mfu state. This includes *all* buffers in the arc_mfu
+ * state; e.g. data, metadata, evictable, and unevictable buffers
+ * are all included in this value.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mfu_size;
+ /*
+ * Number of bytes consumed by ARC buffers that are eligible for
+ * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
+ * state.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mfu_evictable_data;
+ /*
+ * Number of bytes consumed by ARC buffers that are eligible for
+ * eviction, of type ARC_BUFC_METADATA, and reside in the
+ * arc_mfu state.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mfu_evictable_metadata;
+ /*
+ * Total number of bytes that *would have been* consumed by ARC
+ * buffers in the arc_mfu_ghost state. See the comment above
+ * arcstat_mru_ghost_size for more details.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mfu_ghost_size;
+ /*
+ * Number of bytes that *would have been* consumed by ARC
+ * buffers that are eligible for eviction, of type
+ * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mfu_ghost_evictable_data;
+ /*
+ * Number of bytes that *would have been* consumed by ARC
+ * buffers that are eligible for eviction, of type
+ * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
+ * Not updated directly; only synced in arc_kstat_update.
+ */
+ kstat_named_t arcstat_mfu_ghost_evictable_metadata;
+ kstat_named_t arcstat_l2_hits;
+ kstat_named_t arcstat_l2_misses;
+ kstat_named_t arcstat_l2_feeds;
+ kstat_named_t arcstat_l2_rw_clash;
+ kstat_named_t arcstat_l2_read_bytes;
+ kstat_named_t arcstat_l2_write_bytes;
+ kstat_named_t arcstat_l2_writes_sent;
+ kstat_named_t arcstat_l2_writes_done;
+ kstat_named_t arcstat_l2_writes_error;
+ kstat_named_t arcstat_l2_writes_lock_retry;
+ kstat_named_t arcstat_l2_evict_lock_retry;
+ kstat_named_t arcstat_l2_evict_reading;
+ kstat_named_t arcstat_l2_evict_l1cached;
+ kstat_named_t arcstat_l2_free_on_write;
+ kstat_named_t arcstat_l2_abort_lowmem;
+ kstat_named_t arcstat_l2_cksum_bad;
+ kstat_named_t arcstat_l2_io_error;
+ kstat_named_t arcstat_l2_lsize;
+ kstat_named_t arcstat_l2_psize;
+ /* Not updated directly; only synced in arc_kstat_update. */
+ kstat_named_t arcstat_l2_hdr_size;
+ kstat_named_t arcstat_l2_write_trylock_fail;
+ kstat_named_t arcstat_l2_write_passed_headroom;
+ kstat_named_t arcstat_l2_write_spa_mismatch;
+ kstat_named_t arcstat_l2_write_in_l2;
+ kstat_named_t arcstat_l2_write_hdr_io_in_progress;
+ kstat_named_t arcstat_l2_write_not_cacheable;
+ kstat_named_t arcstat_l2_write_full;
+ kstat_named_t arcstat_l2_write_buffer_iter;
+ kstat_named_t arcstat_l2_write_pios;
+ kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
+ kstat_named_t arcstat_l2_write_buffer_list_iter;
+ kstat_named_t arcstat_l2_write_buffer_list_null_iter;
+ kstat_named_t arcstat_memory_throttle_count;
+ kstat_named_t arcstat_memory_direct_count;
+ kstat_named_t arcstat_memory_indirect_count;
+ kstat_named_t arcstat_memory_all_bytes;
+ kstat_named_t arcstat_memory_free_bytes;
+ kstat_named_t arcstat_memory_available_bytes;
+ kstat_named_t arcstat_no_grow;
+ kstat_named_t arcstat_tempreserve;
+ kstat_named_t arcstat_loaned_bytes;
+ kstat_named_t arcstat_prune;
+ /* Not updated directly; only synced in arc_kstat_update. */
+ kstat_named_t arcstat_meta_used;
+ kstat_named_t arcstat_meta_limit;
+ kstat_named_t arcstat_dnode_limit;
+ kstat_named_t arcstat_meta_max;
+ kstat_named_t arcstat_meta_min;
+ kstat_named_t arcstat_async_upgrade_sync;
+ kstat_named_t arcstat_demand_hit_predictive_prefetch;
+ kstat_named_t arcstat_demand_hit_prescient_prefetch;
+} arc_stats_t;
+
+static arc_stats_t arc_stats = {
+ { "hits", KSTAT_DATA_UINT64 },
+ { "misses", KSTAT_DATA_UINT64 },
+ { "demand_data_hits", KSTAT_DATA_UINT64 },
+ { "demand_data_misses", KSTAT_DATA_UINT64 },
+ { "demand_metadata_hits", KSTAT_DATA_UINT64 },
+ { "demand_metadata_misses", KSTAT_DATA_UINT64 },
+ { "prefetch_data_hits", KSTAT_DATA_UINT64 },
+ { "prefetch_data_misses", KSTAT_DATA_UINT64 },
+ { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
+ { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
+ { "mru_hits", KSTAT_DATA_UINT64 },
+ { "mru_ghost_hits", KSTAT_DATA_UINT64 },
+ { "mfu_hits", KSTAT_DATA_UINT64 },
+ { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
+ { "allocated", KSTAT_DATA_UINT64 },
+ { "deleted", KSTAT_DATA_UINT64 },
+ { "mutex_miss", KSTAT_DATA_UINT64 },
+ { "access_skip", KSTAT_DATA_UINT64 },
+ { "evict_skip", KSTAT_DATA_UINT64 },
+ { "evict_not_enough", KSTAT_DATA_UINT64 },
+ { "evict_l2_cached", KSTAT_DATA_UINT64 },
+ { "evict_l2_eligible", KSTAT_DATA_UINT64 },
+ { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
+ { "evict_l2_skip", KSTAT_DATA_UINT64 },
+ { "hash_elements", KSTAT_DATA_UINT64 },
+ { "hash_elements_max", KSTAT_DATA_UINT64 },
+ { "hash_collisions", KSTAT_DATA_UINT64 },
+ { "hash_chains", KSTAT_DATA_UINT64 },
+ { "hash_chain_max", KSTAT_DATA_UINT64 },
+ { "p", KSTAT_DATA_UINT64 },
+ { "c", KSTAT_DATA_UINT64 },
+ { "c_min", KSTAT_DATA_UINT64 },
+ { "c_max", KSTAT_DATA_UINT64 },
+ { "size", KSTAT_DATA_UINT64 },
+ { "compressed_size", KSTAT_DATA_UINT64 },
+ { "uncompressed_size", KSTAT_DATA_UINT64 },
+ { "overhead_size", KSTAT_DATA_UINT64 },
+ { "hdr_size", KSTAT_DATA_UINT64 },
+ { "data_size", KSTAT_DATA_UINT64 },
+ { "metadata_size", KSTAT_DATA_UINT64 },
+ { "dbuf_size", KSTAT_DATA_UINT64 },
+ { "dnode_size", KSTAT_DATA_UINT64 },
+ { "bonus_size", KSTAT_DATA_UINT64 },
+#if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
+ { "other_size", KSTAT_DATA_UINT64 },
+#endif
+ { "anon_size", KSTAT_DATA_UINT64 },
+ { "anon_evictable_data", KSTAT_DATA_UINT64 },
+ { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
+ { "mru_size", KSTAT_DATA_UINT64 },
+ { "mru_evictable_data", KSTAT_DATA_UINT64 },
+ { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
+ { "mru_ghost_size", KSTAT_DATA_UINT64 },
+ { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
+ { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
+ { "mfu_size", KSTAT_DATA_UINT64 },
+ { "mfu_evictable_data", KSTAT_DATA_UINT64 },
+ { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
+ { "mfu_ghost_size", KSTAT_DATA_UINT64 },
+ { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
+ { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
+ { "l2_hits", KSTAT_DATA_UINT64 },
+ { "l2_misses", KSTAT_DATA_UINT64 },
+ { "l2_feeds", KSTAT_DATA_UINT64 },
+ { "l2_rw_clash", KSTAT_DATA_UINT64 },
+ { "l2_read_bytes", KSTAT_DATA_UINT64 },
+ { "l2_write_bytes", KSTAT_DATA_UINT64 },
+ { "l2_writes_sent", KSTAT_DATA_UINT64 },
+ { "l2_writes_done", KSTAT_DATA_UINT64 },
+ { "l2_writes_error", KSTAT_DATA_UINT64 },
+ { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
+ { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
+ { "l2_evict_reading", KSTAT_DATA_UINT64 },
+ { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
+ { "l2_free_on_write", KSTAT_DATA_UINT64 },
+ { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
+ { "l2_cksum_bad", KSTAT_DATA_UINT64 },
+ { "l2_io_error", KSTAT_DATA_UINT64 },
+ { "l2_size", KSTAT_DATA_UINT64 },
+ { "l2_asize", KSTAT_DATA_UINT64 },
+ { "l2_hdr_size", KSTAT_DATA_UINT64 },
+ { "l2_write_trylock_fail", KSTAT_DATA_UINT64 },
+ { "l2_write_passed_headroom", KSTAT_DATA_UINT64 },
+ { "l2_write_spa_mismatch", KSTAT_DATA_UINT64 },
+ { "l2_write_in_l2", KSTAT_DATA_UINT64 },
+ { "l2_write_io_in_progress", KSTAT_DATA_UINT64 },
+ { "l2_write_not_cacheable", KSTAT_DATA_UINT64 },
+ { "l2_write_full", KSTAT_DATA_UINT64 },
+ { "l2_write_buffer_iter", KSTAT_DATA_UINT64 },
+ { "l2_write_pios", KSTAT_DATA_UINT64 },
+ { "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
+ { "l2_write_buffer_list_iter", KSTAT_DATA_UINT64 },
+ { "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
+ { "memory_throttle_count", KSTAT_DATA_UINT64 },
+ { "memory_direct_count", KSTAT_DATA_UINT64 },
+ { "memory_indirect_count", KSTAT_DATA_UINT64 },
+ { "memory_all_bytes", KSTAT_DATA_UINT64 },
+ { "memory_free_bytes", KSTAT_DATA_UINT64 },
+ { "memory_available_bytes", KSTAT_DATA_UINT64 },
+ { "arc_no_grow", KSTAT_DATA_UINT64 },
+ { "arc_tempreserve", KSTAT_DATA_UINT64 },
+ { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
+ { "arc_prune", KSTAT_DATA_UINT64 },
+ { "arc_meta_used", KSTAT_DATA_UINT64 },
+ { "arc_meta_limit", KSTAT_DATA_UINT64 },
+ { "arc_dnode_limit", KSTAT_DATA_UINT64 },
+ { "arc_meta_max", KSTAT_DATA_UINT64 },
+ { "arc_meta_min", KSTAT_DATA_UINT64 },
+ { "async_upgrade_sync", KSTAT_DATA_UINT64 },
+ { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
+ { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
+};
+
+#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
+
+#define ARCSTAT_INCR(stat, val) \
+ atomic_add_64(&arc_stats.stat.value.ui64, (val))
+
+#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
+#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
+
+#define ARCSTAT_MAX(stat, val) { \
+ uint64_t m; \
+ while ((val) > (m = arc_stats.stat.value.ui64) && \
+ (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
+ continue; \
+}
+
+#define ARCSTAT_MAXSTAT(stat) \
+ ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
+
+/*
+ * We define a macro to allow ARC hits/misses to be easily broken down by
+ * two separate conditions, giving a total of four different subtypes for
+ * each of hits and misses (so eight statistics total).
+ */
+#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
+ if (cond1) { \
+ if (cond2) { \
+ ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
+ } else { \
+ ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
+ } \
+ } else { \
+ if (cond2) { \
+ ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
+ } else { \
+ ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
+ } \
+ }
+
+kstat_t *arc_ksp;
+static arc_state_t *arc_anon;
+static arc_state_t *arc_mru;
+static arc_state_t *arc_mru_ghost;
+static arc_state_t *arc_mfu;
+static arc_state_t *arc_mfu_ghost;
+static arc_state_t *arc_l2c_only;
+
+/*
+ * There are several ARC variables that are critical to export as kstats --
+ * but we don't want to have to grovel around in the kstat whenever we wish to
+ * manipulate them. For these variables, we therefore define them to be in
+ * terms of the statistic variable. This assures that we are not introducing
+ * the possibility of inconsistency by having shadow copies of the variables,
+ * while still allowing the code to be readable.
+ */
+#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
+#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
+#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
+#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
+#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
+#define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
+#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
+#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
+#define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
+#define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
+#define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
+
+/* compressed size of entire arc */
+#define arc_compressed_size ARCSTAT(arcstat_compressed_size)
+/* uncompressed size of entire arc */
+#define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
+/* number of bytes in the arc from arc_buf_t's */
+#define arc_overhead_size ARCSTAT(arcstat_overhead_size)
+
+/*
+ * There are also some ARC variables that we want to export, but that are
+ * updated so often that having the canonical representation be the statistic
+ * variable causes a performance bottleneck. We want to use aggsum_t's for these
+ * instead, but still be able to export the kstat in the same way as before.
+ * The solution is to always use the aggsum version, except in the kstat update
+ * callback.
+ */
+aggsum_t arc_size;
+aggsum_t arc_meta_used;
+aggsum_t astat_data_size;
+aggsum_t astat_metadata_size;
+aggsum_t astat_hdr_size;
+aggsum_t astat_bonus_size;
+aggsum_t astat_dnode_size;
+aggsum_t astat_dbuf_size;
+aggsum_t astat_l2_hdr_size;
+
+static list_t arc_prune_list;
+static kmutex_t arc_prune_mtx;
+static taskq_t *arc_prune_taskq;
+
+static int arc_no_grow; /* Don't try to grow cache size */
+static hrtime_t arc_growtime;
+static uint64_t arc_tempreserve;
+static uint64_t arc_loaned_bytes;
+
+typedef struct arc_callback arc_callback_t;
+
+struct arc_callback {
+ void *acb_private;
+ arc_read_done_func_t *acb_done;
+ arc_buf_t *acb_buf;
+ boolean_t acb_compressed;
+ zio_t *acb_zio_dummy;
+ zio_t *acb_zio_head;
+ arc_callback_t *acb_next;
+};
+
+typedef struct arc_write_callback arc_write_callback_t;
+
+struct arc_write_callback {
+ void *awcb_private;
+ arc_write_done_func_t *awcb_ready;
+ arc_write_done_func_t *awcb_children_ready;
+ arc_write_done_func_t *awcb_physdone;
+ arc_write_done_func_t *awcb_done;
+ arc_buf_t *awcb_buf;
+};
+
+/*
+ * ARC buffers are separated into multiple structs as a memory saving measure:
+ * - Common fields struct, always defined, and embedded within it:
+ * - L2-only fields, always allocated but undefined when not in L2ARC
+ * - L1-only fields, only allocated when in L1ARC
+ *
+ * Buffer in L1 Buffer only in L2
+ * +------------------------+ +------------------------+
+ * | arc_buf_hdr_t | | arc_buf_hdr_t |
+ * | | | |
+ * | | | |
+ * | | | |
+ * +------------------------+ +------------------------+
+ * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
+ * | (undefined if L1-only) | | |
+ * +------------------------+ +------------------------+
+ * | l1arc_buf_hdr_t |
+ * | |
+ * | |
+ * | |
+ * | |
+ * +------------------------+
+ *
+ * Because it's possible for the L2ARC to become extremely large, we can wind
+ * up eating a lot of memory in L2ARC buffer headers, so the size of a header
+ * is minimized by only allocating the fields necessary for an L1-cached buffer
+ * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
+ * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
+ * words in pointers. arc_hdr_realloc() is used to switch a header between
+ * these two allocation states.
+ */
+typedef struct l1arc_buf_hdr {
+ kmutex_t b_freeze_lock;
+ zio_cksum_t *b_freeze_cksum;
+#ifdef ZFS_DEBUG
+ /*
+ * Used for debugging with kmem_flags - by allocating and freeing
+ * b_thawed when the buffer is thawed, we get a record of the stack
+ * trace that thawed it.
+ */
+ void *b_thawed;
+#endif
+
+ arc_buf_t *b_buf;
+ uint32_t b_bufcnt;
+ /* for waiting on writes to complete */
+ kcondvar_t b_cv;
+ uint8_t b_byteswap;
+
+ /* protected by arc state mutex */
+ arc_state_t *b_state;
+ multilist_node_t b_arc_node;
+
+ /* updated atomically */
+ clock_t b_arc_access;
+ uint32_t b_mru_hits;
+ uint32_t b_mru_ghost_hits;
+ uint32_t b_mfu_hits;
+ uint32_t b_mfu_ghost_hits;
+ uint32_t b_l2_hits;
+
+ /* self protecting */
+ refcount_t b_refcnt;
+
+ arc_callback_t *b_acb;
+ abd_t *b_pabd;
+} l1arc_buf_hdr_t;
+
+typedef struct l2arc_dev l2arc_dev_t;
+
+typedef struct l2arc_buf_hdr {
+ /* protected by arc_buf_hdr mutex */
+ l2arc_dev_t *b_dev; /* L2ARC device */
+ uint64_t b_daddr; /* disk address, offset byte */
+ uint32_t b_hits;
+
+ list_node_t b_l2node;
+} l2arc_buf_hdr_t;
+
+struct arc_buf_hdr {
+ /* protected by hash lock */
+ dva_t b_dva;
+ uint64_t b_birth;
+
+ arc_buf_contents_t b_type;
+ arc_buf_hdr_t *b_hash_next;
+ arc_flags_t b_flags;
+
+ /*
+ * This field stores the size of the data buffer after
+ * compression, and is set in the arc's zio completion handlers.
+ * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
+ *
+ * While the block pointers can store up to 32MB in their psize
+ * field, we can only store up to 32MB minus 512B. This is due
+ * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
+ * a field of zeros represents 512B in the bp). We can't use a
+ * bias of 1 since we need to reserve a psize of zero, here, to
+ * represent holes and embedded blocks.
+ *
+ * This isn't a problem in practice, since the maximum size of a
+ * buffer is limited to 16MB, so we never need to store 32MB in
+ * this field. Even in the upstream illumos code base, the
+ * maximum size of a buffer is limited to 16MB.
+ */
+ uint16_t b_psize;
+
+ /*
+ * This field stores the size of the data buffer before
+ * compression, and cannot change once set. It is in units
+ * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
+ */
+ uint16_t b_lsize; /* immutable */
+ uint64_t b_spa; /* immutable */
+
+ /* L2ARC fields. Undefined when not in L2ARC. */
+ l2arc_buf_hdr_t b_l2hdr;
+ /* L1ARC fields. Undefined when in l2arc_only state */
+ l1arc_buf_hdr_t b_l1hdr;
+};
+
+#if defined(__FreeBSD__) && defined(_KERNEL)
+static int
+sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
+{
+ uint64_t val;
+ int err;
+
+ val = arc_meta_limit;
+ err = sysctl_handle_64(oidp, &val, 0, req);
+ if (err != 0 || req->newptr == NULL)
+ return (err);
+
+ if (val <= 0 || val > arc_c_max)
+ return (EINVAL);
+
+ arc_meta_limit = val;
+ return (0);
+}
+
+static int
+sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
+{
+ uint32_t val;
+ int err;
+
+ val = arc_no_grow_shift;
+ err = sysctl_handle_32(oidp, &val, 0, req);
+ if (err != 0 || req->newptr == NULL)
+ return (err);
+
+ if (val >= arc_shrink_shift)
+ return (EINVAL);
+
+ arc_no_grow_shift = val;
+ return (0);
+}
+
+static int
+sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
+{
+ uint64_t val;
+ int err;
+
+ val = zfs_arc_max;
+ err = sysctl_handle_64(oidp, &val, 0, req);
+ if (err != 0 || req->newptr == NULL)
+ return (err);
+
+ if (zfs_arc_max == 0) {
+ /* Loader tunable so blindly set */
+ zfs_arc_max = val;
+ return (0);
+ }
+
+ if (val < arc_abs_min || val > kmem_size())
+ return (EINVAL);
+ if (val < arc_c_min)
+ return (EINVAL);
+ if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
+ return (EINVAL);
+
+ arc_c_max = val;
+
+ arc_c = arc_c_max;
+ arc_p = (arc_c >> 1);
+
+ if (zfs_arc_meta_limit == 0) {
+ /* limit meta-data to 1/4 of the arc capacity */
+ arc_meta_limit = arc_c_max / 4;
+ }
+
+ /* if kmem_flags are set, lets try to use less memory */
+ if (kmem_debugging())
+ arc_c = arc_c / 2;
+
+ zfs_arc_max = arc_c;
+
+ return (0);
+}
+
+static int
+sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
+{
+ uint64_t val;
+ int err;
+
+ val = zfs_arc_min;
+ err = sysctl_handle_64(oidp, &val, 0, req);
+ if (err != 0 || req->newptr == NULL)
+ return (err);
+
+ if (zfs_arc_min == 0) {
+ /* Loader tunable so blindly set */
+ zfs_arc_min = val;
+ return (0);
+ }
+
+ if (val < arc_abs_min || val > arc_c_max)
+ return (EINVAL);
+
+ arc_c_min = val;
+
+ if (zfs_arc_meta_min == 0)
+ arc_meta_min = arc_c_min / 2;
+
+ if (arc_c < arc_c_min)
+ arc_c = arc_c_min;
+
+ zfs_arc_min = arc_c_min;
+
+ return (0);
+}
+#endif
+
+#define GHOST_STATE(state) \
+ ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
+ (state) == arc_l2c_only)
+
+#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
+#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
+#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
+#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
+#define HDR_PRESCIENT_PREFETCH(hdr) \
+ ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
+#define HDR_COMPRESSION_ENABLED(hdr) \
+ ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
+
+#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
+#define HDR_L2_READING(hdr) \
+ (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
+ ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
+#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
+#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
+#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
+#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
+
+#define HDR_ISTYPE_METADATA(hdr) \
+ ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
+#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
+
+#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
+#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
+
+/* For storing compression mode in b_flags */
+#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
+
+#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
+ HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
+#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
+ HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
+
+#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
+#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
+#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
+
+/*
+ * Other sizes
+ */
+
+#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
+#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
+
+/*
+ * Hash table routines
+ */
+
+#define HT_LOCK_PAD CACHE_LINE_SIZE
+
+struct ht_lock {
+ kmutex_t ht_lock;
+#ifdef _KERNEL
+ unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
+#endif
+};
+
+#define BUF_LOCKS 256
+typedef struct buf_hash_table {
+ uint64_t ht_mask;
+ arc_buf_hdr_t **ht_table;
+ struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
+} buf_hash_table_t;
+
+static buf_hash_table_t buf_hash_table;
+
+#define BUF_HASH_INDEX(spa, dva, birth) \
+ (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
+#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
+#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
+#define HDR_LOCK(hdr) \
+ (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
+
+uint64_t zfs_crc64_table[256];
+
+/*
+ * Level 2 ARC
+ */
+
+#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
+#define L2ARC_HEADROOM 2 /* num of writes */
+/*
+ * If we discover during ARC scan any buffers to be compressed, we boost
+ * our headroom for the next scanning cycle by this percentage multiple.
+ */
+#define L2ARC_HEADROOM_BOOST 200
+#define L2ARC_FEED_SECS 1 /* caching interval secs */
+#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
+
+#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
+#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
+
+/* L2ARC Performance Tunables */
+uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
+uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
+uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
+uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
+uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
+uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
+boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
+boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
+boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RWTUN,
+ &l2arc_write_max, 0, "max write size");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RWTUN,
+ &l2arc_write_boost, 0, "extra write during warmup");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RWTUN,
+ &l2arc_headroom, 0, "number of dev writes");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RWTUN,
+ &l2arc_feed_secs, 0, "interval seconds");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RWTUN,
+ &l2arc_feed_min_ms, 0, "min interval milliseconds");
+
+SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RWTUN,
+ &l2arc_noprefetch, 0, "don't cache prefetch bufs");
+SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RWTUN,
+ &l2arc_feed_again, 0, "turbo warmup");
+SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RWTUN,
+ &l2arc_norw, 0, "no reads during writes");
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
+ &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
+ &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
+ "size of anonymous state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
+ &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
+ "size of anonymous state");
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
+ &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
+ &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
+ "size of metadata in mru state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
+ &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
+ "size of data in mru state");
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
+ &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
+ &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
+ "size of metadata in mru ghost state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
+ &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
+ "size of data in mru ghost state");
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
+ &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
+ &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
+ "size of metadata in mfu state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
+ &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
+ "size of data in mfu state");
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
+ &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
+ &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
+ "size of metadata in mfu ghost state");
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
+ &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
+ "size of data in mfu ghost state");
+
+SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
+ &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
+
+SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prefetch_ms, CTLFLAG_RW,
+ &zfs_arc_min_prefetch_ms, 0, "Min life of prefetch block in ms");
+SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prescient_prefetch_ms, CTLFLAG_RW,
+ &zfs_arc_min_prescient_prefetch_ms, 0, "Min life of prescient prefetched block in ms");
+
+/*
+ * L2ARC Internals
+ */
+struct l2arc_dev {
+ vdev_t *l2ad_vdev; /* vdev */
+ spa_t *l2ad_spa; /* spa */
+ uint64_t l2ad_hand; /* next write location */
+ uint64_t l2ad_start; /* first addr on device */
+ uint64_t l2ad_end; /* last addr on device */
+ boolean_t l2ad_first; /* first sweep through */
+ boolean_t l2ad_writing; /* currently writing */
+ kmutex_t l2ad_mtx; /* lock for buffer list */
+ list_t l2ad_buflist; /* buffer list */
+ list_node_t l2ad_node; /* device list node */
+ refcount_t l2ad_alloc; /* allocated bytes */
+};
+
+static list_t L2ARC_dev_list; /* device list */
+static list_t *l2arc_dev_list; /* device list pointer */
+static kmutex_t l2arc_dev_mtx; /* device list mutex */
+static l2arc_dev_t *l2arc_dev_last; /* last device used */
+static list_t L2ARC_free_on_write; /* free after write buf list */
+static list_t *l2arc_free_on_write; /* free after write list ptr */
+static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
+static uint64_t l2arc_ndev; /* number of devices */
+
+typedef struct l2arc_read_callback {
+ arc_buf_hdr_t *l2rcb_hdr; /* read header */
+ blkptr_t l2rcb_bp; /* original blkptr */
+ zbookmark_phys_t l2rcb_zb; /* original bookmark */
+ int l2rcb_flags; /* original flags */
+ abd_t *l2rcb_abd; /* temporary buffer */
+} l2arc_read_callback_t;
+
+typedef struct l2arc_write_callback {
+ l2arc_dev_t *l2wcb_dev; /* device info */
+ arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
+} l2arc_write_callback_t;
+
+typedef struct l2arc_data_free {
+ /* protected by l2arc_free_on_write_mtx */
+ abd_t *l2df_abd;
+ size_t l2df_size;
+ arc_buf_contents_t l2df_type;
+ list_node_t l2df_list_node;
+} l2arc_data_free_t;
+
+static kmutex_t l2arc_feed_thr_lock;
+static kcondvar_t l2arc_feed_thr_cv;
+static uint8_t l2arc_thread_exit;
+
+static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
+static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
+static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
+static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
+static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
+static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
+static void arc_hdr_free_pabd(arc_buf_hdr_t *);
+static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
+static void arc_access(arc_buf_hdr_t *, kmutex_t *);
+static boolean_t arc_is_overflowing();
+static void arc_buf_watch(arc_buf_t *);
+static void arc_prune_async(int64_t);
+
+static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
+static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
+static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
+static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
+
+static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
+static void l2arc_read_done(zio_t *);
+
+static void
+l2arc_trim(const arc_buf_hdr_t *hdr)
+{
+ l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
+
+ ASSERT(HDR_HAS_L2HDR(hdr));
+ ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
+
+ if (HDR_GET_PSIZE(hdr) != 0) {
+ trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
+ HDR_GET_PSIZE(hdr), 0);
+ }
+}
+
+/*
+ * We use Cityhash for this. It's fast, and has good hash properties without
+ * requiring any large static buffers.
+ */
+static uint64_t
+buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
+{
+ return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
+}
+
+#define HDR_EMPTY(hdr) \
+ ((hdr)->b_dva.dva_word[0] == 0 && \
+ (hdr)->b_dva.dva_word[1] == 0)
+
+#define HDR_EQUAL(spa, dva, birth, hdr) \
+ ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
+ ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
+ ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
+
+static void
+buf_discard_identity(arc_buf_hdr_t *hdr)
+{
+ hdr->b_dva.dva_word[0] = 0;
+ hdr->b_dva.dva_word[1] = 0;
+ hdr->b_birth = 0;
+}
+
+static arc_buf_hdr_t *
+buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
+{
+ const dva_t *dva = BP_IDENTITY(bp);
+ uint64_t birth = BP_PHYSICAL_BIRTH(bp);
+ uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
+ kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
+ arc_buf_hdr_t *hdr;
+
+ mutex_enter(hash_lock);
+ for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
+ hdr = hdr->b_hash_next) {
+ if (HDR_EQUAL(spa, dva, birth, hdr)) {
+ *lockp = hash_lock;
+ return (hdr);
+ }
+ }
+ mutex_exit(hash_lock);
+ *lockp = NULL;
+ return (NULL);
+}
+
+/*
+ * Insert an entry into the hash table. If there is already an element
+ * equal to elem in the hash table, then the already existing element
+ * will be returned and the new element will not be inserted.
+ * Otherwise returns NULL.
+ * If lockp == NULL, the caller is assumed to already hold the hash lock.
+ */
+static arc_buf_hdr_t *
+buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
+{
+ uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
+ kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
+ arc_buf_hdr_t *fhdr;
+ uint32_t i;
+
+ ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
+ ASSERT(hdr->b_birth != 0);
+ ASSERT(!HDR_IN_HASH_TABLE(hdr));
+
+ if (lockp != NULL) {
+ *lockp = hash_lock;
+ mutex_enter(hash_lock);
+ } else {
+ ASSERT(MUTEX_HELD(hash_lock));
+ }
+
+ for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
+ fhdr = fhdr->b_hash_next, i++) {
+ if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
+ return (fhdr);
+ }
+
+ hdr->b_hash_next = buf_hash_table.ht_table[idx];
+ buf_hash_table.ht_table[idx] = hdr;
+ arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
+
+ /* collect some hash table performance data */
+ if (i > 0) {
+ ARCSTAT_BUMP(arcstat_hash_collisions);
+ if (i == 1)
+ ARCSTAT_BUMP(arcstat_hash_chains);
+
+ ARCSTAT_MAX(arcstat_hash_chain_max, i);
+ }
+
+ ARCSTAT_BUMP(arcstat_hash_elements);
+ ARCSTAT_MAXSTAT(arcstat_hash_elements);
+
+ return (NULL);
+}
+
+static void
+buf_hash_remove(arc_buf_hdr_t *hdr)
+{
+ arc_buf_hdr_t *fhdr, **hdrp;
+ uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
+
+ ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
+ ASSERT(HDR_IN_HASH_TABLE(hdr));
+
+ hdrp = &buf_hash_table.ht_table[idx];
+ while ((fhdr = *hdrp) != hdr) {
+ ASSERT3P(fhdr, !=, NULL);
+ hdrp = &fhdr->b_hash_next;
+ }
+ *hdrp = hdr->b_hash_next;
+ hdr->b_hash_next = NULL;
+ arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
+
+ /* collect some hash table performance data */
+ ARCSTAT_BUMPDOWN(arcstat_hash_elements);
+
+ if (buf_hash_table.ht_table[idx] &&
+ buf_hash_table.ht_table[idx]->b_hash_next == NULL)
+ ARCSTAT_BUMPDOWN(arcstat_hash_chains);
+}
+
+/*
+ * Global data structures and functions for the buf kmem cache.
+ */
+static kmem_cache_t *hdr_full_cache;
+static kmem_cache_t *hdr_l2only_cache;
+static kmem_cache_t *buf_cache;
+
+static void
+buf_fini(void)
+{
+ int i;
+
+ kmem_free(buf_hash_table.ht_table,
+ (buf_hash_table.ht_mask + 1) * sizeof (void *));
+ for (i = 0; i < BUF_LOCKS; i++)
+ mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
+ kmem_cache_destroy(hdr_full_cache);
+ kmem_cache_destroy(hdr_l2only_cache);
+ kmem_cache_destroy(buf_cache);
+}
+
+/*
+ * Constructor callback - called when the cache is empty
+ * and a new buf is requested.
+ */
+/* ARGSUSED */
+static int
+hdr_full_cons(void *vbuf, void *unused, int kmflag)
+{
+ arc_buf_hdr_t *hdr = vbuf;
+
+ bzero(hdr, HDR_FULL_SIZE);
+ cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
+ refcount_create(&hdr->b_l1hdr.b_refcnt);
+ mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
+ multilist_link_init(&hdr->b_l1hdr.b_arc_node);
+ arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
+
+ return (0);
+}
+
+/* ARGSUSED */
+static int
+hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
+{
+ arc_buf_hdr_t *hdr = vbuf;
+
+ bzero(hdr, HDR_L2ONLY_SIZE);
+ arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
+
+ return (0);
+}
+
+/* ARGSUSED */
+static int
+buf_cons(void *vbuf, void *unused, int kmflag)
+{
+ arc_buf_t *buf = vbuf;
+
+ bzero(buf, sizeof (arc_buf_t));
+ mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
+ arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
+
+ return (0);
+}
+
+/*
+ * Destructor callback - called when a cached buf is
+ * no longer required.
+ */
+/* ARGSUSED */
+static void
+hdr_full_dest(void *vbuf, void *unused)
+{
+ arc_buf_hdr_t *hdr = vbuf;
+
+ ASSERT(HDR_EMPTY(hdr));
+ cv_destroy(&hdr->b_l1hdr.b_cv);
+ refcount_destroy(&hdr->b_l1hdr.b_refcnt);
+ mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
+ arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
+}
+
+/* ARGSUSED */
+static void
+hdr_l2only_dest(void *vbuf, void *unused)
+{
+ arc_buf_hdr_t *hdr = vbuf;
+
+ ASSERT(HDR_EMPTY(hdr));
+ arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
+}
+
+/* ARGSUSED */
+static void
+buf_dest(void *vbuf, void *unused)
+{
+ arc_buf_t *buf = vbuf;
+
+ mutex_destroy(&buf->b_evict_lock);
+ arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
+}
+
+/*
+ * Reclaim callback -- invoked when memory is low.
+ */
+/* ARGSUSED */
+static void
+hdr_recl(void *unused)
+{
+ dprintf("hdr_recl called\n");
+ /*
+ * umem calls the reclaim func when we destroy the buf cache,
+ * which is after we do arc_fini().
+ */
+ if (arc_initialized)
+ zthr_wakeup(arc_reap_zthr);
+}
+
+static void
+buf_init(void)
+{
+ uint64_t *ct;
+ uint64_t hsize = 1ULL << 12;
+ int i, j;
+
+ /*
+ * The hash table is big enough to fill all of physical memory
+ * with an average block size of zfs_arc_average_blocksize (default 8K).
+ * By default, the table will take up
+ * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
+ */
+ while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
+ hsize <<= 1;
+retry:
+ buf_hash_table.ht_mask = hsize - 1;
+ buf_hash_table.ht_table =
+ kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
+ if (buf_hash_table.ht_table == NULL) {
+ ASSERT(hsize > (1ULL << 8));
+ hsize >>= 1;
+ goto retry;
+ }
+
+ hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
+ 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
+ hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
+ HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
+ NULL, NULL, 0);
+ buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
+ 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
+
+ for (i = 0; i < 256; i++)
+ for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
+ *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
+
+ for (i = 0; i < BUF_LOCKS; i++) {
+ mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
+ NULL, MUTEX_DEFAULT, NULL);
+ }
+}
+
+/*
+ * This is the size that the buf occupies in memory. If the buf is compressed,
+ * it will correspond to the compressed size. You should use this method of
+ * getting the buf size unless you explicitly need the logical size.
+ */
+int32_t
+arc_buf_size(arc_buf_t *buf)
+{
+ return (ARC_BUF_COMPRESSED(buf) ?
+ HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
+}
+
+int32_t
+arc_buf_lsize(arc_buf_t *buf)
+{
+ return (HDR_GET_LSIZE(buf->b_hdr));
+}
+
+enum zio_compress
+arc_get_compression(arc_buf_t *buf)
+{
+ return (ARC_BUF_COMPRESSED(buf) ?
+ HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
+}
+
+#define ARC_MINTIME (hz>>4) /* 62 ms */
+
+static inline boolean_t
+arc_buf_is_shared(arc_buf_t *buf)
+{
+ boolean_t shared = (buf->b_data != NULL &&
+ buf->b_hdr->b_l1hdr.b_pabd != NULL &&
+ abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
+ buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
+ IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
+ IMPLY(shared, ARC_BUF_SHARED(buf));
+ IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
+
+ /*
+ * It would be nice to assert arc_can_share() too, but the "hdr isn't
+ * already being shared" requirement prevents us from doing that.
+ */
+
+ return (shared);
+}
+
+/*
+ * Free the checksum associated with this header. If there is no checksum, this
+ * is a no-op.
+ */
+static inline void
+arc_cksum_free(arc_buf_hdr_t *hdr)
+{
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
+ if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
+ kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
+ hdr->b_l1hdr.b_freeze_cksum = NULL;
+ }
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+}
+
+/*
+ * Return true iff at least one of the bufs on hdr is not compressed.
+ */
+static boolean_t
+arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
+{
+ for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
+ if (!ARC_BUF_COMPRESSED(b)) {
+ return (B_TRUE);
+ }
+ }
+ return (B_FALSE);
+}
+
+/*
+ * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
+ * matches the checksum that is stored in the hdr. If there is no checksum,
+ * or if the buf is compressed, this is a no-op.
+ */
+static void
+arc_cksum_verify(arc_buf_t *buf)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ zio_cksum_t zc;
+
+ if (!(zfs_flags & ZFS_DEBUG_MODIFY))
+ return;
+
+ if (ARC_BUF_COMPRESSED(buf)) {
+ ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
+ arc_hdr_has_uncompressed_buf(hdr));
+ return;
+ }
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
+ if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+ return;
+ }
+
+ fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
+ if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
+ panic("buffer modified while frozen!");
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+}
+
+static boolean_t
+arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
+{
+ enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
+ boolean_t valid_cksum;
+
+ ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
+ VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
+
+ /*
+ * We rely on the blkptr's checksum to determine if the block
+ * is valid or not. When compressed arc is enabled, the l2arc
+ * writes the block to the l2arc just as it appears in the pool.
+ * This allows us to use the blkptr's checksum to validate the
+ * data that we just read off of the l2arc without having to store
+ * a separate checksum in the arc_buf_hdr_t. However, if compressed
+ * arc is disabled, then the data written to the l2arc is always
+ * uncompressed and won't match the block as it exists in the main
+ * pool. When this is the case, we must first compress it if it is
+ * compressed on the main pool before we can validate the checksum.
+ */
+ if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
+ ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
+ uint64_t lsize = HDR_GET_LSIZE(hdr);
+ uint64_t csize;
+
+ abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
+ csize = zio_compress_data(compress, zio->io_abd,
+ abd_to_buf(cdata), lsize);
+
+ ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
+ if (csize < HDR_GET_PSIZE(hdr)) {
+ /*
+ * Compressed blocks are always a multiple of the
+ * smallest ashift in the pool. Ideally, we would
+ * like to round up the csize to the next
+ * spa_min_ashift but that value may have changed
+ * since the block was last written. Instead,
+ * we rely on the fact that the hdr's psize
+ * was set to the psize of the block when it was
+ * last written. We set the csize to that value
+ * and zero out any part that should not contain
+ * data.
+ */
+ abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
+ csize = HDR_GET_PSIZE(hdr);
+ }
+ zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
+ }
+
+ /*
+ * Block pointers always store the checksum for the logical data.
+ * If the block pointer has the gang bit set, then the checksum
+ * it represents is for the reconstituted data and not for an
+ * individual gang member. The zio pipeline, however, must be able to
+ * determine the checksum of each of the gang constituents so it
+ * treats the checksum comparison differently than what we need
+ * for l2arc blocks. This prevents us from using the
+ * zio_checksum_error() interface directly. Instead we must call the
+ * zio_checksum_error_impl() so that we can ensure the checksum is
+ * generated using the correct checksum algorithm and accounts for the
+ * logical I/O size and not just a gang fragment.
+ */
+ valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
+ BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
+ zio->io_offset, NULL) == 0);
+ zio_pop_transforms(zio);
+ return (valid_cksum);
+}
+
+/*
+ * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
+ * checksum and attaches it to the buf's hdr so that we can ensure that the buf
+ * isn't modified later on. If buf is compressed or there is already a checksum
+ * on the hdr, this is a no-op (we only checksum uncompressed bufs).
+ */
+static void
+arc_cksum_compute(arc_buf_t *buf)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ if (!(zfs_flags & ZFS_DEBUG_MODIFY))
+ return;
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
+ if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
+ ASSERT(arc_hdr_has_uncompressed_buf(hdr));
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+ return;
+ } else if (ARC_BUF_COMPRESSED(buf)) {
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+ return;
+ }
+
+ ASSERT(!ARC_BUF_COMPRESSED(buf));
+ hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
+ KM_SLEEP);
+ fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
+ hdr->b_l1hdr.b_freeze_cksum);
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+#ifdef illumos
+ arc_buf_watch(buf);
+#endif
+}
+
+#ifdef illumos
+#ifndef _KERNEL
+typedef struct procctl {
+ long cmd;
+ prwatch_t prwatch;
+} procctl_t;
+#endif
+
+/* ARGSUSED */
+static void
+arc_buf_unwatch(arc_buf_t *buf)
+{
+#ifndef _KERNEL
+ if (arc_watch) {
+ int result;
+ procctl_t ctl;
+ ctl.cmd = PCWATCH;
+ ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
+ ctl.prwatch.pr_size = 0;
+ ctl.prwatch.pr_wflags = 0;
+ result = write(arc_procfd, &ctl, sizeof (ctl));
+ ASSERT3U(result, ==, sizeof (ctl));
+ }
+#endif
+}
+
+/* ARGSUSED */
+static void
+arc_buf_watch(arc_buf_t *buf)
+{
+#ifndef _KERNEL
+ if (arc_watch) {
+ int result;
+ procctl_t ctl;
+ ctl.cmd = PCWATCH;
+ ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
+ ctl.prwatch.pr_size = arc_buf_size(buf);
+ ctl.prwatch.pr_wflags = WA_WRITE;
+ result = write(arc_procfd, &ctl, sizeof (ctl));
+ ASSERT3U(result, ==, sizeof (ctl));
+ }
+#endif
+}
+#endif /* illumos */
+
+static arc_buf_contents_t
+arc_buf_type(arc_buf_hdr_t *hdr)
+{
+ arc_buf_contents_t type;
+ if (HDR_ISTYPE_METADATA(hdr)) {
+ type = ARC_BUFC_METADATA;
+ } else {
+ type = ARC_BUFC_DATA;
+ }
+ VERIFY3U(hdr->b_type, ==, type);
+ return (type);
+}
+
+boolean_t
+arc_is_metadata(arc_buf_t *buf)
+{
+ return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
+}
+
+static uint32_t
+arc_bufc_to_flags(arc_buf_contents_t type)
+{
+ switch (type) {
+ case ARC_BUFC_DATA:
+ /* metadata field is 0 if buffer contains normal data */
+ return (0);
+ case ARC_BUFC_METADATA:
+ return (ARC_FLAG_BUFC_METADATA);
+ default:
+ break;
+ }
+ panic("undefined ARC buffer type!");
+ return ((uint32_t)-1);
+}
+
+void
+arc_buf_thaw(arc_buf_t *buf)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+
+ arc_cksum_verify(buf);
+
+ /*
+ * Compressed buffers do not manipulate the b_freeze_cksum or
+ * allocate b_thawed.
+ */
+ if (ARC_BUF_COMPRESSED(buf)) {
+ ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
+ arc_hdr_has_uncompressed_buf(hdr));
+ return;
+ }
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ arc_cksum_free(hdr);
+
+ mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
+#ifdef ZFS_DEBUG
+ if (zfs_flags & ZFS_DEBUG_MODIFY) {
+ if (hdr->b_l1hdr.b_thawed != NULL)
+ kmem_free(hdr->b_l1hdr.b_thawed, 1);
+ hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
+ }
+#endif
+
+ mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
+
+#ifdef illumos
+ arc_buf_unwatch(buf);
+#endif
+}
+
+void
+arc_buf_freeze(arc_buf_t *buf)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ kmutex_t *hash_lock;
+
+ if (!(zfs_flags & ZFS_DEBUG_MODIFY))
+ return;
+
+ if (ARC_BUF_COMPRESSED(buf)) {
+ ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
+ arc_hdr_has_uncompressed_buf(hdr));
+ return;
+ }
+
+ hash_lock = HDR_LOCK(hdr);
+ mutex_enter(hash_lock);
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
+ hdr->b_l1hdr.b_state == arc_anon);
+ arc_cksum_compute(buf);
+ mutex_exit(hash_lock);
+}
+
+/*
+ * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
+ * the following functions should be used to ensure that the flags are
+ * updated in a thread-safe way. When manipulating the flags either
+ * the hash_lock must be held or the hdr must be undiscoverable. This
+ * ensures that we're not racing with any other threads when updating
+ * the flags.
+ */
+static inline void
+arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
+{
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+ hdr->b_flags |= flags;
+}
+
+static inline void
+arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
+{
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+ hdr->b_flags &= ~flags;
+}
+
+/*
+ * Setting the compression bits in the arc_buf_hdr_t's b_flags is
+ * done in a special way since we have to clear and set bits
+ * at the same time. Consumers that wish to set the compression bits
+ * must use this function to ensure that the flags are updated in
+ * thread-safe manner.
+ */
+static void
+arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
+{
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+
+ /*
+ * Holes and embedded blocks will always have a psize = 0 so
+ * we ignore the compression of the blkptr and set the
+ * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
+ * Holes and embedded blocks remain anonymous so we don't
+ * want to uncompress them. Mark them as uncompressed.
+ */
+ if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
+ arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
+ HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
+ ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
+ ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
+ } else {
+ arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
+ HDR_SET_COMPRESS(hdr, cmp);
+ ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
+ ASSERT(HDR_COMPRESSION_ENABLED(hdr));
+ }
+}
+
+/*
+ * Looks for another buf on the same hdr which has the data decompressed, copies
+ * from it, and returns true. If no such buf exists, returns false.
+ */
+static boolean_t
+arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ boolean_t copied = B_FALSE;
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT3P(buf->b_data, !=, NULL);
+ ASSERT(!ARC_BUF_COMPRESSED(buf));
+
+ for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
+ from = from->b_next) {
+ /* can't use our own data buffer */
+ if (from == buf) {
+ continue;
+ }
+
+ if (!ARC_BUF_COMPRESSED(from)) {
+ bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
+ copied = B_TRUE;
+ break;
+ }
+ }
+
+ /*
+ * There were no decompressed bufs, so there should not be a
+ * checksum on the hdr either.
+ */
+ EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
+
+ return (copied);
+}
+
+/*
+ * Given a buf that has a data buffer attached to it, this function will
+ * efficiently fill the buf with data of the specified compression setting from
+ * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
+ * are already sharing a data buf, no copy is performed.
+ *
+ * If the buf is marked as compressed but uncompressed data was requested, this
+ * will allocate a new data buffer for the buf, remove that flag, and fill the
+ * buf with uncompressed data. You can't request a compressed buf on a hdr with
+ * uncompressed data, and (since we haven't added support for it yet) if you
+ * want compressed data your buf must already be marked as compressed and have
+ * the correct-sized data buffer.
+ */
+static int
+arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
+ dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
+
+ ASSERT3P(buf->b_data, !=, NULL);
+ IMPLY(compressed, hdr_compressed);
+ IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
+
+ if (hdr_compressed == compressed) {
+ if (!arc_buf_is_shared(buf)) {
+ abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
+ arc_buf_size(buf));
+ }
+ } else {
+ ASSERT(hdr_compressed);
+ ASSERT(!compressed);
+ ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
+
+ /*
+ * If the buf is sharing its data with the hdr, unlink it and
+ * allocate a new data buffer for the buf.
+ */
+ if (arc_buf_is_shared(buf)) {
+ ASSERT(ARC_BUF_COMPRESSED(buf));
+
+ /* We need to give the buf it's own b_data */
+ buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
+ buf->b_data =
+ arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
+ arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
+
+ /* Previously overhead was 0; just add new overhead */
+ ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
+ } else if (ARC_BUF_COMPRESSED(buf)) {
+ /* We need to reallocate the buf's b_data */
+ arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
+ buf);
+ buf->b_data =
+ arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
+
+ /* We increased the size of b_data; update overhead */
+ ARCSTAT_INCR(arcstat_overhead_size,
+ HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
+ }
+
+ /*
+ * Regardless of the buf's previous compression settings, it
+ * should not be compressed at the end of this function.
+ */
+ buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
+
+ /*
+ * Try copying the data from another buf which already has a
+ * decompressed version. If that's not possible, it's time to
+ * bite the bullet and decompress the data from the hdr.
+ */
+ if (arc_buf_try_copy_decompressed_data(buf)) {
+ /* Skip byteswapping and checksumming (already done) */
+ ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
+ return (0);
+ } else {
+ int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
+ hdr->b_l1hdr.b_pabd, buf->b_data,
+ HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
+
+ /*
+ * Absent hardware errors or software bugs, this should
+ * be impossible, but log it anyway so we can debug it.
+ */
+ if (error != 0) {
+ zfs_dbgmsg(
+ "hdr %p, compress %d, psize %d, lsize %d",
+ hdr, HDR_GET_COMPRESS(hdr),
+ HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
+ return (SET_ERROR(EIO));
+ }
+ }
+ }
+
+ /* Byteswap the buf's data if necessary */
+ if (bswap != DMU_BSWAP_NUMFUNCS) {
+ ASSERT(!HDR_SHARED_DATA(hdr));
+ ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
+ dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
+ }
+
+ /* Compute the hdr's checksum if necessary */
+ arc_cksum_compute(buf);
+
+ return (0);
+}
+
+int
+arc_decompress(arc_buf_t *buf)
+{
+ return (arc_buf_fill(buf, B_FALSE));
+}
+
+/*
+ * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
+ */
+static uint64_t
+arc_hdr_size(arc_buf_hdr_t *hdr)
+{
+ uint64_t size;
+
+ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
+ HDR_GET_PSIZE(hdr) > 0) {
+ size = HDR_GET_PSIZE(hdr);
+ } else {
+ ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
+ size = HDR_GET_LSIZE(hdr);
+ }
+ return (size);
+}
+
+/*
+ * Increment the amount of evictable space in the arc_state_t's refcount.
+ * We account for the space used by the hdr and the arc buf individually
+ * so that we can add and remove them from the refcount individually.
+ */
+static void
+arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
+{
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ if (GHOST_STATE(state)) {
+ ASSERT0(hdr->b_l1hdr.b_bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ (void) refcount_add_many(&state->arcs_esize[type],
+ HDR_GET_LSIZE(hdr), hdr);
+ return;
+ }
+
+ ASSERT(!GHOST_STATE(state));
+ if (hdr->b_l1hdr.b_pabd != NULL) {
+ (void) refcount_add_many(&state->arcs_esize[type],
+ arc_hdr_size(hdr), hdr);
+ }
+ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
+ buf = buf->b_next) {
+ if (arc_buf_is_shared(buf))
+ continue;
+ (void) refcount_add_many(&state->arcs_esize[type],
+ arc_buf_size(buf), buf);
+ }
+}
+
+/*
+ * Decrement the amount of evictable space in the arc_state_t's refcount.
+ * We account for the space used by the hdr and the arc buf individually
+ * so that we can add and remove them from the refcount individually.
+ */
+static void
+arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
+{
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ if (GHOST_STATE(state)) {
+ ASSERT0(hdr->b_l1hdr.b_bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ (void) refcount_remove_many(&state->arcs_esize[type],
+ HDR_GET_LSIZE(hdr), hdr);
+ return;
+ }
+
+ ASSERT(!GHOST_STATE(state));
+ if (hdr->b_l1hdr.b_pabd != NULL) {
+ (void) refcount_remove_many(&state->arcs_esize[type],
+ arc_hdr_size(hdr), hdr);
+ }
+ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
+ buf = buf->b_next) {
+ if (arc_buf_is_shared(buf))
+ continue;
+ (void) refcount_remove_many(&state->arcs_esize[type],
+ arc_buf_size(buf), buf);
+ }
+}
+
+/*
+ * Add a reference to this hdr indicating that someone is actively
+ * referencing that memory. When the refcount transitions from 0 to 1,
+ * we remove it from the respective arc_state_t list to indicate that
+ * it is not evictable.
+ */
+static void
+add_reference(arc_buf_hdr_t *hdr, void *tag)
+{
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ if (!MUTEX_HELD(HDR_LOCK(hdr))) {
+ ASSERT(hdr->b_l1hdr.b_state == arc_anon);
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ }
+
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+
+ if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
+ (state != arc_anon)) {
+ /* We don't use the L2-only state list. */
+ if (state != arc_l2c_only) {
+ multilist_remove(state->arcs_list[arc_buf_type(hdr)],
+ hdr);
+ arc_evictable_space_decrement(hdr, state);
+ }
+ /* remove the prefetch flag if we get a reference */
+ arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
+ }
+}
+
+/*
+ * Remove a reference from this hdr. When the reference transitions from
+ * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
+ * list making it eligible for eviction.
+ */
+static int
+remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
+{
+ int cnt;
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
+ ASSERT(!GHOST_STATE(state));
+
+ /*
+ * arc_l2c_only counts as a ghost state so we don't need to explicitly
+ * check to prevent usage of the arc_l2c_only list.
+ */
+ if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
+ (state != arc_anon)) {
+ multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
+ ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
+ arc_evictable_space_increment(hdr, state);
+ }
+ return (cnt);
+}
+
+/*
+ * Returns detailed information about a specific arc buffer. When the
+ * state_index argument is set the function will calculate the arc header
+ * list position for its arc state. Since this requires a linear traversal
+ * callers are strongly encourage not to do this. However, it can be helpful
+ * for targeted analysis so the functionality is provided.
+ */
+void
+arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
+{
+ arc_buf_hdr_t *hdr = ab->b_hdr;
+ l1arc_buf_hdr_t *l1hdr = NULL;
+ l2arc_buf_hdr_t *l2hdr = NULL;
+ arc_state_t *state = NULL;
+
+ memset(abi, 0, sizeof (arc_buf_info_t));
+
+ if (hdr == NULL)
+ return;
+
+ abi->abi_flags = hdr->b_flags;
+
+ if (HDR_HAS_L1HDR(hdr)) {
+ l1hdr = &hdr->b_l1hdr;
+ state = l1hdr->b_state;
+ }
+ if (HDR_HAS_L2HDR(hdr))
+ l2hdr = &hdr->b_l2hdr;
+
+ if (l1hdr) {
+ abi->abi_bufcnt = l1hdr->b_bufcnt;
+ abi->abi_access = l1hdr->b_arc_access;
+ abi->abi_mru_hits = l1hdr->b_mru_hits;
+ abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
+ abi->abi_mfu_hits = l1hdr->b_mfu_hits;
+ abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
+ abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
+ }
+
+ if (l2hdr) {
+ abi->abi_l2arc_dattr = l2hdr->b_daddr;
+ abi->abi_l2arc_hits = l2hdr->b_hits;
+ }
+
+ abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
+ abi->abi_state_contents = arc_buf_type(hdr);
+ abi->abi_size = arc_hdr_size(hdr);
+}
+
+/*
+ * Move the supplied buffer to the indicated state. The hash lock
+ * for the buffer must be held by the caller.
+ */
+static void
+arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
+ kmutex_t *hash_lock)
+{
+ arc_state_t *old_state;
+ int64_t refcnt;
+ uint32_t bufcnt;
+ boolean_t update_old, update_new;
+ arc_buf_contents_t buftype = arc_buf_type(hdr);
+
+ /*
+ * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
+ * in arc_read() when bringing a buffer out of the L2ARC. However, the
+ * L1 hdr doesn't always exist when we change state to arc_anon before
+ * destroying a header, in which case reallocating to add the L1 hdr is
+ * pointless.
+ */
+ if (HDR_HAS_L1HDR(hdr)) {
+ old_state = hdr->b_l1hdr.b_state;
+ refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
+ bufcnt = hdr->b_l1hdr.b_bufcnt;
+ update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
+ } else {
+ old_state = arc_l2c_only;
+ refcnt = 0;
+ bufcnt = 0;
+ update_old = B_FALSE;
+ }
+ update_new = update_old;
+
+ ASSERT(MUTEX_HELD(hash_lock));
+ ASSERT3P(new_state, !=, old_state);
+ ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
+ ASSERT(old_state != arc_anon || bufcnt <= 1);
+
+ /*
+ * If this buffer is evictable, transfer it from the
+ * old state list to the new state list.
+ */
+ if (refcnt == 0) {
+ if (old_state != arc_anon && old_state != arc_l2c_only) {
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ multilist_remove(old_state->arcs_list[buftype], hdr);
+
+ if (GHOST_STATE(old_state)) {
+ ASSERT0(bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ update_old = B_TRUE;
+ }
+ arc_evictable_space_decrement(hdr, old_state);
+ }
+ if (new_state != arc_anon && new_state != arc_l2c_only) {
+
+ /*
+ * An L1 header always exists here, since if we're
+ * moving to some L1-cached state (i.e. not l2c_only or
+ * anonymous), we realloc the header to add an L1hdr
+ * beforehand.
+ */
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ multilist_insert(new_state->arcs_list[buftype], hdr);
+
+ if (GHOST_STATE(new_state)) {
+ ASSERT0(bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ update_new = B_TRUE;
+ }
+ arc_evictable_space_increment(hdr, new_state);
+ }
+ }
+
+ ASSERT(!HDR_EMPTY(hdr));
+ if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
+ buf_hash_remove(hdr);
+
+ /* adjust state sizes (ignore arc_l2c_only) */
+
+ if (update_new && new_state != arc_l2c_only) {
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ if (GHOST_STATE(new_state)) {
+ ASSERT0(bufcnt);
+
+ /*
+ * When moving a header to a ghost state, we first
+ * remove all arc buffers. Thus, we'll have a
+ * bufcnt of zero, and no arc buffer to use for
+ * the reference. As a result, we use the arc
+ * header pointer for the reference.
+ */
+ (void) refcount_add_many(&new_state->arcs_size,
+ HDR_GET_LSIZE(hdr), hdr);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ } else {
+ uint32_t buffers = 0;
+
+ /*
+ * Each individual buffer holds a unique reference,
+ * thus we must remove each of these references one
+ * at a time.
+ */
+ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
+ buf = buf->b_next) {
+ ASSERT3U(bufcnt, !=, 0);
+ buffers++;
+
+ /*
+ * When the arc_buf_t is sharing the data
+ * block with the hdr, the owner of the
+ * reference belongs to the hdr. Only
+ * add to the refcount if the arc_buf_t is
+ * not shared.
+ */
+ if (arc_buf_is_shared(buf))
+ continue;
+
+ (void) refcount_add_many(&new_state->arcs_size,
+ arc_buf_size(buf), buf);
+ }
+ ASSERT3U(bufcnt, ==, buffers);
+
+ if (hdr->b_l1hdr.b_pabd != NULL) {
+ (void) refcount_add_many(&new_state->arcs_size,
+ arc_hdr_size(hdr), hdr);
+ } else {
+ ASSERT(GHOST_STATE(old_state));
+ }
+ }
+ }
+
+ if (update_old && old_state != arc_l2c_only) {
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ if (GHOST_STATE(old_state)) {
+ ASSERT0(bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+
+ /*
+ * When moving a header off of a ghost state,
+ * the header will not contain any arc buffers.
+ * We use the arc header pointer for the reference
+ * which is exactly what we did when we put the
+ * header on the ghost state.
+ */
+
+ (void) refcount_remove_many(&old_state->arcs_size,
+ HDR_GET_LSIZE(hdr), hdr);
+ } else {
+ uint32_t buffers = 0;
+
+ /*
+ * Each individual buffer holds a unique reference,
+ * thus we must remove each of these references one
+ * at a time.
+ */
+ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
+ buf = buf->b_next) {
+ ASSERT3U(bufcnt, !=, 0);
+ buffers++;
+
+ /*
+ * When the arc_buf_t is sharing the data
+ * block with the hdr, the owner of the
+ * reference belongs to the hdr. Only
+ * add to the refcount if the arc_buf_t is
+ * not shared.
+ */
+ if (arc_buf_is_shared(buf))
+ continue;
+
+ (void) refcount_remove_many(
+ &old_state->arcs_size, arc_buf_size(buf),
+ buf);
+ }
+ ASSERT3U(bufcnt, ==, buffers);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ (void) refcount_remove_many(
+ &old_state->arcs_size, arc_hdr_size(hdr), hdr);
+ }
+ }
+
+ if (HDR_HAS_L1HDR(hdr))
+ hdr->b_l1hdr.b_state = new_state;
+
+ /*
+ * L2 headers should never be on the L2 state list since they don't
+ * have L1 headers allocated.
+ */
+ ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
+ multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
+}
+
+void
+arc_space_consume(uint64_t space, arc_space_type_t type)
+{
+ ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
+
+ switch (type) {
+ case ARC_SPACE_DATA:
+ aggsum_add(&astat_data_size, space);
+ break;
+ case ARC_SPACE_META:
+ aggsum_add(&astat_metadata_size, space);
+ break;
+ case ARC_SPACE_BONUS:
+ aggsum_add(&astat_bonus_size, space);
+ break;
+ case ARC_SPACE_DNODE:
+ aggsum_add(&astat_dnode_size, space);
+ break;
+ case ARC_SPACE_DBUF:
+ aggsum_add(&astat_dbuf_size, space);
+ break;
+ case ARC_SPACE_HDRS:
+ aggsum_add(&astat_hdr_size, space);
+ break;
+ case ARC_SPACE_L2HDRS:
+ aggsum_add(&astat_l2_hdr_size, space);
+ break;
+ }
+
+ if (type != ARC_SPACE_DATA)
+ aggsum_add(&arc_meta_used, space);
+
+ aggsum_add(&arc_size, space);
+}
+
+void
+arc_space_return(uint64_t space, arc_space_type_t type)
+{
+ ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
+
+ switch (type) {
+ case ARC_SPACE_DATA:
+ aggsum_add(&astat_data_size, -space);
+ break;
+ case ARC_SPACE_META:
+ aggsum_add(&astat_metadata_size, -space);
+ break;
+ case ARC_SPACE_BONUS:
+ aggsum_add(&astat_bonus_size, -space);
+ break;
+ case ARC_SPACE_DNODE:
+ aggsum_add(&astat_dnode_size, -space);
+ break;
+ case ARC_SPACE_DBUF:
+ aggsum_add(&astat_dbuf_size, -space);
+ break;
+ case ARC_SPACE_HDRS:
+ aggsum_add(&astat_hdr_size, -space);
+ break;
+ case ARC_SPACE_L2HDRS:
+ aggsum_add(&astat_l2_hdr_size, -space);
+ break;
+ }
+
+ if (type != ARC_SPACE_DATA) {
+ ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
+ /*
+ * We use the upper bound here rather than the precise value
+ * because the arc_meta_max value doesn't need to be
+ * precise. It's only consumed by humans via arcstats.
+ */
+ if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
+ arc_meta_max = aggsum_upper_bound(&arc_meta_used);
+ aggsum_add(&arc_meta_used, -space);
+ }
+
+ ASSERT(aggsum_compare(&arc_size, space) >= 0);
+ aggsum_add(&arc_size, -space);
+}
+
+/*
+ * Given a hdr and a buf, returns whether that buf can share its b_data buffer
+ * with the hdr's b_pabd.
+ */
+static boolean_t
+arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
+{
+ /*
+ * The criteria for sharing a hdr's data are:
+ * 1. the hdr's compression matches the buf's compression
+ * 2. the hdr doesn't need to be byteswapped
+ * 3. the hdr isn't already being shared
+ * 4. the buf is either compressed or it is the last buf in the hdr list
+ *
+ * Criterion #4 maintains the invariant that shared uncompressed
+ * bufs must be the final buf in the hdr's b_buf list. Reading this, you
+ * might ask, "if a compressed buf is allocated first, won't that be the
+ * last thing in the list?", but in that case it's impossible to create
+ * a shared uncompressed buf anyway (because the hdr must be compressed
+ * to have the compressed buf). You might also think that #3 is
+ * sufficient to make this guarantee, however it's possible
+ * (specifically in the rare L2ARC write race mentioned in
+ * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
+ * is sharable, but wasn't at the time of its allocation. Rather than
+ * allow a new shared uncompressed buf to be created and then shuffle
+ * the list around to make it the last element, this simply disallows
+ * sharing if the new buf isn't the first to be added.
+ */
+ ASSERT3P(buf->b_hdr, ==, hdr);
+ boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
+ boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
+ return (buf_compressed == hdr_compressed &&
+ hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
+ !HDR_SHARED_DATA(hdr) &&
+ (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
+}
+
+/*
+ * Allocate a buf for this hdr. If you care about the data that's in the hdr,
+ * or if you want a compressed buffer, pass those flags in. Returns 0 if the
+ * copy was made successfully, or an error code otherwise.
+ */
+static int
+arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
+ boolean_t fill, arc_buf_t **ret)
+{
+ arc_buf_t *buf;
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
+ VERIFY(hdr->b_type == ARC_BUFC_DATA ||
+ hdr->b_type == ARC_BUFC_METADATA);
+ ASSERT3P(ret, !=, NULL);
+ ASSERT3P(*ret, ==, NULL);
+
+ buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
+ buf->b_hdr = hdr;
+ buf->b_data = NULL;
+ buf->b_next = hdr->b_l1hdr.b_buf;
+ buf->b_flags = 0;
+
+ add_reference(hdr, tag);
+
+ /*
+ * We're about to change the hdr's b_flags. We must either
+ * hold the hash_lock or be undiscoverable.
+ */
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+
+ /*
+ * Only honor requests for compressed bufs if the hdr is actually
+ * compressed.
+ */
+ if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
+ buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
+
+ /*
+ * If the hdr's data can be shared then we share the data buffer and
+ * set the appropriate bit in the hdr's b_flags to indicate the hdr is
+ * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
+ * buffer to store the buf's data.
+ *
+ * There are two additional restrictions here because we're sharing
+ * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
+ * actively involved in an L2ARC write, because if this buf is used by
+ * an arc_write() then the hdr's data buffer will be released when the
+ * write completes, even though the L2ARC write might still be using it.
+ * Second, the hdr's ABD must be linear so that the buf's user doesn't
+ * need to be ABD-aware.
+ */
+ boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
+ abd_is_linear(hdr->b_l1hdr.b_pabd);
+
+ /* Set up b_data and sharing */
+ if (can_share) {
+ buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
+ buf->b_flags |= ARC_BUF_FLAG_SHARED;
+ arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
+ } else {
+ buf->b_data =
+ arc_get_data_buf(hdr, arc_buf_size(buf), buf);
+ ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
+ }
+ VERIFY3P(buf->b_data, !=, NULL);
+
+ hdr->b_l1hdr.b_buf = buf;
+ hdr->b_l1hdr.b_bufcnt += 1;
+
+ /*
+ * If the user wants the data from the hdr, we need to either copy or
+ * decompress the data.
+ */
+ if (fill) {
+ return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
+ }
+
+ return (0);
+}
+
+static char *arc_onloan_tag = "onloan";
+
+static inline void
+arc_loaned_bytes_update(int64_t delta)
+{
+ atomic_add_64(&arc_loaned_bytes, delta);
+
+ /* assert that it did not wrap around */
+ ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
+}
+
+/*
+ * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
+ * flight data by arc_tempreserve_space() until they are "returned". Loaned
+ * buffers must be returned to the arc before they can be used by the DMU or
+ * freed.
+ */
+arc_buf_t *
+arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
+{
+ arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
+ is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
+
+ arc_loaned_bytes_update(arc_buf_size(buf));
+
+ return (buf);
+}
+
+arc_buf_t *
+arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
+ enum zio_compress compression_type)
+{
+ arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
+ psize, lsize, compression_type);
+
+ arc_loaned_bytes_update(arc_buf_size(buf));
+
+ return (buf);
+}
+
+
+/*
+ * Return a loaned arc buffer to the arc.
+ */
+void
+arc_return_buf(arc_buf_t *buf, void *tag)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ ASSERT3P(buf->b_data, !=, NULL);
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
+ (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
+
+ arc_loaned_bytes_update(-arc_buf_size(buf));
+}
+
+/* Detach an arc_buf from a dbuf (tag) */
+void
+arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ ASSERT3P(buf->b_data, !=, NULL);
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
+ (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
+
+ arc_loaned_bytes_update(arc_buf_size(buf));
+}
+
+static void
+l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
+{
+ l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
+
+ df->l2df_abd = abd;
+ df->l2df_size = size;
+ df->l2df_type = type;
+ mutex_enter(&l2arc_free_on_write_mtx);
+ list_insert_head(l2arc_free_on_write, df);
+ mutex_exit(&l2arc_free_on_write_mtx);
+}
+
+static void
+arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
+{
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+ arc_buf_contents_t type = arc_buf_type(hdr);
+ uint64_t size = arc_hdr_size(hdr);
+
+ /* protected by hash lock, if in the hash table */
+ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ ASSERT(state != arc_anon && state != arc_l2c_only);
+
+ (void) refcount_remove_many(&state->arcs_esize[type],
+ size, hdr);
+ }
+ (void) refcount_remove_many(&state->arcs_size, size, hdr);
+ if (type == ARC_BUFC_METADATA) {
+ arc_space_return(size, ARC_SPACE_META);
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ arc_space_return(size, ARC_SPACE_DATA);
+ }
+
+ l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
+}
+
+/*
+ * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
+ * data buffer, we transfer the refcount ownership to the hdr and update
+ * the appropriate kstats.
+ */
+static void
+arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
+{
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+
+ ASSERT(arc_can_share(hdr, buf));
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+
+ /*
+ * Start sharing the data buffer. We transfer the
+ * refcount ownership to the hdr since it always owns
+ * the refcount whenever an arc_buf_t is shared.
+ */
+ refcount_transfer_ownership(&state->arcs_size, buf, hdr);
+ hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
+ abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
+ HDR_ISTYPE_METADATA(hdr));
+ arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
+ buf->b_flags |= ARC_BUF_FLAG_SHARED;
+
+ /*
+ * Since we've transferred ownership to the hdr we need
+ * to increment its compressed and uncompressed kstats and
+ * decrement the overhead size.
+ */
+ ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
+ ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
+ ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
+}
+
+static void
+arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
+{
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+
+ ASSERT(arc_buf_is_shared(buf));
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+
+ /*
+ * We are no longer sharing this buffer so we need
+ * to transfer its ownership to the rightful owner.
+ */
+ refcount_transfer_ownership(&state->arcs_size, hdr, buf);
+ arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
+ abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
+ abd_put(hdr->b_l1hdr.b_pabd);
+ hdr->b_l1hdr.b_pabd = NULL;
+ buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
+
+ /*
+ * Since the buffer is no longer shared between
+ * the arc buf and the hdr, count it as overhead.
+ */
+ ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
+ ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
+ ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
+}
+
+/*
+ * Remove an arc_buf_t from the hdr's buf list and return the last
+ * arc_buf_t on the list. If no buffers remain on the list then return
+ * NULL.
+ */
+static arc_buf_t *
+arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
+{
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+
+ arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
+ arc_buf_t *lastbuf = NULL;
+
+ /*
+ * Remove the buf from the hdr list and locate the last
+ * remaining buffer on the list.
+ */
+ while (*bufp != NULL) {
+ if (*bufp == buf)
+ *bufp = buf->b_next;
+
+ /*
+ * If we've removed a buffer in the middle of
+ * the list then update the lastbuf and update
+ * bufp.
+ */
+ if (*bufp != NULL) {
+ lastbuf = *bufp;
+ bufp = &(*bufp)->b_next;
+ }
+ }
+ buf->b_next = NULL;
+ ASSERT3P(lastbuf, !=, buf);
+ IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
+ IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
+ IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
+
+ return (lastbuf);
+}
+
+/*
+ * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
+ * list and free it.
+ */
+static void
+arc_buf_destroy_impl(arc_buf_t *buf)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ /*
+ * Free up the data associated with the buf but only if we're not
+ * sharing this with the hdr. If we are sharing it with the hdr, the
+ * hdr is responsible for doing the free.
+ */
+ if (buf->b_data != NULL) {
+ /*
+ * We're about to change the hdr's b_flags. We must either
+ * hold the hash_lock or be undiscoverable.
+ */
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
+
+ arc_cksum_verify(buf);
+#ifdef illumos
+ arc_buf_unwatch(buf);
+#endif
+
+ if (arc_buf_is_shared(buf)) {
+ arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
+ } else {
+ uint64_t size = arc_buf_size(buf);
+ arc_free_data_buf(hdr, buf->b_data, size, buf);
+ ARCSTAT_INCR(arcstat_overhead_size, -size);
+ }
+ buf->b_data = NULL;
+
+ ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
+ hdr->b_l1hdr.b_bufcnt -= 1;
+ }
+
+ arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
+
+ if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
+ /*
+ * If the current arc_buf_t is sharing its data buffer with the
+ * hdr, then reassign the hdr's b_pabd to share it with the new
+ * buffer at the end of the list. The shared buffer is always
+ * the last one on the hdr's buffer list.
+ *
+ * There is an equivalent case for compressed bufs, but since
+ * they aren't guaranteed to be the last buf in the list and
+ * that is an exceedingly rare case, we just allow that space be
+ * wasted temporarily.
+ */
+ if (lastbuf != NULL) {
+ /* Only one buf can be shared at once */
+ VERIFY(!arc_buf_is_shared(lastbuf));
+ /* hdr is uncompressed so can't have compressed buf */
+ VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
+
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ arc_hdr_free_pabd(hdr);
+
+ /*
+ * We must setup a new shared block between the
+ * last buffer and the hdr. The data would have
+ * been allocated by the arc buf so we need to transfer
+ * ownership to the hdr since it's now being shared.
+ */
+ arc_share_buf(hdr, lastbuf);
+ }
+ } else if (HDR_SHARED_DATA(hdr)) {
+ /*
+ * Uncompressed shared buffers are always at the end
+ * of the list. Compressed buffers don't have the
+ * same requirements. This makes it hard to
+ * simply assert that the lastbuf is shared so
+ * we rely on the hdr's compression flags to determine
+ * if we have a compressed, shared buffer.
+ */
+ ASSERT3P(lastbuf, !=, NULL);
+ ASSERT(arc_buf_is_shared(lastbuf) ||
+ HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
+ }
+
+ /*
+ * Free the checksum if we're removing the last uncompressed buf from
+ * this hdr.
+ */
+ if (!arc_hdr_has_uncompressed_buf(hdr)) {
+ arc_cksum_free(hdr);
+ }
+
+ /* clean up the buf */
+ buf->b_hdr = NULL;
+ kmem_cache_free(buf_cache, buf);
+}
+
+static void
+arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
+{
+ ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT(!HDR_SHARED_DATA(hdr));
+
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
+ hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+
+ ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
+ ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
+}
+
+static void
+arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
+{
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+
+ /*
+ * If the hdr is currently being written to the l2arc then
+ * we defer freeing the data by adding it to the l2arc_free_on_write
+ * list. The l2arc will free the data once it's finished
+ * writing it to the l2arc device.
+ */
+ if (HDR_L2_WRITING(hdr)) {
+ arc_hdr_free_on_write(hdr);
+ ARCSTAT_BUMP(arcstat_l2_free_on_write);
+ } else {
+ arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
+ arc_hdr_size(hdr), hdr);
+ }
+ hdr->b_l1hdr.b_pabd = NULL;
+ hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
+
+ ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
+ ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
+}
+
+static arc_buf_hdr_t *
+arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
+ enum zio_compress compression_type, arc_buf_contents_t type)
+{
+ arc_buf_hdr_t *hdr;
+
+ VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
+
+ hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
+ ASSERT(HDR_EMPTY(hdr));
+ ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
+ ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
+ HDR_SET_PSIZE(hdr, psize);
+ HDR_SET_LSIZE(hdr, lsize);
+ hdr->b_spa = spa;
+ hdr->b_type = type;
+ hdr->b_flags = 0;
+ arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
+ arc_hdr_set_compress(hdr, compression_type);
+
+ hdr->b_l1hdr.b_state = arc_anon;
+ hdr->b_l1hdr.b_arc_access = 0;
+ hdr->b_l1hdr.b_bufcnt = 0;
+ hdr->b_l1hdr.b_buf = NULL;
+
+ /*
+ * Allocate the hdr's buffer. This will contain either
+ * the compressed or uncompressed data depending on the block
+ * it references and compressed arc enablement.
+ */
+ arc_hdr_alloc_pabd(hdr);
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+
+ return (hdr);
+}
+
+/*
+ * Transition between the two allocation states for the arc_buf_hdr struct.
+ * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
+ * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
+ * version is used when a cache buffer is only in the L2ARC in order to reduce
+ * memory usage.
+ */
+static arc_buf_hdr_t *
+arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
+{
+ ASSERT(HDR_HAS_L2HDR(hdr));
+
+ arc_buf_hdr_t *nhdr;
+ l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
+
+ ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
+ (old == hdr_l2only_cache && new == hdr_full_cache));
+
+ nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
+
+ ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
+ buf_hash_remove(hdr);
+
+ bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
+
+ if (new == hdr_full_cache) {
+ arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
+ /*
+ * arc_access and arc_change_state need to be aware that a
+ * header has just come out of L2ARC, so we set its state to
+ * l2c_only even though it's about to change.
+ */
+ nhdr->b_l1hdr.b_state = arc_l2c_only;
+
+ /* Verify previous threads set to NULL before freeing */
+ ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
+ } else {
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ ASSERT0(hdr->b_l1hdr.b_bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
+
+ /*
+ * If we've reached here, We must have been called from
+ * arc_evict_hdr(), as such we should have already been
+ * removed from any ghost list we were previously on
+ * (which protects us from racing with arc_evict_state),
+ * thus no locking is needed during this check.
+ */
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
+
+ /*
+ * A buffer must not be moved into the arc_l2c_only
+ * state if it's not finished being written out to the
+ * l2arc device. Otherwise, the b_l1hdr.b_pabd field
+ * might try to be accessed, even though it was removed.
+ */
+ VERIFY(!HDR_L2_WRITING(hdr));
+ VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+
+#ifdef ZFS_DEBUG
+ if (hdr->b_l1hdr.b_thawed != NULL) {
+ kmem_free(hdr->b_l1hdr.b_thawed, 1);
+ hdr->b_l1hdr.b_thawed = NULL;
+ }
+#endif
+
+ arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
+ }
+ /*
+ * The header has been reallocated so we need to re-insert it into any
+ * lists it was on.
+ */
+ (void) buf_hash_insert(nhdr, NULL);
+
+ ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
+
+ mutex_enter(&dev->l2ad_mtx);
+
+ /*
+ * We must place the realloc'ed header back into the list at
+ * the same spot. Otherwise, if it's placed earlier in the list,
+ * l2arc_write_buffers() could find it during the function's
+ * write phase, and try to write it out to the l2arc.
+ */
+ list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
+ list_remove(&dev->l2ad_buflist, hdr);
+
+ mutex_exit(&dev->l2ad_mtx);
+
+ /*
+ * Since we're using the pointer address as the tag when
+ * incrementing and decrementing the l2ad_alloc refcount, we
+ * must remove the old pointer (that we're about to destroy) and
+ * add the new pointer to the refcount. Otherwise we'd remove
+ * the wrong pointer address when calling arc_hdr_destroy() later.
+ */
+
+ (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
+ (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
+
+ buf_discard_identity(hdr);
+ kmem_cache_free(old, hdr);
+
+ return (nhdr);
+}
+
+/*
+ * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
+ * The buf is returned thawed since we expect the consumer to modify it.
+ */
+arc_buf_t *
+arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
+{
+ arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
+ ZIO_COMPRESS_OFF, type);
+ ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
+
+ arc_buf_t *buf = NULL;
+ VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
+ arc_buf_thaw(buf);
+
+ return (buf);
+}
+
+/*
+ * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
+ * for bufs containing metadata.
+ */
+arc_buf_t *
+arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
+ enum zio_compress compression_type)
+{
+ ASSERT3U(lsize, >, 0);
+ ASSERT3U(lsize, >=, psize);
+ ASSERT(compression_type > ZIO_COMPRESS_OFF);
+ ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
+
+ arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
+ compression_type, ARC_BUFC_DATA);
+ ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
+
+ arc_buf_t *buf = NULL;
+ VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
+ arc_buf_thaw(buf);
+ ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
+
+ if (!arc_buf_is_shared(buf)) {
+ /*
+ * To ensure that the hdr has the correct data in it if we call
+ * arc_decompress() on this buf before it's been written to
+ * disk, it's easiest if we just set up sharing between the
+ * buf and the hdr.
+ */
+ ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
+ arc_hdr_free_pabd(hdr);
+ arc_share_buf(hdr, buf);
+ }
+
+ return (buf);
+}
+
+static void
+arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
+{
+ l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
+ l2arc_dev_t *dev = l2hdr->b_dev;
+ uint64_t psize = arc_hdr_size(hdr);
+
+ ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
+ ASSERT(HDR_HAS_L2HDR(hdr));
+
+ list_remove(&dev->l2ad_buflist, hdr);
+
+ ARCSTAT_INCR(arcstat_l2_psize, -psize);
+ ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
+
+ vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
+
+ (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
+ arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
+}
+
+static void
+arc_hdr_destroy(arc_buf_hdr_t *hdr)
+{
+ if (HDR_HAS_L1HDR(hdr)) {
+ ASSERT(hdr->b_l1hdr.b_buf == NULL ||
+ hdr->b_l1hdr.b_bufcnt > 0);
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
+ }
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ ASSERT(!HDR_IN_HASH_TABLE(hdr));
+
+ if (!HDR_EMPTY(hdr))
+ buf_discard_identity(hdr);
+
+ if (HDR_HAS_L2HDR(hdr)) {
+ l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
+ boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
+
+ if (!buflist_held)
+ mutex_enter(&dev->l2ad_mtx);
+
+ /*
+ * Even though we checked this conditional above, we
+ * need to check this again now that we have the
+ * l2ad_mtx. This is because we could be racing with
+ * another thread calling l2arc_evict() which might have
+ * destroyed this header's L2 portion as we were waiting
+ * to acquire the l2ad_mtx. If that happens, we don't
+ * want to re-destroy the header's L2 portion.
+ */
+ if (HDR_HAS_L2HDR(hdr)) {
+ l2arc_trim(hdr);
+ arc_hdr_l2hdr_destroy(hdr);
+ }
+
+ if (!buflist_held)
+ mutex_exit(&dev->l2ad_mtx);
+ }
+
+ if (HDR_HAS_L1HDR(hdr)) {
+ arc_cksum_free(hdr);
+
+ while (hdr->b_l1hdr.b_buf != NULL)
+ arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
+
+#ifdef ZFS_DEBUG
+ if (hdr->b_l1hdr.b_thawed != NULL) {
+ kmem_free(hdr->b_l1hdr.b_thawed, 1);
+ hdr->b_l1hdr.b_thawed = NULL;
+ }
+#endif
+
+ if (hdr->b_l1hdr.b_pabd != NULL) {
+ arc_hdr_free_pabd(hdr);
+ }
+ }
+
+ ASSERT3P(hdr->b_hash_next, ==, NULL);
+ if (HDR_HAS_L1HDR(hdr)) {
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
+ ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
+ kmem_cache_free(hdr_full_cache, hdr);
+ } else {
+ kmem_cache_free(hdr_l2only_cache, hdr);
+ }
+}
+
+void
+arc_buf_destroy(arc_buf_t *buf, void* tag)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ kmutex_t *hash_lock = HDR_LOCK(hdr);
+
+ if (hdr->b_l1hdr.b_state == arc_anon) {
+ ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ VERIFY0(remove_reference(hdr, NULL, tag));
+ arc_hdr_destroy(hdr);
+ return;
+ }
+
+ mutex_enter(hash_lock);
+ ASSERT3P(hdr, ==, buf->b_hdr);
+ ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
+ ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
+ ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
+ ASSERT3P(buf->b_data, !=, NULL);
+
+ (void) remove_reference(hdr, hash_lock, tag);
+ arc_buf_destroy_impl(buf);
+ mutex_exit(hash_lock);
+}
+
+/*
+ * Evict the arc_buf_hdr that is provided as a parameter. The resultant
+ * state of the header is dependent on its state prior to entering this
+ * function. The following transitions are possible:
+ *
+ * - arc_mru -> arc_mru_ghost
+ * - arc_mfu -> arc_mfu_ghost
+ * - arc_mru_ghost -> arc_l2c_only
+ * - arc_mru_ghost -> deleted
+ * - arc_mfu_ghost -> arc_l2c_only
+ * - arc_mfu_ghost -> deleted
+ */
+static int64_t
+arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
+{
+ arc_state_t *evicted_state, *state;
+ int64_t bytes_evicted = 0;
+ int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
+ zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
+
+ ASSERT(MUTEX_HELD(hash_lock));
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ state = hdr->b_l1hdr.b_state;
+ if (GHOST_STATE(state)) {
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+
+ /*
+ * l2arc_write_buffers() relies on a header's L1 portion
+ * (i.e. its b_pabd field) during it's write phase.
+ * Thus, we cannot push a header onto the arc_l2c_only
+ * state (removing it's L1 piece) until the header is
+ * done being written to the l2arc.
+ */
+ if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
+ ARCSTAT_BUMP(arcstat_evict_l2_skip);
+ return (bytes_evicted);
+ }
+
+ ARCSTAT_BUMP(arcstat_deleted);
+ bytes_evicted += HDR_GET_LSIZE(hdr);
+
+ DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
+
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ if (HDR_HAS_L2HDR(hdr)) {
+ /*
+ * This buffer is cached on the 2nd Level ARC;
+ * don't destroy the header.
+ */
+ arc_change_state(arc_l2c_only, hdr, hash_lock);
+ /*
+ * dropping from L1+L2 cached to L2-only,
+ * realloc to remove the L1 header.
+ */
+ hdr = arc_hdr_realloc(hdr, hdr_full_cache,
+ hdr_l2only_cache);
+ } else {
+ arc_change_state(arc_anon, hdr, hash_lock);
+ arc_hdr_destroy(hdr);
+ }
+ return (bytes_evicted);
+ }
+
+ ASSERT(state == arc_mru || state == arc_mfu);
+ evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
+
+ /* prefetch buffers have a minimum lifespan */
+ if (HDR_IO_IN_PROGRESS(hdr) ||
+ ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
+ ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
+ ARCSTAT_BUMP(arcstat_evict_skip);
+ return (bytes_evicted);
+ }
+
+ ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
+ while (hdr->b_l1hdr.b_buf) {
+ arc_buf_t *buf = hdr->b_l1hdr.b_buf;
+ if (!mutex_tryenter(&buf->b_evict_lock)) {
+ ARCSTAT_BUMP(arcstat_mutex_miss);
+ break;
+ }
+ if (buf->b_data != NULL)
+ bytes_evicted += HDR_GET_LSIZE(hdr);
+ mutex_exit(&buf->b_evict_lock);
+ arc_buf_destroy_impl(buf);
+ }
+
+ if (HDR_HAS_L2HDR(hdr)) {
+ ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
+ } else {
+ if (l2arc_write_eligible(hdr->b_spa, hdr)) {
+ ARCSTAT_INCR(arcstat_evict_l2_eligible,
+ HDR_GET_LSIZE(hdr));
+ } else {
+ ARCSTAT_INCR(arcstat_evict_l2_ineligible,
+ HDR_GET_LSIZE(hdr));
+ }
+ }
+
+ if (hdr->b_l1hdr.b_bufcnt == 0) {
+ arc_cksum_free(hdr);
+
+ bytes_evicted += arc_hdr_size(hdr);
+
+ /*
+ * If this hdr is being evicted and has a compressed
+ * buffer then we discard it here before we change states.
+ * This ensures that the accounting is updated correctly
+ * in arc_free_data_impl().
+ */
+ arc_hdr_free_pabd(hdr);
+
+ arc_change_state(evicted_state, hdr, hash_lock);
+ ASSERT(HDR_IN_HASH_TABLE(hdr));
+ arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
+ DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
+ }
+
+ return (bytes_evicted);
+}
+
+static uint64_t
+arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
+ uint64_t spa, int64_t bytes)
+{
+ multilist_sublist_t *mls;
+ uint64_t bytes_evicted = 0;
+ arc_buf_hdr_t *hdr;
+ kmutex_t *hash_lock;
+ int evict_count = 0;
+
+ ASSERT3P(marker, !=, NULL);
+ IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
+
+ mls = multilist_sublist_lock(ml, idx);
+
+ for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
+ hdr = multilist_sublist_prev(mls, marker)) {
+ if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
+ (evict_count >= zfs_arc_evict_batch_limit))
+ break;
+
+ /*
+ * To keep our iteration location, move the marker
+ * forward. Since we're not holding hdr's hash lock, we
+ * must be very careful and not remove 'hdr' from the
+ * sublist. Otherwise, other consumers might mistake the
+ * 'hdr' as not being on a sublist when they call the
+ * multilist_link_active() function (they all rely on
+ * the hash lock protecting concurrent insertions and
+ * removals). multilist_sublist_move_forward() was
+ * specifically implemented to ensure this is the case
+ * (only 'marker' will be removed and re-inserted).
+ */
+ multilist_sublist_move_forward(mls, marker);
+
+ /*
+ * The only case where the b_spa field should ever be
+ * zero, is the marker headers inserted by
+ * arc_evict_state(). It's possible for multiple threads
+ * to be calling arc_evict_state() concurrently (e.g.
+ * dsl_pool_close() and zio_inject_fault()), so we must
+ * skip any markers we see from these other threads.
+ */
+ if (hdr->b_spa == 0)
+ continue;
+
+ /* we're only interested in evicting buffers of a certain spa */
+ if (spa != 0 && hdr->b_spa != spa) {
+ ARCSTAT_BUMP(arcstat_evict_skip);
+ continue;
+ }
+
+ hash_lock = HDR_LOCK(hdr);
+
+ /*
+ * We aren't calling this function from any code path
+ * that would already be holding a hash lock, so we're
+ * asserting on this assumption to be defensive in case
+ * this ever changes. Without this check, it would be
+ * possible to incorrectly increment arcstat_mutex_miss
+ * below (e.g. if the code changed such that we called
+ * this function with a hash lock held).
+ */
+ ASSERT(!MUTEX_HELD(hash_lock));
+
+ if (mutex_tryenter(hash_lock)) {
+ uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
+ mutex_exit(hash_lock);
+
+ bytes_evicted += evicted;
+
+ /*
+ * If evicted is zero, arc_evict_hdr() must have
+ * decided to skip this header, don't increment
+ * evict_count in this case.
+ */
+ if (evicted != 0)
+ evict_count++;
+
+ /*
+ * If arc_size isn't overflowing, signal any
+ * threads that might happen to be waiting.
+ *
+ * For each header evicted, we wake up a single
+ * thread. If we used cv_broadcast, we could
+ * wake up "too many" threads causing arc_size
+ * to significantly overflow arc_c; since
+ * arc_get_data_impl() doesn't check for overflow
+ * when it's woken up (it doesn't because it's
+ * possible for the ARC to be overflowing while
+ * full of un-evictable buffers, and the
+ * function should proceed in this case).
+ *
+ * If threads are left sleeping, due to not
+ * using cv_broadcast here, they will be woken
+ * up via cv_broadcast in arc_adjust_cb() just
+ * before arc_adjust_zthr sleeps.
+ */
+ mutex_enter(&arc_adjust_lock);
+ if (!arc_is_overflowing())
+ cv_signal(&arc_adjust_waiters_cv);
+ mutex_exit(&arc_adjust_lock);
+ } else {
+ ARCSTAT_BUMP(arcstat_mutex_miss);
+ }
+ }
+
+ multilist_sublist_unlock(mls);
+
+ return (bytes_evicted);
+}
+
+/*
+ * Evict buffers from the given arc state, until we've removed the
+ * specified number of bytes. Move the removed buffers to the
+ * appropriate evict state.
+ *
+ * This function makes a "best effort". It skips over any buffers
+ * it can't get a hash_lock on, and so, may not catch all candidates.
+ * It may also return without evicting as much space as requested.
+ *
+ * If bytes is specified using the special value ARC_EVICT_ALL, this
+ * will evict all available (i.e. unlocked and evictable) buffers from
+ * the given arc state; which is used by arc_flush().
+ */
+static uint64_t
+arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
+ arc_buf_contents_t type)
+{
+ uint64_t total_evicted = 0;
+ multilist_t *ml = state->arcs_list[type];
+ int num_sublists;
+ arc_buf_hdr_t **markers;
+
+ IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
+
+ num_sublists = multilist_get_num_sublists(ml);
+
+ /*
+ * If we've tried to evict from each sublist, made some
+ * progress, but still have not hit the target number of bytes
+ * to evict, we want to keep trying. The markers allow us to
+ * pick up where we left off for each individual sublist, rather
+ * than starting from the tail each time.
+ */
+ markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
+ for (int i = 0; i < num_sublists; i++) {
+ markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
+
+ /*
+ * A b_spa of 0 is used to indicate that this header is
+ * a marker. This fact is used in arc_adjust_type() and
+ * arc_evict_state_impl().
+ */
+ markers[i]->b_spa = 0;
+
+ multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
+ multilist_sublist_insert_tail(mls, markers[i]);
+ multilist_sublist_unlock(mls);
+ }
+
+ /*
+ * While we haven't hit our target number of bytes to evict, or
+ * we're evicting all available buffers.
+ */
+ while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
+ int sublist_idx = multilist_get_random_index(ml);
+ uint64_t scan_evicted = 0;
+
+ /*
+ * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
+ * Request that 10% of the LRUs be scanned by the superblock
+ * shrinker.
+ */
+ if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size,
+ arc_dnode_limit) > 0) {
+ arc_prune_async((aggsum_upper_bound(&astat_dnode_size) -
+ arc_dnode_limit) / sizeof (dnode_t) /
+ zfs_arc_dnode_reduce_percent);
+ }
+
+ /*
+ * Start eviction using a randomly selected sublist,
+ * this is to try and evenly balance eviction across all
+ * sublists. Always starting at the same sublist
+ * (e.g. index 0) would cause evictions to favor certain
+ * sublists over others.
+ */
+ for (int i = 0; i < num_sublists; i++) {
+ uint64_t bytes_remaining;
+ uint64_t bytes_evicted;
+
+ if (bytes == ARC_EVICT_ALL)
+ bytes_remaining = ARC_EVICT_ALL;
+ else if (total_evicted < bytes)
+ bytes_remaining = bytes - total_evicted;
+ else
+ break;
+
+ bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
+ markers[sublist_idx], spa, bytes_remaining);
+
+ scan_evicted += bytes_evicted;
+ total_evicted += bytes_evicted;
+
+ /* we've reached the end, wrap to the beginning */
+ if (++sublist_idx >= num_sublists)
+ sublist_idx = 0;
+ }
+
+ /*
+ * If we didn't evict anything during this scan, we have
+ * no reason to believe we'll evict more during another
+ * scan, so break the loop.
+ */
+ if (scan_evicted == 0) {
+ /* This isn't possible, let's make that obvious */
+ ASSERT3S(bytes, !=, 0);
+
+ /*
+ * When bytes is ARC_EVICT_ALL, the only way to
+ * break the loop is when scan_evicted is zero.
+ * In that case, we actually have evicted enough,
+ * so we don't want to increment the kstat.
+ */
+ if (bytes != ARC_EVICT_ALL) {
+ ASSERT3S(total_evicted, <, bytes);
+ ARCSTAT_BUMP(arcstat_evict_not_enough);
+ }
+
+ break;
+ }
+ }
+
+ for (int i = 0; i < num_sublists; i++) {
+ multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
+ multilist_sublist_remove(mls, markers[i]);
+ multilist_sublist_unlock(mls);
+
+ kmem_cache_free(hdr_full_cache, markers[i]);
+ }
+ kmem_free(markers, sizeof (*markers) * num_sublists);
+
+ return (total_evicted);
+}
+
+/*
+ * Flush all "evictable" data of the given type from the arc state
+ * specified. This will not evict any "active" buffers (i.e. referenced).
+ *
+ * When 'retry' is set to B_FALSE, the function will make a single pass
+ * over the state and evict any buffers that it can. Since it doesn't
+ * continually retry the eviction, it might end up leaving some buffers
+ * in the ARC due to lock misses.
+ *
+ * When 'retry' is set to B_TRUE, the function will continually retry the
+ * eviction until *all* evictable buffers have been removed from the
+ * state. As a result, if concurrent insertions into the state are
+ * allowed (e.g. if the ARC isn't shutting down), this function might
+ * wind up in an infinite loop, continually trying to evict buffers.
+ */
+static uint64_t
+arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
+ boolean_t retry)
+{
+ uint64_t evicted = 0;
+
+ while (refcount_count(&state->arcs_esize[type]) != 0) {
+ evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
+
+ if (!retry)
+ break;
+ }
+
+ return (evicted);
+}
+
+/*
+ * Helper function for arc_prune_async() it is responsible for safely
+ * handling the execution of a registered arc_prune_func_t.
+ */
+static void
+arc_prune_task(void *ptr)
+{
+ arc_prune_t *ap = (arc_prune_t *)ptr;
+ arc_prune_func_t *func = ap->p_pfunc;
+
+ if (func != NULL)
+ func(ap->p_adjust, ap->p_private);
+
+ refcount_remove(&ap->p_refcnt, func);
+}
+
+/*
+ * Notify registered consumers they must drop holds on a portion of the ARC
+ * buffered they reference. This provides a mechanism to ensure the ARC can
+ * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
+ * is analogous to dnlc_reduce_cache() but more generic.
+ *
+ * This operation is performed asynchronously so it may be safely called
+ * in the context of the arc_reclaim_thread(). A reference is taken here
+ * for each registered arc_prune_t and the arc_prune_task() is responsible
+ * for releasing it once the registered arc_prune_func_t has completed.
+ */
+static void
+arc_prune_async(int64_t adjust)
+{
+ arc_prune_t *ap;
+
+ mutex_enter(&arc_prune_mtx);
+ for (ap = list_head(&arc_prune_list); ap != NULL;
+ ap = list_next(&arc_prune_list, ap)) {
+
+ if (refcount_count(&ap->p_refcnt) >= 2)
+ continue;
+
+ refcount_add(&ap->p_refcnt, ap->p_pfunc);
+ ap->p_adjust = adjust;
+ if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
+ ap, TQ_SLEEP) == TASKQID_INVALID) {
+ refcount_remove(&ap->p_refcnt, ap->p_pfunc);
+ continue;
+ }
+ ARCSTAT_BUMP(arcstat_prune);
+ }
+ mutex_exit(&arc_prune_mtx);
+}
+
+/*
+ * Evict the specified number of bytes from the state specified,
+ * restricting eviction to the spa and type given. This function
+ * prevents us from trying to evict more from a state's list than
+ * is "evictable", and to skip evicting altogether when passed a
+ * negative value for "bytes". In contrast, arc_evict_state() will
+ * evict everything it can, when passed a negative value for "bytes".
+ */
+static uint64_t
+arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
+ arc_buf_contents_t type)
+{
+ int64_t delta;
+
+ if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
+ delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
+ return (arc_evict_state(state, spa, delta, type));
+ }
+
+ return (0);
+}
+
+/*
+ * The goal of this function is to evict enough meta data buffers from the
+ * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
+ * more complicated than it appears because it is common for data buffers
+ * to have holds on meta data buffers. In addition, dnode meta data buffers
+ * will be held by the dnodes in the block preventing them from being freed.
+ * This means we can't simply traverse the ARC and expect to always find
+ * enough unheld meta data buffer to release.
+ *
+ * Therefore, this function has been updated to make alternating passes
+ * over the ARC releasing data buffers and then newly unheld meta data
+ * buffers. This ensures forward progress is maintained and meta_used
+ * will decrease. Normally this is sufficient, but if required the ARC
+ * will call the registered prune callbacks causing dentry and inodes to
+ * be dropped from the VFS cache. This will make dnode meta data buffers
+ * available for reclaim.
+ */
+static uint64_t
+arc_adjust_meta_balanced(uint64_t meta_used)
+{
+ int64_t delta, prune = 0, adjustmnt;
+ uint64_t total_evicted = 0;
+ arc_buf_contents_t type = ARC_BUFC_DATA;
+ int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
+
+restart:
+ /*
+ * This slightly differs than the way we evict from the mru in
+ * arc_adjust because we don't have a "target" value (i.e. no
+ * "meta" arc_p). As a result, I think we can completely
+ * cannibalize the metadata in the MRU before we evict the
+ * metadata from the MFU. I think we probably need to implement a
+ * "metadata arc_p" value to do this properly.
+ */
+ adjustmnt = meta_used - arc_meta_limit;
+
+ if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
+ delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
+ adjustmnt);
+ total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
+ adjustmnt -= delta;
+ }
+
+ /*
+ * We can't afford to recalculate adjustmnt here. If we do,
+ * new metadata buffers can sneak into the MRU or ANON lists,
+ * thus penalize the MFU metadata. Although the fudge factor is
+ * small, it has been empirically shown to be significant for
+ * certain workloads (e.g. creating many empty directories). As
+ * such, we use the original calculation for adjustmnt, and
+ * simply decrement the amount of data evicted from the MRU.
+ */
+
+ if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
+ delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
+ adjustmnt);
+ total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
+ }
+
+ adjustmnt = meta_used - arc_meta_limit;
+
+ if (adjustmnt > 0 &&
+ refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
+ delta = MIN(adjustmnt,
+ refcount_count(&arc_mru_ghost->arcs_esize[type]));
+ total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
+ adjustmnt -= delta;
+ }
+
+ if (adjustmnt > 0 &&
+ refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
+ delta = MIN(adjustmnt,
+ refcount_count(&arc_mfu_ghost->arcs_esize[type]));
+ total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
+ }
+
+ /*
+ * If after attempting to make the requested adjustment to the ARC
+ * the meta limit is still being exceeded then request that the
+ * higher layers drop some cached objects which have holds on ARC
+ * meta buffers. Requests to the upper layers will be made with
+ * increasingly large scan sizes until the ARC is below the limit.
+ */
+ if (meta_used > arc_meta_limit) {
+ if (type == ARC_BUFC_DATA) {
+ type = ARC_BUFC_METADATA;
+ } else {
+ type = ARC_BUFC_DATA;
+
+ if (zfs_arc_meta_prune) {
+ prune += zfs_arc_meta_prune;
+ arc_prune_async(prune);
+ }
+ }
+
+ if (restarts > 0) {
+ restarts--;
+ goto restart;
+ }
+ }
+ return (total_evicted);
+}
+
+/*
+ * Evict metadata buffers from the cache, such that arc_meta_used is
+ * capped by the arc_meta_limit tunable.
+ */
+static uint64_t
+arc_adjust_meta_only(uint64_t meta_used)
+{
+ uint64_t total_evicted = 0;
+ int64_t target;
+
+ /*
+ * If we're over the meta limit, we want to evict enough
+ * metadata to get back under the meta limit. We don't want to
+ * evict so much that we drop the MRU below arc_p, though. If
+ * we're over the meta limit more than we're over arc_p, we
+ * evict some from the MRU here, and some from the MFU below.
+ */
+ target = MIN((int64_t)(meta_used - arc_meta_limit),
+ (int64_t)(refcount_count(&arc_anon->arcs_size) +
+ refcount_count(&arc_mru->arcs_size) - arc_p));
+
+ total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
+
+ /*
+ * Similar to the above, we want to evict enough bytes to get us
+ * below the meta limit, but not so much as to drop us below the
+ * space allotted to the MFU (which is defined as arc_c - arc_p).
+ */
+ target = MIN((int64_t)(meta_used - arc_meta_limit),
+ (int64_t)(refcount_count(&arc_mfu->arcs_size) -
+ (arc_c - arc_p)));
+
+ total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
+
+ return (total_evicted);
+}
+
+static uint64_t
+arc_adjust_meta(uint64_t meta_used)
+{
+ if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
+ return (arc_adjust_meta_only(meta_used));
+ else
+ return (arc_adjust_meta_balanced(meta_used));
+}
+
+/*
+ * Return the type of the oldest buffer in the given arc state
+ *
+ * This function will select a random sublist of type ARC_BUFC_DATA and
+ * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
+ * is compared, and the type which contains the "older" buffer will be
+ * returned.
+ */
+static arc_buf_contents_t
+arc_adjust_type(arc_state_t *state)
+{
+ multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
+ multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
+ int data_idx = multilist_get_random_index(data_ml);
+ int meta_idx = multilist_get_random_index(meta_ml);
+ multilist_sublist_t *data_mls;
+ multilist_sublist_t *meta_mls;
+ arc_buf_contents_t type;
+ arc_buf_hdr_t *data_hdr;
+ arc_buf_hdr_t *meta_hdr;
+
+ /*
+ * We keep the sublist lock until we're finished, to prevent
+ * the headers from being destroyed via arc_evict_state().
+ */
+ data_mls = multilist_sublist_lock(data_ml, data_idx);
+ meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
+
+ /*
+ * These two loops are to ensure we skip any markers that
+ * might be at the tail of the lists due to arc_evict_state().
+ */
+
+ for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
+ data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
+ if (data_hdr->b_spa != 0)
+ break;
+ }
+
+ for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
+ meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
+ if (meta_hdr->b_spa != 0)
+ break;
+ }
+
+ if (data_hdr == NULL && meta_hdr == NULL) {
+ type = ARC_BUFC_DATA;
+ } else if (data_hdr == NULL) {
+ ASSERT3P(meta_hdr, !=, NULL);
+ type = ARC_BUFC_METADATA;
+ } else if (meta_hdr == NULL) {
+ ASSERT3P(data_hdr, !=, NULL);
+ type = ARC_BUFC_DATA;
+ } else {
+ ASSERT3P(data_hdr, !=, NULL);
+ ASSERT3P(meta_hdr, !=, NULL);
+
+ /* The headers can't be on the sublist without an L1 header */
+ ASSERT(HDR_HAS_L1HDR(data_hdr));
+ ASSERT(HDR_HAS_L1HDR(meta_hdr));
+
+ if (data_hdr->b_l1hdr.b_arc_access <
+ meta_hdr->b_l1hdr.b_arc_access) {
+ type = ARC_BUFC_DATA;
+ } else {
+ type = ARC_BUFC_METADATA;
+ }
+ }
+
+ multilist_sublist_unlock(meta_mls);
+ multilist_sublist_unlock(data_mls);
+
+ return (type);
+}
+
+/*
+ * Evict buffers from the cache, such that arc_size is capped by arc_c.
+ */
+static uint64_t
+arc_adjust(void)
+{
+ uint64_t total_evicted = 0;
+ uint64_t bytes;
+ int64_t target;
+ uint64_t asize = aggsum_value(&arc_size);
+ uint64_t ameta = aggsum_value(&arc_meta_used);
+
+ /*
+ * If we're over arc_meta_limit, we want to correct that before
+ * potentially evicting data buffers below.
+ */
+ total_evicted += arc_adjust_meta(ameta);
+
+ /*
+ * Adjust MRU size
+ *
+ * If we're over the target cache size, we want to evict enough
+ * from the list to get back to our target size. We don't want
+ * to evict too much from the MRU, such that it drops below
+ * arc_p. So, if we're over our target cache size more than
+ * the MRU is over arc_p, we'll evict enough to get back to
+ * arc_p here, and then evict more from the MFU below.
+ */
+ target = MIN((int64_t)(asize - arc_c),
+ (int64_t)(refcount_count(&arc_anon->arcs_size) +
+ refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
+
+ /*
+ * If we're below arc_meta_min, always prefer to evict data.
+ * Otherwise, try to satisfy the requested number of bytes to
+ * evict from the type which contains older buffers; in an
+ * effort to keep newer buffers in the cache regardless of their
+ * type. If we cannot satisfy the number of bytes from this
+ * type, spill over into the next type.
+ */
+ if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
+ ameta > arc_meta_min) {
+ bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * metadata, we try to get the rest from data.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
+ } else {
+ bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * data, we try to get the rest from metadata.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
+ }
+
+ /*
+ * Re-sum ARC stats after the first round of evictions.
+ */
+ asize = aggsum_value(&arc_size);
+ ameta = aggsum_value(&arc_meta_used);
+
+ /*
+ * Adjust MFU size
+ *
+ * Now that we've tried to evict enough from the MRU to get its
+ * size back to arc_p, if we're still above the target cache
+ * size, we evict the rest from the MFU.
+ */
+ target = asize - arc_c;
+
+ if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
+ ameta > arc_meta_min) {
+ bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * metadata, we try to get the rest from data.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
+ } else {
+ bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ /*
+ * If we couldn't evict our target number of bytes from
+ * data, we try to get the rest from data.
+ */
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
+ }
+
+ /*
+ * Adjust ghost lists
+ *
+ * In addition to the above, the ARC also defines target values
+ * for the ghost lists. The sum of the mru list and mru ghost
+ * list should never exceed the target size of the cache, and
+ * the sum of the mru list, mfu list, mru ghost list, and mfu
+ * ghost list should never exceed twice the target size of the
+ * cache. The following logic enforces these limits on the ghost
+ * caches, and evicts from them as needed.
+ */
+ target = refcount_count(&arc_mru->arcs_size) +
+ refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
+
+ bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
+
+ /*
+ * We assume the sum of the mru list and mfu list is less than
+ * or equal to arc_c (we enforced this above), which means we
+ * can use the simpler of the two equations below:
+ *
+ * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
+ * mru ghost + mfu ghost <= arc_c
+ */
+ target = refcount_count(&arc_mru_ghost->arcs_size) +
+ refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
+
+ bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
+ total_evicted += bytes;
+
+ target -= bytes;
+
+ total_evicted +=
+ arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
+
+ return (total_evicted);
+}
+
+void
+arc_flush(spa_t *spa, boolean_t retry)
+{
+ uint64_t guid = 0;
+
+ /*
+ * If retry is B_TRUE, a spa must not be specified since we have
+ * no good way to determine if all of a spa's buffers have been
+ * evicted from an arc state.
+ */
+ ASSERT(!retry || spa == 0);
+
+ if (spa != NULL)
+ guid = spa_load_guid(spa);
+
+ (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
+
+ (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
+
+ (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
+
+ (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
+ (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
+}
+
+static void
+arc_reduce_target_size(int64_t to_free)
+{
+ uint64_t asize = aggsum_value(&arc_size);
+ if (arc_c > arc_c_min) {
+ DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
+ arc_c_min, uint64_t, arc_p, uint64_t, to_free);
+ if (arc_c > arc_c_min + to_free)
+ atomic_add_64(&arc_c, -to_free);
+ else
+ arc_c = arc_c_min;
+
+ atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
+ if (asize < arc_c)
+ arc_c = MAX(asize, arc_c_min);
+ if (arc_p > arc_c)
+ arc_p = (arc_c >> 1);
+
+ DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
+ arc_p);
+
+ ASSERT(arc_c >= arc_c_min);
+ ASSERT((int64_t)arc_p >= 0);
+ }
+
+ if (asize > arc_c) {
+ DTRACE_PROBE2(arc__shrink_adjust, uint64_t, asize,
+ uint64_t, arc_c);
+ /* See comment in arc_adjust_cb_check() on why lock+flag */
+ mutex_enter(&arc_adjust_lock);
+ arc_adjust_needed = B_TRUE;
+ mutex_exit(&arc_adjust_lock);
+ zthr_wakeup(arc_adjust_zthr);
+ }
+}
+
+typedef enum free_memory_reason_t {
+ FMR_UNKNOWN,
+ FMR_NEEDFREE,
+ FMR_LOTSFREE,
+ FMR_SWAPFS_MINFREE,
+ FMR_PAGES_PP_MAXIMUM,
+ FMR_HEAP_ARENA,
+ FMR_ZIO_ARENA,
+} free_memory_reason_t;
+
+int64_t last_free_memory;
+free_memory_reason_t last_free_reason;
+
+/*
+ * Additional reserve of pages for pp_reserve.
+ */
+int64_t arc_pages_pp_reserve = 64;
+
+/*
+ * Additional reserve of pages for swapfs.
+ */
+int64_t arc_swapfs_reserve = 64;
+
+/*
+ * Return the amount of memory that can be consumed before reclaim will be
+ * needed. Positive if there is sufficient free memory, negative indicates
+ * the amount of memory that needs to be freed up.
+ */
+static int64_t
+arc_available_memory(void)
+{
+ int64_t lowest = INT64_MAX;
+ int64_t n;
+ free_memory_reason_t r = FMR_UNKNOWN;
+
+#ifdef _KERNEL
+#ifdef __FreeBSD__
+ /*
+ * Cooperate with pagedaemon when it's time for it to scan
+ * and reclaim some pages.
+ */
+ n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_LOTSFREE;
+ }
+
+#else
+ if (needfree > 0) {
+ n = PAGESIZE * (-needfree);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_NEEDFREE;
+ }
+ }
+
+ /*
+ * check that we're out of range of the pageout scanner. It starts to
+ * schedule paging if freemem is less than lotsfree and needfree.
+ * lotsfree is the high-water mark for pageout, and needfree is the
+ * number of needed free pages. We add extra pages here to make sure
+ * the scanner doesn't start up while we're freeing memory.
+ */
+ n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_LOTSFREE;
+ }
+
+ /*
+ * check to make sure that swapfs has enough space so that anon
+ * reservations can still succeed. anon_resvmem() checks that the
+ * availrmem is greater than swapfs_minfree, and the number of reserved
+ * swap pages. We also add a bit of extra here just to prevent
+ * circumstances from getting really dire.
+ */
+ n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
+ desfree - arc_swapfs_reserve);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_SWAPFS_MINFREE;
+ }
+
+
+ /*
+ * Check that we have enough availrmem that memory locking (e.g., via
+ * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
+ * stores the number of pages that cannot be locked; when availrmem
+ * drops below pages_pp_maximum, page locking mechanisms such as
+ * page_pp_lock() will fail.)
+ */
+ n = PAGESIZE * (availrmem - pages_pp_maximum -
+ arc_pages_pp_reserve);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_PAGES_PP_MAXIMUM;
+ }
+
+#endif /* __FreeBSD__ */
+#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
+ /*
+ * If we're on an i386 platform, it's possible that we'll exhaust the
+ * kernel heap space before we ever run out of available physical
+ * memory. Most checks of the size of the heap_area compare against
+ * tune.t_minarmem, which is the minimum available real memory that we
+ * can have in the system. However, this is generally fixed at 25 pages
+ * which is so low that it's useless. In this comparison, we seek to
+ * calculate the total heap-size, and reclaim if more than 3/4ths of the
+ * heap is allocated. (Or, in the calculation, if less than 1/4th is
+ * free)
+ */
+ n = uma_avail() - (long)(uma_limit() / 4);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_HEAP_ARENA;
+ }
+#endif
+
+ /*
+ * If zio data pages are being allocated out of a separate heap segment,
+ * then enforce that the size of available vmem for this arena remains
+ * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
+ *
+ * Note that reducing the arc_zio_arena_free_shift keeps more virtual
+ * memory (in the zio_arena) free, which can avoid memory
+ * fragmentation issues.
+ */
+ if (zio_arena != NULL) {
+ n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
+ (vmem_size(zio_arena, VMEM_ALLOC) >>
+ arc_zio_arena_free_shift);
+ if (n < lowest) {
+ lowest = n;
+ r = FMR_ZIO_ARENA;
+ }
+ }
+
+#else /* _KERNEL */
+ /* Every 100 calls, free a small amount */
+ if (spa_get_random(100) == 0)
+ lowest = -1024;
+#endif /* _KERNEL */
+
+ last_free_memory = lowest;
+ last_free_reason = r;
+ DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
+ return (lowest);
+}
+
+
+/*
+ * Determine if the system is under memory pressure and is asking
+ * to reclaim memory. A return value of B_TRUE indicates that the system
+ * is under memory pressure and that the arc should adjust accordingly.
+ */
+static boolean_t
+arc_reclaim_needed(void)
+{
+ return (arc_available_memory() < 0);
+}
+
+extern kmem_cache_t *zio_buf_cache[];
+extern kmem_cache_t *zio_data_buf_cache[];
+extern kmem_cache_t *range_seg_cache;
+extern kmem_cache_t *abd_chunk_cache;
+
+static __noinline void
+arc_kmem_reap_soon(void)
+{
+ size_t i;
+ kmem_cache_t *prev_cache = NULL;
+ kmem_cache_t *prev_data_cache = NULL;
+
+ DTRACE_PROBE(arc__kmem_reap_start);
+#ifdef _KERNEL
+ if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
+ /*
+ * We are exceeding our meta-data cache limit.
+ * Purge some DNLC entries to release holds on meta-data.
+ */
+ dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
+ }
+#if defined(__i386)
+ /*
+ * Reclaim unused memory from all kmem caches.
+ */
+ kmem_reap();
+#endif
+#endif
+
+ for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
+ if (zio_buf_cache[i] != prev_cache) {
+ prev_cache = zio_buf_cache[i];
+ kmem_cache_reap_soon(zio_buf_cache[i]);
+ }
+ if (zio_data_buf_cache[i] != prev_data_cache) {
+ prev_data_cache = zio_data_buf_cache[i];
+ kmem_cache_reap_soon(zio_data_buf_cache[i]);
+ }
+ }
+ kmem_cache_reap_soon(abd_chunk_cache);
+ kmem_cache_reap_soon(buf_cache);
+ kmem_cache_reap_soon(hdr_full_cache);
+ kmem_cache_reap_soon(hdr_l2only_cache);
+ kmem_cache_reap_soon(range_seg_cache);
+
+#ifdef illumos
+ if (zio_arena != NULL) {
+ /*
+ * Ask the vmem arena to reclaim unused memory from its
+ * quantum caches.
+ */
+ vmem_qcache_reap(zio_arena);
+ }
+#endif
+ DTRACE_PROBE(arc__kmem_reap_end);
+}
+
+/* ARGSUSED */
+static boolean_t
+arc_adjust_cb_check(void *arg, zthr_t *zthr)
+{
+ /*
+ * This is necessary in order for the mdb ::arc dcmd to
+ * show up to date information. Since the ::arc command
+ * does not call the kstat's update function, without
+ * this call, the command may show stale stats for the
+ * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
+ * with this change, the data might be up to 1 second
+ * out of date(the arc_adjust_zthr has a maximum sleep
+ * time of 1 second); but that should suffice. The
+ * arc_state_t structures can be queried directly if more
+ * accurate information is needed.
+ */
+ if (arc_ksp != NULL)
+ arc_ksp->ks_update(arc_ksp, KSTAT_READ);
+
+ /*
+ * We have to rely on arc_get_data_impl() to tell us when to adjust,
+ * rather than checking if we are overflowing here, so that we are
+ * sure to not leave arc_get_data_impl() waiting on
+ * arc_adjust_waiters_cv. If we have become "not overflowing" since
+ * arc_get_data_impl() checked, we need to wake it up. We could
+ * broadcast the CV here, but arc_get_data_impl() may have not yet
+ * gone to sleep. We would need to use a mutex to ensure that this
+ * function doesn't broadcast until arc_get_data_impl() has gone to
+ * sleep (e.g. the arc_adjust_lock). However, the lock ordering of
+ * such a lock would necessarily be incorrect with respect to the
+ * zthr_lock, which is held before this function is called, and is
+ * held by arc_get_data_impl() when it calls zthr_wakeup().
+ */
+ return (arc_adjust_needed);
+}
+
+/*
+ * Keep arc_size under arc_c by running arc_adjust which evicts data
+ * from the ARC. */
+/* ARGSUSED */
+static int
+arc_adjust_cb(void *arg, zthr_t *zthr)
+{
+ uint64_t evicted = 0;
+
+ /* Evict from cache */
+ evicted = arc_adjust();
+
+ /*
+ * If evicted is zero, we couldn't evict anything
+ * via arc_adjust(). This could be due to hash lock
+ * collisions, but more likely due to the majority of
+ * arc buffers being unevictable. Therefore, even if
+ * arc_size is above arc_c, another pass is unlikely to
+ * be helpful and could potentially cause us to enter an
+ * infinite loop. Additionally, zthr_iscancelled() is
+ * checked here so that if the arc is shutting down, the
+ * broadcast will wake any remaining arc adjust waiters.
+ */
+ mutex_enter(&arc_adjust_lock);
+ arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
+ evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
+ if (!arc_adjust_needed) {
+ /*
+ * We're either no longer overflowing, or we
+ * can't evict anything more, so we should wake
+ * up any waiters.
+ */
+ cv_broadcast(&arc_adjust_waiters_cv);
+ }
+ mutex_exit(&arc_adjust_lock);
+
+ return (0);
+}
+
+/* ARGSUSED */
+static boolean_t
+arc_reap_cb_check(void *arg, zthr_t *zthr)
+{
+ int64_t free_memory = arc_available_memory();
+
+ /*
+ * If a kmem reap is already active, don't schedule more. We must
+ * check for this because kmem_cache_reap_soon() won't actually
+ * block on the cache being reaped (this is to prevent callers from
+ * becoming implicitly blocked by a system-wide kmem reap -- which,
+ * on a system with many, many full magazines, can take minutes).
+ */
+ if (!kmem_cache_reap_active() &&
+ free_memory < 0) {
+ arc_no_grow = B_TRUE;
+ arc_warm = B_TRUE;
+ /*
+ * Wait at least zfs_grow_retry (default 60) seconds
+ * before considering growing.
+ */
+ arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
+ return (B_TRUE);
+ } else if (free_memory < arc_c >> arc_no_grow_shift) {
+ arc_no_grow = B_TRUE;
+ } else if (gethrtime() >= arc_growtime) {
+ arc_no_grow = B_FALSE;
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Keep enough free memory in the system by reaping the ARC's kmem
+ * caches. To cause more slabs to be reapable, we may reduce the
+ * target size of the cache (arc_c), causing the arc_adjust_cb()
+ * to free more buffers.
+ */
+/* ARGSUSED */
+static int
+arc_reap_cb(void *arg, zthr_t *zthr)
+{
+ int64_t free_memory;
+
+ /*
+ * Kick off asynchronous kmem_reap()'s of all our caches.
+ */
+ arc_kmem_reap_soon();
+
+ /*
+ * Wait at least arc_kmem_cache_reap_retry_ms between
+ * arc_kmem_reap_soon() calls. Without this check it is possible to
+ * end up in a situation where we spend lots of time reaping
+ * caches, while we're near arc_c_min. Waiting here also gives the
+ * subsequent free memory check a chance of finding that the
+ * asynchronous reap has already freed enough memory, and we don't
+ * need to call arc_reduce_target_size().
+ */
+ delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
+
+ /*
+ * Reduce the target size as needed to maintain the amount of free
+ * memory in the system at a fraction of the arc_size (1/128th by
+ * default). If oversubscribed (free_memory < 0) then reduce the
+ * target arc_size by the deficit amount plus the fractional
+ * amount. If free memory is positive but less then the fractional
+ * amount, reduce by what is needed to hit the fractional amount.
+ */
+ free_memory = arc_available_memory();
+
+ int64_t to_free =
+ (arc_c >> arc_shrink_shift) - free_memory;
+ if (to_free > 0) {
+#ifdef _KERNEL
+#ifdef illumos
+ to_free = MAX(to_free, ptob(needfree));
+#endif
+#endif
+ arc_reduce_target_size(to_free);
+ }
+
+ return (0);
+}
+
+static u_int arc_dnlc_evicts_arg;
+extern struct vfsops zfs_vfsops;
+
+static void
+arc_dnlc_evicts_thread(void *dummy __unused)
+{
+ callb_cpr_t cpr;
+ u_int percent;
+
+ CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
+
+ mutex_enter(&arc_dnlc_evicts_lock);
+ while (!arc_dnlc_evicts_thread_exit) {
+ CALLB_CPR_SAFE_BEGIN(&cpr);
+ (void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
+ CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
+ if (arc_dnlc_evicts_arg != 0) {
+ percent = arc_dnlc_evicts_arg;
+ mutex_exit(&arc_dnlc_evicts_lock);
+#ifdef _KERNEL
+ vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
+#endif
+ mutex_enter(&arc_dnlc_evicts_lock);
+ /*
+ * Clear our token only after vnlru_free()
+ * pass is done, to avoid false queueing of
+ * the requests.
+ */
+ arc_dnlc_evicts_arg = 0;
+ }
+ }
+ arc_dnlc_evicts_thread_exit = FALSE;
+ cv_broadcast(&arc_dnlc_evicts_cv);
+ CALLB_CPR_EXIT(&cpr);
+ thread_exit();
+}
+
+void
+dnlc_reduce_cache(void *arg)
+{
+ u_int percent;
+
+ percent = (u_int)(uintptr_t)arg;
+ mutex_enter(&arc_dnlc_evicts_lock);
+ if (arc_dnlc_evicts_arg == 0) {
+ arc_dnlc_evicts_arg = percent;
+ cv_broadcast(&arc_dnlc_evicts_cv);
+ }
+ mutex_exit(&arc_dnlc_evicts_lock);
+}
+
+/*
+ * Adapt arc info given the number of bytes we are trying to add and
+ * the state that we are comming from. This function is only called
+ * when we are adding new content to the cache.
+ */
+static void
+arc_adapt(int bytes, arc_state_t *state)
+{
+ int mult;
+ uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
+ int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
+ int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
+
+ if (state == arc_l2c_only)
+ return;
+
+ ASSERT(bytes > 0);
+ /*
+ * Adapt the target size of the MRU list:
+ * - if we just hit in the MRU ghost list, then increase
+ * the target size of the MRU list.
+ * - if we just hit in the MFU ghost list, then increase
+ * the target size of the MFU list by decreasing the
+ * target size of the MRU list.
+ */
+ if (state == arc_mru_ghost) {
+ mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
+ mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
+
+ arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
+ } else if (state == arc_mfu_ghost) {
+ uint64_t delta;
+
+ mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
+ mult = MIN(mult, 10);
+
+ delta = MIN(bytes * mult, arc_p);
+ arc_p = MAX(arc_p_min, arc_p - delta);
+ }
+ ASSERT((int64_t)arc_p >= 0);
+
+ /*
+ * Wake reap thread if we do not have any available memory
+ */
+ if (arc_reclaim_needed()) {
+ zthr_wakeup(arc_reap_zthr);
+ return;
+ }
+
+ if (arc_no_grow)
+ return;
+
+ if (arc_c >= arc_c_max)
+ return;
+
+ /*
+ * If we're within (2 * maxblocksize) bytes of the target
+ * cache size, increment the target cache size
+ */
+ if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
+ 0) {
+ DTRACE_PROBE1(arc__inc_adapt, int, bytes);
+ atomic_add_64(&arc_c, (int64_t)bytes);
+ if (arc_c > arc_c_max)
+ arc_c = arc_c_max;
+ else if (state == arc_anon)
+ atomic_add_64(&arc_p, (int64_t)bytes);
+ if (arc_p > arc_c)
+ arc_p = arc_c;
+ }
+ ASSERT((int64_t)arc_p >= 0);
+}
+
+/*
+ * Check if arc_size has grown past our upper threshold, determined by
+ * zfs_arc_overflow_shift.
+ */
+static boolean_t
+arc_is_overflowing(void)
+{
+ /* Always allow at least one block of overflow */
+ uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
+ arc_c >> zfs_arc_overflow_shift);
+
+ /*
+ * We just compare the lower bound here for performance reasons. Our
+ * primary goals are to make sure that the arc never grows without
+ * bound, and that it can reach its maximum size. This check
+ * accomplishes both goals. The maximum amount we could run over by is
+ * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
+ * in the ARC. In practice, that's in the tens of MB, which is low
+ * enough to be safe.
+ */
+ return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
+}
+
+static abd_t *
+arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
+{
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ arc_get_data_impl(hdr, size, tag);
+ if (type == ARC_BUFC_METADATA) {
+ return (abd_alloc(size, B_TRUE));
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ return (abd_alloc(size, B_FALSE));
+ }
+}
+
+static void *
+arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
+{
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ arc_get_data_impl(hdr, size, tag);
+ if (type == ARC_BUFC_METADATA) {
+ return (zio_buf_alloc(size));
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ return (zio_data_buf_alloc(size));
+ }
+}
+
+/*
+ * Allocate a block and return it to the caller. If we are hitting the
+ * hard limit for the cache size, we must sleep, waiting for the eviction
+ * thread to catch up. If we're past the target size but below the hard
+ * limit, we'll only signal the reclaim thread and continue on.
+ */
+static void
+arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
+{
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ arc_adapt(size, state);
+
+ /*
+ * If arc_size is currently overflowing, and has grown past our
+ * upper limit, we must be adding data faster than the evict
+ * thread can evict. Thus, to ensure we don't compound the
+ * problem by adding more data and forcing arc_size to grow even
+ * further past it's target size, we halt and wait for the
+ * eviction thread to catch up.
+ *
+ * It's also possible that the reclaim thread is unable to evict
+ * enough buffers to get arc_size below the overflow limit (e.g.
+ * due to buffers being un-evictable, or hash lock collisions).
+ * In this case, we want to proceed regardless if we're
+ * overflowing; thus we don't use a while loop here.
+ */
+ if (arc_is_overflowing()) {
+ mutex_enter(&arc_adjust_lock);
+
+ /*
+ * Now that we've acquired the lock, we may no longer be
+ * over the overflow limit, lets check.
+ *
+ * We're ignoring the case of spurious wake ups. If that
+ * were to happen, it'd let this thread consume an ARC
+ * buffer before it should have (i.e. before we're under
+ * the overflow limit and were signalled by the reclaim
+ * thread). As long as that is a rare occurrence, it
+ * shouldn't cause any harm.
+ */
+ if (arc_is_overflowing()) {
+ arc_adjust_needed = B_TRUE;
+ zthr_wakeup(arc_adjust_zthr);
+ (void) cv_wait(&arc_adjust_waiters_cv,
+ &arc_adjust_lock);
+ }
+ mutex_exit(&arc_adjust_lock);
+ }
+
+ VERIFY3U(hdr->b_type, ==, type);
+ if (type == ARC_BUFC_METADATA) {
+ arc_space_consume(size, ARC_SPACE_META);
+ } else {
+ arc_space_consume(size, ARC_SPACE_DATA);
+ }
+
+ /*
+ * Update the state size. Note that ghost states have a
+ * "ghost size" and so don't need to be updated.
+ */
+ if (!GHOST_STATE(state)) {
+
+ (void) refcount_add_many(&state->arcs_size, size, tag);
+
+ /*
+ * If this is reached via arc_read, the link is
+ * protected by the hash lock. If reached via
+ * arc_buf_alloc, the header should not be accessed by
+ * any other thread. And, if reached via arc_read_done,
+ * the hash lock will protect it if it's found in the
+ * hash table; otherwise no other thread should be
+ * trying to [add|remove]_reference it.
+ */
+ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ (void) refcount_add_many(&state->arcs_esize[type],
+ size, tag);
+ }
+
+ /*
+ * If we are growing the cache, and we are adding anonymous
+ * data, and we have outgrown arc_p, update arc_p
+ */
+ if (aggsum_compare(&arc_size, arc_c) < 0 &&
+ hdr->b_l1hdr.b_state == arc_anon &&
+ (refcount_count(&arc_anon->arcs_size) +
+ refcount_count(&arc_mru->arcs_size) > arc_p))
+ arc_p = MIN(arc_c, arc_p + size);
+ }
+ ARCSTAT_BUMP(arcstat_allocated);
+}
+
+static void
+arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
+{
+ arc_free_data_impl(hdr, size, tag);
+ abd_free(abd);
+}
+
+static void
+arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
+{
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ arc_free_data_impl(hdr, size, tag);
+ if (type == ARC_BUFC_METADATA) {
+ zio_buf_free(buf, size);
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ zio_data_buf_free(buf, size);
+ }
+}
+
+/*
+ * Free the arc data buffer.
+ */
+static void
+arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
+{
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+ arc_buf_contents_t type = arc_buf_type(hdr);
+
+ /* protected by hash lock, if in the hash table */
+ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ ASSERT(state != arc_anon && state != arc_l2c_only);
+
+ (void) refcount_remove_many(&state->arcs_esize[type],
+ size, tag);
+ }
+ (void) refcount_remove_many(&state->arcs_size, size, tag);
+
+ VERIFY3U(hdr->b_type, ==, type);
+ if (type == ARC_BUFC_METADATA) {
+ arc_space_return(size, ARC_SPACE_META);
+ } else {
+ ASSERT(type == ARC_BUFC_DATA);
+ arc_space_return(size, ARC_SPACE_DATA);
+ }
+}
+
+/*
+ * This routine is called whenever a buffer is accessed.
+ * NOTE: the hash lock is dropped in this function.
+ */
+static void
+arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
+{
+ clock_t now;
+
+ ASSERT(MUTEX_HELD(hash_lock));
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ if (hdr->b_l1hdr.b_state == arc_anon) {
+ /*
+ * This buffer is not in the cache, and does not
+ * appear in our "ghost" list. Add the new buffer
+ * to the MRU state.
+ */
+
+ ASSERT0(hdr->b_l1hdr.b_arc_access);
+ hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
+ DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
+ arc_change_state(arc_mru, hdr, hash_lock);
+
+ } else if (hdr->b_l1hdr.b_state == arc_mru) {
+ now = ddi_get_lbolt();
+
+ /*
+ * If this buffer is here because of a prefetch, then either:
+ * - clear the flag if this is a "referencing" read
+ * (any subsequent access will bump this into the MFU state).
+ * or
+ * - move the buffer to the head of the list if this is
+ * another prefetch (to make it less likely to be evicted).
+ */
+ if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
+ if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
+ /* link protected by hash lock */
+ ASSERT(multilist_link_active(
+ &hdr->b_l1hdr.b_arc_node));
+ } else {
+ arc_hdr_clear_flags(hdr,
+ ARC_FLAG_PREFETCH |
+ ARC_FLAG_PRESCIENT_PREFETCH);
+ ARCSTAT_BUMP(arcstat_mru_hits);
+ }
+ hdr->b_l1hdr.b_arc_access = now;
+ return;
+ }
+
+ /*
+ * This buffer has been "accessed" only once so far,
+ * but it is still in the cache. Move it to the MFU
+ * state.
+ */
+ if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
+ /*
+ * More than 125ms have passed since we
+ * instantiated this buffer. Move it to the
+ * most frequently used state.
+ */
+ hdr->b_l1hdr.b_arc_access = now;
+ DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
+ arc_change_state(arc_mfu, hdr, hash_lock);
+ }
+ atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
+ ARCSTAT_BUMP(arcstat_mru_hits);
+ } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
+ arc_state_t *new_state;
+ /*
+ * This buffer has been "accessed" recently, but
+ * was evicted from the cache. Move it to the
+ * MFU state.
+ */
+
+ if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
+ new_state = arc_mru;
+ if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
+ arc_hdr_clear_flags(hdr,
+ ARC_FLAG_PREFETCH |
+ ARC_FLAG_PRESCIENT_PREFETCH);
+ }
+ DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
+ } else {
+ new_state = arc_mfu;
+ DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
+ }
+
+ hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
+ arc_change_state(new_state, hdr, hash_lock);
+
+ atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
+ ARCSTAT_BUMP(arcstat_mru_ghost_hits);
+ } else if (hdr->b_l1hdr.b_state == arc_mfu) {
+ /*
+ * This buffer has been accessed more than once and is
+ * still in the cache. Keep it in the MFU state.
+ *
+ * NOTE: an add_reference() that occurred when we did
+ * the arc_read() will have kicked this off the list.
+ * If it was a prefetch, we will explicitly move it to
+ * the head of the list now.
+ */
+
+ atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
+ ARCSTAT_BUMP(arcstat_mfu_hits);
+ hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
+ } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
+ arc_state_t *new_state = arc_mfu;
+ /*
+ * This buffer has been accessed more than once but has
+ * been evicted from the cache. Move it back to the
+ * MFU state.
+ */
+
+ if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
+ /*
+ * This is a prefetch access...
+ * move this block back to the MRU state.
+ */
+ new_state = arc_mru;
+ }
+
+ hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
+ DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
+ arc_change_state(new_state, hdr, hash_lock);
+
+ atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
+ ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
+ } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
+ /*
+ * This buffer is on the 2nd Level ARC.
+ */
+
+ hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
+ DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
+ arc_change_state(arc_mfu, hdr, hash_lock);
+ } else {
+ ASSERT(!"invalid arc state");
+ }
+}
+
+/*
+ * This routine is called by dbuf_hold() to update the arc_access() state
+ * which otherwise would be skipped for entries in the dbuf cache.
+ */
+void
+arc_buf_access(arc_buf_t *buf)
+{
+ mutex_enter(&buf->b_evict_lock);
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ /*
+ * Avoid taking the hash_lock when possible as an optimization.
+ * The header must be checked again under the hash_lock in order
+ * to handle the case where it is concurrently being released.
+ */
+ if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
+ mutex_exit(&buf->b_evict_lock);
+ ARCSTAT_BUMP(arcstat_access_skip);
+ return;
+ }
+
+ kmutex_t *hash_lock = HDR_LOCK(hdr);
+ mutex_enter(hash_lock);
+
+ if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
+ mutex_exit(hash_lock);
+ mutex_exit(&buf->b_evict_lock);
+ ARCSTAT_BUMP(arcstat_access_skip);
+ return;
+ }
+
+ mutex_exit(&buf->b_evict_lock);
+
+ ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
+ hdr->b_l1hdr.b_state == arc_mfu);
+
+ DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
+ arc_access(hdr, hash_lock);
+ mutex_exit(hash_lock);
+
+ ARCSTAT_BUMP(arcstat_hits);
+ ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
+ demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
+}
+
+/* a generic arc_read_done_func_t which you can use */
+/* ARGSUSED */
+void
+arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
+ arc_buf_t *buf, void *arg)
+{
+ if (buf == NULL)
+ return;
+
+ bcopy(buf->b_data, arg, arc_buf_size(buf));
+ arc_buf_destroy(buf, arg);
+}
+
+/* a generic arc_read_done_func_t */
+/* ARGSUSED */
+void
+arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
+ arc_buf_t *buf, void *arg)
+{
+ arc_buf_t **bufp = arg;
+ if (buf == NULL) {
+ ASSERT(zio == NULL || zio->io_error != 0);
+ *bufp = NULL;
+ } else {
+ ASSERT(zio == NULL || zio->io_error == 0);
+ *bufp = buf;
+ ASSERT(buf->b_data != NULL);
+ }
+}
+
+static void
+arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
+{
+ if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
+ ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
+ ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
+ } else {
+ if (HDR_COMPRESSION_ENABLED(hdr)) {
+ ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
+ BP_GET_COMPRESS(bp));
+ }
+ ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
+ ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
+ }
+}
+
+static void
+arc_read_done(zio_t *zio)
+{
+ arc_buf_hdr_t *hdr = zio->io_private;
+ kmutex_t *hash_lock = NULL;
+ arc_callback_t *callback_list;
+ arc_callback_t *acb;
+ boolean_t freeable = B_FALSE;
+ boolean_t no_zio_error = (zio->io_error == 0);
+
+ /*
+ * The hdr was inserted into hash-table and removed from lists
+ * prior to starting I/O. We should find this header, since
+ * it's in the hash table, and it should be legit since it's
+ * not possible to evict it during the I/O. The only possible
+ * reason for it not to be found is if we were freed during the
+ * read.
+ */
+ if (HDR_IN_HASH_TABLE(hdr)) {
+ ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
+ ASSERT3U(hdr->b_dva.dva_word[0], ==,
+ BP_IDENTITY(zio->io_bp)->dva_word[0]);
+ ASSERT3U(hdr->b_dva.dva_word[1], ==,
+ BP_IDENTITY(zio->io_bp)->dva_word[1]);
+
+ arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
+ &hash_lock);
+
+ ASSERT((found == hdr &&
+ DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
+ (found == hdr && HDR_L2_READING(hdr)));
+ ASSERT3P(hash_lock, !=, NULL);
+ }
+
+ if (no_zio_error) {
+ /* byteswap if necessary */
+ if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
+ if (BP_GET_LEVEL(zio->io_bp) > 0) {
+ hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
+ } else {
+ hdr->b_l1hdr.b_byteswap =
+ DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
+ }
+ } else {
+ hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
+ }
+ }
+
+ arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
+ if (l2arc_noprefetch && HDR_PREFETCH(hdr))
+ arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
+
+ callback_list = hdr->b_l1hdr.b_acb;
+ ASSERT3P(callback_list, !=, NULL);
+
+ if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
+ /*
+ * Only call arc_access on anonymous buffers. This is because
+ * if we've issued an I/O for an evicted buffer, we've already
+ * called arc_access (to prevent any simultaneous readers from
+ * getting confused).
+ */
+ arc_access(hdr, hash_lock);
+ }
+
+ /*
+ * If a read request has a callback (i.e. acb_done is not NULL), then we
+ * make a buf containing the data according to the parameters which were
+ * passed in. The implementation of arc_buf_alloc_impl() ensures that we
+ * aren't needlessly decompressing the data multiple times.
+ */
+ int callback_cnt = 0;
+ for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
+ if (!acb->acb_done)
+ continue;
+
+ callback_cnt++;
+
+ if (no_zio_error) {
+ int error = arc_buf_alloc_impl(hdr, acb->acb_private,
+ acb->acb_compressed, zio->io_error == 0,
+ &acb->acb_buf);
+ if (error != 0) {
+ /*
+ * Decompression failed. Set io_error
+ * so that when we call acb_done (below),
+ * we will indicate that the read failed.
+ * Note that in the unusual case where one
+ * callback is compressed and another
+ * uncompressed, we will mark all of them
+ * as failed, even though the uncompressed
+ * one can't actually fail. In this case,
+ * the hdr will not be anonymous, because
+ * if there are multiple callbacks, it's
+ * because multiple threads found the same
+ * arc buf in the hash table.
+ */
+ zio->io_error = error;
+ }
+ }
+ }
+ /*
+ * If there are multiple callbacks, we must have the hash lock,
+ * because the only way for multiple threads to find this hdr is
+ * in the hash table. This ensures that if there are multiple
+ * callbacks, the hdr is not anonymous. If it were anonymous,
+ * we couldn't use arc_buf_destroy() in the error case below.
+ */
+ ASSERT(callback_cnt < 2 || hash_lock != NULL);
+
+ hdr->b_l1hdr.b_acb = NULL;
+ arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
+ if (callback_cnt == 0) {
+ ASSERT(HDR_PREFETCH(hdr));
+ ASSERT0(hdr->b_l1hdr.b_bufcnt);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ }
+
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
+ callback_list != NULL);
+
+ if (no_zio_error) {
+ arc_hdr_verify(hdr, zio->io_bp);
+ } else {
+ arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
+ if (hdr->b_l1hdr.b_state != arc_anon)
+ arc_change_state(arc_anon, hdr, hash_lock);
+ if (HDR_IN_HASH_TABLE(hdr))
+ buf_hash_remove(hdr);
+ freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
+ }
+
+ /*
+ * Broadcast before we drop the hash_lock to avoid the possibility
+ * that the hdr (and hence the cv) might be freed before we get to
+ * the cv_broadcast().
+ */
+ cv_broadcast(&hdr->b_l1hdr.b_cv);
+
+ if (hash_lock != NULL) {
+ mutex_exit(hash_lock);
+ } else {
+ /*
+ * This block was freed while we waited for the read to
+ * complete. It has been removed from the hash table and
+ * moved to the anonymous state (so that it won't show up
+ * in the cache).
+ */
+ ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
+ freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
+ }
+
+ /* execute each callback and free its structure */
+ while ((acb = callback_list) != NULL) {
+ if (acb->acb_done != NULL) {
+ if (zio->io_error != 0 && acb->acb_buf != NULL) {
+ /*
+ * If arc_buf_alloc_impl() fails during
+ * decompression, the buf will still be
+ * allocated, and needs to be freed here.
+ */
+ arc_buf_destroy(acb->acb_buf, acb->acb_private);
+ acb->acb_buf = NULL;
+ }
+ acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
+ acb->acb_buf, acb->acb_private);
+ }
+
+ if (acb->acb_zio_dummy != NULL) {
+ acb->acb_zio_dummy->io_error = zio->io_error;
+ zio_nowait(acb->acb_zio_dummy);
+ }
+
+ callback_list = acb->acb_next;
+ kmem_free(acb, sizeof (arc_callback_t));
+ }
+
+ if (freeable)
+ arc_hdr_destroy(hdr);
+}
+
+/*
+ * "Read" the block at the specified DVA (in bp) via the
+ * cache. If the block is found in the cache, invoke the provided
+ * callback immediately and return. Note that the `zio' parameter
+ * in the callback will be NULL in this case, since no IO was
+ * required. If the block is not in the cache pass the read request
+ * on to the spa with a substitute callback function, so that the
+ * requested block will be added to the cache.
+ *
+ * If a read request arrives for a block that has a read in-progress,
+ * either wait for the in-progress read to complete (and return the
+ * results); or, if this is a read with a "done" func, add a record
+ * to the read to invoke the "done" func when the read completes,
+ * and return; or just return.
+ *
+ * arc_read_done() will invoke all the requested "done" functions
+ * for readers of this block.
+ */
+int
+arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
+ void *private, zio_priority_t priority, int zio_flags,
+ arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
+{
+ arc_buf_hdr_t *hdr = NULL;
+ kmutex_t *hash_lock = NULL;
+ zio_t *rzio;
+ uint64_t guid = spa_load_guid(spa);
+ boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
+ int rc = 0;
+
+ ASSERT(!BP_IS_EMBEDDED(bp) ||
+ BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
+
+top:
+ if (!BP_IS_EMBEDDED(bp)) {
+ /*
+ * Embedded BP's have no DVA and require no I/O to "read".
+ * Create an anonymous arc buf to back it.
+ */
+ hdr = buf_hash_find(guid, bp, &hash_lock);
+ }
+
+ if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
+ arc_buf_t *buf = NULL;
+ *arc_flags |= ARC_FLAG_CACHED;
+
+ if (HDR_IO_IN_PROGRESS(hdr)) {
+ zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
+
+ ASSERT3P(head_zio, !=, NULL);
+ if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
+ priority == ZIO_PRIORITY_SYNC_READ) {
+ /*
+ * This is a sync read that needs to wait for
+ * an in-flight async read. Request that the
+ * zio have its priority upgraded.
+ */
+ zio_change_priority(head_zio, priority);
+ DTRACE_PROBE1(arc__async__upgrade__sync,
+ arc_buf_hdr_t *, hdr);
+ ARCSTAT_BUMP(arcstat_async_upgrade_sync);
+ }
+ if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
+ arc_hdr_clear_flags(hdr,
+ ARC_FLAG_PREDICTIVE_PREFETCH);
+ }
+
+ if (*arc_flags & ARC_FLAG_WAIT) {
+ cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
+ mutex_exit(hash_lock);
+ goto top;
+ }
+ ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
+
+ if (done) {
+ arc_callback_t *acb = NULL;
+
+ acb = kmem_zalloc(sizeof (arc_callback_t),
+ KM_SLEEP);
+ acb->acb_done = done;
+ acb->acb_private = private;
+ acb->acb_compressed = compressed_read;
+ if (pio != NULL)
+ acb->acb_zio_dummy = zio_null(pio,
+ spa, NULL, NULL, NULL, zio_flags);
+
+ ASSERT3P(acb->acb_done, !=, NULL);
+ acb->acb_zio_head = head_zio;
+ acb->acb_next = hdr->b_l1hdr.b_acb;
+ hdr->b_l1hdr.b_acb = acb;
+ mutex_exit(hash_lock);
+ return (0);
+ }
+ mutex_exit(hash_lock);
+ return (0);
+ }
+
+ ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
+ hdr->b_l1hdr.b_state == arc_mfu);
+
+ if (done) {
+ if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
+ /*
+ * This is a demand read which does not have to
+ * wait for i/o because we did a predictive
+ * prefetch i/o for it, which has completed.
+ */
+ DTRACE_PROBE1(
+ arc__demand__hit__predictive__prefetch,
+ arc_buf_hdr_t *, hdr);
+ ARCSTAT_BUMP(
+ arcstat_demand_hit_predictive_prefetch);
+ arc_hdr_clear_flags(hdr,
+ ARC_FLAG_PREDICTIVE_PREFETCH);
+ }
+
+ if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
+ ARCSTAT_BUMP(
+ arcstat_demand_hit_prescient_prefetch);
+ arc_hdr_clear_flags(hdr,
+ ARC_FLAG_PRESCIENT_PREFETCH);
+ }
+
+ ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
+ /* Get a buf with the desired data in it. */
+ rc = arc_buf_alloc_impl(hdr, private,
+ compressed_read, B_TRUE, &buf);
+ if (rc != 0) {
+ arc_buf_destroy(buf, private);
+ buf = NULL;
+ }
+ ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
+ rc == 0 || rc != ENOENT);
+ } else if (*arc_flags & ARC_FLAG_PREFETCH &&
+ refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
+ arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
+ }
+ DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
+ arc_access(hdr, hash_lock);
+ if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
+ arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
+ if (*arc_flags & ARC_FLAG_L2CACHE)
+ arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
+ mutex_exit(hash_lock);
+ ARCSTAT_BUMP(arcstat_hits);
+ ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
+ demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
+ data, metadata, hits);
+
+ if (done)
+ done(NULL, zb, bp, buf, private);
+ } else {
+ uint64_t lsize = BP_GET_LSIZE(bp);
+ uint64_t psize = BP_GET_PSIZE(bp);
+ arc_callback_t *acb;
+ vdev_t *vd = NULL;
+ uint64_t addr = 0;
+ boolean_t devw = B_FALSE;
+ uint64_t size;
+
+ if (hdr == NULL) {
+ /* this block is not in the cache */
+ arc_buf_hdr_t *exists = NULL;
+ arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
+ hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
+ BP_GET_COMPRESS(bp), type);
+
+ if (!BP_IS_EMBEDDED(bp)) {
+ hdr->b_dva = *BP_IDENTITY(bp);
+ hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
+ exists = buf_hash_insert(hdr, &hash_lock);
+ }
+ if (exists != NULL) {
+ /* somebody beat us to the hash insert */
+ mutex_exit(hash_lock);
+ buf_discard_identity(hdr);
+ arc_hdr_destroy(hdr);
+ goto top; /* restart the IO request */
+ }
+ } else {
+ /*
+ * This block is in the ghost cache. If it was L2-only
+ * (and thus didn't have an L1 hdr), we realloc the
+ * header to add an L1 hdr.
+ */
+ if (!HDR_HAS_L1HDR(hdr)) {
+ hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
+ hdr_full_cache);
+ }
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
+ ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
+
+ /*
+ * This is a delicate dance that we play here.
+ * This hdr is in the ghost list so we access it
+ * to move it out of the ghost list before we
+ * initiate the read. If it's a prefetch then
+ * it won't have a callback so we'll remove the
+ * reference that arc_buf_alloc_impl() created. We
+ * do this after we've called arc_access() to
+ * avoid hitting an assert in remove_reference().
+ */
+ arc_access(hdr, hash_lock);
+ arc_hdr_alloc_pabd(hdr);
+ }
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ size = arc_hdr_size(hdr);
+
+ /*
+ * If compression is enabled on the hdr, then will do
+ * RAW I/O and will store the compressed data in the hdr's
+ * data block. Otherwise, the hdr's data block will contain
+ * the uncompressed data.
+ */
+ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
+ zio_flags |= ZIO_FLAG_RAW;
+ }
+
+ if (*arc_flags & ARC_FLAG_PREFETCH)
+ arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
+ if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
+ arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
+
+ if (*arc_flags & ARC_FLAG_L2CACHE)
+ arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
+ if (BP_GET_LEVEL(bp) > 0)
+ arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
+ if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
+ arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
+ ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
+
+ acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
+ acb->acb_done = done;
+ acb->acb_private = private;
+ acb->acb_compressed = compressed_read;
+
+ ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
+ hdr->b_l1hdr.b_acb = acb;
+ arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
+
+ if (HDR_HAS_L2HDR(hdr) &&
+ (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
+ devw = hdr->b_l2hdr.b_dev->l2ad_writing;
+ addr = hdr->b_l2hdr.b_daddr;
+ /*
+ * Lock out L2ARC device removal.
+ */
+ if (vdev_is_dead(vd) ||
+ !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
+ vd = NULL;
+ }
+
+ /*
+ * We count both async reads and scrub IOs as asynchronous so
+ * that both can be upgraded in the event of a cache hit while
+ * the read IO is still in-flight.
+ */
+ if (priority == ZIO_PRIORITY_ASYNC_READ ||
+ priority == ZIO_PRIORITY_SCRUB)
+ arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
+ else
+ arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
+
+ /*
+ * At this point, we have a level 1 cache miss. Try again in
+ * L2ARC if possible.
+ */
+ ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
+
+ DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
+ uint64_t, lsize, zbookmark_phys_t *, zb);
+ ARCSTAT_BUMP(arcstat_misses);
+ ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
+ demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
+ data, metadata, misses);
+#ifdef _KERNEL
+#ifdef RACCT
+ if (racct_enable) {
+ PROC_LOCK(curproc);
+ racct_add_force(curproc, RACCT_READBPS, size);
+ racct_add_force(curproc, RACCT_READIOPS, 1);
+ PROC_UNLOCK(curproc);
+ }
+#endif /* RACCT */
+ curthread->td_ru.ru_inblock++;
+#endif
+
+ if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
+ /*
+ * Read from the L2ARC if the following are true:
+ * 1. The L2ARC vdev was previously cached.
+ * 2. This buffer still has L2ARC metadata.
+ * 3. This buffer isn't currently writing to the L2ARC.
+ * 4. The L2ARC entry wasn't evicted, which may
+ * also have invalidated the vdev.
+ * 5. This isn't prefetch and l2arc_noprefetch is set.
+ */
+ if (HDR_HAS_L2HDR(hdr) &&
+ !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
+ !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
+ l2arc_read_callback_t *cb;
+ abd_t *abd;
+ uint64_t asize;
+
+ DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
+ ARCSTAT_BUMP(arcstat_l2_hits);
+ atomic_inc_32(&hdr->b_l2hdr.b_hits);
+
+ cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
+ KM_SLEEP);
+ cb->l2rcb_hdr = hdr;
+ cb->l2rcb_bp = *bp;
+ cb->l2rcb_zb = *zb;
+ cb->l2rcb_flags = zio_flags;
+
+ asize = vdev_psize_to_asize(vd, size);
+ if (asize != size) {
+ abd = abd_alloc_for_io(asize,
+ HDR_ISTYPE_METADATA(hdr));
+ cb->l2rcb_abd = abd;
+ } else {
+ abd = hdr->b_l1hdr.b_pabd;
+ }
+
+ ASSERT(addr >= VDEV_LABEL_START_SIZE &&
+ addr + asize <= vd->vdev_psize -
+ VDEV_LABEL_END_SIZE);
+
+ /*
+ * l2arc read. The SCL_L2ARC lock will be
+ * released by l2arc_read_done().
+ * Issue a null zio if the underlying buffer
+ * was squashed to zero size by compression.
+ */
+ ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
+ ZIO_COMPRESS_EMPTY);
+ rzio = zio_read_phys(pio, vd, addr,
+ asize, abd,
+ ZIO_CHECKSUM_OFF,
+ l2arc_read_done, cb, priority,
+ zio_flags | ZIO_FLAG_DONT_CACHE |
+ ZIO_FLAG_CANFAIL |
+ ZIO_FLAG_DONT_PROPAGATE |
+ ZIO_FLAG_DONT_RETRY, B_FALSE);
+ acb->acb_zio_head = rzio;
+
+ if (hash_lock != NULL)
+ mutex_exit(hash_lock);
+
+ DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
+ zio_t *, rzio);
+ ARCSTAT_INCR(arcstat_l2_read_bytes, size);
+
+ if (*arc_flags & ARC_FLAG_NOWAIT) {
+ zio_nowait(rzio);
+ return (0);
+ }
+
+ ASSERT(*arc_flags & ARC_FLAG_WAIT);
+ if (zio_wait(rzio) == 0)
+ return (0);
+
+ /* l2arc read error; goto zio_read() */
+ if (hash_lock != NULL)
+ mutex_enter(hash_lock);
+ } else {
+ DTRACE_PROBE1(l2arc__miss,
+ arc_buf_hdr_t *, hdr);
+ ARCSTAT_BUMP(arcstat_l2_misses);
+ if (HDR_L2_WRITING(hdr))
+ ARCSTAT_BUMP(arcstat_l2_rw_clash);
+ spa_config_exit(spa, SCL_L2ARC, vd);
+ }
+ } else {
+ if (vd != NULL)
+ spa_config_exit(spa, SCL_L2ARC, vd);
+ if (l2arc_ndev != 0) {
+ DTRACE_PROBE1(l2arc__miss,
+ arc_buf_hdr_t *, hdr);
+ ARCSTAT_BUMP(arcstat_l2_misses);
+ }
+ }
+
+ rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
+ arc_read_done, hdr, priority, zio_flags, zb);
+ acb->acb_zio_head = rzio;
+
+ if (hash_lock != NULL)
+ mutex_exit(hash_lock);
+
+ if (*arc_flags & ARC_FLAG_WAIT)
+ return (zio_wait(rzio));
+
+ ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
+ zio_nowait(rzio);
+ }
+ return (0);
+}
+
+arc_prune_t *
+arc_add_prune_callback(arc_prune_func_t *func, void *private)
+{
+ arc_prune_t *p;
+
+ p = kmem_alloc(sizeof (*p), KM_SLEEP);
+ p->p_pfunc = func;
+ p->p_private = private;
+ list_link_init(&p->p_node);
+ refcount_create(&p->p_refcnt);
+
+ mutex_enter(&arc_prune_mtx);
+ refcount_add(&p->p_refcnt, &arc_prune_list);
+ list_insert_head(&arc_prune_list, p);
+ mutex_exit(&arc_prune_mtx);
+
+ return (p);
+}
+
+void
+arc_remove_prune_callback(arc_prune_t *p)
+{
+ boolean_t wait = B_FALSE;
+ mutex_enter(&arc_prune_mtx);
+ list_remove(&arc_prune_list, p);
+ if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
+ wait = B_TRUE;
+ mutex_exit(&arc_prune_mtx);
+
+ /* wait for arc_prune_task to finish */
+ if (wait)
+ taskq_wait(arc_prune_taskq);
+ ASSERT0(refcount_count(&p->p_refcnt));
+ refcount_destroy(&p->p_refcnt);
+ kmem_free(p, sizeof (*p));
+}
+
+/*
+ * Notify the arc that a block was freed, and thus will never be used again.
+ */
+void
+arc_freed(spa_t *spa, const blkptr_t *bp)
+{
+ arc_buf_hdr_t *hdr;
+ kmutex_t *hash_lock;
+ uint64_t guid = spa_load_guid(spa);
+
+ ASSERT(!BP_IS_EMBEDDED(bp));
+
+ hdr = buf_hash_find(guid, bp, &hash_lock);
+ if (hdr == NULL)
+ return;
+
+ /*
+ * We might be trying to free a block that is still doing I/O
+ * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
+ * dmu_sync-ed block). If this block is being prefetched, then it
+ * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
+ * until the I/O completes. A block may also have a reference if it is
+ * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
+ * have written the new block to its final resting place on disk but
+ * without the dedup flag set. This would have left the hdr in the MRU
+ * state and discoverable. When the txg finally syncs it detects that
+ * the block was overridden in open context and issues an override I/O.
+ * Since this is a dedup block, the override I/O will determine if the
+ * block is already in the DDT. If so, then it will replace the io_bp
+ * with the bp from the DDT and allow the I/O to finish. When the I/O
+ * reaches the done callback, dbuf_write_override_done, it will
+ * check to see if the io_bp and io_bp_override are identical.
+ * If they are not, then it indicates that the bp was replaced with
+ * the bp in the DDT and the override bp is freed. This allows
+ * us to arrive here with a reference on a block that is being
+ * freed. So if we have an I/O in progress, or a reference to
+ * this hdr, then we don't destroy the hdr.
+ */
+ if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
+ refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
+ arc_change_state(arc_anon, hdr, hash_lock);
+ arc_hdr_destroy(hdr);
+ mutex_exit(hash_lock);
+ } else {
+ mutex_exit(hash_lock);
+ }
+
+}
+
+/*
+ * Release this buffer from the cache, making it an anonymous buffer. This
+ * must be done after a read and prior to modifying the buffer contents.
+ * If the buffer has more than one reference, we must make
+ * a new hdr for the buffer.
+ */
+void
+arc_release(arc_buf_t *buf, void *tag)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ /*
+ * It would be nice to assert that if it's DMU metadata (level >
+ * 0 || it's the dnode file), then it must be syncing context.
+ * But we don't know that information at this level.
+ */
+
+ mutex_enter(&buf->b_evict_lock);
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ /*
+ * We don't grab the hash lock prior to this check, because if
+ * the buffer's header is in the arc_anon state, it won't be
+ * linked into the hash table.
+ */
+ if (hdr->b_l1hdr.b_state == arc_anon) {
+ mutex_exit(&buf->b_evict_lock);
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ ASSERT(!HDR_IN_HASH_TABLE(hdr));
+ ASSERT(!HDR_HAS_L2HDR(hdr));
+ ASSERT(HDR_EMPTY(hdr));
+ ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
+ ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
+ ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
+
+ hdr->b_l1hdr.b_arc_access = 0;
+
+ /*
+ * If the buf is being overridden then it may already
+ * have a hdr that is not empty.
+ */
+ buf_discard_identity(hdr);
+ arc_buf_thaw(buf);
+
+ return;
+ }
+
+ kmutex_t *hash_lock = HDR_LOCK(hdr);
+ mutex_enter(hash_lock);
+
+ /*
+ * This assignment is only valid as long as the hash_lock is
+ * held, we must be careful not to reference state or the
+ * b_state field after dropping the lock.
+ */
+ arc_state_t *state = hdr->b_l1hdr.b_state;
+ ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
+ ASSERT3P(state, !=, arc_anon);
+
+ /* this buffer is not on any list */
+ ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
+
+ if (HDR_HAS_L2HDR(hdr)) {
+ mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
+
+ /*
+ * We have to recheck this conditional again now that
+ * we're holding the l2ad_mtx to prevent a race with
+ * another thread which might be concurrently calling
+ * l2arc_evict(). In that case, l2arc_evict() might have
+ * destroyed the header's L2 portion as we were waiting
+ * to acquire the l2ad_mtx.
+ */
+ if (HDR_HAS_L2HDR(hdr)) {
+ l2arc_trim(hdr);
+ arc_hdr_l2hdr_destroy(hdr);
+ }
+
+ mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
+ }
+
+ /*
+ * Do we have more than one buf?
+ */
+ if (hdr->b_l1hdr.b_bufcnt > 1) {
+ arc_buf_hdr_t *nhdr;
+ uint64_t spa = hdr->b_spa;
+ uint64_t psize = HDR_GET_PSIZE(hdr);
+ uint64_t lsize = HDR_GET_LSIZE(hdr);
+ enum zio_compress compress = HDR_GET_COMPRESS(hdr);
+ arc_buf_contents_t type = arc_buf_type(hdr);
+ VERIFY3U(hdr->b_type, ==, type);
+
+ ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
+ (void) remove_reference(hdr, hash_lock, tag);
+
+ if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
+ ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
+ ASSERT(ARC_BUF_LAST(buf));
+ }
+
+ /*
+ * Pull the data off of this hdr and attach it to
+ * a new anonymous hdr. Also find the last buffer
+ * in the hdr's buffer list.
+ */
+ arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
+ ASSERT3P(lastbuf, !=, NULL);
+
+ /*
+ * If the current arc_buf_t and the hdr are sharing their data
+ * buffer, then we must stop sharing that block.
+ */
+ if (arc_buf_is_shared(buf)) {
+ VERIFY(!arc_buf_is_shared(lastbuf));
+
+ /*
+ * First, sever the block sharing relationship between
+ * buf and the arc_buf_hdr_t.
+ */
+ arc_unshare_buf(hdr, buf);
+
+ /*
+ * Now we need to recreate the hdr's b_pabd. Since we
+ * have lastbuf handy, we try to share with it, but if
+ * we can't then we allocate a new b_pabd and copy the
+ * data from buf into it.
+ */
+ if (arc_can_share(hdr, lastbuf)) {
+ arc_share_buf(hdr, lastbuf);
+ } else {
+ arc_hdr_alloc_pabd(hdr);
+ abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
+ buf->b_data, psize);
+ }
+ VERIFY3P(lastbuf->b_data, !=, NULL);
+ } else if (HDR_SHARED_DATA(hdr)) {
+ /*
+ * Uncompressed shared buffers are always at the end
+ * of the list. Compressed buffers don't have the
+ * same requirements. This makes it hard to
+ * simply assert that the lastbuf is shared so
+ * we rely on the hdr's compression flags to determine
+ * if we have a compressed, shared buffer.
+ */
+ ASSERT(arc_buf_is_shared(lastbuf) ||
+ HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
+ ASSERT(!ARC_BUF_SHARED(buf));
+ }
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ ASSERT3P(state, !=, arc_l2c_only);
+
+ (void) refcount_remove_many(&state->arcs_size,
+ arc_buf_size(buf), buf);
+
+ if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
+ ASSERT3P(state, !=, arc_l2c_only);
+ (void) refcount_remove_many(&state->arcs_esize[type],
+ arc_buf_size(buf), buf);
+ }
+
+ hdr->b_l1hdr.b_bufcnt -= 1;
+ arc_cksum_verify(buf);
+#ifdef illumos
+ arc_buf_unwatch(buf);
+#endif
+
+ mutex_exit(hash_lock);
+
+ /*
+ * Allocate a new hdr. The new hdr will contain a b_pabd
+ * buffer which will be freed in arc_write().
+ */
+ nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
+ ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
+ ASSERT0(nhdr->b_l1hdr.b_bufcnt);
+ ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
+ VERIFY3U(nhdr->b_type, ==, type);
+ ASSERT(!HDR_SHARED_DATA(nhdr));
+
+ nhdr->b_l1hdr.b_buf = buf;
+ nhdr->b_l1hdr.b_bufcnt = 1;
+ (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
+ buf->b_hdr = nhdr;
+
+ mutex_exit(&buf->b_evict_lock);
+ (void) refcount_add_many(&arc_anon->arcs_size,
+ arc_buf_size(buf), buf);
+ } else {
+ mutex_exit(&buf->b_evict_lock);
+ ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
+ /* protected by hash lock, or hdr is on arc_anon */
+ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ arc_change_state(arc_anon, hdr, hash_lock);
+ hdr->b_l1hdr.b_arc_access = 0;
+ mutex_exit(hash_lock);
+
+ buf_discard_identity(hdr);
+ arc_buf_thaw(buf);
+ }
+}
+
+int
+arc_released(arc_buf_t *buf)
+{
+ int released;
+
+ mutex_enter(&buf->b_evict_lock);
+ released = (buf->b_data != NULL &&
+ buf->b_hdr->b_l1hdr.b_state == arc_anon);
+ mutex_exit(&buf->b_evict_lock);
+ return (released);
+}
+
+#ifdef ZFS_DEBUG
+int
+arc_referenced(arc_buf_t *buf)
+{
+ int referenced;
+
+ mutex_enter(&buf->b_evict_lock);
+ referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
+ mutex_exit(&buf->b_evict_lock);
+ return (referenced);
+}
+#endif
+
+static void
+arc_write_ready(zio_t *zio)
+{
+ arc_write_callback_t *callback = zio->io_private;
+ arc_buf_t *buf = callback->awcb_buf;
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
+
+ ASSERT(HDR_HAS_L1HDR(hdr));
+ ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
+ ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
+
+ /*
+ * If we're reexecuting this zio because the pool suspended, then
+ * cleanup any state that was previously set the first time the
+ * callback was invoked.
+ */
+ if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
+ arc_cksum_free(hdr);
+#ifdef illumos
+ arc_buf_unwatch(buf);
+#endif
+ if (hdr->b_l1hdr.b_pabd != NULL) {
+ if (arc_buf_is_shared(buf)) {
+ arc_unshare_buf(hdr, buf);
+ } else {
+ arc_hdr_free_pabd(hdr);
+ }
+ }
+ }
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+ ASSERT(!HDR_SHARED_DATA(hdr));
+ ASSERT(!arc_buf_is_shared(buf));
+
+ callback->awcb_ready(zio, buf, callback->awcb_private);
+
+ if (HDR_IO_IN_PROGRESS(hdr))
+ ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
+
+ arc_cksum_compute(buf);
+ arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
+
+ enum zio_compress compress;
+ if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
+ compress = ZIO_COMPRESS_OFF;
+ } else {
+ ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
+ compress = BP_GET_COMPRESS(zio->io_bp);
+ }
+ HDR_SET_PSIZE(hdr, psize);
+ arc_hdr_set_compress(hdr, compress);
+
+
+ /*
+ * Fill the hdr with data. If the hdr is compressed, the data we want
+ * is available from the zio, otherwise we can take it from the buf.
+ *
+ * We might be able to share the buf's data with the hdr here. However,
+ * doing so would cause the ARC to be full of linear ABDs if we write a
+ * lot of shareable data. As a compromise, we check whether scattered
+ * ABDs are allowed, and assume that if they are then the user wants
+ * the ARC to be primarily filled with them regardless of the data being
+ * written. Therefore, if they're allowed then we allocate one and copy
+ * the data into it; otherwise, we share the data directly if we can.
+ */
+ if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
+ arc_hdr_alloc_pabd(hdr);
+
+ /*
+ * Ideally, we would always copy the io_abd into b_pabd, but the
+ * user may have disabled compressed ARC, thus we must check the
+ * hdr's compression setting rather than the io_bp's.
+ */
+ if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
+ ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
+ ZIO_COMPRESS_OFF);
+ ASSERT3U(psize, >, 0);
+
+ abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
+ } else {
+ ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
+
+ abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
+ arc_buf_size(buf));
+ }
+ } else {
+ ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
+ ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
+ ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
+
+ arc_share_buf(hdr, buf);
+ }
+
+ arc_hdr_verify(hdr, zio->io_bp);
+}
+
+static void
+arc_write_children_ready(zio_t *zio)
+{
+ arc_write_callback_t *callback = zio->io_private;
+ arc_buf_t *buf = callback->awcb_buf;
+
+ callback->awcb_children_ready(zio, buf, callback->awcb_private);
+}
+
+/*
+ * The SPA calls this callback for each physical write that happens on behalf
+ * of a logical write. See the comment in dbuf_write_physdone() for details.
+ */
+static void
+arc_write_physdone(zio_t *zio)
+{
+ arc_write_callback_t *cb = zio->io_private;
+ if (cb->awcb_physdone != NULL)
+ cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
+}
+
+static void
+arc_write_done(zio_t *zio)
+{
+ arc_write_callback_t *callback = zio->io_private;
+ arc_buf_t *buf = callback->awcb_buf;
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+
+ ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
+
+ if (zio->io_error == 0) {
+ arc_hdr_verify(hdr, zio->io_bp);
+
+ if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
+ buf_discard_identity(hdr);
+ } else {
+ hdr->b_dva = *BP_IDENTITY(zio->io_bp);
+ hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
+ }
+ } else {
+ ASSERT(HDR_EMPTY(hdr));
+ }
+
+ /*
+ * If the block to be written was all-zero or compressed enough to be
+ * embedded in the BP, no write was performed so there will be no
+ * dva/birth/checksum. The buffer must therefore remain anonymous
+ * (and uncached).
+ */
+ if (!HDR_EMPTY(hdr)) {
+ arc_buf_hdr_t *exists;
+ kmutex_t *hash_lock;
+
+ ASSERT3U(zio->io_error, ==, 0);
+
+ arc_cksum_verify(buf);
+
+ exists = buf_hash_insert(hdr, &hash_lock);
+ if (exists != NULL) {
+ /*
+ * This can only happen if we overwrite for
+ * sync-to-convergence, because we remove
+ * buffers from the hash table when we arc_free().
+ */
+ if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
+ if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
+ panic("bad overwrite, hdr=%p exists=%p",
+ (void *)hdr, (void *)exists);
+ ASSERT(refcount_is_zero(
+ &exists->b_l1hdr.b_refcnt));
+ arc_change_state(arc_anon, exists, hash_lock);
+ mutex_exit(hash_lock);
+ arc_hdr_destroy(exists);
+ exists = buf_hash_insert(hdr, &hash_lock);
+ ASSERT3P(exists, ==, NULL);
+ } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
+ /* nopwrite */
+ ASSERT(zio->io_prop.zp_nopwrite);
+ if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
+ panic("bad nopwrite, hdr=%p exists=%p",
+ (void *)hdr, (void *)exists);
+ } else {
+ /* Dedup */
+ ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
+ ASSERT(hdr->b_l1hdr.b_state == arc_anon);
+ ASSERT(BP_GET_DEDUP(zio->io_bp));
+ ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
+ }
+ }
+ arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
+ /* if it's not anon, we are doing a scrub */
+ if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
+ arc_access(hdr, hash_lock);
+ mutex_exit(hash_lock);
+ } else {
+ arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
+ }
+
+ ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
+ callback->awcb_done(zio, buf, callback->awcb_private);
+
+ abd_put(zio->io_abd);
+ kmem_free(callback, sizeof (arc_write_callback_t));
+}
+
+zio_t *
+arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
+ boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
+ arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
+ arc_write_done_func_t *done, void *private, zio_priority_t priority,
+ int zio_flags, const zbookmark_phys_t *zb)
+{
+ arc_buf_hdr_t *hdr = buf->b_hdr;
+ arc_write_callback_t *callback;
+ zio_t *zio;
+ zio_prop_t localprop = *zp;
+
+ ASSERT3P(ready, !=, NULL);
+ ASSERT3P(done, !=, NULL);
+ ASSERT(!HDR_IO_ERROR(hdr));
+ ASSERT(!HDR_IO_IN_PROGRESS(hdr));
+ ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
+ ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
+ if (l2arc)
+ arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
+ if (ARC_BUF_COMPRESSED(buf)) {
+ /*
+ * We're writing a pre-compressed buffer. Make the
+ * compression algorithm requested by the zio_prop_t match
+ * the pre-compressed buffer's compression algorithm.
+ */
+ localprop.zp_compress = HDR_GET_COMPRESS(hdr);
+
+ ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
+ zio_flags |= ZIO_FLAG_RAW;
+ }
+ callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
+ callback->awcb_ready = ready;
+ callback->awcb_children_ready = children_ready;
+ callback->awcb_physdone = physdone;
+ callback->awcb_done = done;
+ callback->awcb_private = private;
+ callback->awcb_buf = buf;
+
+ /*
+ * The hdr's b_pabd is now stale, free it now. A new data block
+ * will be allocated when the zio pipeline calls arc_write_ready().
+ */
+ if (hdr->b_l1hdr.b_pabd != NULL) {
+ /*
+ * If the buf is currently sharing the data block with
+ * the hdr then we need to break that relationship here.
+ * The hdr will remain with a NULL data pointer and the
+ * buf will take sole ownership of the block.
+ */
+ if (arc_buf_is_shared(buf)) {
+ arc_unshare_buf(hdr, buf);
+ } else {
+ arc_hdr_free_pabd(hdr);
+ }
+ VERIFY3P(buf->b_data, !=, NULL);
+ arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
+ }
+ ASSERT(!arc_buf_is_shared(buf));
+ ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
+
+ zio = zio_write(pio, spa, txg, bp,
+ abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
+ HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
+ (children_ready != NULL) ? arc_write_children_ready : NULL,
+ arc_write_physdone, arc_write_done, callback,
+ priority, zio_flags, zb);
+
+ return (zio);
+}
+
+static int
+arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
+{
+#ifdef _KERNEL
+ uint64_t available_memory = ptob(freemem);
+
+#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
+ available_memory = MIN(available_memory, uma_avail());
+#endif
+
+ if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
+ return (0);
+
+ if (txg > spa->spa_lowmem_last_txg) {
+ spa->spa_lowmem_last_txg = txg;
+ spa->spa_lowmem_page_load = 0;
+ }
+ /*
+ * If we are in pageout, we know that memory is already tight,
+ * the arc is already going to be evicting, so we just want to
+ * continue to let page writes occur as quickly as possible.
+ */
+ if (curproc == pageproc) {
+ if (spa->spa_lowmem_page_load >
+ MAX(ptob(minfree), available_memory) / 4)
+ return (SET_ERROR(ERESTART));
+ /* Note: reserve is inflated, so we deflate */
+ atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
+ return (0);
+ } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
+ /* memory is low, delay before restarting */
+ ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
+ return (SET_ERROR(EAGAIN));
+ }
+ spa->spa_lowmem_page_load = 0;
+#endif /* _KERNEL */
+ return (0);
+}
+
+void
+arc_tempreserve_clear(uint64_t reserve)
+{
+ atomic_add_64(&arc_tempreserve, -reserve);
+ ASSERT((int64_t)arc_tempreserve >= 0);
+}
+
+int
+arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
+{
+ int error;
+ uint64_t anon_size;
+
+ if (reserve > arc_c/4 && !arc_no_grow) {
+ arc_c = MIN(arc_c_max, reserve * 4);
+ DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
+ }
+ if (reserve > arc_c)
+ return (SET_ERROR(ENOMEM));
+
+ /*
+ * Don't count loaned bufs as in flight dirty data to prevent long
+ * network delays from blocking transactions that are ready to be
+ * assigned to a txg.
+ */
+
+ /* assert that it has not wrapped around */
+ ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
+
+ anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
+ arc_loaned_bytes), 0);
+
+ /*
+ * Writes will, almost always, require additional memory allocations
+ * in order to compress/encrypt/etc the data. We therefore need to
+ * make sure that there is sufficient available memory for this.
+ */
+ error = arc_memory_throttle(spa, reserve, txg);
+ if (error != 0)
+ return (error);
+
+ /*
+ * Throttle writes when the amount of dirty data in the cache
+ * gets too large. We try to keep the cache less than half full
+ * of dirty blocks so that our sync times don't grow too large.
+ *
+ * In the case of one pool being built on another pool, we want
+ * to make sure we don't end up throttling the lower (backing)
+ * pool when the upper pool is the majority contributor to dirty
+ * data. To insure we make forward progress during throttling, we
+ * also check the current pool's net dirty data and only throttle
+ * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
+ * data in the cache.
+ *
+ * Note: if two requests come in concurrently, we might let them
+ * both succeed, when one of them should fail. Not a huge deal.
+ */
+ uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
+ uint64_t spa_dirty_anon = spa_dirty_data(spa);
+
+ if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
+ anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
+ spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
+ uint64_t meta_esize =
+ refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
+ uint64_t data_esize =
+ refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
+ dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
+ "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
+ arc_tempreserve >> 10, meta_esize >> 10,
+ data_esize >> 10, reserve >> 10, arc_c >> 10);
+ return (SET_ERROR(ERESTART));
+ }
+ atomic_add_64(&arc_tempreserve, reserve);
+ return (0);
+}
+
+static void
+arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
+ kstat_named_t *evict_data, kstat_named_t *evict_metadata)
+{
+ size->value.ui64 = refcount_count(&state->arcs_size);
+ evict_data->value.ui64 =
+ refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
+ evict_metadata->value.ui64 =
+ refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
+}
+
+static int
+arc_kstat_update(kstat_t *ksp, int rw)
+{
+ arc_stats_t *as = ksp->ks_data;
+
+ if (rw == KSTAT_WRITE) {
+ return (EACCES);
+ } else {
+ arc_kstat_update_state(arc_anon,
+ &as->arcstat_anon_size,
+ &as->arcstat_anon_evictable_data,
+ &as->arcstat_anon_evictable_metadata);
+ arc_kstat_update_state(arc_mru,
+ &as->arcstat_mru_size,
+ &as->arcstat_mru_evictable_data,
+ &as->arcstat_mru_evictable_metadata);
+ arc_kstat_update_state(arc_mru_ghost,
+ &as->arcstat_mru_ghost_size,
+ &as->arcstat_mru_ghost_evictable_data,
+ &as->arcstat_mru_ghost_evictable_metadata);
+ arc_kstat_update_state(arc_mfu,
+ &as->arcstat_mfu_size,
+ &as->arcstat_mfu_evictable_data,
+ &as->arcstat_mfu_evictable_metadata);
+ arc_kstat_update_state(arc_mfu_ghost,
+ &as->arcstat_mfu_ghost_size,
+ &as->arcstat_mfu_ghost_evictable_data,
+ &as->arcstat_mfu_ghost_evictable_metadata);
+
+ ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
+ ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
+ ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
+ ARCSTAT(arcstat_metadata_size) =
+ aggsum_value(&astat_metadata_size);
+ ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
+ ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size);
+ ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size);
+ ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size);
+#if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
+ ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) +
+ aggsum_value(&astat_dnode_size) +
+ aggsum_value(&astat_dbuf_size);
+#endif
+ ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
+ }
+
+ return (0);
+}
+
+/*
+ * This function *must* return indices evenly distributed between all
+ * sublists of the multilist. This is needed due to how the ARC eviction
+ * code is laid out; arc_evict_state() assumes ARC buffers are evenly
+ * distributed between all sublists and uses this assumption when
+ * deciding which sublist to evict from and how much to evict from it.
+ */
+unsigned int
+arc_state_multilist_index_func(multilist_t *ml, void *obj)
+{
+ arc_buf_hdr_t *hdr = obj;
+
+ /*
+ * We rely on b_dva to generate evenly distributed index
+ * numbers using buf_hash below. So, as an added precaution,
+ * let's make sure we never add empty buffers to the arc lists.
+ */
+ ASSERT(!HDR_EMPTY(hdr));
+
+ /*
+ * The assumption here, is the hash value for a given
+ * arc_buf_hdr_t will remain constant throughout it's lifetime
+ * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
+ * Thus, we don't need to store the header's sublist index
+ * on insertion, as this index can be recalculated on removal.
+ *
+ * Also, the low order bits of the hash value are thought to be
+ * distributed evenly. Otherwise, in the case that the multilist
+ * has a power of two number of sublists, each sublists' usage
+ * would not be evenly distributed.
+ */
+ return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
+ multilist_get_num_sublists(ml));
+}
+
+#ifdef _KERNEL
+static eventhandler_tag arc_event_lowmem = NULL;
+
+static void
+arc_lowmem(void *arg __unused, int howto __unused)
+{
+ int64_t free_memory, to_free;
+
+ arc_no_grow = B_TRUE;
+ arc_warm = B_TRUE;
+ arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
+ free_memory = arc_available_memory();
+ to_free = (arc_c >> arc_shrink_shift) - MIN(free_memory, 0);
+ DTRACE_PROBE2(arc__needfree, int64_t, free_memory, int64_t, to_free);
+ arc_reduce_target_size(to_free);
+
+ mutex_enter(&arc_adjust_lock);
+ arc_adjust_needed = B_TRUE;
+ zthr_wakeup(arc_adjust_zthr);
+
+ /*
+ * It is unsafe to block here in arbitrary threads, because we can come
+ * here from ARC itself and may hold ARC locks and thus risk a deadlock
+ * with ARC reclaim thread.
+ */
+ if (curproc == pageproc)
+ (void) cv_wait(&arc_adjust_waiters_cv, &arc_adjust_lock);
+ mutex_exit(&arc_adjust_lock);
+}
+#endif
+
+static void
+arc_state_init(void)
+{
+ arc_anon = &ARC_anon;
+ arc_mru = &ARC_mru;
+ arc_mru_ghost = &ARC_mru_ghost;
+ arc_mfu = &ARC_mfu;
+ arc_mfu_ghost = &ARC_mfu_ghost;
+ arc_l2c_only = &ARC_l2c_only;
+
+ arc_mru->arcs_list[ARC_BUFC_METADATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mru->arcs_list[ARC_BUFC_DATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mfu->arcs_list[ARC_BUFC_METADATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mfu->arcs_list[ARC_BUFC_DATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+ arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
+ multilist_create(sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
+ arc_state_multilist_index_func);
+
+ refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
+ refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
+ refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
+ refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
+ refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
+ refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
+
+ refcount_create(&arc_anon->arcs_size);
+ refcount_create(&arc_mru->arcs_size);
+ refcount_create(&arc_mru_ghost->arcs_size);
+ refcount_create(&arc_mfu->arcs_size);
+ refcount_create(&arc_mfu_ghost->arcs_size);
+ refcount_create(&arc_l2c_only->arcs_size);
+
+ aggsum_init(&arc_meta_used, 0);
+ aggsum_init(&arc_size, 0);
+ aggsum_init(&astat_data_size, 0);
+ aggsum_init(&astat_metadata_size, 0);
+ aggsum_init(&astat_hdr_size, 0);
+ aggsum_init(&astat_bonus_size, 0);
+ aggsum_init(&astat_dnode_size, 0);
+ aggsum_init(&astat_dbuf_size, 0);
+ aggsum_init(&astat_l2_hdr_size, 0);
+}
+
+static void
+arc_state_fini(void)
+{
+ refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
+ refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
+ refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
+ refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
+ refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
+ refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
+ refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
+
+ refcount_destroy(&arc_anon->arcs_size);
+ refcount_destroy(&arc_mru->arcs_size);
+ refcount_destroy(&arc_mru_ghost->arcs_size);
+ refcount_destroy(&arc_mfu->arcs_size);
+ refcount_destroy(&arc_mfu_ghost->arcs_size);
+ refcount_destroy(&arc_l2c_only->arcs_size);
+
+ multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
+ multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
+ multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
+
+ aggsum_fini(&arc_meta_used);
+ aggsum_fini(&arc_size);
+ aggsum_fini(&astat_data_size);
+ aggsum_fini(&astat_metadata_size);
+ aggsum_fini(&astat_hdr_size);
+ aggsum_fini(&astat_bonus_size);
+ aggsum_fini(&astat_dnode_size);
+ aggsum_fini(&astat_dbuf_size);
+ aggsum_fini(&astat_l2_hdr_size);
+}
+
+uint64_t
+arc_max_bytes(void)
+{
+ return (arc_c_max);
+}
+
+void
+arc_init(void)
+{
+ int i, prefetch_tunable_set = 0;
+
+ /*
+ * allmem is "all memory that we could possibly use".
+ */
+#ifdef illumos
+#ifdef _KERNEL
+ uint64_t allmem = ptob(physmem - swapfs_minfree);
+#else
+ uint64_t allmem = (physmem * PAGESIZE) / 2;
+#endif
+#else
+ uint64_t allmem = kmem_size();
+#endif
+ mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
+
+ mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
+
+ /* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
+ arc_c_min = MAX(allmem / 32, arc_abs_min);
+ /* set max to 5/8 of all memory, or all but 1GB, whichever is more */
+ if (allmem >= 1 << 30)
+ arc_c_max = allmem - (1 << 30);
+ else
+ arc_c_max = arc_c_min;
+ arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
+
+ /*
+ * In userland, there's only the memory pressure that we artificially
+ * create (see arc_available_memory()). Don't let arc_c get too
+ * small, because it can cause transactions to be larger than
+ * arc_c, causing arc_tempreserve_space() to fail.
+ */
+#ifndef _KERNEL
+ arc_c_min = arc_c_max / 2;
+#endif
+
+#ifdef _KERNEL
+ /*
+ * Allow the tunables to override our calculations if they are
+ * reasonable.
+ */
+ if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
+ arc_c_max = zfs_arc_max;
+ arc_c_min = MIN(arc_c_min, arc_c_max);
+ }
+ if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
+ arc_c_min = zfs_arc_min;
+#endif
+
+ arc_c = arc_c_max;
+ arc_p = (arc_c >> 1);
+
+ /* limit meta-data to 1/4 of the arc capacity */
+ arc_meta_limit = arc_c_max / 4;
+
+#ifdef _KERNEL
+ /*
+ * Metadata is stored in the kernel's heap. Don't let us
+ * use more than half the heap for the ARC.
+ */
+#ifdef __FreeBSD__
+ arc_meta_limit = MIN(arc_meta_limit, uma_limit() / 2);
+ arc_dnode_limit = arc_meta_limit / 10;
+#else
+ arc_meta_limit = MIN(arc_meta_limit,
+ vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
+#endif
+#endif
+
+ /* Allow the tunable to override if it is reasonable */
+ if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
+ arc_meta_limit = zfs_arc_meta_limit;
+
+ if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
+ arc_c_min = arc_meta_limit / 2;
+
+ if (zfs_arc_meta_min > 0) {
+ arc_meta_min = zfs_arc_meta_min;
+ } else {
+ arc_meta_min = arc_c_min / 2;
+ }
+
+ /* Valid range: <arc_meta_min> - <arc_c_max> */
+ if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
+ (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
+ (zfs_arc_dnode_limit <= arc_c_max))
+ arc_dnode_limit = zfs_arc_dnode_limit;
+
+ if (zfs_arc_grow_retry > 0)
+ arc_grow_retry = zfs_arc_grow_retry;
+
+ if (zfs_arc_shrink_shift > 0)
+ arc_shrink_shift = zfs_arc_shrink_shift;
+
+ if (zfs_arc_no_grow_shift > 0)
+ arc_no_grow_shift = zfs_arc_no_grow_shift;
+ /*
+ * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
+ */
+ if (arc_no_grow_shift >= arc_shrink_shift)
+ arc_no_grow_shift = arc_shrink_shift - 1;
+
+ if (zfs_arc_p_min_shift > 0)
+ arc_p_min_shift = zfs_arc_p_min_shift;
+
+ /* if kmem_flags are set, lets try to use less memory */
+ if (kmem_debugging())
+ arc_c = arc_c / 2;
+ if (arc_c < arc_c_min)
+ arc_c = arc_c_min;
+
+ zfs_arc_min = arc_c_min;
+ zfs_arc_max = arc_c_max;
+
+ arc_state_init();
+
+ /*
+ * The arc must be "uninitialized", so that hdr_recl() (which is
+ * registered by buf_init()) will not access arc_reap_zthr before
+ * it is created.
+ */
+ ASSERT(!arc_initialized);
+ buf_init();
+
+ list_create(&arc_prune_list, sizeof (arc_prune_t),
+ offsetof(arc_prune_t, p_node));
+ mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
+
+ arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
+ max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
+
+ arc_dnlc_evicts_thread_exit = FALSE;
+
+ arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
+ sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
+
+ if (arc_ksp != NULL) {
+ arc_ksp->ks_data = &arc_stats;
+ arc_ksp->ks_update = arc_kstat_update;
+ kstat_install(arc_ksp);
+ }
+
+ arc_adjust_zthr = zthr_create_timer(arc_adjust_cb_check,
+ arc_adjust_cb, NULL, SEC2NSEC(1));
+ arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
+ arc_reap_cb, NULL, SEC2NSEC(1));
+
+#ifdef _KERNEL
+ arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
+ EVENTHANDLER_PRI_FIRST);
+#endif
+
+ (void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
+ TS_RUN, minclsyspri);
+
+ arc_initialized = B_TRUE;
+ arc_warm = B_FALSE;
+
+ /*
+ * Calculate maximum amount of dirty data per pool.
+ *
+ * If it has been set by /etc/system, take that.
+ * Otherwise, use a percentage of physical memory defined by
+ * zfs_dirty_data_max_percent (default 10%) with a cap at
+ * zfs_dirty_data_max_max (default 4GB).
+ */
+ if (zfs_dirty_data_max == 0) {
+ zfs_dirty_data_max = ptob(physmem) *
+ zfs_dirty_data_max_percent / 100;
+ zfs_dirty_data_max = MIN(zfs_dirty_data_max,
+ zfs_dirty_data_max_max);
+ }
+
+#ifdef _KERNEL
+ if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
+ prefetch_tunable_set = 1;
+
+#ifdef __i386__
+ if (prefetch_tunable_set == 0) {
+ printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
+ "-- to enable,\n");
+ printf(" add \"vfs.zfs.prefetch_disable=0\" "
+ "to /boot/loader.conf.\n");
+ zfs_prefetch_disable = 1;
+ }
+#else
+ if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
+ prefetch_tunable_set == 0) {
+ printf("ZFS NOTICE: Prefetch is disabled by default if less "
+ "than 4GB of RAM is present;\n"
+ " to enable, add \"vfs.zfs.prefetch_disable=0\" "
+ "to /boot/loader.conf.\n");
+ zfs_prefetch_disable = 1;
+ }
+#endif
+ /* Warn about ZFS memory and address space requirements. */
+ if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
+ printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
+ "expect unstable behavior.\n");
+ }
+ if (allmem < 512 * (1 << 20)) {
+ printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
+ "expect unstable behavior.\n");
+ printf(" Consider tuning vm.kmem_size and "
+ "vm.kmem_size_max\n");
+ printf(" in /boot/loader.conf.\n");
+ }
+#endif
+}
+
+void
+arc_fini(void)
+{
+ arc_prune_t *p;
+
+#ifdef _KERNEL
+ if (arc_event_lowmem != NULL)
+ EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
+#endif
+
+ /* Use B_TRUE to ensure *all* buffers are evicted */
+ arc_flush(NULL, B_TRUE);
+
+ mutex_enter(&arc_dnlc_evicts_lock);
+ arc_dnlc_evicts_thread_exit = TRUE;
+ /*
+ * The user evicts thread will set arc_user_evicts_thread_exit
+ * to FALSE when it is finished exiting; we're waiting for that.
+ */
+ while (arc_dnlc_evicts_thread_exit) {
+ cv_signal(&arc_dnlc_evicts_cv);
+ cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
+ }
+ mutex_exit(&arc_dnlc_evicts_lock);
+
+ arc_initialized = B_FALSE;
+
+ if (arc_ksp != NULL) {
+ kstat_delete(arc_ksp);
+ arc_ksp = NULL;
+ }
+
+ taskq_wait(arc_prune_taskq);
+ taskq_destroy(arc_prune_taskq);
+
+ mutex_enter(&arc_prune_mtx);
+ while ((p = list_head(&arc_prune_list)) != NULL) {
+ list_remove(&arc_prune_list, p);
+ refcount_remove(&p->p_refcnt, &arc_prune_list);
+ refcount_destroy(&p->p_refcnt);
+ kmem_free(p, sizeof (*p));
+ }
+ mutex_exit(&arc_prune_mtx);
+
+ list_destroy(&arc_prune_list);
+ mutex_destroy(&arc_prune_mtx);
+
+ (void) zthr_cancel(arc_adjust_zthr);
+ zthr_destroy(arc_adjust_zthr);
+
+ mutex_destroy(&arc_dnlc_evicts_lock);
+ cv_destroy(&arc_dnlc_evicts_cv);
+
+ (void) zthr_cancel(arc_reap_zthr);
+ zthr_destroy(arc_reap_zthr);
+
+ mutex_destroy(&arc_adjust_lock);
+ cv_destroy(&arc_adjust_waiters_cv);
+
+ /*
+ * buf_fini() must proceed arc_state_fini() because buf_fin() may
+ * trigger the release of kmem magazines, which can callback to
+ * arc_space_return() which accesses aggsums freed in act_state_fini().
+ */
+ buf_fini();
+ arc_state_fini();
+
+ ASSERT0(arc_loaned_bytes);
+}
+
+/*
+ * Level 2 ARC
+ *
+ * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
+ * It uses dedicated storage devices to hold cached data, which are populated
+ * using large infrequent writes. The main role of this cache is to boost
+ * the performance of random read workloads. The intended L2ARC devices
+ * include short-stroked disks, solid state disks, and other media with
+ * substantially faster read latency than disk.
+ *
+ * +-----------------------+
+ * | ARC |
+ * +-----------------------+
+ * | ^ ^
+ * | | |
+ * l2arc_feed_thread() arc_read()
+ * | | |
+ * | l2arc read |
+ * V | |
+ * +---------------+ |
+ * | L2ARC | |
+ * +---------------+ |
+ * | ^ |
+ * l2arc_write() | |
+ * | | |
+ * V | |
+ * +-------+ +-------+
+ * | vdev | | vdev |
+ * | cache | | cache |
+ * +-------+ +-------+
+ * +=========+ .-----.
+ * : L2ARC : |-_____-|
+ * : devices : | Disks |
+ * +=========+ `-_____-'
+ *
+ * Read requests are satisfied from the following sources, in order:
+ *
+ * 1) ARC
+ * 2) vdev cache of L2ARC devices
+ * 3) L2ARC devices
+ * 4) vdev cache of disks
+ * 5) disks
+ *
+ * Some L2ARC device types exhibit extremely slow write performance.
+ * To accommodate for this there are some significant differences between
+ * the L2ARC and traditional cache design:
+ *
+ * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
+ * the ARC behave as usual, freeing buffers and placing headers on ghost
+ * lists. The ARC does not send buffers to the L2ARC during eviction as
+ * this would add inflated write latencies for all ARC memory pressure.
+ *
+ * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
+ * It does this by periodically scanning buffers from the eviction-end of
+ * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
+ * not already there. It scans until a headroom of buffers is satisfied,
+ * which itself is a buffer for ARC eviction. If a compressible buffer is
+ * found during scanning and selected for writing to an L2ARC device, we
+ * temporarily boost scanning headroom during the next scan cycle to make
+ * sure we adapt to compression effects (which might significantly reduce
+ * the data volume we write to L2ARC). The thread that does this is
+ * l2arc_feed_thread(), illustrated below; example sizes are included to
+ * provide a better sense of ratio than this diagram:
+ *
+ * head --> tail
+ * +---------------------+----------+
+ * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
+ * +---------------------+----------+ | o L2ARC eligible
+ * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
+ * +---------------------+----------+ |
+ * 15.9 Gbytes ^ 32 Mbytes |
+ * headroom |
+ * l2arc_feed_thread()
+ * |
+ * l2arc write hand <--[oooo]--'
+ * | 8 Mbyte
+ * | write max
+ * V
+ * +==============================+
+ * L2ARC dev |####|#|###|###| |####| ... |
+ * +==============================+
+ * 32 Gbytes
+ *
+ * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
+ * evicted, then the L2ARC has cached a buffer much sooner than it probably
+ * needed to, potentially wasting L2ARC device bandwidth and storage. It is
+ * safe to say that this is an uncommon case, since buffers at the end of
+ * the ARC lists have moved there due to inactivity.
+ *
+ * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
+ * then the L2ARC simply misses copying some buffers. This serves as a
+ * pressure valve to prevent heavy read workloads from both stalling the ARC
+ * with waits and clogging the L2ARC with writes. This also helps prevent
+ * the potential for the L2ARC to churn if it attempts to cache content too
+ * quickly, such as during backups of the entire pool.
+ *
+ * 5. After system boot and before the ARC has filled main memory, there are
+ * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
+ * lists can remain mostly static. Instead of searching from tail of these
+ * lists as pictured, the l2arc_feed_thread() will search from the list heads
+ * for eligible buffers, greatly increasing its chance of finding them.
+ *
+ * The L2ARC device write speed is also boosted during this time so that
+ * the L2ARC warms up faster. Since there have been no ARC evictions yet,
+ * there are no L2ARC reads, and no fear of degrading read performance
+ * through increased writes.
+ *
+ * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
+ * the vdev queue can aggregate them into larger and fewer writes. Each
+ * device is written to in a rotor fashion, sweeping writes through
+ * available space then repeating.
+ *
+ * 7. The L2ARC does not store dirty content. It never needs to flush
+ * write buffers back to disk based storage.
+ *
+ * 8. If an ARC buffer is written (and dirtied) which also exists in the
+ * L2ARC, the now stale L2ARC buffer is immediately dropped.
+ *
+ * The performance of the L2ARC can be tweaked by a number of tunables, which
+ * may be necessary for different workloads:
+ *
+ * l2arc_write_max max write bytes per interval
+ * l2arc_write_boost extra write bytes during device warmup
+ * l2arc_noprefetch skip caching prefetched buffers
+ * l2arc_headroom number of max device writes to precache
+ * l2arc_headroom_boost when we find compressed buffers during ARC
+ * scanning, we multiply headroom by this
+ * percentage factor for the next scan cycle,
+ * since more compressed buffers are likely to
+ * be present
+ * l2arc_feed_secs seconds between L2ARC writing
+ *
+ * Tunables may be removed or added as future performance improvements are
+ * integrated, and also may become zpool properties.
+ *
+ * There are three key functions that control how the L2ARC warms up:
+ *
+ * l2arc_write_eligible() check if a buffer is eligible to cache
+ * l2arc_write_size() calculate how much to write
+ * l2arc_write_interval() calculate sleep delay between writes
+ *
+ * These three functions determine what to write, how much, and how quickly
+ * to send writes.
+ */
+
+static boolean_t
+l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
+{
+ /*
+ * A buffer is *not* eligible for the L2ARC if it:
+ * 1. belongs to a different spa.
+ * 2. is already cached on the L2ARC.
+ * 3. has an I/O in progress (it may be an incomplete read).
+ * 4. is flagged not eligible (zfs property).
+ */
+ if (hdr->b_spa != spa_guid) {
+ ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
+ return (B_FALSE);
+ }
+ if (HDR_HAS_L2HDR(hdr)) {
+ ARCSTAT_BUMP(arcstat_l2_write_in_l2);
+ return (B_FALSE);
+ }
+ if (HDR_IO_IN_PROGRESS(hdr)) {
+ ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
+ return (B_FALSE);
+ }
+ if (!HDR_L2CACHE(hdr)) {
+ ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
+ return (B_FALSE);
+ }
+
+ return (B_TRUE);
+}
+
+static uint64_t
+l2arc_write_size(void)
+{
+ uint64_t size;
+
+ /*
+ * Make sure our globals have meaningful values in case the user
+ * altered them.
+ */
+ size = l2arc_write_max;
+ if (size == 0) {
+ cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
+ "be greater than zero, resetting it to the default (%d)",
+ L2ARC_WRITE_SIZE);
+ size = l2arc_write_max = L2ARC_WRITE_SIZE;
+ }
+
+ if (arc_warm == B_FALSE)
+ size += l2arc_write_boost;
+
+ return (size);
+
+}
+
+static clock_t
+l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
+{
+ clock_t interval, next, now;
+
+ /*
+ * If the ARC lists are busy, increase our write rate; if the
+ * lists are stale, idle back. This is achieved by checking
+ * how much we previously wrote - if it was more than half of
+ * what we wanted, schedule the next write much sooner.
+ */
+ if (l2arc_feed_again && wrote > (wanted / 2))
+ interval = (hz * l2arc_feed_min_ms) / 1000;
+ else
+ interval = hz * l2arc_feed_secs;
+
+ now = ddi_get_lbolt();
+ next = MAX(now, MIN(now + interval, began + interval));
+
+ return (next);
+}
+
+/*
+ * Cycle through L2ARC devices. This is how L2ARC load balances.
+ * If a device is returned, this also returns holding the spa config lock.
+ */
+static l2arc_dev_t *
+l2arc_dev_get_next(void)
+{
+ l2arc_dev_t *first, *next = NULL;
+
+ /*
+ * Lock out the removal of spas (spa_namespace_lock), then removal
+ * of cache devices (l2arc_dev_mtx). Once a device has been selected,
+ * both locks will be dropped and a spa config lock held instead.
+ */
+ mutex_enter(&spa_namespace_lock);
+ mutex_enter(&l2arc_dev_mtx);
+
+ /* if there are no vdevs, there is nothing to do */
+ if (l2arc_ndev == 0)
+ goto out;
+
+ first = NULL;
+ next = l2arc_dev_last;
+ do {
+ /* loop around the list looking for a non-faulted vdev */
+ if (next == NULL) {
+ next = list_head(l2arc_dev_list);
+ } else {
+ next = list_next(l2arc_dev_list, next);
+ if (next == NULL)
+ next = list_head(l2arc_dev_list);
+ }
+
+ /* if we have come back to the start, bail out */
+ if (first == NULL)
+ first = next;
+ else if (next == first)
+ break;
+
+ } while (vdev_is_dead(next->l2ad_vdev));
+
+ /* if we were unable to find any usable vdevs, return NULL */
+ if (vdev_is_dead(next->l2ad_vdev))
+ next = NULL;
+
+ l2arc_dev_last = next;
+
+out:
+ mutex_exit(&l2arc_dev_mtx);
+
+ /*
+ * Grab the config lock to prevent the 'next' device from being
+ * removed while we are writing to it.
+ */
+ if (next != NULL)
+ spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
+ mutex_exit(&spa_namespace_lock);
+
+ return (next);
+}
+
+/*
+ * Free buffers that were tagged for destruction.
+ */
+static void
+l2arc_do_free_on_write()
+{
+ list_t *buflist;
+ l2arc_data_free_t *df, *df_prev;
+
+ mutex_enter(&l2arc_free_on_write_mtx);
+ buflist = l2arc_free_on_write;
+
+ for (df = list_tail(buflist); df; df = df_prev) {
+ df_prev = list_prev(buflist, df);
+ ASSERT3P(df->l2df_abd, !=, NULL);
+ abd_free(df->l2df_abd);
+ list_remove(buflist, df);
+ kmem_free(df, sizeof (l2arc_data_free_t));
+ }
+
+ mutex_exit(&l2arc_free_on_write_mtx);
+}
+
+/*
+ * A write to a cache device has completed. Update all headers to allow
+ * reads from these buffers to begin.
+ */
+static void
+l2arc_write_done(zio_t *zio)
+{
+ l2arc_write_callback_t *cb;
+ l2arc_dev_t *dev;
+ list_t *buflist;
+ arc_buf_hdr_t *head, *hdr, *hdr_prev;
+ kmutex_t *hash_lock;
+ int64_t bytes_dropped = 0;
+
+ cb = zio->io_private;
+ ASSERT3P(cb, !=, NULL);
+ dev = cb->l2wcb_dev;
+ ASSERT3P(dev, !=, NULL);
+ head = cb->l2wcb_head;
+ ASSERT3P(head, !=, NULL);
+ buflist = &dev->l2ad_buflist;
+ ASSERT3P(buflist, !=, NULL);
+ DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
+ l2arc_write_callback_t *, cb);
+
+ if (zio->io_error != 0)
+ ARCSTAT_BUMP(arcstat_l2_writes_error);
+
+ /*
+ * All writes completed, or an error was hit.
+ */
+top:
+ mutex_enter(&dev->l2ad_mtx);
+ for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
+ hdr_prev = list_prev(buflist, hdr);
+
+ hash_lock = HDR_LOCK(hdr);
+
+ /*
+ * We cannot use mutex_enter or else we can deadlock
+ * with l2arc_write_buffers (due to swapping the order
+ * the hash lock and l2ad_mtx are taken).
+ */
+ if (!mutex_tryenter(hash_lock)) {
+ /*
+ * Missed the hash lock. We must retry so we
+ * don't leave the ARC_FLAG_L2_WRITING bit set.
+ */
+ ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
+
+ /*
+ * We don't want to rescan the headers we've
+ * already marked as having been written out, so
+ * we reinsert the head node so we can pick up
+ * where we left off.
+ */
+ list_remove(buflist, head);
+ list_insert_after(buflist, hdr, head);
+
+ mutex_exit(&dev->l2ad_mtx);
+
+ /*
+ * We wait for the hash lock to become available
+ * to try and prevent busy waiting, and increase
+ * the chance we'll be able to acquire the lock
+ * the next time around.
+ */
+ mutex_enter(hash_lock);
+ mutex_exit(hash_lock);
+ goto top;
+ }
+
+ /*
+ * We could not have been moved into the arc_l2c_only
+ * state while in-flight due to our ARC_FLAG_L2_WRITING
+ * bit being set. Let's just ensure that's being enforced.
+ */
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ if (zio->io_error != 0) {
+ /*
+ * Error - drop L2ARC entry.
+ */
+ list_remove(buflist, hdr);
+ l2arc_trim(hdr);
+ arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
+
+ ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
+ ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
+
+ bytes_dropped += arc_hdr_size(hdr);
+ (void) refcount_remove_many(&dev->l2ad_alloc,
+ arc_hdr_size(hdr), hdr);
+ }
+
+ /*
+ * Allow ARC to begin reads and ghost list evictions to
+ * this L2ARC entry.
+ */
+ arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
+
+ mutex_exit(hash_lock);
+ }
+
+ atomic_inc_64(&l2arc_writes_done);
+ list_remove(buflist, head);
+ ASSERT(!HDR_HAS_L1HDR(head));
+ kmem_cache_free(hdr_l2only_cache, head);
+ mutex_exit(&dev->l2ad_mtx);
+
+ vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
+
+ l2arc_do_free_on_write();
+
+ kmem_free(cb, sizeof (l2arc_write_callback_t));
+}
+
+/*
+ * A read to a cache device completed. Validate buffer contents before
+ * handing over to the regular ARC routines.
+ */
+static void
+l2arc_read_done(zio_t *zio)
+{
+ l2arc_read_callback_t *cb;
+ arc_buf_hdr_t *hdr;
+ kmutex_t *hash_lock;
+ boolean_t valid_cksum;
+
+ ASSERT3P(zio->io_vd, !=, NULL);
+ ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
+
+ spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
+
+ cb = zio->io_private;
+ ASSERT3P(cb, !=, NULL);
+ hdr = cb->l2rcb_hdr;
+ ASSERT3P(hdr, !=, NULL);
+
+ hash_lock = HDR_LOCK(hdr);
+ mutex_enter(hash_lock);
+ ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
+
+ /*
+ * If the data was read into a temporary buffer,
+ * move it and free the buffer.
+ */
+ if (cb->l2rcb_abd != NULL) {
+ ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
+ if (zio->io_error == 0) {
+ abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
+ arc_hdr_size(hdr));
+ }
+
+ /*
+ * The following must be done regardless of whether
+ * there was an error:
+ * - free the temporary buffer
+ * - point zio to the real ARC buffer
+ * - set zio size accordingly
+ * These are required because zio is either re-used for
+ * an I/O of the block in the case of the error
+ * or the zio is passed to arc_read_done() and it
+ * needs real data.
+ */
+ abd_free(cb->l2rcb_abd);
+ zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
+ zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
+ }
+
+ ASSERT3P(zio->io_abd, !=, NULL);
+
+ /*
+ * Check this survived the L2ARC journey.
+ */
+ ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
+ zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
+ zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
+
+ valid_cksum = arc_cksum_is_equal(hdr, zio);
+ if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
+ mutex_exit(hash_lock);
+ zio->io_private = hdr;
+ arc_read_done(zio);
+ } else {
+ mutex_exit(hash_lock);
+ /*
+ * Buffer didn't survive caching. Increment stats and
+ * reissue to the original storage device.
+ */
+ if (zio->io_error != 0) {
+ ARCSTAT_BUMP(arcstat_l2_io_error);
+ } else {
+ zio->io_error = SET_ERROR(EIO);
+ }
+ if (!valid_cksum)
+ ARCSTAT_BUMP(arcstat_l2_cksum_bad);
+
+ /*
+ * If there's no waiter, issue an async i/o to the primary
+ * storage now. If there *is* a waiter, the caller must
+ * issue the i/o in a context where it's OK to block.
+ */
+ if (zio->io_waiter == NULL) {
+ zio_t *pio = zio_unique_parent(zio);
+
+ ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
+
+ zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
+ hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
+ hdr, zio->io_priority, cb->l2rcb_flags,
+ &cb->l2rcb_zb));
+ }
+ }
+
+ kmem_free(cb, sizeof (l2arc_read_callback_t));
+}
+
+/*
+ * This is the list priority from which the L2ARC will search for pages to
+ * cache. This is used within loops (0..3) to cycle through lists in the
+ * desired order. This order can have a significant effect on cache
+ * performance.
+ *
+ * Currently the metadata lists are hit first, MFU then MRU, followed by
+ * the data lists. This function returns a locked list, and also returns
+ * the lock pointer.
+ */
+static multilist_sublist_t *
+l2arc_sublist_lock(int list_num)
+{
+ multilist_t *ml = NULL;
+ unsigned int idx;
+
+ ASSERT(list_num >= 0 && list_num <= 3);
+
+ switch (list_num) {
+ case 0:
+ ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
+ break;
+ case 1:
+ ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
+ break;
+ case 2:
+ ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
+ break;
+ case 3:
+ ml = arc_mru->arcs_list[ARC_BUFC_DATA];
+ break;
+ }
+
+ /*
+ * Return a randomly-selected sublist. This is acceptable
+ * because the caller feeds only a little bit of data for each
+ * call (8MB). Subsequent calls will result in different
+ * sublists being selected.
+ */
+ idx = multilist_get_random_index(ml);
+ return (multilist_sublist_lock(ml, idx));
+}
+
+/*
+ * Evict buffers from the device write hand to the distance specified in
+ * bytes. This distance may span populated buffers, it may span nothing.
+ * This is clearing a region on the L2ARC device ready for writing.
+ * If the 'all' boolean is set, every buffer is evicted.
+ */
+static void
+l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
+{
+ list_t *buflist;
+ arc_buf_hdr_t *hdr, *hdr_prev;
+ kmutex_t *hash_lock;
+ uint64_t taddr;
+
+ buflist = &dev->l2ad_buflist;
+
+ if (!all && dev->l2ad_first) {
+ /*
+ * This is the first sweep through the device. There is
+ * nothing to evict.
+ */
+ return;
+ }
+
+ if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
+ /*
+ * When nearing the end of the device, evict to the end
+ * before the device write hand jumps to the start.
+ */
+ taddr = dev->l2ad_end;
+ } else {
+ taddr = dev->l2ad_hand + distance;
+ }
+ DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
+ uint64_t, taddr, boolean_t, all);
+
+top:
+ mutex_enter(&dev->l2ad_mtx);
+ for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
+ hdr_prev = list_prev(buflist, hdr);
+
+ hash_lock = HDR_LOCK(hdr);
+
+ /*
+ * We cannot use mutex_enter or else we can deadlock
+ * with l2arc_write_buffers (due to swapping the order
+ * the hash lock and l2ad_mtx are taken).
+ */
+ if (!mutex_tryenter(hash_lock)) {
+ /*
+ * Missed the hash lock. Retry.
+ */
+ ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
+ mutex_exit(&dev->l2ad_mtx);
+ mutex_enter(hash_lock);
+ mutex_exit(hash_lock);
+ goto top;
+ }
+
+ /*
+ * A header can't be on this list if it doesn't have L2 header.
+ */
+ ASSERT(HDR_HAS_L2HDR(hdr));
+
+ /* Ensure this header has finished being written. */
+ ASSERT(!HDR_L2_WRITING(hdr));
+ ASSERT(!HDR_L2_WRITE_HEAD(hdr));
+
+ if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
+ hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
+ /*
+ * We've evicted to the target address,
+ * or the end of the device.
+ */
+ mutex_exit(hash_lock);
+ break;
+ }
+
+ if (!HDR_HAS_L1HDR(hdr)) {
+ ASSERT(!HDR_L2_READING(hdr));
+ /*
+ * This doesn't exist in the ARC. Destroy.
+ * arc_hdr_destroy() will call list_remove()
+ * and decrement arcstat_l2_lsize.
+ */
+ arc_change_state(arc_anon, hdr, hash_lock);
+ arc_hdr_destroy(hdr);
+ } else {
+ ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
+ ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
+ /*
+ * Invalidate issued or about to be issued
+ * reads, since we may be about to write
+ * over this location.
+ */
+ if (HDR_L2_READING(hdr)) {
+ ARCSTAT_BUMP(arcstat_l2_evict_reading);
+ arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
+ }
+
+ arc_hdr_l2hdr_destroy(hdr);
+ }
+ mutex_exit(hash_lock);
+ }
+ mutex_exit(&dev->l2ad_mtx);
+}
+
+/*
+ * Find and write ARC buffers to the L2ARC device.
+ *
+ * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
+ * for reading until they have completed writing.
+ * The headroom_boost is an in-out parameter used to maintain headroom boost
+ * state between calls to this function.
+ *
+ * Returns the number of bytes actually written (which may be smaller than
+ * the delta by which the device hand has changed due to alignment).
+ */
+static uint64_t
+l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
+{
+ arc_buf_hdr_t *hdr, *hdr_prev, *head;
+ uint64_t write_asize, write_psize, write_lsize, headroom;
+ boolean_t full;
+ l2arc_write_callback_t *cb;
+ zio_t *pio, *wzio;
+ uint64_t guid = spa_load_guid(spa);
+ int try;
+
+ ASSERT3P(dev->l2ad_vdev, !=, NULL);
+
+ pio = NULL;
+ write_lsize = write_asize = write_psize = 0;
+ full = B_FALSE;
+ head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
+ arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
+
+ ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
+ /*
+ * Copy buffers for L2ARC writing.
+ */
+ for (try = 0; try <= 3; try++) {
+ multilist_sublist_t *mls = l2arc_sublist_lock(try);
+ uint64_t passed_sz = 0;
+
+ ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
+
+ /*
+ * L2ARC fast warmup.
+ *
+ * Until the ARC is warm and starts to evict, read from the
+ * head of the ARC lists rather than the tail.
+ */
+ if (arc_warm == B_FALSE)
+ hdr = multilist_sublist_head(mls);
+ else
+ hdr = multilist_sublist_tail(mls);
+ if (hdr == NULL)
+ ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
+
+ headroom = target_sz * l2arc_headroom;
+ if (zfs_compressed_arc_enabled)
+ headroom = (headroom * l2arc_headroom_boost) / 100;
+
+ for (; hdr; hdr = hdr_prev) {
+ kmutex_t *hash_lock;
+
+ if (arc_warm == B_FALSE)
+ hdr_prev = multilist_sublist_next(mls, hdr);
+ else
+ hdr_prev = multilist_sublist_prev(mls, hdr);
+ ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
+ HDR_GET_LSIZE(hdr));
+
+ hash_lock = HDR_LOCK(hdr);
+ if (!mutex_tryenter(hash_lock)) {
+ ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
+ /*
+ * Skip this buffer rather than waiting.
+ */
+ continue;
+ }
+
+ passed_sz += HDR_GET_LSIZE(hdr);
+ if (passed_sz > headroom) {
+ /*
+ * Searched too far.
+ */
+ mutex_exit(hash_lock);
+ ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
+ break;
+ }
+
+ if (!l2arc_write_eligible(guid, hdr)) {
+ mutex_exit(hash_lock);
+ continue;
+ }
+
+ /*
+ * We rely on the L1 portion of the header below, so
+ * it's invalid for this header to have been evicted out
+ * of the ghost cache, prior to being written out. The
+ * ARC_FLAG_L2_WRITING bit ensures this won't happen.
+ */
+ ASSERT(HDR_HAS_L1HDR(hdr));
+
+ ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
+ ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
+ ASSERT3U(arc_hdr_size(hdr), >, 0);
+ uint64_t psize = arc_hdr_size(hdr);
+ uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
+ psize);
+
+ if ((write_asize + asize) > target_sz) {
+ full = B_TRUE;
+ mutex_exit(hash_lock);
+ ARCSTAT_BUMP(arcstat_l2_write_full);
+ break;
+ }
+
+ if (pio == NULL) {
+ /*
+ * Insert a dummy header on the buflist so
+ * l2arc_write_done() can find where the
+ * write buffers begin without searching.
+ */
+ mutex_enter(&dev->l2ad_mtx);
+ list_insert_head(&dev->l2ad_buflist, head);
+ mutex_exit(&dev->l2ad_mtx);
+
+ cb = kmem_alloc(
+ sizeof (l2arc_write_callback_t), KM_SLEEP);
+ cb->l2wcb_dev = dev;
+ cb->l2wcb_head = head;
+ pio = zio_root(spa, l2arc_write_done, cb,
+ ZIO_FLAG_CANFAIL);
+ ARCSTAT_BUMP(arcstat_l2_write_pios);
+ }
+
+ hdr->b_l2hdr.b_dev = dev;
+ hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
+ arc_hdr_set_flags(hdr,
+ ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
+
+ mutex_enter(&dev->l2ad_mtx);
+ list_insert_head(&dev->l2ad_buflist, hdr);
+ mutex_exit(&dev->l2ad_mtx);
+
+ (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
+
+ /*
+ * Normally the L2ARC can use the hdr's data, but if
+ * we're sharing data between the hdr and one of its
+ * bufs, L2ARC needs its own copy of the data so that
+ * the ZIO below can't race with the buf consumer.
+ * Another case where we need to create a copy of the
+ * data is when the buffer size is not device-aligned
+ * and we need to pad the block to make it such.
+ * That also keeps the clock hand suitably aligned.
+ *
+ * To ensure that the copy will be available for the
+ * lifetime of the ZIO and be cleaned up afterwards, we
+ * add it to the l2arc_free_on_write queue.
+ */
+ abd_t *to_write;
+ if (!HDR_SHARED_DATA(hdr) && psize == asize) {
+ to_write = hdr->b_l1hdr.b_pabd;
+ } else {
+ to_write = abd_alloc_for_io(asize,
+ HDR_ISTYPE_METADATA(hdr));
+ abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
+ if (asize != psize) {
+ abd_zero_off(to_write, psize,
+ asize - psize);
+ }
+ l2arc_free_abd_on_write(to_write, asize,
+ arc_buf_type(hdr));
+ }
+ wzio = zio_write_phys(pio, dev->l2ad_vdev,
+ hdr->b_l2hdr.b_daddr, asize, to_write,
+ ZIO_CHECKSUM_OFF, NULL, hdr,
+ ZIO_PRIORITY_ASYNC_WRITE,
+ ZIO_FLAG_CANFAIL, B_FALSE);
+
+ write_lsize += HDR_GET_LSIZE(hdr);
+ DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
+ zio_t *, wzio);
+
+ write_psize += psize;
+ write_asize += asize;
+ dev->l2ad_hand += asize;
+
+ mutex_exit(hash_lock);
+
+ (void) zio_nowait(wzio);
+ }
+
+ multilist_sublist_unlock(mls);
+
+ if (full == B_TRUE)
+ break;
+ }
+
+ /* No buffers selected for writing? */
+ if (pio == NULL) {
+ ASSERT0(write_lsize);
+ ASSERT(!HDR_HAS_L1HDR(head));
+ kmem_cache_free(hdr_l2only_cache, head);
+ return (0);
+ }
+
+ ASSERT3U(write_psize, <=, target_sz);
+ ARCSTAT_BUMP(arcstat_l2_writes_sent);
+ ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
+ ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
+ ARCSTAT_INCR(arcstat_l2_psize, write_psize);
+ vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
+
+ /*
+ * Bump device hand to the device start if it is approaching the end.
+ * l2arc_evict() will already have evicted ahead for this case.
+ */
+ if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
+ dev->l2ad_hand = dev->l2ad_start;
+ dev->l2ad_first = B_FALSE;
+ }
+
+ dev->l2ad_writing = B_TRUE;
+ (void) zio_wait(pio);
+ dev->l2ad_writing = B_FALSE;
+
+ return (write_asize);
+}
+
+/*
+ * This thread feeds the L2ARC at regular intervals. This is the beating
+ * heart of the L2ARC.
+ */
+/* ARGSUSED */
+static void
+l2arc_feed_thread(void *unused __unused)
+{
+ callb_cpr_t cpr;
+ l2arc_dev_t *dev;
+ spa_t *spa;
+ uint64_t size, wrote;
+ clock_t begin, next = ddi_get_lbolt();
+
+ CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
+
+ mutex_enter(&l2arc_feed_thr_lock);
+
+ while (l2arc_thread_exit == 0) {
+ CALLB_CPR_SAFE_BEGIN(&cpr);
+ (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
+ next - ddi_get_lbolt());
+ CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
+ next = ddi_get_lbolt() + hz;
+
+ /*
+ * Quick check for L2ARC devices.
+ */
+ mutex_enter(&l2arc_dev_mtx);
+ if (l2arc_ndev == 0) {
+ mutex_exit(&l2arc_dev_mtx);
+ continue;
+ }
+ mutex_exit(&l2arc_dev_mtx);
+ begin = ddi_get_lbolt();
+
+ /*
+ * This selects the next l2arc device to write to, and in
+ * doing so the next spa to feed from: dev->l2ad_spa. This
+ * will return NULL if there are now no l2arc devices or if
+ * they are all faulted.
+ *
+ * If a device is returned, its spa's config lock is also
+ * held to prevent device removal. l2arc_dev_get_next()
+ * will grab and release l2arc_dev_mtx.
+ */
+ if ((dev = l2arc_dev_get_next()) == NULL)
+ continue;
+
+ spa = dev->l2ad_spa;
+ ASSERT3P(spa, !=, NULL);
+
+ /*
+ * If the pool is read-only then force the feed thread to
+ * sleep a little longer.
+ */
+ if (!spa_writeable(spa)) {
+ next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
+ spa_config_exit(spa, SCL_L2ARC, dev);
+ continue;
+ }
+
+ /*
+ * Avoid contributing to memory pressure.
+ */
+ if (arc_reclaim_needed()) {
+ ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
+ spa_config_exit(spa, SCL_L2ARC, dev);
+ continue;
+ }
+
+ ARCSTAT_BUMP(arcstat_l2_feeds);
+
+ size = l2arc_write_size();
+
+ /*
+ * Evict L2ARC buffers that will be overwritten.
+ */
+ l2arc_evict(dev, size, B_FALSE);
+
+ /*
+ * Write ARC buffers.
+ */
+ wrote = l2arc_write_buffers(spa, dev, size);
+
+ /*
+ * Calculate interval between writes.
+ */
+ next = l2arc_write_interval(begin, size, wrote);
+ spa_config_exit(spa, SCL_L2ARC, dev);
+ }
+
+ l2arc_thread_exit = 0;
+ cv_broadcast(&l2arc_feed_thr_cv);
+ CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
+ thread_exit();
+}
+
+boolean_t
+l2arc_vdev_present(vdev_t *vd)
+{
+ l2arc_dev_t *dev;
+
+ mutex_enter(&l2arc_dev_mtx);
+ for (dev = list_head(l2arc_dev_list); dev != NULL;
+ dev = list_next(l2arc_dev_list, dev)) {
+ if (dev->l2ad_vdev == vd)
+ break;
+ }
+ mutex_exit(&l2arc_dev_mtx);
+
+ return (dev != NULL);
+}
+
+/*
+ * Add a vdev for use by the L2ARC. By this point the spa has already
+ * validated the vdev and opened it.
+ */
+void
+l2arc_add_vdev(spa_t *spa, vdev_t *vd)
+{
+ l2arc_dev_t *adddev;
+
+ ASSERT(!l2arc_vdev_present(vd));
+
+ vdev_ashift_optimize(vd);
+
+ /*
+ * Create a new l2arc device entry.
+ */
+ adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
+ adddev->l2ad_spa = spa;
+ adddev->l2ad_vdev = vd;
+ adddev->l2ad_start = VDEV_LABEL_START_SIZE;
+ adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
+ adddev->l2ad_hand = adddev->l2ad_start;
+ adddev->l2ad_first = B_TRUE;
+ adddev->l2ad_writing = B_FALSE;
+
+ mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
+ /*
+ * This is a list of all ARC buffers that are still valid on the
+ * device.
+ */
+ list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
+ offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
+
+ vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
+ refcount_create(&adddev->l2ad_alloc);
+
+ /*
+ * Add device to global list
+ */
+ mutex_enter(&l2arc_dev_mtx);
+ list_insert_head(l2arc_dev_list, adddev);
+ atomic_inc_64(&l2arc_ndev);
+ mutex_exit(&l2arc_dev_mtx);
+}
+
+/*
+ * Remove a vdev from the L2ARC.
+ */
+void
+l2arc_remove_vdev(vdev_t *vd)
+{
+ l2arc_dev_t *dev, *nextdev, *remdev = NULL;
+
+ /*
+ * Find the device by vdev
+ */
+ mutex_enter(&l2arc_dev_mtx);
+ for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
+ nextdev = list_next(l2arc_dev_list, dev);
+ if (vd == dev->l2ad_vdev) {
+ remdev = dev;
+ break;
+ }
+ }
+ ASSERT3P(remdev, !=, NULL);
+
+ /*
+ * Remove device from global list
+ */
+ list_remove(l2arc_dev_list, remdev);
+ l2arc_dev_last = NULL; /* may have been invalidated */
+ atomic_dec_64(&l2arc_ndev);
+ mutex_exit(&l2arc_dev_mtx);
+
+ /*
+ * Clear all buflists and ARC references. L2ARC device flush.
+ */
+ l2arc_evict(remdev, 0, B_TRUE);
+ list_destroy(&remdev->l2ad_buflist);
+ mutex_destroy(&remdev->l2ad_mtx);
+ refcount_destroy(&remdev->l2ad_alloc);
+ kmem_free(remdev, sizeof (l2arc_dev_t));
+}
+
+void
+l2arc_init(void)
+{
+ l2arc_thread_exit = 0;
+ l2arc_ndev = 0;
+ l2arc_writes_sent = 0;
+ l2arc_writes_done = 0;
+
+ mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
+ mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
+
+ l2arc_dev_list = &L2ARC_dev_list;
+ l2arc_free_on_write = &L2ARC_free_on_write;
+ list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
+ offsetof(l2arc_dev_t, l2ad_node));
+ list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
+ offsetof(l2arc_data_free_t, l2df_list_node));
+}
+
+void
+l2arc_fini(void)
+{
+ /*
+ * This is called from dmu_fini(), which is called from spa_fini();
+ * Because of this, we can assume that all l2arc devices have
+ * already been removed when the pools themselves were removed.
+ */
+
+ l2arc_do_free_on_write();
+
+ mutex_destroy(&l2arc_feed_thr_lock);
+ cv_destroy(&l2arc_feed_thr_cv);
+ mutex_destroy(&l2arc_dev_mtx);
+ mutex_destroy(&l2arc_free_on_write_mtx);
+
+ list_destroy(l2arc_dev_list);
+ list_destroy(l2arc_free_on_write);
+}
+
+void
+l2arc_start(void)
+{
+ if (!(spa_mode_global & FWRITE))
+ return;
+
+ (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
+ TS_RUN, minclsyspri);
+}
+
+void
+l2arc_stop(void)
+{
+ if (!(spa_mode_global & FWRITE))
+ return;
+
+ mutex_enter(&l2arc_feed_thr_lock);
+ cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
+ l2arc_thread_exit = 1;
+ while (l2arc_thread_exit != 0)
+ cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
+ mutex_exit(&l2arc_feed_thr_lock);
+}