aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/txg.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/cddl/contrib/opensolaris/uts/common/fs/zfs/txg.c')
-rw-r--r--sys/cddl/contrib/opensolaris/uts/common/fs/zfs/txg.c977
1 files changed, 0 insertions, 977 deletions
diff --git a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/txg.c b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/txg.c
deleted file mode 100644
index 64a5d0972a74..000000000000
--- a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/txg.c
+++ /dev/null
@@ -1,977 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
- * Portions Copyright 2011 Martin Matuska <mm@FreeBSD.org>
- * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
- */
-
-#include <sys/zfs_context.h>
-#include <sys/txg_impl.h>
-#include <sys/dmu_impl.h>
-#include <sys/dmu_tx.h>
-#include <sys/dsl_pool.h>
-#include <sys/dsl_scan.h>
-#include <sys/zil.h>
-#include <sys/callb.h>
-
-/*
- * ZFS Transaction Groups
- * ----------------------
- *
- * ZFS transaction groups are, as the name implies, groups of transactions
- * that act on persistent state. ZFS asserts consistency at the granularity of
- * these transaction groups. Each successive transaction group (txg) is
- * assigned a 64-bit consecutive identifier. There are three active
- * transaction group states: open, quiescing, or syncing. At any given time,
- * there may be an active txg associated with each state; each active txg may
- * either be processing, or blocked waiting to enter the next state. There may
- * be up to three active txgs, and there is always a txg in the open state
- * (though it may be blocked waiting to enter the quiescing state). In broad
- * strokes, transactions -- operations that change in-memory structures -- are
- * accepted into the txg in the open state, and are completed while the txg is
- * in the open or quiescing states. The accumulated changes are written to
- * disk in the syncing state.
- *
- * Open
- *
- * When a new txg becomes active, it first enters the open state. New
- * transactions -- updates to in-memory structures -- are assigned to the
- * currently open txg. There is always a txg in the open state so that ZFS can
- * accept new changes (though the txg may refuse new changes if it has hit
- * some limit). ZFS advances the open txg to the next state for a variety of
- * reasons such as it hitting a time or size threshold, or the execution of an
- * administrative action that must be completed in the syncing state.
- *
- * Quiescing
- *
- * After a txg exits the open state, it enters the quiescing state. The
- * quiescing state is intended to provide a buffer between accepting new
- * transactions in the open state and writing them out to stable storage in
- * the syncing state. While quiescing, transactions can continue their
- * operation without delaying either of the other states. Typically, a txg is
- * in the quiescing state very briefly since the operations are bounded by
- * software latencies rather than, say, slower I/O latencies. After all
- * transactions complete, the txg is ready to enter the next state.
- *
- * Syncing
- *
- * In the syncing state, the in-memory state built up during the open and (to
- * a lesser degree) the quiescing states is written to stable storage. The
- * process of writing out modified data can, in turn modify more data. For
- * example when we write new blocks, we need to allocate space for them; those
- * allocations modify metadata (space maps)... which themselves must be
- * written to stable storage. During the sync state, ZFS iterates, writing out
- * data until it converges and all in-memory changes have been written out.
- * The first such pass is the largest as it encompasses all the modified user
- * data (as opposed to filesystem metadata). Subsequent passes typically have
- * far less data to write as they consist exclusively of filesystem metadata.
- *
- * To ensure convergence, after a certain number of passes ZFS begins
- * overwriting locations on stable storage that had been allocated earlier in
- * the syncing state (and subsequently freed). ZFS usually allocates new
- * blocks to optimize for large, continuous, writes. For the syncing state to
- * converge however it must complete a pass where no new blocks are allocated
- * since each allocation requires a modification of persistent metadata.
- * Further, to hasten convergence, after a prescribed number of passes, ZFS
- * also defers frees, and stops compressing.
- *
- * In addition to writing out user data, we must also execute synctasks during
- * the syncing context. A synctask is the mechanism by which some
- * administrative activities work such as creating and destroying snapshots or
- * datasets. Note that when a synctask is initiated it enters the open txg,
- * and ZFS then pushes that txg as quickly as possible to completion of the
- * syncing state in order to reduce the latency of the administrative
- * activity. To complete the syncing state, ZFS writes out a new uberblock,
- * the root of the tree of blocks that comprise all state stored on the ZFS
- * pool. Finally, if there is a quiesced txg waiting, we signal that it can
- * now transition to the syncing state.
- */
-
-static void txg_sync_thread(void *arg);
-static void txg_quiesce_thread(void *arg);
-
-int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
-
-SYSCTL_DECL(_vfs_zfs);
-SYSCTL_NODE(_vfs_zfs, OID_AUTO, txg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
- "ZFS TXG");
-SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, timeout, CTLFLAG_RWTUN, &zfs_txg_timeout, 0,
- "Maximum seconds worth of delta per txg");
-
-/*
- * Prepare the txg subsystem.
- */
-void
-txg_init(dsl_pool_t *dp, uint64_t txg)
-{
- tx_state_t *tx = &dp->dp_tx;
- int c;
- bzero(tx, sizeof (tx_state_t));
-
- tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
-
- for (c = 0; c < max_ncpus; c++) {
- int i;
-
- mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
- NULL);
- for (i = 0; i < TXG_SIZE; i++) {
- cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
- NULL);
- list_create(&tx->tx_cpu[c].tc_callbacks[i],
- sizeof (dmu_tx_callback_t),
- offsetof(dmu_tx_callback_t, dcb_node));
- }
- }
-
- mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
-
- cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
- cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
- cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
- cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
- cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
-
- tx->tx_open_txg = txg;
-}
-
-/*
- * Close down the txg subsystem.
- */
-void
-txg_fini(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
- int c;
-
- ASSERT0(tx->tx_threads);
-
- mutex_destroy(&tx->tx_sync_lock);
-
- cv_destroy(&tx->tx_sync_more_cv);
- cv_destroy(&tx->tx_sync_done_cv);
- cv_destroy(&tx->tx_quiesce_more_cv);
- cv_destroy(&tx->tx_quiesce_done_cv);
- cv_destroy(&tx->tx_exit_cv);
-
- for (c = 0; c < max_ncpus; c++) {
- int i;
-
- mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
- mutex_destroy(&tx->tx_cpu[c].tc_lock);
- for (i = 0; i < TXG_SIZE; i++) {
- cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
- list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
- }
- }
-
- if (tx->tx_commit_cb_taskq != NULL)
- taskq_destroy(tx->tx_commit_cb_taskq);
-
- kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
-
- bzero(tx, sizeof (tx_state_t));
-}
-
-/*
- * Start syncing transaction groups.
- */
-void
-txg_sync_start(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
-
- mutex_enter(&tx->tx_sync_lock);
-
- dprintf("pool %p\n", dp);
-
- ASSERT0(tx->tx_threads);
-
- tx->tx_threads = 2;
-
- tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
- dp, 0, spa_proc(dp->dp_spa), TS_RUN, minclsyspri);
-
- /*
- * The sync thread can need a larger-than-default stack size on
- * 32-bit x86. This is due in part to nested pools and
- * scrub_visitbp() recursion.
- */
- tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
- dp, 0, spa_proc(dp->dp_spa), TS_RUN, minclsyspri);
-
- mutex_exit(&tx->tx_sync_lock);
-}
-
-static void
-txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
-{
- CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
- mutex_enter(&tx->tx_sync_lock);
-}
-
-static void
-txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
-{
- ASSERT(*tpp != NULL);
- *tpp = NULL;
- tx->tx_threads--;
- cv_broadcast(&tx->tx_exit_cv);
- CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
- thread_exit();
-}
-
-static void
-txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
-{
- CALLB_CPR_SAFE_BEGIN(cpr);
-
- if (time)
- (void) cv_timedwait(cv, &tx->tx_sync_lock, time);
- else
- cv_wait(cv, &tx->tx_sync_lock);
-
- CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
-}
-
-/*
- * Stop syncing transaction groups.
- */
-void
-txg_sync_stop(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
-
- dprintf("pool %p\n", dp);
- /*
- * Finish off any work in progress.
- */
- ASSERT3U(tx->tx_threads, ==, 2);
-
- /*
- * We need to ensure that we've vacated the deferred space_maps.
- */
- txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
-
- /*
- * Wake all sync threads and wait for them to die.
- */
- mutex_enter(&tx->tx_sync_lock);
-
- ASSERT3U(tx->tx_threads, ==, 2);
-
- tx->tx_exiting = 1;
-
- cv_broadcast(&tx->tx_quiesce_more_cv);
- cv_broadcast(&tx->tx_quiesce_done_cv);
- cv_broadcast(&tx->tx_sync_more_cv);
-
- while (tx->tx_threads != 0)
- cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
-
- tx->tx_exiting = 0;
-
- mutex_exit(&tx->tx_sync_lock);
-}
-
-uint64_t
-txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
-{
- tx_state_t *tx = &dp->dp_tx;
- tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
- uint64_t txg;
-
- mutex_enter(&tc->tc_open_lock);
- txg = tx->tx_open_txg;
-
- mutex_enter(&tc->tc_lock);
- tc->tc_count[txg & TXG_MASK]++;
- mutex_exit(&tc->tc_lock);
-
- th->th_cpu = tc;
- th->th_txg = txg;
-
- return (txg);
-}
-
-void
-txg_rele_to_quiesce(txg_handle_t *th)
-{
- tx_cpu_t *tc = th->th_cpu;
-
- ASSERT(!MUTEX_HELD(&tc->tc_lock));
- mutex_exit(&tc->tc_open_lock);
-}
-
-void
-txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
-{
- tx_cpu_t *tc = th->th_cpu;
- int g = th->th_txg & TXG_MASK;
-
- mutex_enter(&tc->tc_lock);
- list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
- mutex_exit(&tc->tc_lock);
-}
-
-void
-txg_rele_to_sync(txg_handle_t *th)
-{
- tx_cpu_t *tc = th->th_cpu;
- int g = th->th_txg & TXG_MASK;
-
- mutex_enter(&tc->tc_lock);
- ASSERT(tc->tc_count[g] != 0);
- if (--tc->tc_count[g] == 0)
- cv_broadcast(&tc->tc_cv[g]);
- mutex_exit(&tc->tc_lock);
-
- th->th_cpu = NULL; /* defensive */
-}
-
-/*
- * Blocks until all transactions in the group are committed.
- *
- * On return, the transaction group has reached a stable state in which it can
- * then be passed off to the syncing context.
- */
-static __noinline void
-txg_quiesce(dsl_pool_t *dp, uint64_t txg)
-{
- tx_state_t *tx = &dp->dp_tx;
- int g = txg & TXG_MASK;
- int c;
-
- /*
- * Grab all tc_open_locks so nobody else can get into this txg.
- */
- for (c = 0; c < max_ncpus; c++)
- mutex_enter(&tx->tx_cpu[c].tc_open_lock);
-
- ASSERT(txg == tx->tx_open_txg);
- tx->tx_open_txg++;
- tx->tx_open_time = gethrtime();
-
- DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
- DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
-
- /*
- * Now that we've incremented tx_open_txg, we can let threads
- * enter the next transaction group.
- */
- for (c = 0; c < max_ncpus; c++)
- mutex_exit(&tx->tx_cpu[c].tc_open_lock);
-
- /*
- * Quiesce the transaction group by waiting for everyone to txg_exit().
- */
- for (c = 0; c < max_ncpus; c++) {
- tx_cpu_t *tc = &tx->tx_cpu[c];
- mutex_enter(&tc->tc_lock);
- while (tc->tc_count[g] != 0)
- cv_wait(&tc->tc_cv[g], &tc->tc_lock);
- mutex_exit(&tc->tc_lock);
- }
-}
-
-static void
-txg_do_callbacks(void *arg)
-{
- list_t *cb_list = arg;
-
- dmu_tx_do_callbacks(cb_list, 0);
-
- list_destroy(cb_list);
-
- kmem_free(cb_list, sizeof (list_t));
-}
-
-/*
- * Dispatch the commit callbacks registered on this txg to worker threads.
- *
- * If no callbacks are registered for a given TXG, nothing happens.
- * This function creates a taskq for the associated pool, if needed.
- */
-static void
-txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
-{
- int c;
- tx_state_t *tx = &dp->dp_tx;
- list_t *cb_list;
-
- for (c = 0; c < max_ncpus; c++) {
- tx_cpu_t *tc = &tx->tx_cpu[c];
- /*
- * No need to lock tx_cpu_t at this point, since this can
- * only be called once a txg has been synced.
- */
-
- int g = txg & TXG_MASK;
-
- if (list_is_empty(&tc->tc_callbacks[g]))
- continue;
-
- if (tx->tx_commit_cb_taskq == NULL) {
- /*
- * Commit callback taskq hasn't been created yet.
- */
- tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
- max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
- TASKQ_PREPOPULATE);
- }
-
- cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
- list_create(cb_list, sizeof (dmu_tx_callback_t),
- offsetof(dmu_tx_callback_t, dcb_node));
-
- list_move_tail(cb_list, &tc->tc_callbacks[g]);
-
- (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
- txg_do_callbacks, cb_list, TQ_SLEEP);
- }
-}
-
-static boolean_t
-txg_is_syncing(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
- ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
- return (tx->tx_syncing_txg != 0);
-}
-
-static boolean_t
-txg_is_quiescing(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
- ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
- return (tx->tx_quiescing_txg != 0);
-}
-
-static boolean_t
-txg_has_quiesced_to_sync(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
- ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
- return (tx->tx_quiesced_txg != 0);
-}
-
-static void
-txg_sync_thread(void *arg)
-{
- dsl_pool_t *dp = arg;
- spa_t *spa = dp->dp_spa;
- tx_state_t *tx = &dp->dp_tx;
- callb_cpr_t cpr;
- uint64_t start, delta;
-
- txg_thread_enter(tx, &cpr);
-
- start = delta = 0;
- for (;;) {
- uint64_t timeout = zfs_txg_timeout * hz;
- uint64_t timer;
- uint64_t txg;
- uint64_t dirty_min_bytes =
- zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
-
- /*
- * We sync when we're scanning, there's someone waiting
- * on us, or the quiesce thread has handed off a txg to
- * us, or we have reached our timeout.
- */
- timer = (delta >= timeout ? 0 : timeout - delta);
- while (!dsl_scan_active(dp->dp_scan) &&
- !tx->tx_exiting && timer > 0 &&
- tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
- !txg_has_quiesced_to_sync(dp) &&
- dp->dp_dirty_total < dirty_min_bytes) {
- dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
- tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
- txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
- delta = ddi_get_lbolt() - start;
- timer = (delta > timeout ? 0 : timeout - delta);
- }
-
- /*
- * Wait until the quiesce thread hands off a txg to us,
- * prompting it to do so if necessary.
- */
- while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
- if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
- tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
- cv_broadcast(&tx->tx_quiesce_more_cv);
- txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
- }
-
- if (tx->tx_exiting)
- txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
-
- /*
- * Consume the quiesced txg which has been handed off to
- * us. This may cause the quiescing thread to now be
- * able to quiesce another txg, so we must signal it.
- */
- ASSERT(tx->tx_quiesced_txg != 0);
- txg = tx->tx_quiesced_txg;
- tx->tx_quiesced_txg = 0;
- tx->tx_syncing_txg = txg;
- DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
- cv_broadcast(&tx->tx_quiesce_more_cv);
-
- dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
- txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
- mutex_exit(&tx->tx_sync_lock);
-
- start = ddi_get_lbolt();
- spa_sync(spa, txg);
- delta = ddi_get_lbolt() - start;
-
- mutex_enter(&tx->tx_sync_lock);
- tx->tx_synced_txg = txg;
- tx->tx_syncing_txg = 0;
- DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
- cv_broadcast(&tx->tx_sync_done_cv);
-
- /*
- * Dispatch commit callbacks to worker threads.
- */
- txg_dispatch_callbacks(dp, txg);
- }
-}
-
-static void
-txg_quiesce_thread(void *arg)
-{
- dsl_pool_t *dp = arg;
- tx_state_t *tx = &dp->dp_tx;
- callb_cpr_t cpr;
-
- txg_thread_enter(tx, &cpr);
-
- for (;;) {
- uint64_t txg;
-
- /*
- * We quiesce when there's someone waiting on us.
- * However, we can only have one txg in "quiescing" or
- * "quiesced, waiting to sync" state. So we wait until
- * the "quiesced, waiting to sync" txg has been consumed
- * by the sync thread.
- */
- while (!tx->tx_exiting &&
- (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
- txg_has_quiesced_to_sync(dp)))
- txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
-
- if (tx->tx_exiting)
- txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
-
- txg = tx->tx_open_txg;
- dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
- txg, tx->tx_quiesce_txg_waiting,
- tx->tx_sync_txg_waiting);
- tx->tx_quiescing_txg = txg;
-
- mutex_exit(&tx->tx_sync_lock);
- txg_quiesce(dp, txg);
- mutex_enter(&tx->tx_sync_lock);
-
- /*
- * Hand this txg off to the sync thread.
- */
- dprintf("quiesce done, handing off txg %llu\n", txg);
- tx->tx_quiescing_txg = 0;
- tx->tx_quiesced_txg = txg;
- DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
- cv_broadcast(&tx->tx_sync_more_cv);
- cv_broadcast(&tx->tx_quiesce_done_cv);
- }
-}
-
-/*
- * Delay this thread by delay nanoseconds if we are still in the open
- * transaction group and there is already a waiting txg quiesing or quiesced.
- * Abort the delay if this txg stalls or enters the quiesing state.
- */
-void
-txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
-{
- tx_state_t *tx = &dp->dp_tx;
- hrtime_t start = gethrtime();
-
- /* don't delay if this txg could transition to quiescing immediately */
- if (tx->tx_open_txg > txg ||
- tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
- return;
-
- mutex_enter(&tx->tx_sync_lock);
- if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
- mutex_exit(&tx->tx_sync_lock);
- return;
- }
-
- while (gethrtime() - start < delay &&
- tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
- (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
- &tx->tx_sync_lock, delay, resolution, 0);
- }
-
- mutex_exit(&tx->tx_sync_lock);
-}
-
-static boolean_t
-txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
-{
- tx_state_t *tx = &dp->dp_tx;
-
- ASSERT(!dsl_pool_config_held(dp));
-
- mutex_enter(&tx->tx_sync_lock);
- ASSERT3U(tx->tx_threads, ==, 2);
- if (txg == 0)
- txg = tx->tx_open_txg + TXG_DEFER_SIZE;
- if (tx->tx_sync_txg_waiting < txg)
- tx->tx_sync_txg_waiting = txg;
- dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
- txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
- while (tx->tx_synced_txg < txg) {
- dprintf("broadcasting sync more "
- "tx_synced=%llu waiting=%llu dp=%p\n",
- tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
- cv_broadcast(&tx->tx_sync_more_cv);
- if (wait_sig) {
- /*
- * Condition wait here but stop if the thread receives a
- * signal. The caller may call txg_wait_synced*() again
- * to resume waiting for this txg.
- */
-#ifdef __FreeBSD__
- /*
- * FreeBSD returns EINTR or ERESTART if there is
- * a pending signal, zero if the conditional variable
- * is signaled. illumos returns zero in the former case
- * and >0 in the latter.
- */
- if (cv_wait_sig(&tx->tx_sync_done_cv,
- &tx->tx_sync_lock) != 0) {
-#else
- if (cv_wait_sig(&tx->tx_sync_done_cv,
- &tx->tx_sync_lock) == 0) {
-#endif
-
- mutex_exit(&tx->tx_sync_lock);
- return (B_TRUE);
- }
- } else {
- cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
- }
- }
- mutex_exit(&tx->tx_sync_lock);
- return (B_FALSE);
-}
-
-void
-txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
-{
- VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
-}
-
-/*
- * Similar to a txg_wait_synced but it can be interrupted from a signal.
- * Returns B_TRUE if the thread was signaled while waiting.
- */
-boolean_t
-txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
-{
- return (txg_wait_synced_impl(dp, txg, B_TRUE));
-}
-
-void
-txg_wait_open(dsl_pool_t *dp, uint64_t txg)
-{
- tx_state_t *tx = &dp->dp_tx;
-
- ASSERT(!dsl_pool_config_held(dp));
-
- mutex_enter(&tx->tx_sync_lock);
- ASSERT3U(tx->tx_threads, ==, 2);
- if (txg == 0)
- txg = tx->tx_open_txg + 1;
- if (tx->tx_quiesce_txg_waiting < txg)
- tx->tx_quiesce_txg_waiting = txg;
- dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
- txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
- while (tx->tx_open_txg < txg) {
- cv_broadcast(&tx->tx_quiesce_more_cv);
- cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
- }
- mutex_exit(&tx->tx_sync_lock);
-}
-
-/*
- * If there isn't a txg syncing or in the pipeline, push another txg through
- * the pipeline by queiscing the open txg.
- */
-void
-txg_kick(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
-
- ASSERT(!dsl_pool_config_held(dp));
-
- mutex_enter(&tx->tx_sync_lock);
- if (!txg_is_syncing(dp) &&
- !txg_is_quiescing(dp) &&
- tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
- tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
- tx->tx_quiesced_txg <= tx->tx_synced_txg) {
- tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
- cv_broadcast(&tx->tx_quiesce_more_cv);
- }
- mutex_exit(&tx->tx_sync_lock);
-}
-
-boolean_t
-txg_stalled(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
- return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
-}
-
-boolean_t
-txg_sync_waiting(dsl_pool_t *dp)
-{
- tx_state_t *tx = &dp->dp_tx;
-
- return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
- tx->tx_quiesced_txg != 0);
-}
-
-/*
- * Verify that this txg is active (open, quiescing, syncing). Non-active
- * txg's should not be manipulated.
- */
-void
-txg_verify(spa_t *spa, uint64_t txg)
-{
- dsl_pool_t *dp = spa_get_dsl(spa);
- if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
- return;
- ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
- ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
- ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
-}
-
-/*
- * Per-txg object lists.
- */
-void
-txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
-{
- int t;
-
- mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
-
- tl->tl_offset = offset;
- tl->tl_spa = spa;
-
- for (t = 0; t < TXG_SIZE; t++)
- tl->tl_head[t] = NULL;
-}
-
-void
-txg_list_destroy(txg_list_t *tl)
-{
- int t;
-
- for (t = 0; t < TXG_SIZE; t++)
- ASSERT(txg_list_empty(tl, t));
-
- mutex_destroy(&tl->tl_lock);
-}
-
-boolean_t
-txg_list_empty(txg_list_t *tl, uint64_t txg)
-{
- txg_verify(tl->tl_spa, txg);
- return (tl->tl_head[txg & TXG_MASK] == NULL);
-}
-
-/*
- * Returns true if all txg lists are empty.
- *
- * Warning: this is inherently racy (an item could be added immediately
- * after this function returns). We don't bother with the lock because
- * it wouldn't change the semantics.
- */
-boolean_t
-txg_all_lists_empty(txg_list_t *tl)
-{
- for (int i = 0; i < TXG_SIZE; i++) {
- if (!txg_list_empty(tl, i)) {
- return (B_FALSE);
- }
- }
- return (B_TRUE);
-}
-
-/*
- * Add an entry to the list (unless it's already on the list).
- * Returns B_TRUE if it was actually added.
- */
-boolean_t
-txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
- boolean_t add;
-
- txg_verify(tl->tl_spa, txg);
- mutex_enter(&tl->tl_lock);
- add = (tn->tn_member[t] == 0);
- if (add) {
- tn->tn_member[t] = 1;
- tn->tn_next[t] = tl->tl_head[t];
- tl->tl_head[t] = tn;
- }
- mutex_exit(&tl->tl_lock);
-
- return (add);
-}
-
-/*
- * Add an entry to the end of the list, unless it's already on the list.
- * (walks list to find end)
- * Returns B_TRUE if it was actually added.
- */
-boolean_t
-txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
- boolean_t add;
-
- txg_verify(tl->tl_spa, txg);
- mutex_enter(&tl->tl_lock);
- add = (tn->tn_member[t] == 0);
- if (add) {
- txg_node_t **tp;
-
- for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
- continue;
-
- tn->tn_member[t] = 1;
- tn->tn_next[t] = NULL;
- *tp = tn;
- }
- mutex_exit(&tl->tl_lock);
-
- return (add);
-}
-
-/*
- * Remove the head of the list and return it.
- */
-void *
-txg_list_remove(txg_list_t *tl, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn;
- void *p = NULL;
-
- txg_verify(tl->tl_spa, txg);
- mutex_enter(&tl->tl_lock);
- if ((tn = tl->tl_head[t]) != NULL) {
- ASSERT(tn->tn_member[t]);
- ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
- p = (char *)tn - tl->tl_offset;
- tl->tl_head[t] = tn->tn_next[t];
- tn->tn_next[t] = NULL;
- tn->tn_member[t] = 0;
- }
- mutex_exit(&tl->tl_lock);
-
- return (p);
-}
-
-/*
- * Remove a specific item from the list and return it.
- */
-void *
-txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn, **tp;
-
- txg_verify(tl->tl_spa, txg);
- mutex_enter(&tl->tl_lock);
-
- for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
- if ((char *)tn - tl->tl_offset == p) {
- *tp = tn->tn_next[t];
- tn->tn_next[t] = NULL;
- tn->tn_member[t] = 0;
- mutex_exit(&tl->tl_lock);
- return (p);
- }
- }
-
- mutex_exit(&tl->tl_lock);
-
- return (NULL);
-}
-
-boolean_t
-txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
-
- txg_verify(tl->tl_spa, txg);
- return (tn->tn_member[t] != 0);
-}
-
-/*
- * Walk a txg list -- only safe if you know it's not changing.
- */
-void *
-txg_list_head(txg_list_t *tl, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn = tl->tl_head[t];
-
- txg_verify(tl->tl_spa, txg);
- return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
-}
-
-void *
-txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
-{
- int t = txg & TXG_MASK;
- txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
-
- txg_verify(tl->tl_spa, txg);
- tn = tn->tn_next[t];
-
- return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
-}