aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c')
-rw-r--r--sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c849
1 files changed, 0 insertions, 849 deletions
diff --git a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
deleted file mode 100644
index 1c7c736d8e97..000000000000
--- a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
+++ /dev/null
@@ -1,849 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
- * Copyright 2017 Nexenta Systems, Inc.
- */
-
-/*
- * The 512-byte leaf is broken into 32 16-byte chunks.
- * chunk number n means l_chunk[n], even though the header precedes it.
- * the names are stored null-terminated.
- */
-
-#include <sys/zio.h>
-#include <sys/spa.h>
-#include <sys/dmu.h>
-#include <sys/zfs_context.h>
-#include <sys/fs/zfs.h>
-#include <sys/zap.h>
-#include <sys/zap_impl.h>
-#include <sys/zap_leaf.h>
-#include <sys/arc.h>
-
-static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
-
-#define CHAIN_END 0xffff /* end of the chunk chain */
-
-/* half the (current) minimum block size */
-#define MAX_ARRAY_BYTES (8<<10)
-
-#define LEAF_HASH(l, h) \
- ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
- ((h) >> \
- (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
-
-#define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
-
-extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
-
-static void
-zap_memset(void *a, int c, size_t n)
-{
- char *cp = a;
- char *cpend = cp + n;
-
- while (cp < cpend)
- *cp++ = c;
-}
-
-static void
-stv(int len, void *addr, uint64_t value)
-{
- switch (len) {
- case 1:
- *(uint8_t *)addr = value;
- return;
- case 2:
- *(uint16_t *)addr = value;
- return;
- case 4:
- *(uint32_t *)addr = value;
- return;
- case 8:
- *(uint64_t *)addr = value;
- return;
- }
- ASSERT(!"bad int len");
-}
-
-static uint64_t
-ldv(int len, const void *addr)
-{
- switch (len) {
- case 1:
- return (*(uint8_t *)addr);
- case 2:
- return (*(uint16_t *)addr);
- case 4:
- return (*(uint32_t *)addr);
- case 8:
- return (*(uint64_t *)addr);
- }
- ASSERT(!"bad int len");
- return (0xFEEDFACEDEADBEEFULL);
-}
-
-void
-zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
-{
- zap_leaf_t l;
- dmu_buf_t l_dbuf;
-
- l_dbuf.db_data = buf;
- l.l_bs = highbit64(size) - 1;
- l.l_dbuf = &l_dbuf;
-
- buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
- buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
- buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
- buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
- buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
- buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
- buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
-
- for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
- buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
-
- for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
- zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
- struct zap_leaf_entry *le;
-
- switch (lc->l_free.lf_type) {
- case ZAP_CHUNK_ENTRY:
- le = &lc->l_entry;
-
- le->le_type = BSWAP_8(le->le_type);
- le->le_value_intlen = BSWAP_8(le->le_value_intlen);
- le->le_next = BSWAP_16(le->le_next);
- le->le_name_chunk = BSWAP_16(le->le_name_chunk);
- le->le_name_numints = BSWAP_16(le->le_name_numints);
- le->le_value_chunk = BSWAP_16(le->le_value_chunk);
- le->le_value_numints = BSWAP_16(le->le_value_numints);
- le->le_cd = BSWAP_32(le->le_cd);
- le->le_hash = BSWAP_64(le->le_hash);
- break;
- case ZAP_CHUNK_FREE:
- lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
- lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
- break;
- case ZAP_CHUNK_ARRAY:
- lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
- lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
- /* la_array doesn't need swapping */
- break;
- default:
- ASSERT(!"bad leaf type");
- }
- }
-}
-
-void
-zap_leaf_init(zap_leaf_t *l, boolean_t sort)
-{
- l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
- zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
- sizeof (struct zap_leaf_header));
- zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
- 2*ZAP_LEAF_HASH_NUMENTRIES(l));
- for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
- ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
- ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
- }
- ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
- zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
- zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
- zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
- if (sort)
- zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
-}
-
-/*
- * Routines which manipulate leaf chunks (l_chunk[]).
- */
-
-static uint16_t
-zap_leaf_chunk_alloc(zap_leaf_t *l)
-{
- ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
-
- int chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
-
- zap_leaf_phys(l)->l_hdr.lh_freelist =
- ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
-
- zap_leaf_phys(l)->l_hdr.lh_nfree--;
-
- return (chunk);
-}
-
-static void
-zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
-{
- struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
- ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
-
- zlf->lf_type = ZAP_CHUNK_FREE;
- zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
- bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
- zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
-
- zap_leaf_phys(l)->l_hdr.lh_nfree++;
-}
-
-/*
- * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
- */
-
-static uint16_t
-zap_leaf_array_create(zap_leaf_t *l, const char *buf,
- int integer_size, int num_integers)
-{
- uint16_t chunk_head;
- uint16_t *chunkp = &chunk_head;
- int byten = 0;
- uint64_t value = 0;
- int shift = (integer_size - 1) * 8;
- int len = num_integers;
-
- ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
-
- while (len > 0) {
- uint16_t chunk = zap_leaf_chunk_alloc(l);
- struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
-
- la->la_type = ZAP_CHUNK_ARRAY;
- for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
- if (byten == 0)
- value = ldv(integer_size, buf);
- la->la_array[i] = value >> shift;
- value <<= 8;
- if (++byten == integer_size) {
- byten = 0;
- buf += integer_size;
- if (--len == 0)
- break;
- }
- }
-
- *chunkp = chunk;
- chunkp = &la->la_next;
- }
- *chunkp = CHAIN_END;
-
- return (chunk_head);
-}
-
-static void
-zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
-{
- uint16_t chunk = *chunkp;
-
- *chunkp = CHAIN_END;
-
- while (chunk != CHAIN_END) {
- int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
- ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
- ZAP_CHUNK_ARRAY);
- zap_leaf_chunk_free(l, chunk);
- chunk = nextchunk;
- }
-}
-
-/* array_len and buf_len are in integers, not bytes */
-static void
-zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
- int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
- void *buf)
-{
- int len = MIN(array_len, buf_len);
- int byten = 0;
- uint64_t value = 0;
- char *p = buf;
-
- ASSERT3U(array_int_len, <=, buf_int_len);
-
- /* Fast path for one 8-byte integer */
- if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
- struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
- uint8_t *ip = la->la_array;
- uint64_t *buf64 = buf;
-
- *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
- (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
- (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
- (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
- return;
- }
-
- /* Fast path for an array of 1-byte integers (eg. the entry name) */
- if (array_int_len == 1 && buf_int_len == 1 &&
- buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
- while (chunk != CHAIN_END) {
- struct zap_leaf_array *la =
- &ZAP_LEAF_CHUNK(l, chunk).l_array;
- bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
- p += ZAP_LEAF_ARRAY_BYTES;
- chunk = la->la_next;
- }
- return;
- }
-
- while (len > 0) {
- struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
-
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
- value = (value << 8) | la->la_array[i];
- byten++;
- if (byten == array_int_len) {
- stv(buf_int_len, p, value);
- byten = 0;
- len--;
- if (len == 0)
- return;
- p += buf_int_len;
- }
- }
- chunk = la->la_next;
- }
-}
-
-static boolean_t
-zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
- int chunk, int array_numints)
-{
- int bseen = 0;
-
- if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
- uint64_t *thiskey =
- kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP);
- ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
-
- zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
- sizeof (*thiskey), array_numints, thiskey);
- boolean_t match = bcmp(thiskey, zn->zn_key_orig,
- array_numints * sizeof (*thiskey)) == 0;
- kmem_free(thiskey, array_numints * sizeof (*thiskey));
- return (match);
- }
-
- ASSERT(zn->zn_key_intlen == 1);
- if (zn->zn_matchtype & MT_NORMALIZE) {
- char *thisname = kmem_alloc(array_numints, KM_SLEEP);
-
- zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
- sizeof (char), array_numints, thisname);
- boolean_t match = zap_match(zn, thisname);
- kmem_free(thisname, array_numints);
- return (match);
- }
-
- /*
- * Fast path for exact matching.
- * First check that the lengths match, so that we don't read
- * past the end of the zn_key_orig array.
- */
- if (array_numints != zn->zn_key_orig_numints)
- return (B_FALSE);
- while (bseen < array_numints) {
- struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
- int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
- break;
- chunk = la->la_next;
- bseen += toread;
- }
- return (bseen == array_numints);
-}
-
-/*
- * Routines which manipulate leaf entries.
- */
-
-int
-zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
-{
- struct zap_leaf_entry *le;
-
- ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
-
- for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
- *chunkp != CHAIN_END; chunkp = &le->le_next) {
- uint16_t chunk = *chunkp;
- le = ZAP_LEAF_ENTRY(l, chunk);
-
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
-
- if (le->le_hash != zn->zn_hash)
- continue;
-
- /*
- * NB: the entry chain is always sorted by cd on
- * normalized zap objects, so this will find the
- * lowest-cd match for MT_NORMALIZE.
- */
- ASSERT((zn->zn_matchtype == 0) ||
- (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
- if (zap_leaf_array_match(l, zn, le->le_name_chunk,
- le->le_name_numints)) {
- zeh->zeh_num_integers = le->le_value_numints;
- zeh->zeh_integer_size = le->le_value_intlen;
- zeh->zeh_cd = le->le_cd;
- zeh->zeh_hash = le->le_hash;
- zeh->zeh_chunkp = chunkp;
- zeh->zeh_leaf = l;
- return (0);
- }
- }
-
- return (SET_ERROR(ENOENT));
-}
-
-/* Return (h1,cd1 >= h2,cd2) */
-#define HCD_GTEQ(h1, cd1, h2, cd2) \
- ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
-
-int
-zap_leaf_lookup_closest(zap_leaf_t *l,
- uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
-{
- uint64_t besth = -1ULL;
- uint32_t bestcd = -1U;
- uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
- struct zap_leaf_entry *le;
-
- ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
-
- for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
- for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh];
- chunk != CHAIN_END; chunk = le->le_next) {
- le = ZAP_LEAF_ENTRY(l, chunk);
-
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
-
- if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
- HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
- ASSERT3U(bestlh, >=, lh);
- bestlh = lh;
- besth = le->le_hash;
- bestcd = le->le_cd;
-
- zeh->zeh_num_integers = le->le_value_numints;
- zeh->zeh_integer_size = le->le_value_intlen;
- zeh->zeh_cd = le->le_cd;
- zeh->zeh_hash = le->le_hash;
- zeh->zeh_fakechunk = chunk;
- zeh->zeh_chunkp = &zeh->zeh_fakechunk;
- zeh->zeh_leaf = l;
- }
- }
- }
-
- return (bestcd == -1U ? ENOENT : 0);
-}
-
-int
-zap_entry_read(const zap_entry_handle_t *zeh,
- uint8_t integer_size, uint64_t num_integers, void *buf)
-{
- struct zap_leaf_entry *le =
- ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
- ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
-
- if (le->le_value_intlen > integer_size)
- return (SET_ERROR(EINVAL));
-
- zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
- le->le_value_intlen, le->le_value_numints,
- integer_size, num_integers, buf);
-
- if (zeh->zeh_num_integers > num_integers)
- return (SET_ERROR(EOVERFLOW));
- return (0);
-
-}
-
-int
-zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
- char *buf)
-{
- struct zap_leaf_entry *le =
- ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
- ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
-
- if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
- zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
- le->le_name_numints, 8, buflen / 8, buf);
- } else {
- zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
- le->le_name_numints, 1, buflen, buf);
- }
- if (le->le_name_numints > buflen)
- return (SET_ERROR(EOVERFLOW));
- return (0);
-}
-
-int
-zap_entry_update(zap_entry_handle_t *zeh,
- uint8_t integer_size, uint64_t num_integers, const void *buf)
-{
- zap_leaf_t *l = zeh->zeh_leaf;
- struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
-
- int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
- ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
-
- if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
- return (SET_ERROR(EAGAIN));
-
- zap_leaf_array_free(l, &le->le_value_chunk);
- le->le_value_chunk =
- zap_leaf_array_create(l, buf, integer_size, num_integers);
- le->le_value_numints = num_integers;
- le->le_value_intlen = integer_size;
- return (0);
-}
-
-void
-zap_entry_remove(zap_entry_handle_t *zeh)
-{
- zap_leaf_t *l = zeh->zeh_leaf;
-
- ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
-
- uint16_t entry_chunk = *zeh->zeh_chunkp;
- struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk);
- ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
-
- zap_leaf_array_free(l, &le->le_name_chunk);
- zap_leaf_array_free(l, &le->le_value_chunk);
-
- *zeh->zeh_chunkp = le->le_next;
- zap_leaf_chunk_free(l, entry_chunk);
-
- zap_leaf_phys(l)->l_hdr.lh_nentries--;
-}
-
-int
-zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
- uint8_t integer_size, uint64_t num_integers, const void *buf,
- zap_entry_handle_t *zeh)
-{
- uint16_t chunk;
- struct zap_leaf_entry *le;
- uint64_t h = zn->zn_hash;
-
- uint64_t valuelen = integer_size * num_integers;
-
- int numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
- zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
- if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
- return (E2BIG);
-
- if (cd == ZAP_NEED_CD) {
- /* find the lowest unused cd */
- if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
- cd = 0;
-
- for (chunk = *LEAF_HASH_ENTPTR(l, h);
- chunk != CHAIN_END; chunk = le->le_next) {
- le = ZAP_LEAF_ENTRY(l, chunk);
- if (le->le_cd > cd)
- break;
- if (le->le_hash == h) {
- ASSERT3U(cd, ==, le->le_cd);
- cd++;
- }
- }
- } else {
- /* old unsorted format; do it the O(n^2) way */
- for (cd = 0; ; cd++) {
- for (chunk = *LEAF_HASH_ENTPTR(l, h);
- chunk != CHAIN_END; chunk = le->le_next) {
- le = ZAP_LEAF_ENTRY(l, chunk);
- if (le->le_hash == h &&
- le->le_cd == cd) {
- break;
- }
- }
- /* If this cd is not in use, we are good. */
- if (chunk == CHAIN_END)
- break;
- }
- }
- /*
- * We would run out of space in a block before we could
- * store enough entries to run out of CD values.
- */
- ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
- }
-
- if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
- return (SET_ERROR(EAGAIN));
-
- /* make the entry */
- chunk = zap_leaf_chunk_alloc(l);
- le = ZAP_LEAF_ENTRY(l, chunk);
- le->le_type = ZAP_CHUNK_ENTRY;
- le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
- zn->zn_key_intlen, zn->zn_key_orig_numints);
- le->le_name_numints = zn->zn_key_orig_numints;
- le->le_value_chunk =
- zap_leaf_array_create(l, buf, integer_size, num_integers);
- le->le_value_numints = num_integers;
- le->le_value_intlen = integer_size;
- le->le_hash = h;
- le->le_cd = cd;
-
- /* link it into the hash chain */
- /* XXX if we did the search above, we could just use that */
- uint16_t *chunkp = zap_leaf_rehash_entry(l, chunk);
-
- zap_leaf_phys(l)->l_hdr.lh_nentries++;
-
- zeh->zeh_leaf = l;
- zeh->zeh_num_integers = num_integers;
- zeh->zeh_integer_size = le->le_value_intlen;
- zeh->zeh_cd = le->le_cd;
- zeh->zeh_hash = le->le_hash;
- zeh->zeh_chunkp = chunkp;
-
- return (0);
-}
-
-/*
- * Determine if there is another entry with the same normalized form.
- * For performance purposes, either zn or name must be provided (the
- * other can be NULL). Note, there usually won't be any hash
- * conflicts, in which case we don't need the concatenated/normalized
- * form of the name. But all callers have one of these on hand anyway,
- * so might as well take advantage. A cleaner but slower interface
- * would accept neither argument, and compute the normalized name as
- * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
- */
-boolean_t
-zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
- const char *name, zap_t *zap)
-{
- struct zap_leaf_entry *le;
- boolean_t allocdzn = B_FALSE;
-
- if (zap->zap_normflags == 0)
- return (B_FALSE);
-
- for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
- chunk != CHAIN_END; chunk = le->le_next) {
- le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
- if (le->le_hash != zeh->zeh_hash)
- continue;
- if (le->le_cd == zeh->zeh_cd)
- continue;
-
- if (zn == NULL) {
- zn = zap_name_alloc(zap, name, MT_NORMALIZE);
- allocdzn = B_TRUE;
- }
- if (zap_leaf_array_match(zeh->zeh_leaf, zn,
- le->le_name_chunk, le->le_name_numints)) {
- if (allocdzn)
- zap_name_free(zn);
- return (B_TRUE);
- }
- }
- if (allocdzn)
- zap_name_free(zn);
- return (B_FALSE);
-}
-
-/*
- * Routines for transferring entries between leafs.
- */
-
-static uint16_t *
-zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
-{
- struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
- struct zap_leaf_entry *le2;
- uint16_t *chunkp;
-
- /*
- * keep the entry chain sorted by cd
- * NB: this will not cause problems for unsorted leafs, though
- * it is unnecessary there.
- */
- for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
- *chunkp != CHAIN_END; chunkp = &le2->le_next) {
- le2 = ZAP_LEAF_ENTRY(l, *chunkp);
- if (le2->le_cd > le->le_cd)
- break;
- }
-
- le->le_next = *chunkp;
- *chunkp = entry;
- return (chunkp);
-}
-
-static uint16_t
-zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
-{
- uint16_t new_chunk;
- uint16_t *nchunkp = &new_chunk;
-
- while (chunk != CHAIN_END) {
- uint16_t nchunk = zap_leaf_chunk_alloc(nl);
- struct zap_leaf_array *nla =
- &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
- struct zap_leaf_array *la =
- &ZAP_LEAF_CHUNK(l, chunk).l_array;
- int nextchunk = la->la_next;
-
- ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
- ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
-
- *nla = *la; /* structure assignment */
-
- zap_leaf_chunk_free(l, chunk);
- chunk = nextchunk;
- *nchunkp = nchunk;
- nchunkp = &nla->la_next;
- }
- *nchunkp = CHAIN_END;
- return (new_chunk);
-}
-
-static void
-zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
-{
- struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
- ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
-
- uint16_t chunk = zap_leaf_chunk_alloc(nl);
- struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk);
- *nle = *le; /* structure assignment */
-
- (void) zap_leaf_rehash_entry(nl, chunk);
-
- nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
- nle->le_value_chunk =
- zap_leaf_transfer_array(l, le->le_value_chunk, nl);
-
- zap_leaf_chunk_free(l, entry);
-
- zap_leaf_phys(l)->l_hdr.lh_nentries--;
- zap_leaf_phys(nl)->l_hdr.lh_nentries++;
-}
-
-/*
- * Transfer the entries whose hash prefix ends in 1 to the new leaf.
- */
-void
-zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
-{
- int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
-
- /* set new prefix and prefix_len */
- zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
- zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
- zap_leaf_phys(nl)->l_hdr.lh_prefix =
- zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
- zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
- zap_leaf_phys(l)->l_hdr.lh_prefix_len;
-
- /* break existing hash chains */
- zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
- 2*ZAP_LEAF_HASH_NUMENTRIES(l));
-
- if (sort)
- zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
-
- /*
- * Transfer entries whose hash bit 'bit' is set to nl; rehash
- * the remaining entries
- *
- * NB: We could find entries via the hashtable instead. That
- * would be O(hashents+numents) rather than O(numblks+numents),
- * but this accesses memory more sequentially, and when we're
- * called, the block is usually pretty full.
- */
- for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
- struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
- if (le->le_type != ZAP_CHUNK_ENTRY)
- continue;
-
- if (le->le_hash & (1ULL << bit))
- zap_leaf_transfer_entry(l, i, nl);
- else
- (void) zap_leaf_rehash_entry(l, i);
- }
-}
-
-void
-zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
-{
- int n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
- zap_leaf_phys(l)->l_hdr.lh_prefix_len;
- n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
- zs->zs_leafs_with_2n_pointers[n]++;
-
-
- n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
- n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
- zs->zs_blocks_with_n5_entries[n]++;
-
- n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
- zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
- (1<<FZAP_BLOCK_SHIFT(zap));
- n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
- zs->zs_blocks_n_tenths_full[n]++;
-
- for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
- int nentries = 0;
- int chunk = zap_leaf_phys(l)->l_hash[i];
-
- while (chunk != CHAIN_END) {
- struct zap_leaf_entry *le =
- ZAP_LEAF_ENTRY(l, chunk);
-
- n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
- ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
- le->le_value_intlen);
- n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
- zs->zs_entries_using_n_chunks[n]++;
-
- chunk = le->le_next;
- nentries++;
- }
-
- n = nentries;
- n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
- zs->zs_buckets_with_n_entries[n]++;
- }
-}