aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/opensolaris/uts/common/fs/zfs/spa.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/opensolaris/uts/common/fs/zfs/spa.c')
-rw-r--r--sys/contrib/opensolaris/uts/common/fs/zfs/spa.c3265
1 files changed, 3265 insertions, 0 deletions
diff --git a/sys/contrib/opensolaris/uts/common/fs/zfs/spa.c b/sys/contrib/opensolaris/uts/common/fs/zfs/spa.c
new file mode 100644
index 000000000000..c218f72de36f
--- /dev/null
+++ b/sys/contrib/opensolaris/uts/common/fs/zfs/spa.c
@@ -0,0 +1,3265 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/*
+ * This file contains all the routines used when modifying on-disk SPA state.
+ * This includes opening, importing, destroying, exporting a pool, and syncing a
+ * pool.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/fm/fs/zfs.h>
+#include <sys/spa_impl.h>
+#include <sys/zio.h>
+#include <sys/zio_checksum.h>
+#include <sys/zio_compress.h>
+#include <sys/dmu.h>
+#include <sys/dmu_tx.h>
+#include <sys/zap.h>
+#include <sys/zil.h>
+#include <sys/vdev_impl.h>
+#include <sys/metaslab.h>
+#include <sys/uberblock_impl.h>
+#include <sys/txg.h>
+#include <sys/avl.h>
+#include <sys/dmu_traverse.h>
+#include <sys/dmu_objset.h>
+#include <sys/unique.h>
+#include <sys/dsl_pool.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_dir.h>
+#include <sys/dsl_prop.h>
+#include <sys/dsl_synctask.h>
+#include <sys/fs/zfs.h>
+#include <sys/callb.h>
+
+int zio_taskq_threads = 8;
+
+/*
+ * ==========================================================================
+ * SPA state manipulation (open/create/destroy/import/export)
+ * ==========================================================================
+ */
+
+static int
+spa_error_entry_compare(const void *a, const void *b)
+{
+ spa_error_entry_t *sa = (spa_error_entry_t *)a;
+ spa_error_entry_t *sb = (spa_error_entry_t *)b;
+ int ret;
+
+ ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
+ sizeof (zbookmark_t));
+
+ if (ret < 0)
+ return (-1);
+ else if (ret > 0)
+ return (1);
+ else
+ return (0);
+}
+
+/*
+ * Utility function which retrieves copies of the current logs and
+ * re-initializes them in the process.
+ */
+void
+spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
+{
+ ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
+
+ bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
+ bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
+
+ avl_create(&spa->spa_errlist_scrub,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+ avl_create(&spa->spa_errlist_last,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+}
+
+/*
+ * Activate an uninitialized pool.
+ */
+static void
+spa_activate(spa_t *spa)
+{
+ int t;
+
+ ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
+
+ spa->spa_state = POOL_STATE_ACTIVE;
+
+ spa->spa_normal_class = metaslab_class_create();
+
+ for (t = 0; t < ZIO_TYPES; t++) {
+ spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
+ zio_taskq_threads, maxclsyspri, 50, INT_MAX,
+ TASKQ_PREPOPULATE);
+ spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
+ zio_taskq_threads, maxclsyspri, 50, INT_MAX,
+ TASKQ_PREPOPULATE);
+ }
+
+ rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
+
+ mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&spa->spa_config_lock.scl_cv, NULL, CV_DEFAULT, NULL);
+ mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
+
+ list_create(&spa->spa_dirty_list, sizeof (vdev_t),
+ offsetof(vdev_t, vdev_dirty_node));
+
+ txg_list_create(&spa->spa_vdev_txg_list,
+ offsetof(struct vdev, vdev_txg_node));
+
+ avl_create(&spa->spa_errlist_scrub,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+ avl_create(&spa->spa_errlist_last,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+}
+
+/*
+ * Opposite of spa_activate().
+ */
+static void
+spa_deactivate(spa_t *spa)
+{
+ int t;
+
+ ASSERT(spa->spa_sync_on == B_FALSE);
+ ASSERT(spa->spa_dsl_pool == NULL);
+ ASSERT(spa->spa_root_vdev == NULL);
+
+ ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
+
+ txg_list_destroy(&spa->spa_vdev_txg_list);
+
+ list_destroy(&spa->spa_dirty_list);
+
+ for (t = 0; t < ZIO_TYPES; t++) {
+ taskq_destroy(spa->spa_zio_issue_taskq[t]);
+ taskq_destroy(spa->spa_zio_intr_taskq[t]);
+ spa->spa_zio_issue_taskq[t] = NULL;
+ spa->spa_zio_intr_taskq[t] = NULL;
+ }
+
+ metaslab_class_destroy(spa->spa_normal_class);
+ spa->spa_normal_class = NULL;
+
+ /*
+ * If this was part of an import or the open otherwise failed, we may
+ * still have errors left in the queues. Empty them just in case.
+ */
+ spa_errlog_drain(spa);
+
+ avl_destroy(&spa->spa_errlist_scrub);
+ avl_destroy(&spa->spa_errlist_last);
+
+ rw_destroy(&spa->spa_traverse_lock);
+ mutex_destroy(&spa->spa_uberblock_lock);
+ mutex_destroy(&spa->spa_errlog_lock);
+ mutex_destroy(&spa->spa_errlist_lock);
+ mutex_destroy(&spa->spa_config_lock.scl_lock);
+ cv_destroy(&spa->spa_config_lock.scl_cv);
+ mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
+ mutex_destroy(&spa->spa_history_lock);
+ mutex_destroy(&spa->spa_props_lock);
+
+ spa->spa_state = POOL_STATE_UNINITIALIZED;
+}
+
+/*
+ * Verify a pool configuration, and construct the vdev tree appropriately. This
+ * will create all the necessary vdevs in the appropriate layout, with each vdev
+ * in the CLOSED state. This will prep the pool before open/creation/import.
+ * All vdev validation is done by the vdev_alloc() routine.
+ */
+static int
+spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
+ uint_t id, int atype)
+{
+ nvlist_t **child;
+ uint_t c, children;
+ int error;
+
+ if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
+ return (error);
+
+ if ((*vdp)->vdev_ops->vdev_op_leaf)
+ return (0);
+
+ if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
+ &child, &children) != 0) {
+ vdev_free(*vdp);
+ *vdp = NULL;
+ return (EINVAL);
+ }
+
+ for (c = 0; c < children; c++) {
+ vdev_t *vd;
+ if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
+ atype)) != 0) {
+ vdev_free(*vdp);
+ *vdp = NULL;
+ return (error);
+ }
+ }
+
+ ASSERT(*vdp != NULL);
+
+ return (0);
+}
+
+/*
+ * Opposite of spa_load().
+ */
+static void
+spa_unload(spa_t *spa)
+{
+ int i;
+
+ /*
+ * Stop async tasks.
+ */
+ spa_async_suspend(spa);
+
+ /*
+ * Stop syncing.
+ */
+ if (spa->spa_sync_on) {
+ txg_sync_stop(spa->spa_dsl_pool);
+ spa->spa_sync_on = B_FALSE;
+ }
+
+ /*
+ * Wait for any outstanding prefetch I/O to complete.
+ */
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ spa_config_exit(spa, FTAG);
+
+ /*
+ * Close the dsl pool.
+ */
+ if (spa->spa_dsl_pool) {
+ dsl_pool_close(spa->spa_dsl_pool);
+ spa->spa_dsl_pool = NULL;
+ }
+
+ /*
+ * Close all vdevs.
+ */
+ if (spa->spa_root_vdev)
+ vdev_free(spa->spa_root_vdev);
+ ASSERT(spa->spa_root_vdev == NULL);
+
+ for (i = 0; i < spa->spa_nspares; i++)
+ vdev_free(spa->spa_spares[i]);
+ if (spa->spa_spares) {
+ kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
+ spa->spa_spares = NULL;
+ }
+ if (spa->spa_sparelist) {
+ nvlist_free(spa->spa_sparelist);
+ spa->spa_sparelist = NULL;
+ }
+
+ spa->spa_async_suspended = 0;
+}
+
+/*
+ * Load (or re-load) the current list of vdevs describing the active spares for
+ * this pool. When this is called, we have some form of basic information in
+ * 'spa_sparelist'. We parse this into vdevs, try to open them, and then
+ * re-generate a more complete list including status information.
+ */
+static void
+spa_load_spares(spa_t *spa)
+{
+ nvlist_t **spares;
+ uint_t nspares;
+ int i;
+ vdev_t *vd, *tvd;
+
+ /*
+ * First, close and free any existing spare vdevs.
+ */
+ for (i = 0; i < spa->spa_nspares; i++) {
+ vd = spa->spa_spares[i];
+
+ /* Undo the call to spa_activate() below */
+ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
+ tvd->vdev_isspare)
+ spa_spare_remove(tvd);
+ vdev_close(vd);
+ vdev_free(vd);
+ }
+
+ if (spa->spa_spares)
+ kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
+
+ if (spa->spa_sparelist == NULL)
+ nspares = 0;
+ else
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+
+ spa->spa_nspares = (int)nspares;
+ spa->spa_spares = NULL;
+
+ if (nspares == 0)
+ return;
+
+ /*
+ * Construct the array of vdevs, opening them to get status in the
+ * process. For each spare, there is potentially two different vdev_t
+ * structures associated with it: one in the list of spares (used only
+ * for basic validation purposes) and one in the active vdev
+ * configuration (if it's spared in). During this phase we open and
+ * validate each vdev on the spare list. If the vdev also exists in the
+ * active configuration, then we also mark this vdev as an active spare.
+ */
+ spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
+ for (i = 0; i < spa->spa_nspares; i++) {
+ VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
+ VDEV_ALLOC_SPARE) == 0);
+ ASSERT(vd != NULL);
+
+ spa->spa_spares[i] = vd;
+
+ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
+ if (!tvd->vdev_isspare)
+ spa_spare_add(tvd);
+
+ /*
+ * We only mark the spare active if we were successfully
+ * able to load the vdev. Otherwise, importing a pool
+ * with a bad active spare would result in strange
+ * behavior, because multiple pool would think the spare
+ * is actively in use.
+ *
+ * There is a vulnerability here to an equally bizarre
+ * circumstance, where a dead active spare is later
+ * brought back to life (onlined or otherwise). Given
+ * the rarity of this scenario, and the extra complexity
+ * it adds, we ignore the possibility.
+ */
+ if (!vdev_is_dead(tvd))
+ spa_spare_activate(tvd);
+ }
+
+ if (vdev_open(vd) != 0)
+ continue;
+
+ vd->vdev_top = vd;
+ (void) vdev_validate_spare(vd);
+ }
+
+ /*
+ * Recompute the stashed list of spares, with status information
+ * this time.
+ */
+ VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
+ DATA_TYPE_NVLIST_ARRAY) == 0);
+
+ spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
+ for (i = 0; i < spa->spa_nspares; i++)
+ spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
+ B_TRUE, B_TRUE);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
+ spares, spa->spa_nspares) == 0);
+ for (i = 0; i < spa->spa_nspares; i++)
+ nvlist_free(spares[i]);
+ kmem_free(spares, spa->spa_nspares * sizeof (void *));
+}
+
+static int
+load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
+{
+ dmu_buf_t *db;
+ char *packed = NULL;
+ size_t nvsize = 0;
+ int error;
+ *value = NULL;
+
+ VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
+ nvsize = *(uint64_t *)db->db_data;
+ dmu_buf_rele(db, FTAG);
+
+ packed = kmem_alloc(nvsize, KM_SLEEP);
+ error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
+ if (error == 0)
+ error = nvlist_unpack(packed, nvsize, value, 0);
+ kmem_free(packed, nvsize);
+
+ return (error);
+}
+
+/*
+ * Load an existing storage pool, using the pool's builtin spa_config as a
+ * source of configuration information.
+ */
+static int
+spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
+{
+ int error = 0;
+ nvlist_t *nvroot = NULL;
+ vdev_t *rvd;
+ uberblock_t *ub = &spa->spa_uberblock;
+ uint64_t config_cache_txg = spa->spa_config_txg;
+ uint64_t pool_guid;
+ uint64_t version;
+ zio_t *zio;
+
+ spa->spa_load_state = state;
+
+ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
+ nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
+ error = EINVAL;
+ goto out;
+ }
+
+ /*
+ * Versioning wasn't explicitly added to the label until later, so if
+ * it's not present treat it as the initial version.
+ */
+ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
+ version = ZFS_VERSION_INITIAL;
+
+ (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
+ &spa->spa_config_txg);
+
+ if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
+ spa_guid_exists(pool_guid, 0)) {
+ error = EEXIST;
+ goto out;
+ }
+
+ spa->spa_load_guid = pool_guid;
+
+ /*
+ * Parse the configuration into a vdev tree. We explicitly set the
+ * value that will be returned by spa_version() since parsing the
+ * configuration requires knowing the version number.
+ */
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ spa->spa_ubsync.ub_version = version;
+ error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
+ spa_config_exit(spa, FTAG);
+
+ if (error != 0)
+ goto out;
+
+ ASSERT(spa->spa_root_vdev == rvd);
+ ASSERT(spa_guid(spa) == pool_guid);
+
+ /*
+ * Try to open all vdevs, loading each label in the process.
+ */
+ if (vdev_open(rvd) != 0) {
+ error = ENXIO;
+ goto out;
+ }
+
+ /*
+ * Validate the labels for all leaf vdevs. We need to grab the config
+ * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
+ * flag.
+ */
+ spa_config_enter(spa, RW_READER, FTAG);
+ error = vdev_validate(rvd);
+ spa_config_exit(spa, FTAG);
+
+ if (error != 0) {
+ error = EBADF;
+ goto out;
+ }
+
+ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
+ error = ENXIO;
+ goto out;
+ }
+
+ /*
+ * Find the best uberblock.
+ */
+ bzero(ub, sizeof (uberblock_t));
+
+ zio = zio_root(spa, NULL, NULL,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
+ vdev_uberblock_load(zio, rvd, ub);
+ error = zio_wait(zio);
+
+ /*
+ * If we weren't able to find a single valid uberblock, return failure.
+ */
+ if (ub->ub_txg == 0) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = ENXIO;
+ goto out;
+ }
+
+ /*
+ * If the pool is newer than the code, we can't open it.
+ */
+ if (ub->ub_version > ZFS_VERSION) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_VERSION_NEWER);
+ error = ENOTSUP;
+ goto out;
+ }
+
+ /*
+ * If the vdev guid sum doesn't match the uberblock, we have an
+ * incomplete configuration.
+ */
+ if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_BAD_GUID_SUM);
+ error = ENXIO;
+ goto out;
+ }
+
+ /*
+ * Initialize internal SPA structures.
+ */
+ spa->spa_state = POOL_STATE_ACTIVE;
+ spa->spa_ubsync = spa->spa_uberblock;
+ spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
+ error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
+ if (error) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ goto out;
+ }
+ spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
+
+ if (zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
+ sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ if (!mosconfig) {
+ nvlist_t *newconfig;
+
+ if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ spa_config_set(spa, newconfig);
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_activate(spa);
+
+ return (spa_load(spa, newconfig, state, B_TRUE));
+ }
+
+ if (zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
+ sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ /*
+ * Load the bit that tells us to use the new accounting function
+ * (raid-z deflation). If we have an older pool, this will not
+ * be present.
+ */
+ error = zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
+ sizeof (uint64_t), 1, &spa->spa_deflate);
+ if (error != 0 && error != ENOENT) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ /*
+ * Load the persistent error log. If we have an older pool, this will
+ * not be present.
+ */
+ error = zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
+ sizeof (uint64_t), 1, &spa->spa_errlog_last);
+ if (error != 0 && error != ENOENT) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ error = zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
+ sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
+ if (error != 0 && error != ENOENT) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ /*
+ * Load the history object. If we have an older pool, this
+ * will not be present.
+ */
+ error = zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
+ sizeof (uint64_t), 1, &spa->spa_history);
+ if (error != 0 && error != ENOENT) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ /*
+ * Load any hot spares for this pool.
+ */
+ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
+ if (error != 0 && error != ENOENT) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+ if (error == 0) {
+ ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
+ if (load_nvlist(spa, spa->spa_spares_object,
+ &spa->spa_sparelist) != 0) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ spa_load_spares(spa);
+ spa_config_exit(spa, FTAG);
+ }
+
+ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
+
+ if (error && error != ENOENT) {
+ vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ error = EIO;
+ goto out;
+ }
+
+ if (error == 0) {
+ (void) zap_lookup(spa->spa_meta_objset,
+ spa->spa_pool_props_object,
+ zpool_prop_to_name(ZFS_PROP_BOOTFS),
+ sizeof (uint64_t), 1, &spa->spa_bootfs);
+ }
+
+ /*
+ * Load the vdev state for all toplevel vdevs.
+ */
+ vdev_load(rvd);
+
+ /*
+ * Propagate the leaf DTLs we just loaded all the way up the tree.
+ */
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
+ spa_config_exit(spa, FTAG);
+
+ /*
+ * Check the state of the root vdev. If it can't be opened, it
+ * indicates one or more toplevel vdevs are faulted.
+ */
+ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
+ error = ENXIO;
+ goto out;
+ }
+
+ if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
+ dmu_tx_t *tx;
+ int need_update = B_FALSE;
+ int c;
+
+ /*
+ * Claim log blocks that haven't been committed yet.
+ * This must all happen in a single txg.
+ */
+ tx = dmu_tx_create_assigned(spa_get_dsl(spa),
+ spa_first_txg(spa));
+ (void) dmu_objset_find(spa->spa_name,
+ zil_claim, tx, DS_FIND_CHILDREN);
+ dmu_tx_commit(tx);
+
+ spa->spa_sync_on = B_TRUE;
+ txg_sync_start(spa->spa_dsl_pool);
+
+ /*
+ * Wait for all claims to sync.
+ */
+ txg_wait_synced(spa->spa_dsl_pool, 0);
+
+ /*
+ * If the config cache is stale, or we have uninitialized
+ * metaslabs (see spa_vdev_add()), then update the config.
+ */
+ if (config_cache_txg != spa->spa_config_txg ||
+ state == SPA_LOAD_IMPORT)
+ need_update = B_TRUE;
+
+ for (c = 0; c < rvd->vdev_children; c++)
+ if (rvd->vdev_child[c]->vdev_ms_array == 0)
+ need_update = B_TRUE;
+
+ /*
+ * Update the config cache asychronously in case we're the
+ * root pool, in which case the config cache isn't writable yet.
+ */
+ if (need_update)
+ spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
+ }
+
+ error = 0;
+out:
+ if (error && error != EBADF)
+ zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
+ spa->spa_load_state = SPA_LOAD_NONE;
+ spa->spa_ena = 0;
+
+ return (error);
+}
+
+/*
+ * Pool Open/Import
+ *
+ * The import case is identical to an open except that the configuration is sent
+ * down from userland, instead of grabbed from the configuration cache. For the
+ * case of an open, the pool configuration will exist in the
+ * POOL_STATE_UNITIALIZED state.
+ *
+ * The stats information (gen/count/ustats) is used to gather vdev statistics at
+ * the same time open the pool, without having to keep around the spa_t in some
+ * ambiguous state.
+ */
+static int
+spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
+{
+ spa_t *spa;
+ int error;
+ int loaded = B_FALSE;
+ int locked = B_FALSE;
+
+ *spapp = NULL;
+
+ /*
+ * As disgusting as this is, we need to support recursive calls to this
+ * function because dsl_dir_open() is called during spa_load(), and ends
+ * up calling spa_open() again. The real fix is to figure out how to
+ * avoid dsl_dir_open() calling this in the first place.
+ */
+ if (mutex_owner(&spa_namespace_lock) != curthread) {
+ mutex_enter(&spa_namespace_lock);
+ locked = B_TRUE;
+ }
+
+ if ((spa = spa_lookup(pool)) == NULL) {
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+ return (ENOENT);
+ }
+ if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
+
+ spa_activate(spa);
+
+ error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
+
+ if (error == EBADF) {
+ /*
+ * If vdev_validate() returns failure (indicated by
+ * EBADF), it indicates that one of the vdevs indicates
+ * that the pool has been exported or destroyed. If
+ * this is the case, the config cache is out of sync and
+ * we should remove the pool from the namespace.
+ */
+ zfs_post_ok(spa, NULL);
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ spa_config_sync();
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+ return (ENOENT);
+ }
+
+ if (error) {
+ /*
+ * We can't open the pool, but we still have useful
+ * information: the state of each vdev after the
+ * attempted vdev_open(). Return this to the user.
+ */
+ if (config != NULL && spa->spa_root_vdev != NULL) {
+ spa_config_enter(spa, RW_READER, FTAG);
+ *config = spa_config_generate(spa, NULL, -1ULL,
+ B_TRUE);
+ spa_config_exit(spa, FTAG);
+ }
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa->spa_last_open_failed = B_TRUE;
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+ *spapp = NULL;
+ return (error);
+ } else {
+ zfs_post_ok(spa, NULL);
+ spa->spa_last_open_failed = B_FALSE;
+ }
+
+ loaded = B_TRUE;
+ }
+
+ spa_open_ref(spa, tag);
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+
+ *spapp = spa;
+
+ if (config != NULL) {
+ spa_config_enter(spa, RW_READER, FTAG);
+ *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
+ spa_config_exit(spa, FTAG);
+ }
+
+ /*
+ * If we just loaded the pool, resilver anything that's out of date.
+ */
+ if (loaded && (spa_mode & FWRITE))
+ VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
+
+ return (0);
+}
+
+int
+spa_open(const char *name, spa_t **spapp, void *tag)
+{
+ return (spa_open_common(name, spapp, tag, NULL));
+}
+
+/*
+ * Lookup the given spa_t, incrementing the inject count in the process,
+ * preventing it from being exported or destroyed.
+ */
+spa_t *
+spa_inject_addref(char *name)
+{
+ spa_t *spa;
+
+ mutex_enter(&spa_namespace_lock);
+ if ((spa = spa_lookup(name)) == NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (NULL);
+ }
+ spa->spa_inject_ref++;
+ mutex_exit(&spa_namespace_lock);
+
+ return (spa);
+}
+
+void
+spa_inject_delref(spa_t *spa)
+{
+ mutex_enter(&spa_namespace_lock);
+ spa->spa_inject_ref--;
+ mutex_exit(&spa_namespace_lock);
+}
+
+static void
+spa_add_spares(spa_t *spa, nvlist_t *config)
+{
+ nvlist_t **spares;
+ uint_t i, nspares;
+ nvlist_t *nvroot;
+ uint64_t guid;
+ vdev_stat_t *vs;
+ uint_t vsc;
+ uint64_t pool;
+
+ if (spa->spa_nspares == 0)
+ return;
+
+ VERIFY(nvlist_lookup_nvlist(config,
+ ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+ if (nspares != 0) {
+ VERIFY(nvlist_add_nvlist_array(nvroot,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ VERIFY(nvlist_lookup_nvlist_array(nvroot,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+
+ /*
+ * Go through and find any spares which have since been
+ * repurposed as an active spare. If this is the case, update
+ * their status appropriately.
+ */
+ for (i = 0; i < nspares; i++) {
+ VERIFY(nvlist_lookup_uint64(spares[i],
+ ZPOOL_CONFIG_GUID, &guid) == 0);
+ if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
+ VERIFY(nvlist_lookup_uint64_array(
+ spares[i], ZPOOL_CONFIG_STATS,
+ (uint64_t **)&vs, &vsc) == 0);
+ vs->vs_state = VDEV_STATE_CANT_OPEN;
+ vs->vs_aux = VDEV_AUX_SPARED;
+ }
+ }
+ }
+}
+
+int
+spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
+{
+ int error;
+ spa_t *spa;
+
+ *config = NULL;
+ error = spa_open_common(name, &spa, FTAG, config);
+
+ if (spa && *config != NULL) {
+ VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
+ spa_get_errlog_size(spa)) == 0);
+
+ spa_add_spares(spa, *config);
+ }
+
+ /*
+ * We want to get the alternate root even for faulted pools, so we cheat
+ * and call spa_lookup() directly.
+ */
+ if (altroot) {
+ if (spa == NULL) {
+ mutex_enter(&spa_namespace_lock);
+ spa = spa_lookup(name);
+ if (spa)
+ spa_altroot(spa, altroot, buflen);
+ else
+ altroot[0] = '\0';
+ spa = NULL;
+ mutex_exit(&spa_namespace_lock);
+ } else {
+ spa_altroot(spa, altroot, buflen);
+ }
+ }
+
+ if (spa != NULL)
+ spa_close(spa, FTAG);
+
+ return (error);
+}
+
+/*
+ * Validate that the 'spares' array is well formed. We must have an array of
+ * nvlists, each which describes a valid leaf vdev. If this is an import (mode
+ * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
+ * as they are well-formed.
+ */
+static int
+spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
+{
+ nvlist_t **spares;
+ uint_t i, nspares;
+ vdev_t *vd;
+ int error;
+
+ /*
+ * It's acceptable to have no spares specified.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) != 0)
+ return (0);
+
+ if (nspares == 0)
+ return (EINVAL);
+
+ /*
+ * Make sure the pool is formatted with a version that supports hot
+ * spares.
+ */
+ if (spa_version(spa) < ZFS_VERSION_SPARES)
+ return (ENOTSUP);
+
+ /*
+ * Set the pending spare list so we correctly handle device in-use
+ * checking.
+ */
+ spa->spa_pending_spares = spares;
+ spa->spa_pending_nspares = nspares;
+
+ for (i = 0; i < nspares; i++) {
+ if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
+ mode)) != 0)
+ goto out;
+
+ if (!vd->vdev_ops->vdev_op_leaf) {
+ vdev_free(vd);
+ error = EINVAL;
+ goto out;
+ }
+
+ vd->vdev_top = vd;
+
+ if ((error = vdev_open(vd)) == 0 &&
+ (error = vdev_label_init(vd, crtxg,
+ VDEV_LABEL_SPARE)) == 0) {
+ VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
+ vd->vdev_guid) == 0);
+ }
+
+ vdev_free(vd);
+
+ if (error && mode != VDEV_ALLOC_SPARE)
+ goto out;
+ else
+ error = 0;
+ }
+
+out:
+ spa->spa_pending_spares = NULL;
+ spa->spa_pending_nspares = 0;
+ return (error);
+}
+
+/*
+ * Pool Creation
+ */
+int
+spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
+{
+ spa_t *spa;
+ vdev_t *rvd;
+ dsl_pool_t *dp;
+ dmu_tx_t *tx;
+ int c, error = 0;
+ uint64_t txg = TXG_INITIAL;
+ nvlist_t **spares;
+ uint_t nspares;
+
+ /*
+ * If this pool already exists, return failure.
+ */
+ mutex_enter(&spa_namespace_lock);
+ if (spa_lookup(pool) != NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (EEXIST);
+ }
+
+ /*
+ * Allocate a new spa_t structure.
+ */
+ spa = spa_add(pool, altroot);
+ spa_activate(spa);
+
+ spa->spa_uberblock.ub_txg = txg - 1;
+ spa->spa_uberblock.ub_version = ZFS_VERSION;
+ spa->spa_ubsync = spa->spa_uberblock;
+
+ /*
+ * Create the root vdev.
+ */
+ spa_config_enter(spa, RW_WRITER, FTAG);
+
+ error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
+
+ ASSERT(error != 0 || rvd != NULL);
+ ASSERT(error != 0 || spa->spa_root_vdev == rvd);
+
+ if (error == 0 && rvd->vdev_children == 0)
+ error = EINVAL;
+
+ if (error == 0 &&
+ (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
+ (error = spa_validate_spares(spa, nvroot, txg,
+ VDEV_ALLOC_ADD)) == 0) {
+ for (c = 0; c < rvd->vdev_children; c++)
+ vdev_init(rvd->vdev_child[c], txg);
+ vdev_config_dirty(rvd);
+ }
+
+ spa_config_exit(spa, FTAG);
+
+ if (error != 0) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (error);
+ }
+
+ /*
+ * Get the list of spares, if specified.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) == 0) {
+ VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
+ KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ spa_load_spares(spa);
+ spa_config_exit(spa, FTAG);
+ spa->spa_sync_spares = B_TRUE;
+ }
+
+ spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
+ spa->spa_meta_objset = dp->dp_meta_objset;
+
+ tx = dmu_tx_create_assigned(dp, txg);
+
+ /*
+ * Create the pool config object.
+ */
+ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
+ DMU_OT_PACKED_NVLIST, 1 << 14,
+ DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
+
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
+ sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add pool config");
+ }
+
+ /* Newly created pools are always deflated. */
+ spa->spa_deflate = TRUE;
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
+ sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add deflate");
+ }
+
+ /*
+ * Create the deferred-free bplist object. Turn off compression
+ * because sync-to-convergence takes longer if the blocksize
+ * keeps changing.
+ */
+ spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
+ 1 << 14, tx);
+ dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
+ ZIO_COMPRESS_OFF, tx);
+
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
+ sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add bplist");
+ }
+
+ /*
+ * Create the pool's history object.
+ */
+ spa_history_create_obj(spa, tx);
+
+ dmu_tx_commit(tx);
+
+ spa->spa_bootfs = zfs_prop_default_numeric(ZFS_PROP_BOOTFS);
+ spa->spa_sync_on = B_TRUE;
+ txg_sync_start(spa->spa_dsl_pool);
+
+ /*
+ * We explicitly wait for the first transaction to complete so that our
+ * bean counters are appropriately updated.
+ */
+ txg_wait_synced(spa->spa_dsl_pool, txg);
+
+ spa_config_sync();
+
+ mutex_exit(&spa_namespace_lock);
+
+ return (0);
+}
+
+/*
+ * Import the given pool into the system. We set up the necessary spa_t and
+ * then call spa_load() to do the dirty work.
+ */
+int
+spa_import(const char *pool, nvlist_t *config, const char *altroot)
+{
+ spa_t *spa;
+ int error;
+ nvlist_t *nvroot;
+ nvlist_t **spares;
+ uint_t nspares;
+
+ if (!(spa_mode & FWRITE))
+ return (EROFS);
+
+ /*
+ * If a pool with this name exists, return failure.
+ */
+ mutex_enter(&spa_namespace_lock);
+ if (spa_lookup(pool) != NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (EEXIST);
+ }
+
+ /*
+ * Create and initialize the spa structure.
+ */
+ spa = spa_add(pool, altroot);
+ spa_activate(spa);
+
+ /*
+ * Pass off the heavy lifting to spa_load().
+ * Pass TRUE for mosconfig because the user-supplied config
+ * is actually the one to trust when doing an import.
+ */
+ error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
+
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ /*
+ * Toss any existing sparelist, as it doesn't have any validity anymore,
+ * and conflicts with spa_has_spare().
+ */
+ if (spa->spa_sparelist) {
+ nvlist_free(spa->spa_sparelist);
+ spa->spa_sparelist = NULL;
+ spa_load_spares(spa);
+ }
+
+ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
+ &nvroot) == 0);
+ if (error == 0)
+ error = spa_validate_spares(spa, nvroot, -1ULL,
+ VDEV_ALLOC_SPARE);
+ spa_config_exit(spa, FTAG);
+
+ if (error != 0) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (error);
+ }
+
+ /*
+ * Override any spares as specified by the user, as these may have
+ * correct device names/devids, etc.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) == 0) {
+ if (spa->spa_sparelist)
+ VERIFY(nvlist_remove(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
+ else
+ VERIFY(nvlist_alloc(&spa->spa_sparelist,
+ NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ spa_load_spares(spa);
+ spa_config_exit(spa, FTAG);
+ spa->spa_sync_spares = B_TRUE;
+ }
+
+ /*
+ * Update the config cache to include the newly-imported pool.
+ */
+ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
+
+ mutex_exit(&spa_namespace_lock);
+
+ /*
+ * Resilver anything that's out of date.
+ */
+ if (spa_mode & FWRITE)
+ VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
+
+ return (0);
+}
+
+/*
+ * This (illegal) pool name is used when temporarily importing a spa_t in order
+ * to get the vdev stats associated with the imported devices.
+ */
+#define TRYIMPORT_NAME "$import"
+
+nvlist_t *
+spa_tryimport(nvlist_t *tryconfig)
+{
+ nvlist_t *config = NULL;
+ char *poolname;
+ spa_t *spa;
+ uint64_t state;
+
+ if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
+ return (NULL);
+
+ if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
+ return (NULL);
+
+ /*
+ * Create and initialize the spa structure.
+ */
+ mutex_enter(&spa_namespace_lock);
+ spa = spa_add(TRYIMPORT_NAME, NULL);
+ spa_activate(spa);
+
+ /*
+ * Pass off the heavy lifting to spa_load().
+ * Pass TRUE for mosconfig because the user-supplied config
+ * is actually the one to trust when doing an import.
+ */
+ (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
+
+ /*
+ * If 'tryconfig' was at least parsable, return the current config.
+ */
+ if (spa->spa_root_vdev != NULL) {
+ spa_config_enter(spa, RW_READER, FTAG);
+ config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
+ spa_config_exit(spa, FTAG);
+ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
+ poolname) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
+ state) == 0);
+
+ /*
+ * Add the list of hot spares.
+ */
+ spa_add_spares(spa, config);
+ }
+
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+
+ return (config);
+}
+
+/*
+ * Pool export/destroy
+ *
+ * The act of destroying or exporting a pool is very simple. We make sure there
+ * is no more pending I/O and any references to the pool are gone. Then, we
+ * update the pool state and sync all the labels to disk, removing the
+ * configuration from the cache afterwards.
+ */
+static int
+spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
+{
+ spa_t *spa;
+
+ if (oldconfig)
+ *oldconfig = NULL;
+
+ if (!(spa_mode & FWRITE))
+ return (EROFS);
+
+ mutex_enter(&spa_namespace_lock);
+ if ((spa = spa_lookup(pool)) == NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (ENOENT);
+ }
+
+ /*
+ * Put a hold on the pool, drop the namespace lock, stop async tasks,
+ * reacquire the namespace lock, and see if we can export.
+ */
+ spa_open_ref(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ spa_async_suspend(spa);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+
+ /*
+ * The pool will be in core if it's openable,
+ * in which case we can modify its state.
+ */
+ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
+ /*
+ * Objsets may be open only because they're dirty, so we
+ * have to force it to sync before checking spa_refcnt.
+ */
+ spa_scrub_suspend(spa);
+ txg_wait_synced(spa->spa_dsl_pool, 0);
+
+ /*
+ * A pool cannot be exported or destroyed if there are active
+ * references. If we are resetting a pool, allow references by
+ * fault injection handlers.
+ */
+ if (!spa_refcount_zero(spa) ||
+ (spa->spa_inject_ref != 0 &&
+ new_state != POOL_STATE_UNINITIALIZED)) {
+ spa_scrub_resume(spa);
+ spa_async_resume(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (EBUSY);
+ }
+
+ spa_scrub_resume(spa);
+ VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
+
+ /*
+ * We want this to be reflected on every label,
+ * so mark them all dirty. spa_unload() will do the
+ * final sync that pushes these changes out.
+ */
+ if (new_state != POOL_STATE_UNINITIALIZED) {
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ spa->spa_state = new_state;
+ spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
+ vdev_config_dirty(spa->spa_root_vdev);
+ spa_config_exit(spa, FTAG);
+ }
+ }
+
+ if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ }
+
+ if (oldconfig && spa->spa_config)
+ VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
+
+ if (new_state != POOL_STATE_UNINITIALIZED) {
+ spa_remove(spa);
+ spa_config_sync();
+ }
+ mutex_exit(&spa_namespace_lock);
+
+ return (0);
+}
+
+/*
+ * Destroy a storage pool.
+ */
+int
+spa_destroy(char *pool)
+{
+ return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
+}
+
+/*
+ * Export a storage pool.
+ */
+int
+spa_export(char *pool, nvlist_t **oldconfig)
+{
+ return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
+}
+
+/*
+ * Similar to spa_export(), this unloads the spa_t without actually removing it
+ * from the namespace in any way.
+ */
+int
+spa_reset(char *pool)
+{
+ return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
+}
+
+
+/*
+ * ==========================================================================
+ * Device manipulation
+ * ==========================================================================
+ */
+
+/*
+ * Add capacity to a storage pool.
+ */
+int
+spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
+{
+ uint64_t txg;
+ int c, error;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *vd, *tvd;
+ nvlist_t **spares;
+ uint_t i, nspares;
+
+ txg = spa_vdev_enter(spa);
+
+ if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
+ VDEV_ALLOC_ADD)) != 0)
+ return (spa_vdev_exit(spa, NULL, txg, error));
+
+ spa->spa_pending_vdev = vd;
+
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) != 0)
+ nspares = 0;
+
+ if (vd->vdev_children == 0 && nspares == 0) {
+ spa->spa_pending_vdev = NULL;
+ return (spa_vdev_exit(spa, vd, txg, EINVAL));
+ }
+
+ if (vd->vdev_children != 0) {
+ if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
+ spa->spa_pending_vdev = NULL;
+ return (spa_vdev_exit(spa, vd, txg, error));
+ }
+ }
+
+ /*
+ * We must validate the spares after checking the children. Otherwise,
+ * vdev_inuse() will blindly overwrite the spare.
+ */
+ if ((error = spa_validate_spares(spa, nvroot, txg,
+ VDEV_ALLOC_ADD)) != 0) {
+ spa->spa_pending_vdev = NULL;
+ return (spa_vdev_exit(spa, vd, txg, error));
+ }
+
+ spa->spa_pending_vdev = NULL;
+
+ /*
+ * Transfer each new top-level vdev from vd to rvd.
+ */
+ for (c = 0; c < vd->vdev_children; c++) {
+ tvd = vd->vdev_child[c];
+ vdev_remove_child(vd, tvd);
+ tvd->vdev_id = rvd->vdev_children;
+ vdev_add_child(rvd, tvd);
+ vdev_config_dirty(tvd);
+ }
+
+ if (nspares != 0) {
+ if (spa->spa_sparelist != NULL) {
+ nvlist_t **oldspares;
+ uint_t oldnspares;
+ nvlist_t **newspares;
+
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
+
+ newspares = kmem_alloc(sizeof (void *) *
+ (nspares + oldnspares), KM_SLEEP);
+ for (i = 0; i < oldnspares; i++)
+ VERIFY(nvlist_dup(oldspares[i],
+ &newspares[i], KM_SLEEP) == 0);
+ for (i = 0; i < nspares; i++)
+ VERIFY(nvlist_dup(spares[i],
+ &newspares[i + oldnspares],
+ KM_SLEEP) == 0);
+
+ VERIFY(nvlist_remove(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
+
+ VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, newspares,
+ nspares + oldnspares) == 0);
+ for (i = 0; i < oldnspares + nspares; i++)
+ nvlist_free(newspares[i]);
+ kmem_free(newspares, (oldnspares + nspares) *
+ sizeof (void *));
+ } else {
+ VERIFY(nvlist_alloc(&spa->spa_sparelist,
+ NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ }
+
+ spa_load_spares(spa);
+ spa->spa_sync_spares = B_TRUE;
+ }
+
+ /*
+ * We have to be careful when adding new vdevs to an existing pool.
+ * If other threads start allocating from these vdevs before we
+ * sync the config cache, and we lose power, then upon reboot we may
+ * fail to open the pool because there are DVAs that the config cache
+ * can't translate. Therefore, we first add the vdevs without
+ * initializing metaslabs; sync the config cache (via spa_vdev_exit());
+ * and then let spa_config_update() initialize the new metaslabs.
+ *
+ * spa_load() checks for added-but-not-initialized vdevs, so that
+ * if we lose power at any point in this sequence, the remaining
+ * steps will be completed the next time we load the pool.
+ */
+ (void) spa_vdev_exit(spa, vd, txg, 0);
+
+ mutex_enter(&spa_namespace_lock);
+ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
+ mutex_exit(&spa_namespace_lock);
+
+ return (0);
+}
+
+/*
+ * Attach a device to a mirror. The arguments are the path to any device
+ * in the mirror, and the nvroot for the new device. If the path specifies
+ * a device that is not mirrored, we automatically insert the mirror vdev.
+ *
+ * If 'replacing' is specified, the new device is intended to replace the
+ * existing device; in this case the two devices are made into their own
+ * mirror using the 'replacing' vdev, which is functionally idendical to
+ * the mirror vdev (it actually reuses all the same ops) but has a few
+ * extra rules: you can't attach to it after it's been created, and upon
+ * completion of resilvering, the first disk (the one being replaced)
+ * is automatically detached.
+ */
+int
+spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
+{
+ uint64_t txg, open_txg;
+ int error;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
+ vdev_ops_t *pvops;
+
+ txg = spa_vdev_enter(spa);
+
+ oldvd = vdev_lookup_by_guid(rvd, guid);
+
+ if (oldvd == NULL)
+ return (spa_vdev_exit(spa, NULL, txg, ENODEV));
+
+ if (!oldvd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ pvd = oldvd->vdev_parent;
+
+ if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
+ VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
+ return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
+
+ newvd = newrootvd->vdev_child[0];
+
+ if (!newvd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
+
+ if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
+ return (spa_vdev_exit(spa, newrootvd, txg, error));
+
+ if (!replacing) {
+ /*
+ * For attach, the only allowable parent is a mirror or the root
+ * vdev.
+ */
+ if (pvd->vdev_ops != &vdev_mirror_ops &&
+ pvd->vdev_ops != &vdev_root_ops)
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+
+ pvops = &vdev_mirror_ops;
+ } else {
+ /*
+ * Active hot spares can only be replaced by inactive hot
+ * spares.
+ */
+ if (pvd->vdev_ops == &vdev_spare_ops &&
+ pvd->vdev_child[1] == oldvd &&
+ !spa_has_spare(spa, newvd->vdev_guid))
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+
+ /*
+ * If the source is a hot spare, and the parent isn't already a
+ * spare, then we want to create a new hot spare. Otherwise, we
+ * want to create a replacing vdev. The user is not allowed to
+ * attach to a spared vdev child unless the 'isspare' state is
+ * the same (spare replaces spare, non-spare replaces
+ * non-spare).
+ */
+ if (pvd->vdev_ops == &vdev_replacing_ops)
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+ else if (pvd->vdev_ops == &vdev_spare_ops &&
+ newvd->vdev_isspare != oldvd->vdev_isspare)
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+ else if (pvd->vdev_ops != &vdev_spare_ops &&
+ newvd->vdev_isspare)
+ pvops = &vdev_spare_ops;
+ else
+ pvops = &vdev_replacing_ops;
+ }
+
+ /*
+ * Compare the new device size with the replaceable/attachable
+ * device size.
+ */
+ if (newvd->vdev_psize < vdev_get_rsize(oldvd))
+ return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
+
+ /*
+ * The new device cannot have a higher alignment requirement
+ * than the top-level vdev.
+ */
+ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
+ return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
+
+ /*
+ * If this is an in-place replacement, update oldvd's path and devid
+ * to make it distinguishable from newvd, and unopenable from now on.
+ */
+ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
+ spa_strfree(oldvd->vdev_path);
+ oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
+ KM_SLEEP);
+ (void) sprintf(oldvd->vdev_path, "%s/%s",
+ newvd->vdev_path, "old");
+ if (oldvd->vdev_devid != NULL) {
+ spa_strfree(oldvd->vdev_devid);
+ oldvd->vdev_devid = NULL;
+ }
+ }
+
+ /*
+ * If the parent is not a mirror, or if we're replacing, insert the new
+ * mirror/replacing/spare vdev above oldvd.
+ */
+ if (pvd->vdev_ops != pvops)
+ pvd = vdev_add_parent(oldvd, pvops);
+
+ ASSERT(pvd->vdev_top->vdev_parent == rvd);
+ ASSERT(pvd->vdev_ops == pvops);
+ ASSERT(oldvd->vdev_parent == pvd);
+
+ /*
+ * Extract the new device from its root and add it to pvd.
+ */
+ vdev_remove_child(newrootvd, newvd);
+ newvd->vdev_id = pvd->vdev_children;
+ vdev_add_child(pvd, newvd);
+
+ /*
+ * If newvd is smaller than oldvd, but larger than its rsize,
+ * the addition of newvd may have decreased our parent's asize.
+ */
+ pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
+
+ tvd = newvd->vdev_top;
+ ASSERT(pvd->vdev_top == tvd);
+ ASSERT(tvd->vdev_parent == rvd);
+
+ vdev_config_dirty(tvd);
+
+ /*
+ * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate
+ * upward when spa_vdev_exit() calls vdev_dtl_reassess().
+ */
+ open_txg = txg + TXG_CONCURRENT_STATES - 1;
+
+ mutex_enter(&newvd->vdev_dtl_lock);
+ space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
+ open_txg - TXG_INITIAL + 1);
+ mutex_exit(&newvd->vdev_dtl_lock);
+
+ if (newvd->vdev_isspare)
+ spa_spare_activate(newvd);
+
+ /*
+ * Mark newvd's DTL dirty in this txg.
+ */
+ vdev_dirty(tvd, VDD_DTL, newvd, txg);
+
+ (void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
+
+ /*
+ * Kick off a resilver to update newvd.
+ */
+ VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
+
+ return (0);
+}
+
+/*
+ * Detach a device from a mirror or replacing vdev.
+ * If 'replace_done' is specified, only detach if the parent
+ * is a replacing vdev.
+ */
+int
+spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
+{
+ uint64_t txg;
+ int c, t, error;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *vd, *pvd, *cvd, *tvd;
+ boolean_t unspare = B_FALSE;
+ uint64_t unspare_guid;
+
+ txg = spa_vdev_enter(spa);
+
+ vd = vdev_lookup_by_guid(rvd, guid);
+
+ if (vd == NULL)
+ return (spa_vdev_exit(spa, NULL, txg, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ pvd = vd->vdev_parent;
+
+ /*
+ * If replace_done is specified, only remove this device if it's
+ * the first child of a replacing vdev. For the 'spare' vdev, either
+ * disk can be removed.
+ */
+ if (replace_done) {
+ if (pvd->vdev_ops == &vdev_replacing_ops) {
+ if (vd->vdev_id != 0)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+ } else if (pvd->vdev_ops != &vdev_spare_ops) {
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+ }
+ }
+
+ ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
+ spa_version(spa) >= ZFS_VERSION_SPARES);
+
+ /*
+ * Only mirror, replacing, and spare vdevs support detach.
+ */
+ if (pvd->vdev_ops != &vdev_replacing_ops &&
+ pvd->vdev_ops != &vdev_mirror_ops &&
+ pvd->vdev_ops != &vdev_spare_ops)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ /*
+ * If there's only one replica, you can't detach it.
+ */
+ if (pvd->vdev_children <= 1)
+ return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+
+ /*
+ * If all siblings have non-empty DTLs, this device may have the only
+ * valid copy of the data, which means we cannot safely detach it.
+ *
+ * XXX -- as in the vdev_offline() case, we really want a more
+ * precise DTL check.
+ */
+ for (c = 0; c < pvd->vdev_children; c++) {
+ uint64_t dirty;
+
+ cvd = pvd->vdev_child[c];
+ if (cvd == vd)
+ continue;
+ if (vdev_is_dead(cvd))
+ continue;
+ mutex_enter(&cvd->vdev_dtl_lock);
+ dirty = cvd->vdev_dtl_map.sm_space |
+ cvd->vdev_dtl_scrub.sm_space;
+ mutex_exit(&cvd->vdev_dtl_lock);
+ if (!dirty)
+ break;
+ }
+
+ /*
+ * If we are a replacing or spare vdev, then we can always detach the
+ * latter child, as that is how one cancels the operation.
+ */
+ if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
+ c == pvd->vdev_children)
+ return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+
+ /*
+ * If we are detaching the original disk from a spare, then it implies
+ * that the spare should become a real disk, and be removed from the
+ * active spare list for the pool.
+ */
+ if (pvd->vdev_ops == &vdev_spare_ops &&
+ vd->vdev_id == 0)
+ unspare = B_TRUE;
+
+ /*
+ * Erase the disk labels so the disk can be used for other things.
+ * This must be done after all other error cases are handled,
+ * but before we disembowel vd (so we can still do I/O to it).
+ * But if we can't do it, don't treat the error as fatal --
+ * it may be that the unwritability of the disk is the reason
+ * it's being detached!
+ */
+ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
+
+ /*
+ * Remove vd from its parent and compact the parent's children.
+ */
+ vdev_remove_child(pvd, vd);
+ vdev_compact_children(pvd);
+
+ /*
+ * Remember one of the remaining children so we can get tvd below.
+ */
+ cvd = pvd->vdev_child[0];
+
+ /*
+ * If we need to remove the remaining child from the list of hot spares,
+ * do it now, marking the vdev as no longer a spare in the process. We
+ * must do this before vdev_remove_parent(), because that can change the
+ * GUID if it creates a new toplevel GUID.
+ */
+ if (unspare) {
+ ASSERT(cvd->vdev_isspare);
+ spa_spare_remove(cvd);
+ unspare_guid = cvd->vdev_guid;
+ }
+
+ /*
+ * If the parent mirror/replacing vdev only has one child,
+ * the parent is no longer needed. Remove it from the tree.
+ */
+ if (pvd->vdev_children == 1)
+ vdev_remove_parent(cvd);
+
+ /*
+ * We don't set tvd until now because the parent we just removed
+ * may have been the previous top-level vdev.
+ */
+ tvd = cvd->vdev_top;
+ ASSERT(tvd->vdev_parent == rvd);
+
+ /*
+ * Reevaluate the parent vdev state.
+ */
+ vdev_propagate_state(cvd->vdev_parent);
+
+ /*
+ * If the device we just detached was smaller than the others, it may be
+ * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init()
+ * can't fail because the existing metaslabs are already in core, so
+ * there's nothing to read from disk.
+ */
+ VERIFY(vdev_metaslab_init(tvd, txg) == 0);
+
+ vdev_config_dirty(tvd);
+
+ /*
+ * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
+ * vd->vdev_detached is set and free vd's DTL object in syncing context.
+ * But first make sure we're not on any *other* txg's DTL list, to
+ * prevent vd from being accessed after it's freed.
+ */
+ for (t = 0; t < TXG_SIZE; t++)
+ (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
+ vd->vdev_detached = B_TRUE;
+ vdev_dirty(tvd, VDD_DTL, vd, txg);
+
+ error = spa_vdev_exit(spa, vd, txg, 0);
+
+ /*
+ * If this was the removal of the original device in a hot spare vdev,
+ * then we want to go through and remove the device from the hot spare
+ * list of every other pool.
+ */
+ if (unspare) {
+ spa = NULL;
+ mutex_enter(&spa_namespace_lock);
+ while ((spa = spa_next(spa)) != NULL) {
+ if (spa->spa_state != POOL_STATE_ACTIVE)
+ continue;
+
+ (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
+ }
+ mutex_exit(&spa_namespace_lock);
+ }
+
+ return (error);
+}
+
+/*
+ * Remove a device from the pool. Currently, this supports removing only hot
+ * spares.
+ */
+int
+spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
+{
+ vdev_t *vd;
+ nvlist_t **spares, *nv, **newspares;
+ uint_t i, j, nspares;
+ int ret = 0;
+
+ spa_config_enter(spa, RW_WRITER, FTAG);
+
+ vd = spa_lookup_by_guid(spa, guid);
+
+ nv = NULL;
+ if (spa->spa_spares != NULL &&
+ nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) == 0) {
+ for (i = 0; i < nspares; i++) {
+ uint64_t theguid;
+
+ VERIFY(nvlist_lookup_uint64(spares[i],
+ ZPOOL_CONFIG_GUID, &theguid) == 0);
+ if (theguid == guid) {
+ nv = spares[i];
+ break;
+ }
+ }
+ }
+
+ /*
+ * We only support removing a hot spare, and only if it's not currently
+ * in use in this pool.
+ */
+ if (nv == NULL && vd == NULL) {
+ ret = ENOENT;
+ goto out;
+ }
+
+ if (nv == NULL && vd != NULL) {
+ ret = ENOTSUP;
+ goto out;
+ }
+
+ if (!unspare && nv != NULL && vd != NULL) {
+ ret = EBUSY;
+ goto out;
+ }
+
+ if (nspares == 1) {
+ newspares = NULL;
+ } else {
+ newspares = kmem_alloc((nspares - 1) * sizeof (void *),
+ KM_SLEEP);
+ for (i = 0, j = 0; i < nspares; i++) {
+ if (spares[i] != nv)
+ VERIFY(nvlist_dup(spares[i],
+ &newspares[j++], KM_SLEEP) == 0);
+ }
+ }
+
+ VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
+ DATA_TYPE_NVLIST_ARRAY) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
+ newspares, nspares - 1) == 0);
+ for (i = 0; i < nspares - 1; i++)
+ nvlist_free(newspares[i]);
+ kmem_free(newspares, (nspares - 1) * sizeof (void *));
+ spa_load_spares(spa);
+ spa->spa_sync_spares = B_TRUE;
+
+out:
+ spa_config_exit(spa, FTAG);
+
+ return (ret);
+}
+
+/*
+ * Find any device that's done replacing, so we can detach it.
+ */
+static vdev_t *
+spa_vdev_replace_done_hunt(vdev_t *vd)
+{
+ vdev_t *newvd, *oldvd;
+ int c;
+
+ for (c = 0; c < vd->vdev_children; c++) {
+ oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
+ if (oldvd != NULL)
+ return (oldvd);
+ }
+
+ if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
+ oldvd = vd->vdev_child[0];
+ newvd = vd->vdev_child[1];
+
+ mutex_enter(&newvd->vdev_dtl_lock);
+ if (newvd->vdev_dtl_map.sm_space == 0 &&
+ newvd->vdev_dtl_scrub.sm_space == 0) {
+ mutex_exit(&newvd->vdev_dtl_lock);
+ return (oldvd);
+ }
+ mutex_exit(&newvd->vdev_dtl_lock);
+ }
+
+ return (NULL);
+}
+
+static void
+spa_vdev_replace_done(spa_t *spa)
+{
+ vdev_t *vd;
+ vdev_t *pvd;
+ uint64_t guid;
+ uint64_t pguid = 0;
+
+ spa_config_enter(spa, RW_READER, FTAG);
+
+ while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
+ guid = vd->vdev_guid;
+ /*
+ * If we have just finished replacing a hot spared device, then
+ * we need to detach the parent's first child (the original hot
+ * spare) as well.
+ */
+ pvd = vd->vdev_parent;
+ if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
+ pvd->vdev_id == 0) {
+ ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
+ ASSERT(pvd->vdev_parent->vdev_children == 2);
+ pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
+ }
+ spa_config_exit(spa, FTAG);
+ if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
+ return;
+ if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
+ return;
+ spa_config_enter(spa, RW_READER, FTAG);
+ }
+
+ spa_config_exit(spa, FTAG);
+}
+
+/*
+ * Update the stored path for this vdev. Dirty the vdev configuration, relying
+ * on spa_vdev_enter/exit() to synchronize the labels and cache.
+ */
+int
+spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
+{
+ vdev_t *rvd, *vd;
+ uint64_t txg;
+
+ rvd = spa->spa_root_vdev;
+
+ txg = spa_vdev_enter(spa);
+
+ if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
+ /*
+ * Determine if this is a reference to a hot spare. In that
+ * case, update the path as stored in the spare list.
+ */
+ nvlist_t **spares;
+ uint_t i, nspares;
+ if (spa->spa_sparelist != NULL) {
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+ for (i = 0; i < nspares; i++) {
+ uint64_t theguid;
+ VERIFY(nvlist_lookup_uint64(spares[i],
+ ZPOOL_CONFIG_GUID, &theguid) == 0);
+ if (theguid == guid)
+ break;
+ }
+
+ if (i == nspares)
+ return (spa_vdev_exit(spa, NULL, txg, ENOENT));
+
+ VERIFY(nvlist_add_string(spares[i],
+ ZPOOL_CONFIG_PATH, newpath) == 0);
+ spa_load_spares(spa);
+ spa->spa_sync_spares = B_TRUE;
+ return (spa_vdev_exit(spa, NULL, txg, 0));
+ } else {
+ return (spa_vdev_exit(spa, NULL, txg, ENOENT));
+ }
+ }
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ spa_strfree(vd->vdev_path);
+ vd->vdev_path = spa_strdup(newpath);
+
+ vdev_config_dirty(vd->vdev_top);
+
+ return (spa_vdev_exit(spa, NULL, txg, 0));
+}
+
+/*
+ * ==========================================================================
+ * SPA Scrubbing
+ * ==========================================================================
+ */
+
+static void
+spa_scrub_io_done(zio_t *zio)
+{
+ spa_t *spa = zio->io_spa;
+
+ zio_data_buf_free(zio->io_data, zio->io_size);
+
+ mutex_enter(&spa->spa_scrub_lock);
+ if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
+ vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
+ spa->spa_scrub_errors++;
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_scrub_errors++;
+ mutex_exit(&vd->vdev_stat_lock);
+ }
+
+ if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
+ cv_broadcast(&spa->spa_scrub_io_cv);
+
+ ASSERT(spa->spa_scrub_inflight >= 0);
+
+ mutex_exit(&spa->spa_scrub_lock);
+}
+
+static void
+spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
+ zbookmark_t *zb)
+{
+ size_t size = BP_GET_LSIZE(bp);
+ void *data;
+
+ mutex_enter(&spa->spa_scrub_lock);
+ /*
+ * Do not give too much work to vdev(s).
+ */
+ while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
+ cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
+ }
+ spa->spa_scrub_inflight++;
+ mutex_exit(&spa->spa_scrub_lock);
+
+ data = zio_data_buf_alloc(size);
+
+ if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
+ flags |= ZIO_FLAG_SPECULATIVE; /* intent log block */
+
+ flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
+
+ zio_nowait(zio_read(NULL, spa, bp, data, size,
+ spa_scrub_io_done, NULL, priority, flags, zb));
+}
+
+/* ARGSUSED */
+static int
+spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
+{
+ blkptr_t *bp = &bc->bc_blkptr;
+ vdev_t *vd = spa->spa_root_vdev;
+ dva_t *dva = bp->blk_dva;
+ int needs_resilver = B_FALSE;
+ int d;
+
+ if (bc->bc_errno) {
+ /*
+ * We can't scrub this block, but we can continue to scrub
+ * the rest of the pool. Note the error and move along.
+ */
+ mutex_enter(&spa->spa_scrub_lock);
+ spa->spa_scrub_errors++;
+ mutex_exit(&spa->spa_scrub_lock);
+
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_scrub_errors++;
+ mutex_exit(&vd->vdev_stat_lock);
+
+ return (ERESTART);
+ }
+
+ ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
+
+ for (d = 0; d < BP_GET_NDVAS(bp); d++) {
+ vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
+
+ ASSERT(vd != NULL);
+
+ /*
+ * Keep track of how much data we've examined so that
+ * zpool(1M) status can make useful progress reports.
+ */
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
+ mutex_exit(&vd->vdev_stat_lock);
+
+ if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
+ if (DVA_GET_GANG(&dva[d])) {
+ /*
+ * Gang members may be spread across multiple
+ * vdevs, so the best we can do is look at the
+ * pool-wide DTL.
+ * XXX -- it would be better to change our
+ * allocation policy to ensure that this can't
+ * happen.
+ */
+ vd = spa->spa_root_vdev;
+ }
+ if (vdev_dtl_contains(&vd->vdev_dtl_map,
+ bp->blk_birth, 1))
+ needs_resilver = B_TRUE;
+ }
+ }
+
+ if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
+ spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
+ ZIO_FLAG_SCRUB, &bc->bc_bookmark);
+ else if (needs_resilver)
+ spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
+ ZIO_FLAG_RESILVER, &bc->bc_bookmark);
+
+ return (0);
+}
+
+static void
+spa_scrub_thread(void *arg)
+{
+ spa_t *spa = arg;
+ callb_cpr_t cprinfo;
+ traverse_handle_t *th = spa->spa_scrub_th;
+ vdev_t *rvd = spa->spa_root_vdev;
+ pool_scrub_type_t scrub_type = spa->spa_scrub_type;
+ int error = 0;
+ boolean_t complete;
+
+ CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
+
+ /*
+ * If we're restarting due to a snapshot create/delete,
+ * wait for that to complete.
+ */
+ txg_wait_synced(spa_get_dsl(spa), 0);
+
+ dprintf("start %s mintxg=%llu maxtxg=%llu\n",
+ scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
+ spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
+
+ spa_config_enter(spa, RW_WRITER, FTAG);
+ vdev_reopen(rvd); /* purge all vdev caches */
+ vdev_config_dirty(rvd); /* rewrite all disk labels */
+ vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
+ spa_config_exit(spa, FTAG);
+
+ mutex_enter(&spa->spa_scrub_lock);
+ spa->spa_scrub_errors = 0;
+ spa->spa_scrub_active = 1;
+ ASSERT(spa->spa_scrub_inflight == 0);
+
+ while (!spa->spa_scrub_stop) {
+ CALLB_CPR_SAFE_BEGIN(&cprinfo);
+ while (spa->spa_scrub_suspended) {
+ spa->spa_scrub_active = 0;
+ cv_broadcast(&spa->spa_scrub_cv);
+ cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
+ spa->spa_scrub_active = 1;
+ }
+ CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
+
+ if (spa->spa_scrub_restart_txg != 0)
+ break;
+
+ mutex_exit(&spa->spa_scrub_lock);
+ error = traverse_more(th);
+ mutex_enter(&spa->spa_scrub_lock);
+ if (error != EAGAIN)
+ break;
+ }
+
+ while (spa->spa_scrub_inflight)
+ cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
+
+ spa->spa_scrub_active = 0;
+ cv_broadcast(&spa->spa_scrub_cv);
+
+ mutex_exit(&spa->spa_scrub_lock);
+
+ spa_config_enter(spa, RW_WRITER, FTAG);
+
+ mutex_enter(&spa->spa_scrub_lock);
+
+ /*
+ * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
+ * AND the spa config lock to synchronize with any config changes
+ * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
+ */
+ if (spa->spa_scrub_restart_txg != 0)
+ error = ERESTART;
+
+ if (spa->spa_scrub_stop)
+ error = EINTR;
+
+ /*
+ * Even if there were uncorrectable errors, we consider the scrub
+ * completed. The downside is that if there is a transient error during
+ * a resilver, we won't resilver the data properly to the target. But
+ * if the damage is permanent (more likely) we will resilver forever,
+ * which isn't really acceptable. Since there is enough information for
+ * the user to know what has failed and why, this seems like a more
+ * tractable approach.
+ */
+ complete = (error == 0);
+
+ dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
+ scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
+ spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
+ error, spa->spa_scrub_errors, spa->spa_scrub_stop);
+
+ mutex_exit(&spa->spa_scrub_lock);
+
+ /*
+ * If the scrub/resilver completed, update all DTLs to reflect this.
+ * Whether it succeeded or not, vacate all temporary scrub DTLs.
+ */
+ vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
+ complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
+ vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
+ spa_errlog_rotate(spa);
+
+ spa_config_exit(spa, FTAG);
+
+ mutex_enter(&spa->spa_scrub_lock);
+
+ /*
+ * We may have finished replacing a device.
+ * Let the async thread assess this and handle the detach.
+ */
+ spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
+
+ /*
+ * If we were told to restart, our final act is to start a new scrub.
+ */
+ if (error == ERESTART)
+ spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
+ SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
+
+ spa->spa_scrub_type = POOL_SCRUB_NONE;
+ spa->spa_scrub_active = 0;
+ spa->spa_scrub_thread = NULL;
+ cv_broadcast(&spa->spa_scrub_cv);
+ CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */
+ thread_exit();
+}
+
+void
+spa_scrub_suspend(spa_t *spa)
+{
+ mutex_enter(&spa->spa_scrub_lock);
+ spa->spa_scrub_suspended++;
+ while (spa->spa_scrub_active) {
+ cv_broadcast(&spa->spa_scrub_cv);
+ cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
+ }
+ while (spa->spa_scrub_inflight)
+ cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
+ mutex_exit(&spa->spa_scrub_lock);
+}
+
+void
+spa_scrub_resume(spa_t *spa)
+{
+ mutex_enter(&spa->spa_scrub_lock);
+ ASSERT(spa->spa_scrub_suspended != 0);
+ if (--spa->spa_scrub_suspended == 0)
+ cv_broadcast(&spa->spa_scrub_cv);
+ mutex_exit(&spa->spa_scrub_lock);
+}
+
+void
+spa_scrub_restart(spa_t *spa, uint64_t txg)
+{
+ /*
+ * Something happened (e.g. snapshot create/delete) that means
+ * we must restart any in-progress scrubs. The itinerary will
+ * fix this properly.
+ */
+ mutex_enter(&spa->spa_scrub_lock);
+ spa->spa_scrub_restart_txg = txg;
+ mutex_exit(&spa->spa_scrub_lock);
+}
+
+int
+spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
+{
+ space_seg_t *ss;
+ uint64_t mintxg, maxtxg;
+ vdev_t *rvd = spa->spa_root_vdev;
+
+ if ((uint_t)type >= POOL_SCRUB_TYPES)
+ return (ENOTSUP);
+
+ mutex_enter(&spa->spa_scrub_lock);
+
+ /*
+ * If there's a scrub or resilver already in progress, stop it.
+ */
+ while (spa->spa_scrub_thread != NULL) {
+ /*
+ * Don't stop a resilver unless forced.
+ */
+ if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
+ mutex_exit(&spa->spa_scrub_lock);
+ return (EBUSY);
+ }
+ spa->spa_scrub_stop = 1;
+ cv_broadcast(&spa->spa_scrub_cv);
+ cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
+ }
+
+ /*
+ * Terminate the previous traverse.
+ */
+ if (spa->spa_scrub_th != NULL) {
+ traverse_fini(spa->spa_scrub_th);
+ spa->spa_scrub_th = NULL;
+ }
+
+ if (rvd == NULL) {
+ ASSERT(spa->spa_scrub_stop == 0);
+ ASSERT(spa->spa_scrub_type == type);
+ ASSERT(spa->spa_scrub_restart_txg == 0);
+ mutex_exit(&spa->spa_scrub_lock);
+ return (0);
+ }
+
+ mintxg = TXG_INITIAL - 1;
+ maxtxg = spa_last_synced_txg(spa) + 1;
+
+ mutex_enter(&rvd->vdev_dtl_lock);
+
+ if (rvd->vdev_dtl_map.sm_space == 0) {
+ /*
+ * The pool-wide DTL is empty.
+ * If this is a resilver, there's nothing to do except
+ * check whether any in-progress replacements have completed.
+ */
+ if (type == POOL_SCRUB_RESILVER) {
+ type = POOL_SCRUB_NONE;
+ spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
+ }
+ } else {
+ /*
+ * The pool-wide DTL is non-empty.
+ * If this is a normal scrub, upgrade to a resilver instead.
+ */
+ if (type == POOL_SCRUB_EVERYTHING)
+ type = POOL_SCRUB_RESILVER;
+ }
+
+ if (type == POOL_SCRUB_RESILVER) {
+ /*
+ * Determine the resilvering boundaries.
+ *
+ * Note: (mintxg, maxtxg) is an open interval,
+ * i.e. mintxg and maxtxg themselves are not included.
+ *
+ * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
+ * so we don't claim to resilver a txg that's still changing.
+ */
+ ss = avl_first(&rvd->vdev_dtl_map.sm_root);
+ mintxg = ss->ss_start - 1;
+ ss = avl_last(&rvd->vdev_dtl_map.sm_root);
+ maxtxg = MIN(ss->ss_end, maxtxg);
+ }
+
+ mutex_exit(&rvd->vdev_dtl_lock);
+
+ spa->spa_scrub_stop = 0;
+ spa->spa_scrub_type = type;
+ spa->spa_scrub_restart_txg = 0;
+
+ if (type != POOL_SCRUB_NONE) {
+ spa->spa_scrub_mintxg = mintxg;
+ spa->spa_scrub_maxtxg = maxtxg;
+ spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
+ ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
+ ZIO_FLAG_CANFAIL);
+ traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
+ spa->spa_scrub_thread = thread_create(NULL, 0,
+ spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
+ }
+
+ mutex_exit(&spa->spa_scrub_lock);
+
+ return (0);
+}
+
+/*
+ * ==========================================================================
+ * SPA async task processing
+ * ==========================================================================
+ */
+
+static void
+spa_async_reopen(spa_t *spa)
+{
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *tvd;
+ int c;
+
+ spa_config_enter(spa, RW_WRITER, FTAG);
+
+ for (c = 0; c < rvd->vdev_children; c++) {
+ tvd = rvd->vdev_child[c];
+ if (tvd->vdev_reopen_wanted) {
+ tvd->vdev_reopen_wanted = 0;
+ vdev_reopen(tvd);
+ }
+ }
+
+ spa_config_exit(spa, FTAG);
+}
+
+static void
+spa_async_thread(void *arg)
+{
+ spa_t *spa = arg;
+ int tasks;
+
+ ASSERT(spa->spa_sync_on);
+
+ mutex_enter(&spa->spa_async_lock);
+ tasks = spa->spa_async_tasks;
+ spa->spa_async_tasks = 0;
+ mutex_exit(&spa->spa_async_lock);
+
+ /*
+ * See if the config needs to be updated.
+ */
+ if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
+ mutex_enter(&spa_namespace_lock);
+ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
+ mutex_exit(&spa_namespace_lock);
+ }
+
+ /*
+ * See if any devices need to be reopened.
+ */
+ if (tasks & SPA_ASYNC_REOPEN)
+ spa_async_reopen(spa);
+
+ /*
+ * If any devices are done replacing, detach them.
+ */
+ if (tasks & SPA_ASYNC_REPLACE_DONE)
+ spa_vdev_replace_done(spa);
+
+ /*
+ * Kick off a scrub.
+ */
+ if (tasks & SPA_ASYNC_SCRUB)
+ VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
+
+ /*
+ * Kick off a resilver.
+ */
+ if (tasks & SPA_ASYNC_RESILVER)
+ VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
+
+ /*
+ * Let the world know that we're done.
+ */
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_async_thread = NULL;
+ cv_broadcast(&spa->spa_async_cv);
+ mutex_exit(&spa->spa_async_lock);
+ thread_exit();
+}
+
+void
+spa_async_suspend(spa_t *spa)
+{
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_async_suspended++;
+ while (spa->spa_async_thread != NULL)
+ cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
+ mutex_exit(&spa->spa_async_lock);
+}
+
+void
+spa_async_resume(spa_t *spa)
+{
+ mutex_enter(&spa->spa_async_lock);
+ ASSERT(spa->spa_async_suspended != 0);
+ spa->spa_async_suspended--;
+ mutex_exit(&spa->spa_async_lock);
+}
+
+static void
+spa_async_dispatch(spa_t *spa)
+{
+ mutex_enter(&spa->spa_async_lock);
+ if (spa->spa_async_tasks && !spa->spa_async_suspended &&
+ spa->spa_async_thread == NULL &&
+ rootdir != NULL && !vn_is_readonly(rootdir))
+ spa->spa_async_thread = thread_create(NULL, 0,
+ spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
+ mutex_exit(&spa->spa_async_lock);
+}
+
+void
+spa_async_request(spa_t *spa, int task)
+{
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_async_tasks |= task;
+ mutex_exit(&spa->spa_async_lock);
+}
+
+/*
+ * ==========================================================================
+ * SPA syncing routines
+ * ==========================================================================
+ */
+
+static void
+spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
+{
+ bplist_t *bpl = &spa->spa_sync_bplist;
+ dmu_tx_t *tx;
+ blkptr_t blk;
+ uint64_t itor = 0;
+ zio_t *zio;
+ int error;
+ uint8_t c = 1;
+
+ zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
+
+ while (bplist_iterate(bpl, &itor, &blk) == 0)
+ zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
+
+ error = zio_wait(zio);
+ ASSERT3U(error, ==, 0);
+
+ tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
+ bplist_vacate(bpl, tx);
+
+ /*
+ * Pre-dirty the first block so we sync to convergence faster.
+ * (Usually only the first block is needed.)
+ */
+ dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
+ dmu_tx_commit(tx);
+}
+
+static void
+spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
+{
+ char *packed = NULL;
+ size_t nvsize = 0;
+ dmu_buf_t *db;
+
+ VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
+
+ packed = kmem_alloc(nvsize, KM_SLEEP);
+
+ VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
+ KM_SLEEP) == 0);
+
+ dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
+
+ kmem_free(packed, nvsize);
+
+ VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
+ dmu_buf_will_dirty(db, tx);
+ *(uint64_t *)db->db_data = nvsize;
+ dmu_buf_rele(db, FTAG);
+}
+
+static void
+spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
+{
+ nvlist_t *nvroot;
+ nvlist_t **spares;
+ int i;
+
+ if (!spa->spa_sync_spares)
+ return;
+
+ /*
+ * Update the MOS nvlist describing the list of available spares.
+ * spa_validate_spares() will have already made sure this nvlist is
+ * valid and the vdevs are labelled appropriately.
+ */
+ if (spa->spa_spares_object == 0) {
+ spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
+ DMU_OT_PACKED_NVLIST, 1 << 14,
+ DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
+ VERIFY(zap_update(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
+ sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
+ }
+
+ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ if (spa->spa_nspares == 0) {
+ VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ NULL, 0) == 0);
+ } else {
+ spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
+ KM_SLEEP);
+ for (i = 0; i < spa->spa_nspares; i++)
+ spares[i] = vdev_config_generate(spa,
+ spa->spa_spares[i], B_FALSE, B_TRUE);
+ VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ spares, spa->spa_nspares) == 0);
+ for (i = 0; i < spa->spa_nspares; i++)
+ nvlist_free(spares[i]);
+ kmem_free(spares, spa->spa_nspares * sizeof (void *));
+ }
+
+ spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
+ nvlist_free(nvroot);
+
+ spa->spa_sync_spares = B_FALSE;
+}
+
+static void
+spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
+{
+ nvlist_t *config;
+
+ if (list_is_empty(&spa->spa_dirty_list))
+ return;
+
+ config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
+
+ if (spa->spa_config_syncing)
+ nvlist_free(spa->spa_config_syncing);
+ spa->spa_config_syncing = config;
+
+ spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
+}
+
+static void
+spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
+{
+ spa_t *spa = arg1;
+ nvlist_t *nvp = arg2;
+ nvpair_t *nvpair;
+ objset_t *mos = spa->spa_meta_objset;
+ uint64_t zapobj;
+
+ mutex_enter(&spa->spa_props_lock);
+ if (spa->spa_pool_props_object == 0) {
+ zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
+ VERIFY(zapobj > 0);
+
+ spa->spa_pool_props_object = zapobj;
+
+ VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_PROPS, 8, 1,
+ &spa->spa_pool_props_object, tx) == 0);
+ }
+ mutex_exit(&spa->spa_props_lock);
+
+ nvpair = NULL;
+ while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
+ switch (zpool_name_to_prop(nvpair_name(nvpair))) {
+ case ZFS_PROP_BOOTFS:
+ VERIFY(nvlist_lookup_uint64(nvp,
+ nvpair_name(nvpair), &spa->spa_bootfs) == 0);
+ VERIFY(zap_update(mos,
+ spa->spa_pool_props_object,
+ zpool_prop_to_name(ZFS_PROP_BOOTFS), 8, 1,
+ &spa->spa_bootfs, tx) == 0);
+ break;
+ }
+ }
+}
+
+/*
+ * Sync the specified transaction group. New blocks may be dirtied as
+ * part of the process, so we iterate until it converges.
+ */
+void
+spa_sync(spa_t *spa, uint64_t txg)
+{
+ dsl_pool_t *dp = spa->spa_dsl_pool;
+ objset_t *mos = spa->spa_meta_objset;
+ bplist_t *bpl = &spa->spa_sync_bplist;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *vd;
+ dmu_tx_t *tx;
+ int dirty_vdevs;
+
+ /*
+ * Lock out configuration changes.
+ */
+ spa_config_enter(spa, RW_READER, FTAG);
+
+ spa->spa_syncing_txg = txg;
+ spa->spa_sync_pass = 0;
+
+ VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
+
+ tx = dmu_tx_create_assigned(dp, txg);
+
+ /*
+ * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
+ * set spa_deflate if we have no raid-z vdevs.
+ */
+ if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
+ spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
+ int i;
+
+ for (i = 0; i < rvd->vdev_children; i++) {
+ vd = rvd->vdev_child[i];
+ if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
+ break;
+ }
+ if (i == rvd->vdev_children) {
+ spa->spa_deflate = TRUE;
+ VERIFY(0 == zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
+ sizeof (uint64_t), 1, &spa->spa_deflate, tx));
+ }
+ }
+
+ /*
+ * If anything has changed in this txg, push the deferred frees
+ * from the previous txg. If not, leave them alone so that we
+ * don't generate work on an otherwise idle system.
+ */
+ if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
+ !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
+ !txg_list_empty(&dp->dp_sync_tasks, txg))
+ spa_sync_deferred_frees(spa, txg);
+
+ /*
+ * Iterate to convergence.
+ */
+ do {
+ spa->spa_sync_pass++;
+
+ spa_sync_config_object(spa, tx);
+ spa_sync_spares(spa, tx);
+ spa_errlog_sync(spa, txg);
+ dsl_pool_sync(dp, txg);
+
+ dirty_vdevs = 0;
+ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
+ vdev_sync(vd, txg);
+ dirty_vdevs++;
+ }
+
+ bplist_sync(bpl, tx);
+ } while (dirty_vdevs);
+
+ bplist_close(bpl);
+
+ dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
+
+ /*
+ * Rewrite the vdev configuration (which includes the uberblock)
+ * to commit the transaction group.
+ *
+ * If there are any dirty vdevs, sync the uberblock to all vdevs.
+ * Otherwise, pick a random top-level vdev that's known to be
+ * visible in the config cache (see spa_vdev_add() for details).
+ * If the write fails, try the next vdev until we're tried them all.
+ */
+ if (!list_is_empty(&spa->spa_dirty_list)) {
+ VERIFY(vdev_config_sync(rvd, txg) == 0);
+ } else {
+ int children = rvd->vdev_children;
+ int c0 = spa_get_random(children);
+ int c;
+
+ for (c = 0; c < children; c++) {
+ vd = rvd->vdev_child[(c0 + c) % children];
+ if (vd->vdev_ms_array == 0)
+ continue;
+ if (vdev_config_sync(vd, txg) == 0)
+ break;
+ }
+ if (c == children)
+ VERIFY(vdev_config_sync(rvd, txg) == 0);
+ }
+
+ dmu_tx_commit(tx);
+
+ /*
+ * Clear the dirty config list.
+ */
+ while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
+ vdev_config_clean(vd);
+
+ /*
+ * Now that the new config has synced transactionally,
+ * let it become visible to the config cache.
+ */
+ if (spa->spa_config_syncing != NULL) {
+ spa_config_set(spa, spa->spa_config_syncing);
+ spa->spa_config_txg = txg;
+ spa->spa_config_syncing = NULL;
+ }
+
+ /*
+ * Make a stable copy of the fully synced uberblock.
+ * We use this as the root for pool traversals.
+ */
+ spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */
+
+ spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */
+
+ rw_enter(&spa->spa_traverse_lock, RW_WRITER);
+ spa->spa_traverse_wanted = 0;
+ spa->spa_ubsync = spa->spa_uberblock;
+ rw_exit(&spa->spa_traverse_lock);
+
+ spa_scrub_resume(spa); /* resume scrub with new ubsync */
+
+ /*
+ * Clean up the ZIL records for the synced txg.
+ */
+ dsl_pool_zil_clean(dp);
+
+ /*
+ * Update usable space statistics.
+ */
+ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
+ vdev_sync_done(vd, txg);
+
+ /*
+ * It had better be the case that we didn't dirty anything
+ * since vdev_config_sync().
+ */
+ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
+ ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
+ ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
+ ASSERT(bpl->bpl_queue == NULL);
+
+ spa_config_exit(spa, FTAG);
+
+ /*
+ * If any async tasks have been requested, kick them off.
+ */
+ spa_async_dispatch(spa);
+}
+
+/*
+ * Sync all pools. We don't want to hold the namespace lock across these
+ * operations, so we take a reference on the spa_t and drop the lock during the
+ * sync.
+ */
+void
+spa_sync_allpools(void)
+{
+ spa_t *spa = NULL;
+ mutex_enter(&spa_namespace_lock);
+ while ((spa = spa_next(spa)) != NULL) {
+ if (spa_state(spa) != POOL_STATE_ACTIVE)
+ continue;
+ spa_open_ref(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ txg_wait_synced(spa_get_dsl(spa), 0);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+ }
+ mutex_exit(&spa_namespace_lock);
+}
+
+/*
+ * ==========================================================================
+ * Miscellaneous routines
+ * ==========================================================================
+ */
+
+/*
+ * Remove all pools in the system.
+ */
+void
+spa_evict_all(void)
+{
+ spa_t *spa;
+
+ /*
+ * Remove all cached state. All pools should be closed now,
+ * so every spa in the AVL tree should be unreferenced.
+ */
+ mutex_enter(&spa_namespace_lock);
+ while ((spa = spa_next(NULL)) != NULL) {
+ /*
+ * Stop async tasks. The async thread may need to detach
+ * a device that's been replaced, which requires grabbing
+ * spa_namespace_lock, so we must drop it here.
+ */
+ spa_open_ref(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ spa_async_suspend(spa);
+ VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+
+ if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ }
+ spa_remove(spa);
+ }
+ mutex_exit(&spa_namespace_lock);
+}
+
+vdev_t *
+spa_lookup_by_guid(spa_t *spa, uint64_t guid)
+{
+ return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
+}
+
+void
+spa_upgrade(spa_t *spa)
+{
+ spa_config_enter(spa, RW_WRITER, FTAG);
+
+ /*
+ * This should only be called for a non-faulted pool, and since a
+ * future version would result in an unopenable pool, this shouldn't be
+ * possible.
+ */
+ ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
+
+ spa->spa_uberblock.ub_version = ZFS_VERSION;
+ vdev_config_dirty(spa->spa_root_vdev);
+
+ spa_config_exit(spa, FTAG);
+
+ txg_wait_synced(spa_get_dsl(spa), 0);
+}
+
+boolean_t
+spa_has_spare(spa_t *spa, uint64_t guid)
+{
+ int i;
+ uint64_t spareguid;
+
+ for (i = 0; i < spa->spa_nspares; i++)
+ if (spa->spa_spares[i]->vdev_guid == guid)
+ return (B_TRUE);
+
+ for (i = 0; i < spa->spa_pending_nspares; i++) {
+ if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
+ ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
+ spareguid == guid)
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+int
+spa_set_props(spa_t *spa, nvlist_t *nvp)
+{
+ return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
+ spa, nvp, 3));
+}
+
+int
+spa_get_props(spa_t *spa, nvlist_t **nvp)
+{
+ zap_cursor_t zc;
+ zap_attribute_t za;
+ objset_t *mos = spa->spa_meta_objset;
+ zfs_source_t src;
+ zfs_prop_t prop;
+ nvlist_t *propval;
+ uint64_t value;
+ int err;
+
+ VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+
+ mutex_enter(&spa->spa_props_lock);
+ /* If no props object, then just return empty nvlist */
+ if (spa->spa_pool_props_object == 0) {
+ mutex_exit(&spa->spa_props_lock);
+ return (0);
+ }
+
+ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
+ (err = zap_cursor_retrieve(&zc, &za)) == 0;
+ zap_cursor_advance(&zc)) {
+
+ if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
+ continue;
+
+ VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ switch (za.za_integer_length) {
+ case 8:
+ if (zfs_prop_default_numeric(prop) ==
+ za.za_first_integer)
+ src = ZFS_SRC_DEFAULT;
+ else
+ src = ZFS_SRC_LOCAL;
+ value = za.za_first_integer;
+
+ if (prop == ZFS_PROP_BOOTFS) {
+ dsl_pool_t *dp;
+ dsl_dataset_t *ds = NULL;
+ char strval[MAXPATHLEN];
+
+ dp = spa_get_dsl(spa);
+ rw_enter(&dp->dp_config_rwlock, RW_READER);
+ if ((err = dsl_dataset_open_obj(dp,
+ za.za_first_integer, NULL, DS_MODE_NONE,
+ FTAG, &ds)) != 0) {
+ rw_exit(&dp->dp_config_rwlock);
+ break;
+ }
+ dsl_dataset_name(ds, strval);
+ dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
+ rw_exit(&dp->dp_config_rwlock);
+
+ VERIFY(nvlist_add_uint64(propval,
+ ZFS_PROP_SOURCE, src) == 0);
+ VERIFY(nvlist_add_string(propval,
+ ZFS_PROP_VALUE, strval) == 0);
+ } else {
+ VERIFY(nvlist_add_uint64(propval,
+ ZFS_PROP_SOURCE, src) == 0);
+ VERIFY(nvlist_add_uint64(propval,
+ ZFS_PROP_VALUE, value) == 0);
+ }
+ VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
+ propval) == 0);
+ break;
+ }
+ nvlist_free(propval);
+ }
+ zap_cursor_fini(&zc);
+ mutex_exit(&spa->spa_props_lock);
+ if (err && err != ENOENT) {
+ nvlist_free(*nvp);
+ return (err);
+ }
+
+ return (0);
+}
+
+/*
+ * If the bootfs property value is dsobj, clear it.
+ */
+void
+spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
+{
+ if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
+ VERIFY(zap_remove(spa->spa_meta_objset,
+ spa->spa_pool_props_object,
+ zpool_prop_to_name(ZFS_PROP_BOOTFS), tx) == 0);
+ spa->spa_bootfs = 0;
+ }
+}