aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c')
-rw-r--r--sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c2176
1 files changed, 2176 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c b/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c
new file mode 100644
index 000000000000..3cc4b560e477
--- /dev/null
+++ b/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c
@@ -0,0 +1,2176 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
+ */
+
+/* Portions Copyright 2010 Robert Milkowski */
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/sysmacros.h>
+#include <sys/kmem.h>
+#include <sys/pathname.h>
+#include <sys/vnode.h>
+#include <sys/vfs.h>
+#include <sys/mntent.h>
+#include <sys/cmn_err.h>
+#include <sys/zfs_znode.h>
+#include <sys/zfs_vnops.h>
+#include <sys/zfs_dir.h>
+#include <sys/zil.h>
+#include <sys/fs/zfs.h>
+#include <sys/dmu.h>
+#include <sys/dsl_prop.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_deleg.h>
+#include <sys/spa.h>
+#include <sys/zap.h>
+#include <sys/sa.h>
+#include <sys/sa_impl.h>
+#include <sys/policy.h>
+#include <sys/atomic.h>
+#include <sys/zfs_ioctl.h>
+#include <sys/zfs_ctldir.h>
+#include <sys/zfs_fuid.h>
+#include <sys/zfs_quota.h>
+#include <sys/sunddi.h>
+#include <sys/dmu_objset.h>
+#include <sys/dsl_dir.h>
+#include <sys/spa_boot.h>
+#include <sys/objlist.h>
+#include <sys/zpl.h>
+#include <linux/vfs_compat.h>
+#include "zfs_comutil.h"
+
+enum {
+ TOKEN_RO,
+ TOKEN_RW,
+ TOKEN_SETUID,
+ TOKEN_NOSETUID,
+ TOKEN_EXEC,
+ TOKEN_NOEXEC,
+ TOKEN_DEVICES,
+ TOKEN_NODEVICES,
+ TOKEN_DIRXATTR,
+ TOKEN_SAXATTR,
+ TOKEN_XATTR,
+ TOKEN_NOXATTR,
+ TOKEN_ATIME,
+ TOKEN_NOATIME,
+ TOKEN_RELATIME,
+ TOKEN_NORELATIME,
+ TOKEN_NBMAND,
+ TOKEN_NONBMAND,
+ TOKEN_MNTPOINT,
+ TOKEN_LAST,
+};
+
+static const match_table_t zpl_tokens = {
+ { TOKEN_RO, MNTOPT_RO },
+ { TOKEN_RW, MNTOPT_RW },
+ { TOKEN_SETUID, MNTOPT_SETUID },
+ { TOKEN_NOSETUID, MNTOPT_NOSETUID },
+ { TOKEN_EXEC, MNTOPT_EXEC },
+ { TOKEN_NOEXEC, MNTOPT_NOEXEC },
+ { TOKEN_DEVICES, MNTOPT_DEVICES },
+ { TOKEN_NODEVICES, MNTOPT_NODEVICES },
+ { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
+ { TOKEN_SAXATTR, MNTOPT_SAXATTR },
+ { TOKEN_XATTR, MNTOPT_XATTR },
+ { TOKEN_NOXATTR, MNTOPT_NOXATTR },
+ { TOKEN_ATIME, MNTOPT_ATIME },
+ { TOKEN_NOATIME, MNTOPT_NOATIME },
+ { TOKEN_RELATIME, MNTOPT_RELATIME },
+ { TOKEN_NORELATIME, MNTOPT_NORELATIME },
+ { TOKEN_NBMAND, MNTOPT_NBMAND },
+ { TOKEN_NONBMAND, MNTOPT_NONBMAND },
+ { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
+ { TOKEN_LAST, NULL },
+};
+
+static void
+zfsvfs_vfs_free(vfs_t *vfsp)
+{
+ if (vfsp != NULL) {
+ if (vfsp->vfs_mntpoint != NULL)
+ kmem_strfree(vfsp->vfs_mntpoint);
+
+ kmem_free(vfsp, sizeof (vfs_t));
+ }
+}
+
+static int
+zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
+{
+ switch (token) {
+ case TOKEN_RO:
+ vfsp->vfs_readonly = B_TRUE;
+ vfsp->vfs_do_readonly = B_TRUE;
+ break;
+ case TOKEN_RW:
+ vfsp->vfs_readonly = B_FALSE;
+ vfsp->vfs_do_readonly = B_TRUE;
+ break;
+ case TOKEN_SETUID:
+ vfsp->vfs_setuid = B_TRUE;
+ vfsp->vfs_do_setuid = B_TRUE;
+ break;
+ case TOKEN_NOSETUID:
+ vfsp->vfs_setuid = B_FALSE;
+ vfsp->vfs_do_setuid = B_TRUE;
+ break;
+ case TOKEN_EXEC:
+ vfsp->vfs_exec = B_TRUE;
+ vfsp->vfs_do_exec = B_TRUE;
+ break;
+ case TOKEN_NOEXEC:
+ vfsp->vfs_exec = B_FALSE;
+ vfsp->vfs_do_exec = B_TRUE;
+ break;
+ case TOKEN_DEVICES:
+ vfsp->vfs_devices = B_TRUE;
+ vfsp->vfs_do_devices = B_TRUE;
+ break;
+ case TOKEN_NODEVICES:
+ vfsp->vfs_devices = B_FALSE;
+ vfsp->vfs_do_devices = B_TRUE;
+ break;
+ case TOKEN_DIRXATTR:
+ vfsp->vfs_xattr = ZFS_XATTR_DIR;
+ vfsp->vfs_do_xattr = B_TRUE;
+ break;
+ case TOKEN_SAXATTR:
+ vfsp->vfs_xattr = ZFS_XATTR_SA;
+ vfsp->vfs_do_xattr = B_TRUE;
+ break;
+ case TOKEN_XATTR:
+ vfsp->vfs_xattr = ZFS_XATTR_DIR;
+ vfsp->vfs_do_xattr = B_TRUE;
+ break;
+ case TOKEN_NOXATTR:
+ vfsp->vfs_xattr = ZFS_XATTR_OFF;
+ vfsp->vfs_do_xattr = B_TRUE;
+ break;
+ case TOKEN_ATIME:
+ vfsp->vfs_atime = B_TRUE;
+ vfsp->vfs_do_atime = B_TRUE;
+ break;
+ case TOKEN_NOATIME:
+ vfsp->vfs_atime = B_FALSE;
+ vfsp->vfs_do_atime = B_TRUE;
+ break;
+ case TOKEN_RELATIME:
+ vfsp->vfs_relatime = B_TRUE;
+ vfsp->vfs_do_relatime = B_TRUE;
+ break;
+ case TOKEN_NORELATIME:
+ vfsp->vfs_relatime = B_FALSE;
+ vfsp->vfs_do_relatime = B_TRUE;
+ break;
+ case TOKEN_NBMAND:
+ vfsp->vfs_nbmand = B_TRUE;
+ vfsp->vfs_do_nbmand = B_TRUE;
+ break;
+ case TOKEN_NONBMAND:
+ vfsp->vfs_nbmand = B_FALSE;
+ vfsp->vfs_do_nbmand = B_TRUE;
+ break;
+ case TOKEN_MNTPOINT:
+ vfsp->vfs_mntpoint = match_strdup(&args[0]);
+ if (vfsp->vfs_mntpoint == NULL)
+ return (SET_ERROR(ENOMEM));
+
+ break;
+ default:
+ break;
+ }
+
+ return (0);
+}
+
+/*
+ * Parse the raw mntopts and return a vfs_t describing the options.
+ */
+static int
+zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
+{
+ vfs_t *tmp_vfsp;
+ int error;
+
+ tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
+
+ if (mntopts != NULL) {
+ substring_t args[MAX_OPT_ARGS];
+ char *tmp_mntopts, *p, *t;
+ int token;
+
+ tmp_mntopts = t = kmem_strdup(mntopts);
+ if (tmp_mntopts == NULL)
+ return (SET_ERROR(ENOMEM));
+
+ while ((p = strsep(&t, ",")) != NULL) {
+ if (!*p)
+ continue;
+
+ args[0].to = args[0].from = NULL;
+ token = match_token(p, zpl_tokens, args);
+ error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
+ if (error) {
+ kmem_strfree(tmp_mntopts);
+ zfsvfs_vfs_free(tmp_vfsp);
+ return (error);
+ }
+ }
+
+ kmem_strfree(tmp_mntopts);
+ }
+
+ *vfsp = tmp_vfsp;
+
+ return (0);
+}
+
+boolean_t
+zfs_is_readonly(zfsvfs_t *zfsvfs)
+{
+ return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
+}
+
+/*ARGSUSED*/
+int
+zfs_sync(struct super_block *sb, int wait, cred_t *cr)
+{
+ zfsvfs_t *zfsvfs = sb->s_fs_info;
+
+ /*
+ * Semantically, the only requirement is that the sync be initiated.
+ * The DMU syncs out txgs frequently, so there's nothing to do.
+ */
+ if (!wait)
+ return (0);
+
+ if (zfsvfs != NULL) {
+ /*
+ * Sync a specific filesystem.
+ */
+ dsl_pool_t *dp;
+
+ ZFS_ENTER(zfsvfs);
+ dp = dmu_objset_pool(zfsvfs->z_os);
+
+ /*
+ * If the system is shutting down, then skip any
+ * filesystems which may exist on a suspended pool.
+ */
+ if (spa_suspended(dp->dp_spa)) {
+ ZFS_EXIT(zfsvfs);
+ return (0);
+ }
+
+ if (zfsvfs->z_log != NULL)
+ zil_commit(zfsvfs->z_log, 0);
+
+ ZFS_EXIT(zfsvfs);
+ } else {
+ /*
+ * Sync all ZFS filesystems. This is what happens when you
+ * run sync(1). Unlike other filesystems, ZFS honors the
+ * request by waiting for all pools to commit all dirty data.
+ */
+ spa_sync_allpools();
+ }
+
+ return (0);
+}
+
+static void
+atime_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+ struct super_block *sb = zfsvfs->z_sb;
+
+ if (sb == NULL)
+ return;
+ /*
+ * Update SB_NOATIME bit in VFS super block. Since atime update is
+ * determined by atime_needs_update(), atime_needs_update() needs to
+ * return false if atime is turned off, and not unconditionally return
+ * false if atime is turned on.
+ */
+ if (newval)
+ sb->s_flags &= ~SB_NOATIME;
+ else
+ sb->s_flags |= SB_NOATIME;
+}
+
+static void
+relatime_changed_cb(void *arg, uint64_t newval)
+{
+ ((zfsvfs_t *)arg)->z_relatime = newval;
+}
+
+static void
+xattr_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+
+ if (newval == ZFS_XATTR_OFF) {
+ zfsvfs->z_flags &= ~ZSB_XATTR;
+ } else {
+ zfsvfs->z_flags |= ZSB_XATTR;
+
+ if (newval == ZFS_XATTR_SA)
+ zfsvfs->z_xattr_sa = B_TRUE;
+ else
+ zfsvfs->z_xattr_sa = B_FALSE;
+ }
+}
+
+static void
+acltype_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+
+ switch (newval) {
+ case ZFS_ACLTYPE_NFSV4:
+ case ZFS_ACLTYPE_OFF:
+ zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
+ zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
+ break;
+ case ZFS_ACLTYPE_POSIX:
+#ifdef CONFIG_FS_POSIX_ACL
+ zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
+ zfsvfs->z_sb->s_flags |= SB_POSIXACL;
+#else
+ zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
+ zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
+#endif /* CONFIG_FS_POSIX_ACL */
+ break;
+ default:
+ break;
+ }
+}
+
+static void
+blksz_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+ ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
+ ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
+ ASSERT(ISP2(newval));
+
+ zfsvfs->z_max_blksz = newval;
+}
+
+static void
+readonly_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+ struct super_block *sb = zfsvfs->z_sb;
+
+ if (sb == NULL)
+ return;
+
+ if (newval)
+ sb->s_flags |= SB_RDONLY;
+ else
+ sb->s_flags &= ~SB_RDONLY;
+}
+
+static void
+devices_changed_cb(void *arg, uint64_t newval)
+{
+}
+
+static void
+setuid_changed_cb(void *arg, uint64_t newval)
+{
+}
+
+static void
+exec_changed_cb(void *arg, uint64_t newval)
+{
+}
+
+static void
+nbmand_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+ struct super_block *sb = zfsvfs->z_sb;
+
+ if (sb == NULL)
+ return;
+
+ if (newval == TRUE)
+ sb->s_flags |= SB_MANDLOCK;
+ else
+ sb->s_flags &= ~SB_MANDLOCK;
+}
+
+static void
+snapdir_changed_cb(void *arg, uint64_t newval)
+{
+ ((zfsvfs_t *)arg)->z_show_ctldir = newval;
+}
+
+static void
+vscan_changed_cb(void *arg, uint64_t newval)
+{
+ ((zfsvfs_t *)arg)->z_vscan = newval;
+}
+
+static void
+acl_mode_changed_cb(void *arg, uint64_t newval)
+{
+ zfsvfs_t *zfsvfs = arg;
+
+ zfsvfs->z_acl_mode = newval;
+}
+
+static void
+acl_inherit_changed_cb(void *arg, uint64_t newval)
+{
+ ((zfsvfs_t *)arg)->z_acl_inherit = newval;
+}
+
+static int
+zfs_register_callbacks(vfs_t *vfsp)
+{
+ struct dsl_dataset *ds = NULL;
+ objset_t *os = NULL;
+ zfsvfs_t *zfsvfs = NULL;
+ int error = 0;
+
+ ASSERT(vfsp);
+ zfsvfs = vfsp->vfs_data;
+ ASSERT(zfsvfs);
+ os = zfsvfs->z_os;
+
+ /*
+ * The act of registering our callbacks will destroy any mount
+ * options we may have. In order to enable temporary overrides
+ * of mount options, we stash away the current values and
+ * restore them after we register the callbacks.
+ */
+ if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
+ vfsp->vfs_do_readonly = B_TRUE;
+ vfsp->vfs_readonly = B_TRUE;
+ }
+
+ /*
+ * Register property callbacks.
+ *
+ * It would probably be fine to just check for i/o error from
+ * the first prop_register(), but I guess I like to go
+ * overboard...
+ */
+ ds = dmu_objset_ds(os);
+ dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
+ error = dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
+ zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
+ error = error ? error : dsl_prop_register(ds,
+ zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
+ dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
+ if (error)
+ goto unregister;
+
+ /*
+ * Invoke our callbacks to restore temporary mount options.
+ */
+ if (vfsp->vfs_do_readonly)
+ readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
+ if (vfsp->vfs_do_setuid)
+ setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
+ if (vfsp->vfs_do_exec)
+ exec_changed_cb(zfsvfs, vfsp->vfs_exec);
+ if (vfsp->vfs_do_devices)
+ devices_changed_cb(zfsvfs, vfsp->vfs_devices);
+ if (vfsp->vfs_do_xattr)
+ xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
+ if (vfsp->vfs_do_atime)
+ atime_changed_cb(zfsvfs, vfsp->vfs_atime);
+ if (vfsp->vfs_do_relatime)
+ relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
+ if (vfsp->vfs_do_nbmand)
+ nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
+
+ return (0);
+
+unregister:
+ dsl_prop_unregister_all(ds, zfsvfs);
+ return (error);
+}
+
+/*
+ * Takes a dataset, a property, a value and that value's setpoint as
+ * found in the ZAP. Checks if the property has been changed in the vfs.
+ * If so, val and setpoint will be overwritten with updated content.
+ * Otherwise, they are left unchanged.
+ */
+int
+zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
+ char *setpoint)
+{
+ int error;
+ zfsvfs_t *zfvp;
+ vfs_t *vfsp;
+ objset_t *os;
+ uint64_t tmp = *val;
+
+ error = dmu_objset_from_ds(ds, &os);
+ if (error != 0)
+ return (error);
+
+ if (dmu_objset_type(os) != DMU_OST_ZFS)
+ return (EINVAL);
+
+ mutex_enter(&os->os_user_ptr_lock);
+ zfvp = dmu_objset_get_user(os);
+ mutex_exit(&os->os_user_ptr_lock);
+ if (zfvp == NULL)
+ return (ESRCH);
+
+ vfsp = zfvp->z_vfs;
+
+ switch (zfs_prop) {
+ case ZFS_PROP_ATIME:
+ if (vfsp->vfs_do_atime)
+ tmp = vfsp->vfs_atime;
+ break;
+ case ZFS_PROP_RELATIME:
+ if (vfsp->vfs_do_relatime)
+ tmp = vfsp->vfs_relatime;
+ break;
+ case ZFS_PROP_DEVICES:
+ if (vfsp->vfs_do_devices)
+ tmp = vfsp->vfs_devices;
+ break;
+ case ZFS_PROP_EXEC:
+ if (vfsp->vfs_do_exec)
+ tmp = vfsp->vfs_exec;
+ break;
+ case ZFS_PROP_SETUID:
+ if (vfsp->vfs_do_setuid)
+ tmp = vfsp->vfs_setuid;
+ break;
+ case ZFS_PROP_READONLY:
+ if (vfsp->vfs_do_readonly)
+ tmp = vfsp->vfs_readonly;
+ break;
+ case ZFS_PROP_XATTR:
+ if (vfsp->vfs_do_xattr)
+ tmp = vfsp->vfs_xattr;
+ break;
+ case ZFS_PROP_NBMAND:
+ if (vfsp->vfs_do_nbmand)
+ tmp = vfsp->vfs_nbmand;
+ break;
+ default:
+ return (ENOENT);
+ }
+
+ if (tmp != *val) {
+ (void) strcpy(setpoint, "temporary");
+ *val = tmp;
+ }
+ return (0);
+}
+
+/*
+ * Associate this zfsvfs with the given objset, which must be owned.
+ * This will cache a bunch of on-disk state from the objset in the
+ * zfsvfs.
+ */
+static int
+zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
+{
+ int error;
+ uint64_t val;
+
+ zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
+ zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
+ zfsvfs->z_os = os;
+
+ error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
+ if (error != 0)
+ return (error);
+ if (zfsvfs->z_version >
+ zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
+ (void) printk("Can't mount a version %lld file system "
+ "on a version %lld pool\n. Pool must be upgraded to mount "
+ "this file system.\n", (u_longlong_t)zfsvfs->z_version,
+ (u_longlong_t)spa_version(dmu_objset_spa(os)));
+ return (SET_ERROR(ENOTSUP));
+ }
+ error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
+ if (error != 0)
+ return (error);
+ zfsvfs->z_norm = (int)val;
+
+ error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
+ if (error != 0)
+ return (error);
+ zfsvfs->z_utf8 = (val != 0);
+
+ error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
+ if (error != 0)
+ return (error);
+ zfsvfs->z_case = (uint_t)val;
+
+ if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
+ return (error);
+ zfsvfs->z_acl_type = (uint_t)val;
+
+ /*
+ * Fold case on file systems that are always or sometimes case
+ * insensitive.
+ */
+ if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
+ zfsvfs->z_case == ZFS_CASE_MIXED)
+ zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
+
+ zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
+ zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
+
+ uint64_t sa_obj = 0;
+ if (zfsvfs->z_use_sa) {
+ /* should either have both of these objects or none */
+ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
+ &sa_obj);
+ if (error != 0)
+ return (error);
+
+ error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
+ if ((error == 0) && (val == ZFS_XATTR_SA))
+ zfsvfs->z_xattr_sa = B_TRUE;
+ }
+
+ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
+ &zfsvfs->z_root);
+ if (error != 0)
+ return (error);
+ ASSERT(zfsvfs->z_root != 0);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
+ &zfsvfs->z_unlinkedobj);
+ if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ,
+ zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
+ 8, 1, &zfsvfs->z_userquota_obj);
+ if (error == ENOENT)
+ zfsvfs->z_userquota_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ,
+ zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
+ 8, 1, &zfsvfs->z_groupquota_obj);
+ if (error == ENOENT)
+ zfsvfs->z_groupquota_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ,
+ zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
+ 8, 1, &zfsvfs->z_projectquota_obj);
+ if (error == ENOENT)
+ zfsvfs->z_projectquota_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ,
+ zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
+ 8, 1, &zfsvfs->z_userobjquota_obj);
+ if (error == ENOENT)
+ zfsvfs->z_userobjquota_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ,
+ zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
+ 8, 1, &zfsvfs->z_groupobjquota_obj);
+ if (error == ENOENT)
+ zfsvfs->z_groupobjquota_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ,
+ zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
+ 8, 1, &zfsvfs->z_projectobjquota_obj);
+ if (error == ENOENT)
+ zfsvfs->z_projectobjquota_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
+ &zfsvfs->z_fuid_obj);
+ if (error == ENOENT)
+ zfsvfs->z_fuid_obj = 0;
+ else if (error != 0)
+ return (error);
+
+ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
+ &zfsvfs->z_shares_dir);
+ if (error == ENOENT)
+ zfsvfs->z_shares_dir = 0;
+ else if (error != 0)
+ return (error);
+
+ error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
+ &zfsvfs->z_attr_table);
+ if (error != 0)
+ return (error);
+
+ if (zfsvfs->z_version >= ZPL_VERSION_SA)
+ sa_register_update_callback(os, zfs_sa_upgrade);
+
+ return (0);
+}
+
+int
+zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
+{
+ objset_t *os;
+ zfsvfs_t *zfsvfs;
+ int error;
+ boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
+
+ zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
+
+ error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
+ if (error != 0) {
+ kmem_free(zfsvfs, sizeof (zfsvfs_t));
+ return (error);
+ }
+
+ error = zfsvfs_create_impl(zfvp, zfsvfs, os);
+ if (error != 0) {
+ dmu_objset_disown(os, B_TRUE, zfsvfs);
+ }
+ return (error);
+}
+
+
+/*
+ * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
+ * on a failure. Do not pass in a statically allocated zfsvfs.
+ */
+int
+zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
+{
+ int error;
+
+ zfsvfs->z_vfs = NULL;
+ zfsvfs->z_sb = NULL;
+ zfsvfs->z_parent = zfsvfs;
+
+ mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
+ list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
+ offsetof(znode_t, z_link_node));
+ ZFS_TEARDOWN_INIT(zfsvfs);
+ rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
+ rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
+
+ int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
+ ZFS_OBJ_MTX_MAX);
+ zfsvfs->z_hold_size = size;
+ zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
+ KM_SLEEP);
+ zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
+ for (int i = 0; i != size; i++) {
+ avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
+ sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
+ mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
+ }
+
+ error = zfsvfs_init(zfsvfs, os);
+ if (error != 0) {
+ *zfvp = NULL;
+ zfsvfs_free(zfsvfs);
+ return (error);
+ }
+
+ zfsvfs->z_drain_task = TASKQID_INVALID;
+ zfsvfs->z_draining = B_FALSE;
+ zfsvfs->z_drain_cancel = B_TRUE;
+
+ *zfvp = zfsvfs;
+ return (0);
+}
+
+static int
+zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
+{
+ int error;
+ boolean_t readonly = zfs_is_readonly(zfsvfs);
+
+ error = zfs_register_callbacks(zfsvfs->z_vfs);
+ if (error)
+ return (error);
+
+ zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
+
+ /*
+ * If we are not mounting (ie: online recv), then we don't
+ * have to worry about replaying the log as we blocked all
+ * operations out since we closed the ZIL.
+ */
+ if (mounting) {
+ ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
+ dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
+
+ /*
+ * During replay we remove the read only flag to
+ * allow replays to succeed.
+ */
+ if (readonly != 0) {
+ readonly_changed_cb(zfsvfs, B_FALSE);
+ } else {
+ zap_stats_t zs;
+ if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
+ &zs) == 0) {
+ dataset_kstats_update_nunlinks_kstat(
+ &zfsvfs->z_kstat, zs.zs_num_entries);
+ dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
+ "num_entries in unlinked set: %llu",
+ zs.zs_num_entries);
+ }
+ zfs_unlinked_drain(zfsvfs);
+ dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
+ dd->dd_activity_cancelled = B_FALSE;
+ }
+
+ /*
+ * Parse and replay the intent log.
+ *
+ * Because of ziltest, this must be done after
+ * zfs_unlinked_drain(). (Further note: ziltest
+ * doesn't use readonly mounts, where
+ * zfs_unlinked_drain() isn't called.) This is because
+ * ziltest causes spa_sync() to think it's committed,
+ * but actually it is not, so the intent log contains
+ * many txg's worth of changes.
+ *
+ * In particular, if object N is in the unlinked set in
+ * the last txg to actually sync, then it could be
+ * actually freed in a later txg and then reallocated
+ * in a yet later txg. This would write a "create
+ * object N" record to the intent log. Normally, this
+ * would be fine because the spa_sync() would have
+ * written out the fact that object N is free, before
+ * we could write the "create object N" intent log
+ * record.
+ *
+ * But when we are in ziltest mode, we advance the "open
+ * txg" without actually spa_sync()-ing the changes to
+ * disk. So we would see that object N is still
+ * allocated and in the unlinked set, and there is an
+ * intent log record saying to allocate it.
+ */
+ if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
+ if (zil_replay_disable) {
+ zil_destroy(zfsvfs->z_log, B_FALSE);
+ } else {
+ zfsvfs->z_replay = B_TRUE;
+ zil_replay(zfsvfs->z_os, zfsvfs,
+ zfs_replay_vector);
+ zfsvfs->z_replay = B_FALSE;
+ }
+ }
+
+ /* restore readonly bit */
+ if (readonly != 0)
+ readonly_changed_cb(zfsvfs, B_TRUE);
+ }
+
+ /*
+ * Set the objset user_ptr to track its zfsvfs.
+ */
+ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
+ dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
+ mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
+
+ return (0);
+}
+
+void
+zfsvfs_free(zfsvfs_t *zfsvfs)
+{
+ int i, size = zfsvfs->z_hold_size;
+
+ zfs_fuid_destroy(zfsvfs);
+
+ mutex_destroy(&zfsvfs->z_znodes_lock);
+ mutex_destroy(&zfsvfs->z_lock);
+ list_destroy(&zfsvfs->z_all_znodes);
+ ZFS_TEARDOWN_DESTROY(zfsvfs);
+ rw_destroy(&zfsvfs->z_teardown_inactive_lock);
+ rw_destroy(&zfsvfs->z_fuid_lock);
+ for (i = 0; i != size; i++) {
+ avl_destroy(&zfsvfs->z_hold_trees[i]);
+ mutex_destroy(&zfsvfs->z_hold_locks[i]);
+ }
+ vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
+ vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
+ zfsvfs_vfs_free(zfsvfs->z_vfs);
+ dataset_kstats_destroy(&zfsvfs->z_kstat);
+ kmem_free(zfsvfs, sizeof (zfsvfs_t));
+}
+
+static void
+zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
+{
+ zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
+ zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
+}
+
+static void
+zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
+{
+ objset_t *os = zfsvfs->z_os;
+
+ if (!dmu_objset_is_snapshot(os))
+ dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
+}
+
+#ifdef HAVE_MLSLABEL
+/*
+ * Check that the hex label string is appropriate for the dataset being
+ * mounted into the global_zone proper.
+ *
+ * Return an error if the hex label string is not default or
+ * admin_low/admin_high. For admin_low labels, the corresponding
+ * dataset must be readonly.
+ */
+int
+zfs_check_global_label(const char *dsname, const char *hexsl)
+{
+ if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
+ return (0);
+ if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
+ return (0);
+ if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
+ /* must be readonly */
+ uint64_t rdonly;
+
+ if (dsl_prop_get_integer(dsname,
+ zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
+ return (SET_ERROR(EACCES));
+ return (rdonly ? 0 : SET_ERROR(EACCES));
+ }
+ return (SET_ERROR(EACCES));
+}
+#endif /* HAVE_MLSLABEL */
+
+static int
+zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
+ uint32_t bshift)
+{
+ char buf[20 + DMU_OBJACCT_PREFIX_LEN];
+ uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
+ uint64_t quota;
+ uint64_t used;
+ int err;
+
+ strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
+ err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
+ sizeof (buf) - offset, B_FALSE);
+ if (err)
+ return (err);
+
+ if (zfsvfs->z_projectquota_obj == 0)
+ goto objs;
+
+ err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
+ buf + offset, 8, 1, &quota);
+ if (err == ENOENT)
+ goto objs;
+ else if (err)
+ return (err);
+
+ err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
+ buf + offset, 8, 1, &used);
+ if (unlikely(err == ENOENT)) {
+ uint32_t blksize;
+ u_longlong_t nblocks;
+
+ /*
+ * Quota accounting is async, so it is possible race case.
+ * There is at least one object with the given project ID.
+ */
+ sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
+ if (unlikely(zp->z_blksz == 0))
+ blksize = zfsvfs->z_max_blksz;
+
+ used = blksize * nblocks;
+ } else if (err) {
+ return (err);
+ }
+
+ statp->f_blocks = quota >> bshift;
+ statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
+ statp->f_bavail = statp->f_bfree;
+
+objs:
+ if (zfsvfs->z_projectobjquota_obj == 0)
+ return (0);
+
+ err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
+ buf + offset, 8, 1, &quota);
+ if (err == ENOENT)
+ return (0);
+ else if (err)
+ return (err);
+
+ err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
+ buf, 8, 1, &used);
+ if (unlikely(err == ENOENT)) {
+ /*
+ * Quota accounting is async, so it is possible race case.
+ * There is at least one object with the given project ID.
+ */
+ used = 1;
+ } else if (err) {
+ return (err);
+ }
+
+ statp->f_files = quota;
+ statp->f_ffree = (quota > used) ? (quota - used) : 0;
+
+ return (0);
+}
+
+int
+zfs_statvfs(struct inode *ip, struct kstatfs *statp)
+{
+ zfsvfs_t *zfsvfs = ITOZSB(ip);
+ uint64_t refdbytes, availbytes, usedobjs, availobjs;
+ int err = 0;
+
+ ZFS_ENTER(zfsvfs);
+
+ dmu_objset_space(zfsvfs->z_os,
+ &refdbytes, &availbytes, &usedobjs, &availobjs);
+
+ uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
+ /*
+ * The underlying storage pool actually uses multiple block
+ * size. Under Solaris frsize (fragment size) is reported as
+ * the smallest block size we support, and bsize (block size)
+ * as the filesystem's maximum block size. Unfortunately,
+ * under Linux the fragment size and block size are often used
+ * interchangeably. Thus we are forced to report both of them
+ * as the filesystem's maximum block size.
+ */
+ statp->f_frsize = zfsvfs->z_max_blksz;
+ statp->f_bsize = zfsvfs->z_max_blksz;
+ uint32_t bshift = fls(statp->f_bsize) - 1;
+
+ /*
+ * The following report "total" blocks of various kinds in
+ * the file system, but reported in terms of f_bsize - the
+ * "preferred" size.
+ */
+
+ /* Round up so we never have a filesystem using 0 blocks. */
+ refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
+ statp->f_blocks = (refdbytes + availbytes) >> bshift;
+ statp->f_bfree = availbytes >> bshift;
+ statp->f_bavail = statp->f_bfree; /* no root reservation */
+
+ /*
+ * statvfs() should really be called statufs(), because it assumes
+ * static metadata. ZFS doesn't preallocate files, so the best
+ * we can do is report the max that could possibly fit in f_files,
+ * and that minus the number actually used in f_ffree.
+ * For f_ffree, report the smaller of the number of objects available
+ * and the number of blocks (each object will take at least a block).
+ */
+ statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
+ statp->f_files = statp->f_ffree + usedobjs;
+ statp->f_fsid.val[0] = (uint32_t)fsid;
+ statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
+ statp->f_type = ZFS_SUPER_MAGIC;
+ statp->f_namelen = MAXNAMELEN - 1;
+
+ /*
+ * We have all of 40 characters to stuff a string here.
+ * Is there anything useful we could/should provide?
+ */
+ bzero(statp->f_spare, sizeof (statp->f_spare));
+
+ if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
+ dmu_objset_projectquota_present(zfsvfs->z_os)) {
+ znode_t *zp = ITOZ(ip);
+
+ if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
+ zpl_is_valid_projid(zp->z_projid))
+ err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
+ }
+
+ ZFS_EXIT(zfsvfs);
+ return (err);
+}
+
+static int
+zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
+{
+ znode_t *rootzp;
+ int error;
+
+ ZFS_ENTER(zfsvfs);
+
+ error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
+ if (error == 0)
+ *ipp = ZTOI(rootzp);
+
+ ZFS_EXIT(zfsvfs);
+ return (error);
+}
+
+/*
+ * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
+ * To accommodate this we must improvise and manually walk the list of znodes
+ * attempting to prune dentries in order to be able to drop the inodes.
+ *
+ * To avoid scanning the same znodes multiple times they are always rotated
+ * to the end of the z_all_znodes list. New znodes are inserted at the
+ * end of the list so we're always scanning the oldest znodes first.
+ */
+static int
+zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
+{
+ znode_t **zp_array, *zp;
+ int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
+ int objects = 0;
+ int i = 0, j = 0;
+
+ zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
+
+ mutex_enter(&zfsvfs->z_znodes_lock);
+ while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
+
+ if ((i++ > nr_to_scan) || (j >= max_array))
+ break;
+
+ ASSERT(list_link_active(&zp->z_link_node));
+ list_remove(&zfsvfs->z_all_znodes, zp);
+ list_insert_tail(&zfsvfs->z_all_znodes, zp);
+
+ /* Skip active znodes and .zfs entries */
+ if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
+ continue;
+
+ if (igrab(ZTOI(zp)) == NULL)
+ continue;
+
+ zp_array[j] = zp;
+ j++;
+ }
+ mutex_exit(&zfsvfs->z_znodes_lock);
+
+ for (i = 0; i < j; i++) {
+ zp = zp_array[i];
+
+ ASSERT3P(zp, !=, NULL);
+ d_prune_aliases(ZTOI(zp));
+
+ if (atomic_read(&ZTOI(zp)->i_count) == 1)
+ objects++;
+
+ zrele(zp);
+ }
+
+ kmem_free(zp_array, max_array * sizeof (znode_t *));
+
+ return (objects);
+}
+
+/*
+ * The ARC has requested that the filesystem drop entries from the dentry
+ * and inode caches. This can occur when the ARC needs to free meta data
+ * blocks but can't because they are all pinned by entries in these caches.
+ */
+int
+zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
+{
+ zfsvfs_t *zfsvfs = sb->s_fs_info;
+ int error = 0;
+ struct shrinker *shrinker = &sb->s_shrink;
+ struct shrink_control sc = {
+ .nr_to_scan = nr_to_scan,
+ .gfp_mask = GFP_KERNEL,
+ };
+
+ ZFS_ENTER(zfsvfs);
+
+#if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
+ defined(SHRINK_CONTROL_HAS_NID) && \
+ defined(SHRINKER_NUMA_AWARE)
+ if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
+ *objects = 0;
+ for_each_online_node(sc.nid) {
+ *objects += (*shrinker->scan_objects)(shrinker, &sc);
+ }
+ } else {
+ *objects = (*shrinker->scan_objects)(shrinker, &sc);
+ }
+
+#elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
+ *objects = (*shrinker->scan_objects)(shrinker, &sc);
+#elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
+ *objects = (*shrinker->shrink)(shrinker, &sc);
+#elif defined(HAVE_D_PRUNE_ALIASES)
+#define D_PRUNE_ALIASES_IS_DEFAULT
+ *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
+#else
+#error "No available dentry and inode cache pruning mechanism."
+#endif
+
+#if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
+#undef D_PRUNE_ALIASES_IS_DEFAULT
+ /*
+ * Fall back to zfs_prune_aliases if the kernel's per-superblock
+ * shrinker couldn't free anything, possibly due to the inodes being
+ * allocated in a different memcg.
+ */
+ if (*objects == 0)
+ *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
+#endif
+
+ ZFS_EXIT(zfsvfs);
+
+ dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
+ "pruning, nr_to_scan=%lu objects=%d error=%d\n",
+ nr_to_scan, *objects, error);
+
+ return (error);
+}
+
+/*
+ * Teardown the zfsvfs_t.
+ *
+ * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
+ * and 'z_teardown_inactive_lock' held.
+ */
+static int
+zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
+{
+ znode_t *zp;
+
+ zfs_unlinked_drain_stop_wait(zfsvfs);
+
+ /*
+ * If someone has not already unmounted this file system,
+ * drain the zrele_taskq to ensure all active references to the
+ * zfsvfs_t have been handled only then can it be safely destroyed.
+ */
+ if (zfsvfs->z_os) {
+ /*
+ * If we're unmounting we have to wait for the list to
+ * drain completely.
+ *
+ * If we're not unmounting there's no guarantee the list
+ * will drain completely, but iputs run from the taskq
+ * may add the parents of dir-based xattrs to the taskq
+ * so we want to wait for these.
+ *
+ * We can safely read z_nr_znodes without locking because the
+ * VFS has already blocked operations which add to the
+ * z_all_znodes list and thus increment z_nr_znodes.
+ */
+ int round = 0;
+ while (zfsvfs->z_nr_znodes > 0) {
+ taskq_wait_outstanding(dsl_pool_zrele_taskq(
+ dmu_objset_pool(zfsvfs->z_os)), 0);
+ if (++round > 1 && !unmounting)
+ break;
+ }
+ }
+
+ ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
+
+ if (!unmounting) {
+ /*
+ * We purge the parent filesystem's super block as the
+ * parent filesystem and all of its snapshots have their
+ * inode's super block set to the parent's filesystem's
+ * super block. Note, 'z_parent' is self referential
+ * for non-snapshots.
+ */
+ shrink_dcache_sb(zfsvfs->z_parent->z_sb);
+ }
+
+ /*
+ * Close the zil. NB: Can't close the zil while zfs_inactive
+ * threads are blocked as zil_close can call zfs_inactive.
+ */
+ if (zfsvfs->z_log) {
+ zil_close(zfsvfs->z_log);
+ zfsvfs->z_log = NULL;
+ }
+
+ rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
+
+ /*
+ * If we are not unmounting (ie: online recv) and someone already
+ * unmounted this file system while we were doing the switcheroo,
+ * or a reopen of z_os failed then just bail out now.
+ */
+ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
+ rw_exit(&zfsvfs->z_teardown_inactive_lock);
+ ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
+ return (SET_ERROR(EIO));
+ }
+
+ /*
+ * At this point there are no VFS ops active, and any new VFS ops
+ * will fail with EIO since we have z_teardown_lock for writer (only
+ * relevant for forced unmount).
+ *
+ * Release all holds on dbufs. We also grab an extra reference to all
+ * the remaining inodes so that the kernel does not attempt to free
+ * any inodes of a suspended fs. This can cause deadlocks since the
+ * zfs_resume_fs() process may involve starting threads, which might
+ * attempt to free unreferenced inodes to free up memory for the new
+ * thread.
+ */
+ if (!unmounting) {
+ mutex_enter(&zfsvfs->z_znodes_lock);
+ for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
+ zp = list_next(&zfsvfs->z_all_znodes, zp)) {
+ if (zp->z_sa_hdl)
+ zfs_znode_dmu_fini(zp);
+ if (igrab(ZTOI(zp)) != NULL)
+ zp->z_suspended = B_TRUE;
+
+ }
+ mutex_exit(&zfsvfs->z_znodes_lock);
+ }
+
+ /*
+ * If we are unmounting, set the unmounted flag and let new VFS ops
+ * unblock. zfs_inactive will have the unmounted behavior, and all
+ * other VFS ops will fail with EIO.
+ */
+ if (unmounting) {
+ zfsvfs->z_unmounted = B_TRUE;
+ rw_exit(&zfsvfs->z_teardown_inactive_lock);
+ ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
+ }
+
+ /*
+ * z_os will be NULL if there was an error in attempting to reopen
+ * zfsvfs, so just return as the properties had already been
+ *
+ * unregistered and cached data had been evicted before.
+ */
+ if (zfsvfs->z_os == NULL)
+ return (0);
+
+ /*
+ * Unregister properties.
+ */
+ zfs_unregister_callbacks(zfsvfs);
+
+ /*
+ * Evict cached data. We must write out any dirty data before
+ * disowning the dataset.
+ */
+ objset_t *os = zfsvfs->z_os;
+ boolean_t os_dirty = B_FALSE;
+ for (int t = 0; t < TXG_SIZE; t++) {
+ if (dmu_objset_is_dirty(os, t)) {
+ os_dirty = B_TRUE;
+ break;
+ }
+ }
+ if (!zfs_is_readonly(zfsvfs) && os_dirty) {
+ txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
+ }
+ dmu_objset_evict_dbufs(zfsvfs->z_os);
+ dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
+ dsl_dir_cancel_waiters(dd);
+
+ return (0);
+}
+
+#if defined(HAVE_SUPER_SETUP_BDI_NAME)
+atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
+#endif
+
+int
+zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
+{
+ const char *osname = zm->mnt_osname;
+ struct inode *root_inode = NULL;
+ uint64_t recordsize;
+ int error = 0;
+ zfsvfs_t *zfsvfs = NULL;
+ vfs_t *vfs = NULL;
+
+ ASSERT(zm);
+ ASSERT(osname);
+
+ error = zfsvfs_parse_options(zm->mnt_data, &vfs);
+ if (error)
+ return (error);
+
+ error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
+ if (error) {
+ zfsvfs_vfs_free(vfs);
+ goto out;
+ }
+
+ if ((error = dsl_prop_get_integer(osname, "recordsize",
+ &recordsize, NULL))) {
+ zfsvfs_vfs_free(vfs);
+ goto out;
+ }
+
+ vfs->vfs_data = zfsvfs;
+ zfsvfs->z_vfs = vfs;
+ zfsvfs->z_sb = sb;
+ sb->s_fs_info = zfsvfs;
+ sb->s_magic = ZFS_SUPER_MAGIC;
+ sb->s_maxbytes = MAX_LFS_FILESIZE;
+ sb->s_time_gran = 1;
+ sb->s_blocksize = recordsize;
+ sb->s_blocksize_bits = ilog2(recordsize);
+
+ error = -zpl_bdi_setup(sb, "zfs");
+ if (error)
+ goto out;
+
+ sb->s_bdi->ra_pages = 0;
+
+ /* Set callback operations for the file system. */
+ sb->s_op = &zpl_super_operations;
+ sb->s_xattr = zpl_xattr_handlers;
+ sb->s_export_op = &zpl_export_operations;
+ sb->s_d_op = &zpl_dentry_operations;
+
+ /* Set features for file system. */
+ zfs_set_fuid_feature(zfsvfs);
+
+ if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
+ uint64_t pval;
+
+ atime_changed_cb(zfsvfs, B_FALSE);
+ readonly_changed_cb(zfsvfs, B_TRUE);
+ if ((error = dsl_prop_get_integer(osname,
+ "xattr", &pval, NULL)))
+ goto out;
+ xattr_changed_cb(zfsvfs, pval);
+ if ((error = dsl_prop_get_integer(osname,
+ "acltype", &pval, NULL)))
+ goto out;
+ acltype_changed_cb(zfsvfs, pval);
+ zfsvfs->z_issnap = B_TRUE;
+ zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
+ zfsvfs->z_snap_defer_time = jiffies;
+
+ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
+ dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
+ mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
+ } else {
+ if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
+ goto out;
+ }
+
+ /* Allocate a root inode for the filesystem. */
+ error = zfs_root(zfsvfs, &root_inode);
+ if (error) {
+ (void) zfs_umount(sb);
+ goto out;
+ }
+
+ /* Allocate a root dentry for the filesystem */
+ sb->s_root = d_make_root(root_inode);
+ if (sb->s_root == NULL) {
+ (void) zfs_umount(sb);
+ error = SET_ERROR(ENOMEM);
+ goto out;
+ }
+
+ if (!zfsvfs->z_issnap)
+ zfsctl_create(zfsvfs);
+
+ zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
+out:
+ if (error) {
+ if (zfsvfs != NULL) {
+ dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
+ zfsvfs_free(zfsvfs);
+ }
+ /*
+ * make sure we don't have dangling sb->s_fs_info which
+ * zfs_preumount will use.
+ */
+ sb->s_fs_info = NULL;
+ }
+
+ return (error);
+}
+
+/*
+ * Called when an unmount is requested and certain sanity checks have
+ * already passed. At this point no dentries or inodes have been reclaimed
+ * from their respective caches. We drop the extra reference on the .zfs
+ * control directory to allow everything to be reclaimed. All snapshots
+ * must already have been unmounted to reach this point.
+ */
+void
+zfs_preumount(struct super_block *sb)
+{
+ zfsvfs_t *zfsvfs = sb->s_fs_info;
+
+ /* zfsvfs is NULL when zfs_domount fails during mount */
+ if (zfsvfs) {
+ zfs_unlinked_drain_stop_wait(zfsvfs);
+ zfsctl_destroy(sb->s_fs_info);
+ /*
+ * Wait for zrele_async before entering evict_inodes in
+ * generic_shutdown_super. The reason we must finish before
+ * evict_inodes is when lazytime is on, or when zfs_purgedir
+ * calls zfs_zget, zrele would bump i_count from 0 to 1. This
+ * would race with the i_count check in evict_inodes. This means
+ * it could destroy the inode while we are still using it.
+ *
+ * We wait for two passes. xattr directories in the first pass
+ * may add xattr entries in zfs_purgedir, so in the second pass
+ * we wait for them. We don't use taskq_wait here because it is
+ * a pool wide taskq. Other mounted filesystems can constantly
+ * do zrele_async and there's no guarantee when taskq will be
+ * empty.
+ */
+ taskq_wait_outstanding(dsl_pool_zrele_taskq(
+ dmu_objset_pool(zfsvfs->z_os)), 0);
+ taskq_wait_outstanding(dsl_pool_zrele_taskq(
+ dmu_objset_pool(zfsvfs->z_os)), 0);
+ }
+}
+
+/*
+ * Called once all other unmount released tear down has occurred.
+ * It is our responsibility to release any remaining infrastructure.
+ */
+/*ARGSUSED*/
+int
+zfs_umount(struct super_block *sb)
+{
+ zfsvfs_t *zfsvfs = sb->s_fs_info;
+ objset_t *os;
+
+ if (zfsvfs->z_arc_prune != NULL)
+ arc_remove_prune_callback(zfsvfs->z_arc_prune);
+ VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
+ os = zfsvfs->z_os;
+ zpl_bdi_destroy(sb);
+
+ /*
+ * z_os will be NULL if there was an error in
+ * attempting to reopen zfsvfs.
+ */
+ if (os != NULL) {
+ /*
+ * Unset the objset user_ptr.
+ */
+ mutex_enter(&os->os_user_ptr_lock);
+ dmu_objset_set_user(os, NULL);
+ mutex_exit(&os->os_user_ptr_lock);
+
+ /*
+ * Finally release the objset
+ */
+ dmu_objset_disown(os, B_TRUE, zfsvfs);
+ }
+
+ zfsvfs_free(zfsvfs);
+ return (0);
+}
+
+int
+zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
+{
+ zfsvfs_t *zfsvfs = sb->s_fs_info;
+ vfs_t *vfsp;
+ boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
+ int error;
+
+ if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
+ !(*flags & SB_RDONLY)) {
+ *flags |= SB_RDONLY;
+ return (EROFS);
+ }
+
+ error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
+ if (error)
+ return (error);
+
+ if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
+ txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
+
+ zfs_unregister_callbacks(zfsvfs);
+ zfsvfs_vfs_free(zfsvfs->z_vfs);
+
+ vfsp->vfs_data = zfsvfs;
+ zfsvfs->z_vfs = vfsp;
+ if (!issnap)
+ (void) zfs_register_callbacks(vfsp);
+
+ return (error);
+}
+
+int
+zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
+{
+ zfsvfs_t *zfsvfs = sb->s_fs_info;
+ znode_t *zp;
+ uint64_t object = 0;
+ uint64_t fid_gen = 0;
+ uint64_t gen_mask;
+ uint64_t zp_gen;
+ int i, err;
+
+ *ipp = NULL;
+
+ if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
+ zfid_short_t *zfid = (zfid_short_t *)fidp;
+
+ for (i = 0; i < sizeof (zfid->zf_object); i++)
+ object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
+
+ for (i = 0; i < sizeof (zfid->zf_gen); i++)
+ fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
+ } else {
+ return (SET_ERROR(EINVAL));
+ }
+
+ /* LONG_FID_LEN means snapdirs */
+ if (fidp->fid_len == LONG_FID_LEN) {
+ zfid_long_t *zlfid = (zfid_long_t *)fidp;
+ uint64_t objsetid = 0;
+ uint64_t setgen = 0;
+
+ for (i = 0; i < sizeof (zlfid->zf_setid); i++)
+ objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
+
+ for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
+ setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
+
+ if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
+ dprintf("snapdir fid: objsetid (%llu) != "
+ "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
+ objsetid, ZFSCTL_INO_SNAPDIRS, object);
+
+ return (SET_ERROR(EINVAL));
+ }
+
+ if (fid_gen > 1 || setgen != 0) {
+ dprintf("snapdir fid: fid_gen (%llu) and setgen "
+ "(%llu)\n", fid_gen, setgen);
+ return (SET_ERROR(EINVAL));
+ }
+
+ return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
+ }
+
+ ZFS_ENTER(zfsvfs);
+ /* A zero fid_gen means we are in the .zfs control directories */
+ if (fid_gen == 0 &&
+ (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
+ *ipp = zfsvfs->z_ctldir;
+ ASSERT(*ipp != NULL);
+ if (object == ZFSCTL_INO_SNAPDIR) {
+ VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
+ 0, kcred, NULL, NULL) == 0);
+ } else {
+ igrab(*ipp);
+ }
+ ZFS_EXIT(zfsvfs);
+ return (0);
+ }
+
+ gen_mask = -1ULL >> (64 - 8 * i);
+
+ dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
+ if ((err = zfs_zget(zfsvfs, object, &zp))) {
+ ZFS_EXIT(zfsvfs);
+ return (err);
+ }
+
+ /* Don't export xattr stuff */
+ if (zp->z_pflags & ZFS_XATTR) {
+ zrele(zp);
+ ZFS_EXIT(zfsvfs);
+ return (SET_ERROR(ENOENT));
+ }
+
+ (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
+ sizeof (uint64_t));
+ zp_gen = zp_gen & gen_mask;
+ if (zp_gen == 0)
+ zp_gen = 1;
+ if ((fid_gen == 0) && (zfsvfs->z_root == object))
+ fid_gen = zp_gen;
+ if (zp->z_unlinked || zp_gen != fid_gen) {
+ dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
+ fid_gen);
+ zrele(zp);
+ ZFS_EXIT(zfsvfs);
+ return (SET_ERROR(ENOENT));
+ }
+
+ *ipp = ZTOI(zp);
+ if (*ipp)
+ zfs_znode_update_vfs(ITOZ(*ipp));
+
+ ZFS_EXIT(zfsvfs);
+ return (0);
+}
+
+/*
+ * Block out VFS ops and close zfsvfs_t
+ *
+ * Note, if successful, then we return with the 'z_teardown_lock' and
+ * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
+ * dataset and objset intact so that they can be atomically handed off during
+ * a subsequent rollback or recv operation and the resume thereafter.
+ */
+int
+zfs_suspend_fs(zfsvfs_t *zfsvfs)
+{
+ int error;
+
+ if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
+ return (error);
+
+ return (0);
+}
+
+/*
+ * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
+ * is an invariant across any of the operations that can be performed while the
+ * filesystem was suspended. Whether it succeeded or failed, the preconditions
+ * are the same: the relevant objset and associated dataset are owned by
+ * zfsvfs, held, and long held on entry.
+ */
+int
+zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
+{
+ int err, err2;
+ znode_t *zp;
+
+ ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
+ ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
+
+ /*
+ * We already own this, so just update the objset_t, as the one we
+ * had before may have been evicted.
+ */
+ objset_t *os;
+ VERIFY3P(ds->ds_owner, ==, zfsvfs);
+ VERIFY(dsl_dataset_long_held(ds));
+ dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
+ dsl_pool_config_enter(dp, FTAG);
+ VERIFY0(dmu_objset_from_ds(ds, &os));
+ dsl_pool_config_exit(dp, FTAG);
+
+ err = zfsvfs_init(zfsvfs, os);
+ if (err != 0)
+ goto bail;
+
+ ds->ds_dir->dd_activity_cancelled = B_FALSE;
+ VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
+
+ zfs_set_fuid_feature(zfsvfs);
+ zfsvfs->z_rollback_time = jiffies;
+
+ /*
+ * Attempt to re-establish all the active inodes with their
+ * dbufs. If a zfs_rezget() fails, then we unhash the inode
+ * and mark it stale. This prevents a collision if a new
+ * inode/object is created which must use the same inode
+ * number. The stale inode will be be released when the
+ * VFS prunes the dentry holding the remaining references
+ * on the stale inode.
+ */
+ mutex_enter(&zfsvfs->z_znodes_lock);
+ for (zp = list_head(&zfsvfs->z_all_znodes); zp;
+ zp = list_next(&zfsvfs->z_all_znodes, zp)) {
+ err2 = zfs_rezget(zp);
+ if (err2) {
+ remove_inode_hash(ZTOI(zp));
+ zp->z_is_stale = B_TRUE;
+ }
+
+ /* see comment in zfs_suspend_fs() */
+ if (zp->z_suspended) {
+ zfs_zrele_async(zp);
+ zp->z_suspended = B_FALSE;
+ }
+ }
+ mutex_exit(&zfsvfs->z_znodes_lock);
+
+ if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
+ /*
+ * zfs_suspend_fs() could have interrupted freeing
+ * of dnodes. We need to restart this freeing so
+ * that we don't "leak" the space.
+ */
+ zfs_unlinked_drain(zfsvfs);
+ }
+
+ /*
+ * Most of the time zfs_suspend_fs is used for changing the contents
+ * of the underlying dataset. ZFS rollback and receive operations
+ * might create files for which negative dentries are present in
+ * the cache. Since walking the dcache would require a lot of GPL-only
+ * code duplication, it's much easier on these rather rare occasions
+ * just to flush the whole dcache for the given dataset/filesystem.
+ */
+ shrink_dcache_sb(zfsvfs->z_sb);
+
+bail:
+ if (err != 0)
+ zfsvfs->z_unmounted = B_TRUE;
+
+ /* release the VFS ops */
+ rw_exit(&zfsvfs->z_teardown_inactive_lock);
+ ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
+
+ if (err != 0) {
+ /*
+ * Since we couldn't setup the sa framework, try to force
+ * unmount this file system.
+ */
+ if (zfsvfs->z_os)
+ (void) zfs_umount(zfsvfs->z_sb);
+ }
+ return (err);
+}
+
+/*
+ * Release VOPs and unmount a suspended filesystem.
+ */
+int
+zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
+{
+ ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
+ ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
+
+ /*
+ * We already own this, so just hold and rele it to update the
+ * objset_t, as the one we had before may have been evicted.
+ */
+ objset_t *os;
+ VERIFY3P(ds->ds_owner, ==, zfsvfs);
+ VERIFY(dsl_dataset_long_held(ds));
+ dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
+ dsl_pool_config_enter(dp, FTAG);
+ VERIFY0(dmu_objset_from_ds(ds, &os));
+ dsl_pool_config_exit(dp, FTAG);
+ zfsvfs->z_os = os;
+
+ /* release the VOPs */
+ rw_exit(&zfsvfs->z_teardown_inactive_lock);
+ ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
+
+ /*
+ * Try to force unmount this file system.
+ */
+ (void) zfs_umount(zfsvfs->z_sb);
+ zfsvfs->z_unmounted = B_TRUE;
+ return (0);
+}
+
+/*
+ * Automounted snapshots rely on periodic revalidation
+ * to defer snapshots from being automatically unmounted.
+ */
+
+inline void
+zfs_exit_fs(zfsvfs_t *zfsvfs)
+{
+ if (!zfsvfs->z_issnap)
+ return;
+
+ if (time_after(jiffies, zfsvfs->z_snap_defer_time +
+ MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
+ zfsvfs->z_snap_defer_time = jiffies;
+ zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
+ dmu_objset_id(zfsvfs->z_os),
+ zfs_expire_snapshot);
+ }
+}
+
+int
+zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
+{
+ int error;
+ objset_t *os = zfsvfs->z_os;
+ dmu_tx_t *tx;
+
+ if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
+ return (SET_ERROR(EINVAL));
+
+ if (newvers < zfsvfs->z_version)
+ return (SET_ERROR(EINVAL));
+
+ if (zfs_spa_version_map(newvers) >
+ spa_version(dmu_objset_spa(zfsvfs->z_os)))
+ return (SET_ERROR(ENOTSUP));
+
+ tx = dmu_tx_create(os);
+ dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
+ if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
+ dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
+ ZFS_SA_ATTRS);
+ dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
+ }
+ error = dmu_tx_assign(tx, TXG_WAIT);
+ if (error) {
+ dmu_tx_abort(tx);
+ return (error);
+ }
+
+ error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
+ 8, 1, &newvers, tx);
+
+ if (error) {
+ dmu_tx_commit(tx);
+ return (error);
+ }
+
+ if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
+ uint64_t sa_obj;
+
+ ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
+ SPA_VERSION_SA);
+ sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
+ DMU_OT_NONE, 0, tx);
+
+ error = zap_add(os, MASTER_NODE_OBJ,
+ ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
+ ASSERT0(error);
+
+ VERIFY(0 == sa_set_sa_object(os, sa_obj));
+ sa_register_update_callback(os, zfs_sa_upgrade);
+ }
+
+ spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
+ "from %llu to %llu", zfsvfs->z_version, newvers);
+
+ dmu_tx_commit(tx);
+
+ zfsvfs->z_version = newvers;
+ os->os_version = newvers;
+
+ zfs_set_fuid_feature(zfsvfs);
+
+ return (0);
+}
+
+/*
+ * Read a property stored within the master node.
+ */
+int
+zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
+{
+ uint64_t *cached_copy = NULL;
+
+ /*
+ * Figure out where in the objset_t the cached copy would live, if it
+ * is available for the requested property.
+ */
+ if (os != NULL) {
+ switch (prop) {
+ case ZFS_PROP_VERSION:
+ cached_copy = &os->os_version;
+ break;
+ case ZFS_PROP_NORMALIZE:
+ cached_copy = &os->os_normalization;
+ break;
+ case ZFS_PROP_UTF8ONLY:
+ cached_copy = &os->os_utf8only;
+ break;
+ case ZFS_PROP_CASE:
+ cached_copy = &os->os_casesensitivity;
+ break;
+ default:
+ break;
+ }
+ }
+ if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
+ *value = *cached_copy;
+ return (0);
+ }
+
+ /*
+ * If the property wasn't cached, look up the file system's value for
+ * the property. For the version property, we look up a slightly
+ * different string.
+ */
+ const char *pname;
+ int error = ENOENT;
+ if (prop == ZFS_PROP_VERSION)
+ pname = ZPL_VERSION_STR;
+ else
+ pname = zfs_prop_to_name(prop);
+
+ if (os != NULL) {
+ ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
+ error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
+ }
+
+ if (error == ENOENT) {
+ /* No value set, use the default value */
+ switch (prop) {
+ case ZFS_PROP_VERSION:
+ *value = ZPL_VERSION;
+ break;
+ case ZFS_PROP_NORMALIZE:
+ case ZFS_PROP_UTF8ONLY:
+ *value = 0;
+ break;
+ case ZFS_PROP_CASE:
+ *value = ZFS_CASE_SENSITIVE;
+ break;
+ case ZFS_PROP_ACLTYPE:
+ *value = ZFS_ACLTYPE_OFF;
+ break;
+ default:
+ return (error);
+ }
+ error = 0;
+ }
+
+ /*
+ * If one of the methods for getting the property value above worked,
+ * copy it into the objset_t's cache.
+ */
+ if (error == 0 && cached_copy != NULL) {
+ *cached_copy = *value;
+ }
+
+ return (error);
+}
+
+/*
+ * Return true if the corresponding vfs's unmounted flag is set.
+ * Otherwise return false.
+ * If this function returns true we know VFS unmount has been initiated.
+ */
+boolean_t
+zfs_get_vfs_flag_unmounted(objset_t *os)
+{
+ zfsvfs_t *zfvp;
+ boolean_t unmounted = B_FALSE;
+
+ ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
+
+ mutex_enter(&os->os_user_ptr_lock);
+ zfvp = dmu_objset_get_user(os);
+ if (zfvp != NULL && zfvp->z_unmounted)
+ unmounted = B_TRUE;
+ mutex_exit(&os->os_user_ptr_lock);
+
+ return (unmounted);
+}
+
+/*ARGSUSED*/
+void
+zfsvfs_update_fromname(const char *oldname, const char *newname)
+{
+ /*
+ * We don't need to do anything here, the devname is always current by
+ * virtue of zfsvfs->z_sb->s_op->show_devname.
+ */
+}
+
+void
+zfs_init(void)
+{
+ zfsctl_init();
+ zfs_znode_init();
+ dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
+ register_filesystem(&zpl_fs_type);
+}
+
+void
+zfs_fini(void)
+{
+ /*
+ * we don't use outstanding because zpl_posix_acl_free might add more.
+ */
+ taskq_wait(system_delay_taskq);
+ taskq_wait(system_taskq);
+ unregister_filesystem(&zpl_fs_type);
+ zfs_znode_fini();
+ zfsctl_fini();
+}
+
+#if defined(_KERNEL)
+EXPORT_SYMBOL(zfs_suspend_fs);
+EXPORT_SYMBOL(zfs_resume_fs);
+EXPORT_SYMBOL(zfs_set_version);
+EXPORT_SYMBOL(zfsvfs_create);
+EXPORT_SYMBOL(zfsvfs_free);
+EXPORT_SYMBOL(zfs_is_readonly);
+EXPORT_SYMBOL(zfs_domount);
+EXPORT_SYMBOL(zfs_preumount);
+EXPORT_SYMBOL(zfs_umount);
+EXPORT_SYMBOL(zfs_remount);
+EXPORT_SYMBOL(zfs_statvfs);
+EXPORT_SYMBOL(zfs_vget);
+EXPORT_SYMBOL(zfs_prune);
+#endif