aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/dsl_dir.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/dsl_dir.c')
-rw-r--r--sys/contrib/openzfs/module/zfs/dsl_dir.c2404
1 files changed, 2404 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/dsl_dir.c b/sys/contrib/openzfs/module/zfs/dsl_dir.c
new file mode 100644
index 000000000000..df2c3d8f0637
--- /dev/null
+++ b/sys/contrib/openzfs/module/zfs/dsl_dir.c
@@ -0,0 +1,2404 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
+ * Copyright (c) 2013 Martin Matuska. All rights reserved.
+ * Copyright (c) 2014 Joyent, Inc. All rights reserved.
+ * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
+ * Copyright (c) 2016 Actifio, Inc. All rights reserved.
+ * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
+ */
+
+#include <sys/dmu.h>
+#include <sys/dmu_objset.h>
+#include <sys/dmu_tx.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_dir.h>
+#include <sys/dsl_prop.h>
+#include <sys/dsl_synctask.h>
+#include <sys/dsl_deleg.h>
+#include <sys/dmu_impl.h>
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/metaslab.h>
+#include <sys/zap.h>
+#include <sys/zio.h>
+#include <sys/arc.h>
+#include <sys/sunddi.h>
+#include <sys/zfeature.h>
+#include <sys/policy.h>
+#include <sys/zfs_vfsops.h>
+#include <sys/zfs_znode.h>
+#include <sys/zvol.h>
+#include <sys/zthr.h>
+#include "zfs_namecheck.h"
+#include "zfs_prop.h"
+
+/*
+ * Filesystem and Snapshot Limits
+ * ------------------------------
+ *
+ * These limits are used to restrict the number of filesystems and/or snapshots
+ * that can be created at a given level in the tree or below. A typical
+ * use-case is with a delegated dataset where the administrator wants to ensure
+ * that a user within the zone is not creating too many additional filesystems
+ * or snapshots, even though they're not exceeding their space quota.
+ *
+ * The filesystem and snapshot counts are stored as extensible properties. This
+ * capability is controlled by a feature flag and must be enabled to be used.
+ * Once enabled, the feature is not active until the first limit is set. At
+ * that point, future operations to create/destroy filesystems or snapshots
+ * will validate and update the counts.
+ *
+ * Because the count properties will not exist before the feature is active,
+ * the counts are updated when a limit is first set on an uninitialized
+ * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
+ * all of the nested filesystems/snapshots. Thus, a new leaf node has a
+ * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
+ * snapshot count properties on a node indicate uninitialized counts on that
+ * node.) When first setting a limit on an uninitialized node, the code starts
+ * at the filesystem with the new limit and descends into all sub-filesystems
+ * to add the count properties.
+ *
+ * In practice this is lightweight since a limit is typically set when the
+ * filesystem is created and thus has no children. Once valid, changing the
+ * limit value won't require a re-traversal since the counts are already valid.
+ * When recursively fixing the counts, if a node with a limit is encountered
+ * during the descent, the counts are known to be valid and there is no need to
+ * descend into that filesystem's children. The counts on filesystems above the
+ * one with the new limit will still be uninitialized, unless a limit is
+ * eventually set on one of those filesystems. The counts are always recursively
+ * updated when a limit is set on a dataset, unless there is already a limit.
+ * When a new limit value is set on a filesystem with an existing limit, it is
+ * possible for the new limit to be less than the current count at that level
+ * since a user who can change the limit is also allowed to exceed the limit.
+ *
+ * Once the feature is active, then whenever a filesystem or snapshot is
+ * created, the code recurses up the tree, validating the new count against the
+ * limit at each initialized level. In practice, most levels will not have a
+ * limit set. If there is a limit at any initialized level up the tree, the
+ * check must pass or the creation will fail. Likewise, when a filesystem or
+ * snapshot is destroyed, the counts are recursively adjusted all the way up
+ * the initialized nodes in the tree. Renaming a filesystem into different point
+ * in the tree will first validate, then update the counts on each branch up to
+ * the common ancestor. A receive will also validate the counts and then update
+ * them.
+ *
+ * An exception to the above behavior is that the limit is not enforced if the
+ * user has permission to modify the limit. This is primarily so that
+ * recursive snapshots in the global zone always work. We want to prevent a
+ * denial-of-service in which a lower level delegated dataset could max out its
+ * limit and thus block recursive snapshots from being taken in the global zone.
+ * Because of this, it is possible for the snapshot count to be over the limit
+ * and snapshots taken in the global zone could cause a lower level dataset to
+ * hit or exceed its limit. The administrator taking the global zone recursive
+ * snapshot should be aware of this side-effect and behave accordingly.
+ * For consistency, the filesystem limit is also not enforced if the user can
+ * modify the limit.
+ *
+ * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
+ * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
+ * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
+ * dsl_dir_init_fs_ss_count().
+ */
+
+extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
+
+static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
+
+typedef struct ddulrt_arg {
+ dsl_dir_t *ddulrta_dd;
+ uint64_t ddlrta_txg;
+} ddulrt_arg_t;
+
+static void
+dsl_dir_evict_async(void *dbu)
+{
+ dsl_dir_t *dd = dbu;
+ int t;
+ dsl_pool_t *dp __maybe_unused = dd->dd_pool;
+
+ dd->dd_dbuf = NULL;
+
+ for (t = 0; t < TXG_SIZE; t++) {
+ ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
+ ASSERT(dd->dd_tempreserved[t] == 0);
+ ASSERT(dd->dd_space_towrite[t] == 0);
+ }
+
+ if (dd->dd_parent)
+ dsl_dir_async_rele(dd->dd_parent, dd);
+
+ spa_async_close(dd->dd_pool->dp_spa, dd);
+
+ if (dsl_deadlist_is_open(&dd->dd_livelist))
+ dsl_dir_livelist_close(dd);
+
+ dsl_prop_fini(dd);
+ cv_destroy(&dd->dd_activity_cv);
+ mutex_destroy(&dd->dd_activity_lock);
+ mutex_destroy(&dd->dd_lock);
+ kmem_free(dd, sizeof (dsl_dir_t));
+}
+
+int
+dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
+ const char *tail, void *tag, dsl_dir_t **ddp)
+{
+ dmu_buf_t *dbuf;
+ dsl_dir_t *dd;
+ dmu_object_info_t doi;
+ int err;
+
+ ASSERT(dsl_pool_config_held(dp));
+
+ err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
+ if (err != 0)
+ return (err);
+ dd = dmu_buf_get_user(dbuf);
+
+ dmu_object_info_from_db(dbuf, &doi);
+ ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
+ ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
+
+ if (dd == NULL) {
+ dsl_dir_t *winner;
+
+ dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
+ dd->dd_object = ddobj;
+ dd->dd_dbuf = dbuf;
+ dd->dd_pool = dp;
+
+ mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
+ dsl_prop_init(dd);
+
+ if (dsl_dir_is_zapified(dd)) {
+ err = zap_lookup(dp->dp_meta_objset,
+ ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
+ sizeof (uint64_t), 1, &dd->dd_crypto_obj);
+ if (err == 0) {
+ /* check for on-disk format errata */
+ if (dsl_dir_incompatible_encryption_version(
+ dd)) {
+ dp->dp_spa->spa_errata =
+ ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
+ }
+ } else if (err != ENOENT) {
+ goto errout;
+ }
+ }
+
+ dsl_dir_snap_cmtime_update(dd);
+
+ if (dsl_dir_phys(dd)->dd_parent_obj) {
+ err = dsl_dir_hold_obj(dp,
+ dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
+ &dd->dd_parent);
+ if (err != 0)
+ goto errout;
+ if (tail) {
+#ifdef ZFS_DEBUG
+ uint64_t foundobj;
+
+ err = zap_lookup(dp->dp_meta_objset,
+ dsl_dir_phys(dd->dd_parent)->
+ dd_child_dir_zapobj, tail,
+ sizeof (foundobj), 1, &foundobj);
+ ASSERT(err || foundobj == ddobj);
+#endif
+ (void) strlcpy(dd->dd_myname, tail,
+ sizeof (dd->dd_myname));
+ } else {
+ err = zap_value_search(dp->dp_meta_objset,
+ dsl_dir_phys(dd->dd_parent)->
+ dd_child_dir_zapobj,
+ ddobj, 0, dd->dd_myname);
+ }
+ if (err != 0)
+ goto errout;
+ } else {
+ (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
+ sizeof (dd->dd_myname));
+ }
+
+ if (dsl_dir_is_clone(dd)) {
+ dmu_buf_t *origin_bonus;
+ dsl_dataset_phys_t *origin_phys;
+
+ /*
+ * We can't open the origin dataset, because
+ * that would require opening this dsl_dir.
+ * Just look at its phys directly instead.
+ */
+ err = dmu_bonus_hold(dp->dp_meta_objset,
+ dsl_dir_phys(dd)->dd_origin_obj, FTAG,
+ &origin_bonus);
+ if (err != 0)
+ goto errout;
+ origin_phys = origin_bonus->db_data;
+ dd->dd_origin_txg =
+ origin_phys->ds_creation_txg;
+ dmu_buf_rele(origin_bonus, FTAG);
+ if (dsl_dir_is_zapified(dd)) {
+ uint64_t obj;
+ err = zap_lookup(dp->dp_meta_objset,
+ dd->dd_object, DD_FIELD_LIVELIST,
+ sizeof (uint64_t), 1, &obj);
+ if (err == 0)
+ dsl_dir_livelist_open(dd, obj);
+ else if (err != ENOENT)
+ goto errout;
+ }
+ }
+
+ dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
+ &dd->dd_dbuf);
+ winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
+ if (winner != NULL) {
+ if (dd->dd_parent)
+ dsl_dir_rele(dd->dd_parent, dd);
+ if (dsl_deadlist_is_open(&dd->dd_livelist))
+ dsl_dir_livelist_close(dd);
+ dsl_prop_fini(dd);
+ cv_destroy(&dd->dd_activity_cv);
+ mutex_destroy(&dd->dd_activity_lock);
+ mutex_destroy(&dd->dd_lock);
+ kmem_free(dd, sizeof (dsl_dir_t));
+ dd = winner;
+ } else {
+ spa_open_ref(dp->dp_spa, dd);
+ }
+ }
+
+ /*
+ * The dsl_dir_t has both open-to-close and instantiate-to-evict
+ * holds on the spa. We need the open-to-close holds because
+ * otherwise the spa_refcnt wouldn't change when we open a
+ * dir which the spa also has open, so we could incorrectly
+ * think it was OK to unload/export/destroy the pool. We need
+ * the instantiate-to-evict hold because the dsl_dir_t has a
+ * pointer to the dd_pool, which has a pointer to the spa_t.
+ */
+ spa_open_ref(dp->dp_spa, tag);
+ ASSERT3P(dd->dd_pool, ==, dp);
+ ASSERT3U(dd->dd_object, ==, ddobj);
+ ASSERT3P(dd->dd_dbuf, ==, dbuf);
+ *ddp = dd;
+ return (0);
+
+errout:
+ if (dd->dd_parent)
+ dsl_dir_rele(dd->dd_parent, dd);
+ if (dsl_deadlist_is_open(&dd->dd_livelist))
+ dsl_dir_livelist_close(dd);
+ dsl_prop_fini(dd);
+ cv_destroy(&dd->dd_activity_cv);
+ mutex_destroy(&dd->dd_activity_lock);
+ mutex_destroy(&dd->dd_lock);
+ kmem_free(dd, sizeof (dsl_dir_t));
+ dmu_buf_rele(dbuf, tag);
+ return (err);
+}
+
+void
+dsl_dir_rele(dsl_dir_t *dd, void *tag)
+{
+ dprintf_dd(dd, "%s\n", "");
+ spa_close(dd->dd_pool->dp_spa, tag);
+ dmu_buf_rele(dd->dd_dbuf, tag);
+}
+
+/*
+ * Remove a reference to the given dsl dir that is being asynchronously
+ * released. Async releases occur from a taskq performing eviction of
+ * dsl datasets and dirs. This process is identical to a normal release
+ * with the exception of using the async API for releasing the reference on
+ * the spa.
+ */
+void
+dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
+{
+ dprintf_dd(dd, "%s\n", "");
+ spa_async_close(dd->dd_pool->dp_spa, tag);
+ dmu_buf_rele(dd->dd_dbuf, tag);
+}
+
+/* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
+void
+dsl_dir_name(dsl_dir_t *dd, char *buf)
+{
+ if (dd->dd_parent) {
+ dsl_dir_name(dd->dd_parent, buf);
+ VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
+ ZFS_MAX_DATASET_NAME_LEN);
+ } else {
+ buf[0] = '\0';
+ }
+ if (!MUTEX_HELD(&dd->dd_lock)) {
+ /*
+ * recursive mutex so that we can use
+ * dprintf_dd() with dd_lock held
+ */
+ mutex_enter(&dd->dd_lock);
+ VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
+ <, ZFS_MAX_DATASET_NAME_LEN);
+ mutex_exit(&dd->dd_lock);
+ } else {
+ VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
+ <, ZFS_MAX_DATASET_NAME_LEN);
+ }
+}
+
+/* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
+int
+dsl_dir_namelen(dsl_dir_t *dd)
+{
+ int result = 0;
+
+ if (dd->dd_parent) {
+ /* parent's name + 1 for the "/" */
+ result = dsl_dir_namelen(dd->dd_parent) + 1;
+ }
+
+ if (!MUTEX_HELD(&dd->dd_lock)) {
+ /* see dsl_dir_name */
+ mutex_enter(&dd->dd_lock);
+ result += strlen(dd->dd_myname);
+ mutex_exit(&dd->dd_lock);
+ } else {
+ result += strlen(dd->dd_myname);
+ }
+
+ return (result);
+}
+
+static int
+getcomponent(const char *path, char *component, const char **nextp)
+{
+ char *p;
+
+ if ((path == NULL) || (path[0] == '\0'))
+ return (SET_ERROR(ENOENT));
+ /* This would be a good place to reserve some namespace... */
+ p = strpbrk(path, "/@");
+ if (p && (p[1] == '/' || p[1] == '@')) {
+ /* two separators in a row */
+ return (SET_ERROR(EINVAL));
+ }
+ if (p == NULL || p == path) {
+ /*
+ * if the first thing is an @ or /, it had better be an
+ * @ and it had better not have any more ats or slashes,
+ * and it had better have something after the @.
+ */
+ if (p != NULL &&
+ (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
+ return (SET_ERROR(EINVAL));
+ if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
+ return (SET_ERROR(ENAMETOOLONG));
+ (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
+ p = NULL;
+ } else if (p[0] == '/') {
+ if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
+ return (SET_ERROR(ENAMETOOLONG));
+ (void) strncpy(component, path, p - path);
+ component[p - path] = '\0';
+ p++;
+ } else if (p[0] == '@') {
+ /*
+ * if the next separator is an @, there better not be
+ * any more slashes.
+ */
+ if (strchr(path, '/'))
+ return (SET_ERROR(EINVAL));
+ if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
+ return (SET_ERROR(ENAMETOOLONG));
+ (void) strncpy(component, path, p - path);
+ component[p - path] = '\0';
+ } else {
+ panic("invalid p=%p", (void *)p);
+ }
+ *nextp = p;
+ return (0);
+}
+
+/*
+ * Return the dsl_dir_t, and possibly the last component which couldn't
+ * be found in *tail. The name must be in the specified dsl_pool_t. This
+ * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
+ * path is bogus, or if tail==NULL and we couldn't parse the whole name.
+ * (*tail)[0] == '@' means that the last component is a snapshot.
+ */
+int
+dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
+ dsl_dir_t **ddp, const char **tailp)
+{
+ char *buf;
+ const char *spaname, *next, *nextnext = NULL;
+ int err;
+ dsl_dir_t *dd;
+ uint64_t ddobj;
+
+ buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
+ err = getcomponent(name, buf, &next);
+ if (err != 0)
+ goto error;
+
+ /* Make sure the name is in the specified pool. */
+ spaname = spa_name(dp->dp_spa);
+ if (strcmp(buf, spaname) != 0) {
+ err = SET_ERROR(EXDEV);
+ goto error;
+ }
+
+ ASSERT(dsl_pool_config_held(dp));
+
+ err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
+ if (err != 0) {
+ goto error;
+ }
+
+ while (next != NULL) {
+ dsl_dir_t *child_dd;
+ err = getcomponent(next, buf, &nextnext);
+ if (err != 0)
+ break;
+ ASSERT(next[0] != '\0');
+ if (next[0] == '@')
+ break;
+ dprintf("looking up %s in obj%lld\n",
+ buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
+
+ err = zap_lookup(dp->dp_meta_objset,
+ dsl_dir_phys(dd)->dd_child_dir_zapobj,
+ buf, sizeof (ddobj), 1, &ddobj);
+ if (err != 0) {
+ if (err == ENOENT)
+ err = 0;
+ break;
+ }
+
+ err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
+ if (err != 0)
+ break;
+ dsl_dir_rele(dd, tag);
+ dd = child_dd;
+ next = nextnext;
+ }
+
+ if (err != 0) {
+ dsl_dir_rele(dd, tag);
+ goto error;
+ }
+
+ /*
+ * It's an error if there's more than one component left, or
+ * tailp==NULL and there's any component left.
+ */
+ if (next != NULL &&
+ (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
+ /* bad path name */
+ dsl_dir_rele(dd, tag);
+ dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
+ err = SET_ERROR(ENOENT);
+ }
+ if (tailp != NULL)
+ *tailp = next;
+ if (err == 0)
+ *ddp = dd;
+error:
+ kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
+ return (err);
+}
+
+/*
+ * If the counts are already initialized for this filesystem and its
+ * descendants then do nothing, otherwise initialize the counts.
+ *
+ * The counts on this filesystem, and those below, may be uninitialized due to
+ * either the use of a pre-existing pool which did not support the
+ * filesystem/snapshot limit feature, or one in which the feature had not yet
+ * been enabled.
+ *
+ * Recursively descend the filesystem tree and update the filesystem/snapshot
+ * counts on each filesystem below, then update the cumulative count on the
+ * current filesystem. If the filesystem already has a count set on it,
+ * then we know that its counts, and the counts on the filesystems below it,
+ * are already correct, so we don't have to update this filesystem.
+ */
+static void
+dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
+{
+ uint64_t my_fs_cnt = 0;
+ uint64_t my_ss_cnt = 0;
+ dsl_pool_t *dp = dd->dd_pool;
+ objset_t *os = dp->dp_meta_objset;
+ zap_cursor_t *zc;
+ zap_attribute_t *za;
+ dsl_dataset_t *ds;
+
+ ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
+ ASSERT(dsl_pool_config_held(dp));
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ dsl_dir_zapify(dd, tx);
+
+ /*
+ * If the filesystem count has already been initialized then we
+ * don't need to recurse down any further.
+ */
+ if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
+ return;
+
+ zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
+ za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
+
+ /* Iterate my child dirs */
+ for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
+ zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
+ dsl_dir_t *chld_dd;
+ uint64_t count;
+
+ VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
+ &chld_dd));
+
+ /*
+ * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
+ */
+ if (chld_dd->dd_myname[0] == '$') {
+ dsl_dir_rele(chld_dd, FTAG);
+ continue;
+ }
+
+ my_fs_cnt++; /* count this child */
+
+ dsl_dir_init_fs_ss_count(chld_dd, tx);
+
+ VERIFY0(zap_lookup(os, chld_dd->dd_object,
+ DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
+ my_fs_cnt += count;
+ VERIFY0(zap_lookup(os, chld_dd->dd_object,
+ DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
+ my_ss_cnt += count;
+
+ dsl_dir_rele(chld_dd, FTAG);
+ }
+ zap_cursor_fini(zc);
+ /* Count my snapshots (we counted children's snapshots above) */
+ VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
+ dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
+
+ for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
+ zap_cursor_retrieve(zc, za) == 0;
+ zap_cursor_advance(zc)) {
+ /* Don't count temporary snapshots */
+ if (za->za_name[0] != '%')
+ my_ss_cnt++;
+ }
+ zap_cursor_fini(zc);
+
+ dsl_dataset_rele(ds, FTAG);
+
+ kmem_free(zc, sizeof (zap_cursor_t));
+ kmem_free(za, sizeof (zap_attribute_t));
+
+ /* we're in a sync task, update counts */
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+ VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
+ sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
+ VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
+ sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
+}
+
+static int
+dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
+{
+ char *ddname = (char *)arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dataset_t *ds;
+ dsl_dir_t *dd;
+ int error;
+
+ error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
+ if (error != 0)
+ return (error);
+
+ if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
+ dsl_dataset_rele(ds, FTAG);
+ return (SET_ERROR(ENOTSUP));
+ }
+
+ dd = ds->ds_dir;
+ if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
+ dsl_dir_is_zapified(dd) &&
+ zap_contains(dp->dp_meta_objset, dd->dd_object,
+ DD_FIELD_FILESYSTEM_COUNT) == 0) {
+ dsl_dataset_rele(ds, FTAG);
+ return (SET_ERROR(EALREADY));
+ }
+
+ dsl_dataset_rele(ds, FTAG);
+ return (0);
+}
+
+static void
+dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
+{
+ char *ddname = (char *)arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dataset_t *ds;
+ spa_t *spa;
+
+ VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
+
+ spa = dsl_dataset_get_spa(ds);
+
+ if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
+ /*
+ * Since the feature was not active and we're now setting a
+ * limit, increment the feature-active counter so that the
+ * feature becomes active for the first time.
+ *
+ * We are already in a sync task so we can update the MOS.
+ */
+ spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
+ }
+
+ /*
+ * Since we are now setting a non-UINT64_MAX limit on the filesystem,
+ * we need to ensure the counts are correct. Descend down the tree from
+ * this point and update all of the counts to be accurate.
+ */
+ dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
+
+ dsl_dataset_rele(ds, FTAG);
+}
+
+/*
+ * Make sure the feature is enabled and activate it if necessary.
+ * Since we're setting a limit, ensure the on-disk counts are valid.
+ * This is only called by the ioctl path when setting a limit value.
+ *
+ * We do not need to validate the new limit, since users who can change the
+ * limit are also allowed to exceed the limit.
+ */
+int
+dsl_dir_activate_fs_ss_limit(const char *ddname)
+{
+ int error;
+
+ error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
+ dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
+ ZFS_SPACE_CHECK_RESERVED);
+
+ if (error == EALREADY)
+ error = 0;
+
+ return (error);
+}
+
+/*
+ * Used to determine if the filesystem_limit or snapshot_limit should be
+ * enforced. We allow the limit to be exceeded if the user has permission to
+ * write the property value. We pass in the creds that we got in the open
+ * context since we will always be the GZ root in syncing context. We also have
+ * to handle the case where we are allowed to change the limit on the current
+ * dataset, but there may be another limit in the tree above.
+ *
+ * We can never modify these two properties within a non-global zone. In
+ * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
+ * can't use that function since we are already holding the dp_config_rwlock.
+ * In addition, we already have the dd and dealing with snapshots is simplified
+ * in this code.
+ */
+
+typedef enum {
+ ENFORCE_ALWAYS,
+ ENFORCE_NEVER,
+ ENFORCE_ABOVE
+} enforce_res_t;
+
+static enforce_res_t
+dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
+ cred_t *cr, proc_t *proc)
+{
+ enforce_res_t enforce = ENFORCE_ALWAYS;
+ uint64_t obj;
+ dsl_dataset_t *ds;
+ uint64_t zoned;
+ const char *zonedstr;
+
+ ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
+ prop == ZFS_PROP_SNAPSHOT_LIMIT);
+
+#ifdef _KERNEL
+ if (crgetzoneid(cr) != GLOBAL_ZONEID)
+ return (ENFORCE_ALWAYS);
+
+ /*
+ * We are checking the saved credentials of the user process, which is
+ * not the current process. Note that we can't use secpolicy_zfs(),
+ * because it only works if the cred is that of the current process (on
+ * Linux).
+ */
+ if (secpolicy_zfs_proc(cr, proc) == 0)
+ return (ENFORCE_NEVER);
+#endif
+
+ if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
+ return (ENFORCE_ALWAYS);
+
+ ASSERT(dsl_pool_config_held(dd->dd_pool));
+
+ if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
+ return (ENFORCE_ALWAYS);
+
+ zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
+ if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
+ /* Only root can access zoned fs's from the GZ */
+ enforce = ENFORCE_ALWAYS;
+ } else {
+ if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
+ enforce = ENFORCE_ABOVE;
+ }
+
+ dsl_dataset_rele(ds, FTAG);
+ return (enforce);
+}
+
+/*
+ * Check if adding additional child filesystem(s) would exceed any filesystem
+ * limits or adding additional snapshot(s) would exceed any snapshot limits.
+ * The prop argument indicates which limit to check.
+ *
+ * Note that all filesystem limits up to the root (or the highest
+ * initialized) filesystem or the given ancestor must be satisfied.
+ */
+int
+dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
+ dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
+{
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ uint64_t limit, count;
+ char *count_prop;
+ enforce_res_t enforce;
+ int err = 0;
+
+ ASSERT(dsl_pool_config_held(dd->dd_pool));
+ ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
+ prop == ZFS_PROP_SNAPSHOT_LIMIT);
+
+ /*
+ * If we're allowed to change the limit, don't enforce the limit
+ * e.g. this can happen if a snapshot is taken by an administrative
+ * user in the global zone (i.e. a recursive snapshot by root).
+ * However, we must handle the case of delegated permissions where we
+ * are allowed to change the limit on the current dataset, but there
+ * is another limit in the tree above.
+ */
+ enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
+ if (enforce == ENFORCE_NEVER)
+ return (0);
+
+ /*
+ * e.g. if renaming a dataset with no snapshots, count adjustment
+ * is 0.
+ */
+ if (delta == 0)
+ return (0);
+
+ if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
+ /*
+ * We don't enforce the limit for temporary snapshots. This is
+ * indicated by a NULL cred_t argument.
+ */
+ if (cr == NULL)
+ return (0);
+
+ count_prop = DD_FIELD_SNAPSHOT_COUNT;
+ } else {
+ count_prop = DD_FIELD_FILESYSTEM_COUNT;
+ }
+
+ /*
+ * If an ancestor has been provided, stop checking the limit once we
+ * hit that dir. We need this during rename so that we don't overcount
+ * the check once we recurse up to the common ancestor.
+ */
+ if (ancestor == dd)
+ return (0);
+
+ /*
+ * If we hit an uninitialized node while recursing up the tree, we can
+ * stop since we know there is no limit here (or above). The counts are
+ * not valid on this node and we know we won't touch this node's counts.
+ */
+ if (!dsl_dir_is_zapified(dd))
+ return (0);
+ err = zap_lookup(os, dd->dd_object,
+ count_prop, sizeof (count), 1, &count);
+ if (err == ENOENT)
+ return (0);
+ if (err != 0)
+ return (err);
+
+ err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
+ B_FALSE);
+ if (err != 0)
+ return (err);
+
+ /* Is there a limit which we've hit? */
+ if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
+ return (SET_ERROR(EDQUOT));
+
+ if (dd->dd_parent != NULL)
+ err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
+ ancestor, cr, proc);
+
+ return (err);
+}
+
+/*
+ * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
+ * parents. When a new filesystem/snapshot is created, increment the count on
+ * all parents, and when a filesystem/snapshot is destroyed, decrement the
+ * count.
+ */
+void
+dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
+ dmu_tx_t *tx)
+{
+ int err;
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ uint64_t count;
+
+ ASSERT(dsl_pool_config_held(dd->dd_pool));
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
+ strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
+
+ /*
+ * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
+ */
+ if (dd->dd_myname[0] == '$' && strcmp(prop,
+ DD_FIELD_FILESYSTEM_COUNT) == 0) {
+ return;
+ }
+
+ /*
+ * e.g. if renaming a dataset with no snapshots, count adjustment is 0
+ */
+ if (delta == 0)
+ return;
+
+ /*
+ * If we hit an uninitialized node while recursing up the tree, we can
+ * stop since we know the counts are not valid on this node and we
+ * know we shouldn't touch this node's counts. An uninitialized count
+ * on the node indicates that either the feature has not yet been
+ * activated or there are no limits on this part of the tree.
+ */
+ if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
+ prop, sizeof (count), 1, &count)) == ENOENT)
+ return;
+ VERIFY0(err);
+
+ count += delta;
+ /* Use a signed verify to make sure we're not neg. */
+ VERIFY3S(count, >=, 0);
+
+ VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
+ tx));
+
+ /* Roll up this additional count into our ancestors */
+ if (dd->dd_parent != NULL)
+ dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
+}
+
+uint64_t
+dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
+ dmu_tx_t *tx)
+{
+ objset_t *mos = dp->dp_meta_objset;
+ uint64_t ddobj;
+ dsl_dir_phys_t *ddphys;
+ dmu_buf_t *dbuf;
+
+ ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
+ DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
+ if (pds) {
+ VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
+ name, sizeof (uint64_t), 1, &ddobj, tx));
+ } else {
+ /* it's the root dir */
+ VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
+ }
+ VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
+ dmu_buf_will_dirty(dbuf, tx);
+ ddphys = dbuf->db_data;
+
+ ddphys->dd_creation_time = gethrestime_sec();
+ if (pds) {
+ ddphys->dd_parent_obj = pds->dd_object;
+
+ /* update the filesystem counts */
+ dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
+ }
+ ddphys->dd_props_zapobj = zap_create(mos,
+ DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
+ ddphys->dd_child_dir_zapobj = zap_create(mos,
+ DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
+ if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
+ ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
+
+ dmu_buf_rele(dbuf, FTAG);
+
+ return (ddobj);
+}
+
+boolean_t
+dsl_dir_is_clone(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_origin_obj &&
+ (dd->dd_pool->dp_origin_snap == NULL ||
+ dsl_dir_phys(dd)->dd_origin_obj !=
+ dd->dd_pool->dp_origin_snap->ds_object));
+}
+
+uint64_t
+dsl_dir_get_used(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_used_bytes);
+}
+
+uint64_t
+dsl_dir_get_compressed(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_compressed_bytes);
+}
+
+uint64_t
+dsl_dir_get_quota(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_quota);
+}
+
+uint64_t
+dsl_dir_get_reservation(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_reserved);
+}
+
+uint64_t
+dsl_dir_get_compressratio(dsl_dir_t *dd)
+{
+ /* a fixed point number, 100x the ratio */
+ return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
+ (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
+ dsl_dir_phys(dd)->dd_compressed_bytes));
+}
+
+uint64_t
+dsl_dir_get_logicalused(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
+}
+
+uint64_t
+dsl_dir_get_usedsnap(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
+}
+
+uint64_t
+dsl_dir_get_usedds(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
+}
+
+uint64_t
+dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
+}
+
+uint64_t
+dsl_dir_get_usedchild(dsl_dir_t *dd)
+{
+ return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
+ dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
+}
+
+void
+dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
+{
+ dsl_dataset_t *ds;
+ VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
+ dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
+
+ dsl_dataset_name(ds, buf);
+
+ dsl_dataset_rele(ds, FTAG);
+}
+
+int
+dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
+{
+ if (dsl_dir_is_zapified(dd)) {
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
+ sizeof (*count), 1, count));
+ } else {
+ return (SET_ERROR(ENOENT));
+ }
+}
+
+int
+dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
+{
+ if (dsl_dir_is_zapified(dd)) {
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
+ sizeof (*count), 1, count));
+ } else {
+ return (SET_ERROR(ENOENT));
+ }
+}
+
+void
+dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
+{
+ mutex_enter(&dd->dd_lock);
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
+ dsl_dir_get_quota(dd));
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
+ dsl_dir_get_reservation(dd));
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
+ dsl_dir_get_logicalused(dd));
+ if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
+ dsl_dir_get_usedsnap(dd));
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
+ dsl_dir_get_usedds(dd));
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
+ dsl_dir_get_usedrefreserv(dd));
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
+ dsl_dir_get_usedchild(dd));
+ }
+ mutex_exit(&dd->dd_lock);
+
+ uint64_t count;
+ if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
+ count);
+ }
+ if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
+ count);
+ }
+
+ if (dsl_dir_is_clone(dd)) {
+ char buf[ZFS_MAX_DATASET_NAME_LEN];
+ dsl_dir_get_origin(dd, buf);
+ dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
+ }
+
+}
+
+void
+dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
+{
+ dsl_pool_t *dp = dd->dd_pool;
+
+ ASSERT(dsl_dir_phys(dd));
+
+ if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
+ /* up the hold count until we can be written out */
+ dmu_buf_add_ref(dd->dd_dbuf, dd);
+ }
+}
+
+static int64_t
+parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
+{
+ uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
+ uint64_t new_accounted =
+ MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
+ return (new_accounted - old_accounted);
+}
+
+void
+dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
+{
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ mutex_enter(&dd->dd_lock);
+ ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
+ dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
+ (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
+ dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
+ mutex_exit(&dd->dd_lock);
+
+ /* release the hold from dsl_dir_dirty */
+ dmu_buf_rele(dd->dd_dbuf, dd);
+}
+
+static uint64_t
+dsl_dir_space_towrite(dsl_dir_t *dd)
+{
+ uint64_t space = 0;
+
+ ASSERT(MUTEX_HELD(&dd->dd_lock));
+
+ for (int i = 0; i < TXG_SIZE; i++) {
+ space += dd->dd_space_towrite[i & TXG_MASK];
+ ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
+ }
+ return (space);
+}
+
+/*
+ * How much space would dd have available if ancestor had delta applied
+ * to it? If ondiskonly is set, we're only interested in what's
+ * on-disk, not estimated pending changes.
+ */
+uint64_t
+dsl_dir_space_available(dsl_dir_t *dd,
+ dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
+{
+ uint64_t parentspace, myspace, quota, used;
+
+ /*
+ * If there are no restrictions otherwise, assume we have
+ * unlimited space available.
+ */
+ quota = UINT64_MAX;
+ parentspace = UINT64_MAX;
+
+ if (dd->dd_parent != NULL) {
+ parentspace = dsl_dir_space_available(dd->dd_parent,
+ ancestor, delta, ondiskonly);
+ }
+
+ mutex_enter(&dd->dd_lock);
+ if (dsl_dir_phys(dd)->dd_quota != 0)
+ quota = dsl_dir_phys(dd)->dd_quota;
+ used = dsl_dir_phys(dd)->dd_used_bytes;
+ if (!ondiskonly)
+ used += dsl_dir_space_towrite(dd);
+
+ if (dd->dd_parent == NULL) {
+ uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
+ ZFS_SPACE_CHECK_NORMAL);
+ quota = MIN(quota, poolsize);
+ }
+
+ if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
+ /*
+ * We have some space reserved, in addition to what our
+ * parent gave us.
+ */
+ parentspace += dsl_dir_phys(dd)->dd_reserved - used;
+ }
+
+ if (dd == ancestor) {
+ ASSERT(delta <= 0);
+ ASSERT(used >= -delta);
+ used += delta;
+ if (parentspace != UINT64_MAX)
+ parentspace -= delta;
+ }
+
+ if (used > quota) {
+ /* over quota */
+ myspace = 0;
+ } else {
+ /*
+ * the lesser of the space provided by our parent and
+ * the space left in our quota
+ */
+ myspace = MIN(parentspace, quota - used);
+ }
+
+ mutex_exit(&dd->dd_lock);
+
+ return (myspace);
+}
+
+struct tempreserve {
+ list_node_t tr_node;
+ dsl_dir_t *tr_ds;
+ uint64_t tr_size;
+};
+
+static int
+dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
+ boolean_t ignorequota, list_t *tr_list,
+ dmu_tx_t *tx, boolean_t first)
+{
+ uint64_t txg;
+ uint64_t quota;
+ struct tempreserve *tr;
+ int retval;
+ uint64_t ref_rsrv;
+
+top_of_function:
+ txg = tx->tx_txg;
+ retval = EDQUOT;
+ ref_rsrv = 0;
+
+ ASSERT3U(txg, !=, 0);
+ ASSERT3S(asize, >, 0);
+
+ mutex_enter(&dd->dd_lock);
+
+ /*
+ * Check against the dsl_dir's quota. We don't add in the delta
+ * when checking for over-quota because they get one free hit.
+ */
+ uint64_t est_inflight = dsl_dir_space_towrite(dd);
+ for (int i = 0; i < TXG_SIZE; i++)
+ est_inflight += dd->dd_tempreserved[i];
+ uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
+
+ /*
+ * On the first iteration, fetch the dataset's used-on-disk and
+ * refreservation values. Also, if checkrefquota is set, test if
+ * allocating this space would exceed the dataset's refquota.
+ */
+ if (first && tx->tx_objset) {
+ int error;
+ dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
+
+ error = dsl_dataset_check_quota(ds, !netfree,
+ asize, est_inflight, &used_on_disk, &ref_rsrv);
+ if (error != 0) {
+ mutex_exit(&dd->dd_lock);
+ DMU_TX_STAT_BUMP(dmu_tx_quota);
+ return (error);
+ }
+ }
+
+ /*
+ * If this transaction will result in a net free of space,
+ * we want to let it through.
+ */
+ if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
+ quota = UINT64_MAX;
+ else
+ quota = dsl_dir_phys(dd)->dd_quota;
+
+ /*
+ * Adjust the quota against the actual pool size at the root
+ * minus any outstanding deferred frees.
+ * To ensure that it's possible to remove files from a full
+ * pool without inducing transient overcommits, we throttle
+ * netfree transactions against a quota that is slightly larger,
+ * but still within the pool's allocation slop. In cases where
+ * we're very close to full, this will allow a steady trickle of
+ * removes to get through.
+ */
+ uint64_t deferred = 0;
+ if (dd->dd_parent == NULL) {
+ uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
+ (netfree) ?
+ ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
+
+ if (avail < quota) {
+ quota = avail;
+ retval = SET_ERROR(ENOSPC);
+ }
+ }
+
+ /*
+ * If they are requesting more space, and our current estimate
+ * is over quota, they get to try again unless the actual
+ * on-disk is over quota and there are no pending changes (which
+ * may free up space for us).
+ */
+ if (used_on_disk + est_inflight >= quota) {
+ if (est_inflight > 0 || used_on_disk < quota ||
+ (retval == ENOSPC && used_on_disk < quota + deferred))
+ retval = ERESTART;
+ dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
+ "quota=%lluK tr=%lluK err=%d\n",
+ (u_longlong_t)used_on_disk>>10,
+ (u_longlong_t)est_inflight>>10,
+ (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval);
+ mutex_exit(&dd->dd_lock);
+ DMU_TX_STAT_BUMP(dmu_tx_quota);
+ return (SET_ERROR(retval));
+ }
+
+ /* We need to up our estimated delta before dropping dd_lock */
+ dd->dd_tempreserved[txg & TXG_MASK] += asize;
+
+ uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
+ asize - ref_rsrv);
+ mutex_exit(&dd->dd_lock);
+
+ tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
+ tr->tr_ds = dd;
+ tr->tr_size = asize;
+ list_insert_tail(tr_list, tr);
+
+ /* see if it's OK with our parent */
+ if (dd->dd_parent != NULL && parent_rsrv != 0) {
+ /*
+ * Recurse on our parent without recursion. This has been
+ * observed to be potentially large stack usage even within
+ * the test suite. Largest seen stack was 7632 bytes on linux.
+ */
+
+ dd = dd->dd_parent;
+ asize = parent_rsrv;
+ ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
+ first = B_FALSE;
+ goto top_of_function;
+
+ } else {
+ return (0);
+ }
+}
+
+/*
+ * Reserve space in this dsl_dir, to be used in this tx's txg.
+ * After the space has been dirtied (and dsl_dir_willuse_space()
+ * has been called), the reservation should be canceled, using
+ * dsl_dir_tempreserve_clear().
+ */
+int
+dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
+ boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
+{
+ int err;
+ list_t *tr_list;
+
+ if (asize == 0) {
+ *tr_cookiep = NULL;
+ return (0);
+ }
+
+ tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
+ list_create(tr_list, sizeof (struct tempreserve),
+ offsetof(struct tempreserve, tr_node));
+ ASSERT3S(asize, >, 0);
+
+ err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
+ if (err == 0) {
+ struct tempreserve *tr;
+
+ tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
+ tr->tr_size = lsize;
+ list_insert_tail(tr_list, tr);
+ } else {
+ if (err == EAGAIN) {
+ /*
+ * If arc_memory_throttle() detected that pageout
+ * is running and we are low on memory, we delay new
+ * non-pageout transactions to give pageout an
+ * advantage.
+ *
+ * It is unfortunate to be delaying while the caller's
+ * locks are held.
+ */
+ txg_delay(dd->dd_pool, tx->tx_txg,
+ MSEC2NSEC(10), MSEC2NSEC(10));
+ err = SET_ERROR(ERESTART);
+ }
+ }
+
+ if (err == 0) {
+ err = dsl_dir_tempreserve_impl(dd, asize, netfree,
+ B_FALSE, tr_list, tx, B_TRUE);
+ }
+
+ if (err != 0)
+ dsl_dir_tempreserve_clear(tr_list, tx);
+ else
+ *tr_cookiep = tr_list;
+
+ return (err);
+}
+
+/*
+ * Clear a temporary reservation that we previously made with
+ * dsl_dir_tempreserve_space().
+ */
+void
+dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
+{
+ int txgidx = tx->tx_txg & TXG_MASK;
+ list_t *tr_list = tr_cookie;
+ struct tempreserve *tr;
+
+ ASSERT3U(tx->tx_txg, !=, 0);
+
+ if (tr_cookie == NULL)
+ return;
+
+ while ((tr = list_head(tr_list)) != NULL) {
+ if (tr->tr_ds) {
+ mutex_enter(&tr->tr_ds->dd_lock);
+ ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
+ tr->tr_size);
+ tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
+ mutex_exit(&tr->tr_ds->dd_lock);
+ } else {
+ arc_tempreserve_clear(tr->tr_size);
+ }
+ list_remove(tr_list, tr);
+ kmem_free(tr, sizeof (struct tempreserve));
+ }
+
+ kmem_free(tr_list, sizeof (list_t));
+}
+
+/*
+ * This should be called from open context when we think we're going to write
+ * or free space, for example when dirtying data. Be conservative; it's okay
+ * to write less space or free more, but we don't want to write more or free
+ * less than the amount specified.
+ *
+ * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
+ * version however it has been adjusted to use an iterative rather than
+ * recursive algorithm to minimize stack usage.
+ */
+void
+dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
+{
+ int64_t parent_space;
+ uint64_t est_used;
+
+ do {
+ mutex_enter(&dd->dd_lock);
+ if (space > 0)
+ dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
+
+ est_used = dsl_dir_space_towrite(dd) +
+ dsl_dir_phys(dd)->dd_used_bytes;
+ parent_space = parent_delta(dd, est_used, space);
+ mutex_exit(&dd->dd_lock);
+
+ /* Make sure that we clean up dd_space_to* */
+ dsl_dir_dirty(dd, tx);
+
+ dd = dd->dd_parent;
+ space = parent_space;
+ } while (space && dd);
+}
+
+/* call from syncing context when we actually write/free space for this dd */
+void
+dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
+ int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
+{
+ int64_t accounted_delta;
+
+ /*
+ * dsl_dataset_set_refreservation_sync_impl() calls this with
+ * dd_lock held, so that it can atomically update
+ * ds->ds_reserved and the dsl_dir accounting, so that
+ * dsl_dataset_check_quota() can see dataset and dir accounting
+ * consistently.
+ */
+ boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(type < DD_USED_NUM);
+
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+
+ if (needlock)
+ mutex_enter(&dd->dd_lock);
+ accounted_delta =
+ parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
+ ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
+ ASSERT(compressed >= 0 ||
+ dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
+ ASSERT(uncompressed >= 0 ||
+ dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
+ dsl_dir_phys(dd)->dd_used_bytes += used;
+ dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
+ dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
+
+ if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
+ ASSERT(used > 0 ||
+ dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
+ dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
+#ifdef ZFS_DEBUG
+ {
+ dd_used_t t;
+ uint64_t u = 0;
+ for (t = 0; t < DD_USED_NUM; t++)
+ u += dsl_dir_phys(dd)->dd_used_breakdown[t];
+ ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
+ }
+#endif
+ }
+ if (needlock)
+ mutex_exit(&dd->dd_lock);
+
+ if (dd->dd_parent != NULL) {
+ dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
+ accounted_delta, compressed, uncompressed, tx);
+ dsl_dir_transfer_space(dd->dd_parent,
+ used - accounted_delta,
+ DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
+ }
+}
+
+void
+dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
+ dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
+{
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(oldtype < DD_USED_NUM);
+ ASSERT(newtype < DD_USED_NUM);
+
+ if (delta == 0 ||
+ !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
+ return;
+
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+ mutex_enter(&dd->dd_lock);
+ ASSERT(delta > 0 ?
+ dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
+ dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
+ ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
+ dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
+ dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
+ mutex_exit(&dd->dd_lock);
+}
+
+typedef struct dsl_dir_set_qr_arg {
+ const char *ddsqra_name;
+ zprop_source_t ddsqra_source;
+ uint64_t ddsqra_value;
+} dsl_dir_set_qr_arg_t;
+
+static int
+dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
+{
+ dsl_dir_set_qr_arg_t *ddsqra = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dataset_t *ds;
+ int error;
+ uint64_t towrite, newval;
+
+ error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
+ if (error != 0)
+ return (error);
+
+ error = dsl_prop_predict(ds->ds_dir, "quota",
+ ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
+ if (error != 0) {
+ dsl_dataset_rele(ds, FTAG);
+ return (error);
+ }
+
+ if (newval == 0) {
+ dsl_dataset_rele(ds, FTAG);
+ return (0);
+ }
+
+ mutex_enter(&ds->ds_dir->dd_lock);
+ /*
+ * If we are doing the preliminary check in open context, and
+ * there are pending changes, then don't fail it, since the
+ * pending changes could under-estimate the amount of space to be
+ * freed up.
+ */
+ towrite = dsl_dir_space_towrite(ds->ds_dir);
+ if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
+ (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
+ newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
+ error = SET_ERROR(ENOSPC);
+ }
+ mutex_exit(&ds->ds_dir->dd_lock);
+ dsl_dataset_rele(ds, FTAG);
+ return (error);
+}
+
+static void
+dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
+{
+ dsl_dir_set_qr_arg_t *ddsqra = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dataset_t *ds;
+ uint64_t newval;
+
+ VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
+
+ if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
+ dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
+ ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
+ &ddsqra->ddsqra_value, tx);
+
+ VERIFY0(dsl_prop_get_int_ds(ds,
+ zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
+ } else {
+ newval = ddsqra->ddsqra_value;
+ spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
+ zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
+ }
+
+ dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
+ mutex_enter(&ds->ds_dir->dd_lock);
+ dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
+ mutex_exit(&ds->ds_dir->dd_lock);
+ dsl_dataset_rele(ds, FTAG);
+}
+
+int
+dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
+{
+ dsl_dir_set_qr_arg_t ddsqra;
+
+ ddsqra.ddsqra_name = ddname;
+ ddsqra.ddsqra_source = source;
+ ddsqra.ddsqra_value = quota;
+
+ return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
+ dsl_dir_set_quota_sync, &ddsqra, 0,
+ ZFS_SPACE_CHECK_EXTRA_RESERVED));
+}
+
+static int
+dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
+{
+ dsl_dir_set_qr_arg_t *ddsqra = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dataset_t *ds;
+ dsl_dir_t *dd;
+ uint64_t newval, used, avail;
+ int error;
+
+ error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
+ if (error != 0)
+ return (error);
+ dd = ds->ds_dir;
+
+ /*
+ * If we are doing the preliminary check in open context, the
+ * space estimates may be inaccurate.
+ */
+ if (!dmu_tx_is_syncing(tx)) {
+ dsl_dataset_rele(ds, FTAG);
+ return (0);
+ }
+
+ error = dsl_prop_predict(ds->ds_dir,
+ zfs_prop_to_name(ZFS_PROP_RESERVATION),
+ ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
+ if (error != 0) {
+ dsl_dataset_rele(ds, FTAG);
+ return (error);
+ }
+
+ mutex_enter(&dd->dd_lock);
+ used = dsl_dir_phys(dd)->dd_used_bytes;
+ mutex_exit(&dd->dd_lock);
+
+ if (dd->dd_parent) {
+ avail = dsl_dir_space_available(dd->dd_parent,
+ NULL, 0, FALSE);
+ } else {
+ avail = dsl_pool_adjustedsize(dd->dd_pool,
+ ZFS_SPACE_CHECK_NORMAL) - used;
+ }
+
+ if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
+ uint64_t delta = MAX(used, newval) -
+ MAX(used, dsl_dir_phys(dd)->dd_reserved);
+
+ if (delta > avail ||
+ (dsl_dir_phys(dd)->dd_quota > 0 &&
+ newval > dsl_dir_phys(dd)->dd_quota))
+ error = SET_ERROR(ENOSPC);
+ }
+
+ dsl_dataset_rele(ds, FTAG);
+ return (error);
+}
+
+void
+dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
+{
+ uint64_t used;
+ int64_t delta;
+
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+
+ mutex_enter(&dd->dd_lock);
+ used = dsl_dir_phys(dd)->dd_used_bytes;
+ delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
+ dsl_dir_phys(dd)->dd_reserved = value;
+
+ if (dd->dd_parent != NULL) {
+ /* Roll up this additional usage into our ancestors */
+ dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
+ delta, 0, 0, tx);
+ }
+ mutex_exit(&dd->dd_lock);
+}
+
+static void
+dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
+{
+ dsl_dir_set_qr_arg_t *ddsqra = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dataset_t *ds;
+ uint64_t newval;
+
+ VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
+
+ if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
+ dsl_prop_set_sync_impl(ds,
+ zfs_prop_to_name(ZFS_PROP_RESERVATION),
+ ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
+ &ddsqra->ddsqra_value, tx);
+
+ VERIFY0(dsl_prop_get_int_ds(ds,
+ zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
+ } else {
+ newval = ddsqra->ddsqra_value;
+ spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
+ zfs_prop_to_name(ZFS_PROP_RESERVATION),
+ (longlong_t)newval);
+ }
+
+ dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
+ dsl_dataset_rele(ds, FTAG);
+}
+
+int
+dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
+ uint64_t reservation)
+{
+ dsl_dir_set_qr_arg_t ddsqra;
+
+ ddsqra.ddsqra_name = ddname;
+ ddsqra.ddsqra_source = source;
+ ddsqra.ddsqra_value = reservation;
+
+ return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
+ dsl_dir_set_reservation_sync, &ddsqra, 0,
+ ZFS_SPACE_CHECK_EXTRA_RESERVED));
+}
+
+static dsl_dir_t *
+closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
+{
+ for (; ds1; ds1 = ds1->dd_parent) {
+ dsl_dir_t *dd;
+ for (dd = ds2; dd; dd = dd->dd_parent) {
+ if (ds1 == dd)
+ return (dd);
+ }
+ }
+ return (NULL);
+}
+
+/*
+ * If delta is applied to dd, how much of that delta would be applied to
+ * ancestor? Syncing context only.
+ */
+static int64_t
+would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
+{
+ if (dd == ancestor)
+ return (delta);
+
+ mutex_enter(&dd->dd_lock);
+ delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
+ mutex_exit(&dd->dd_lock);
+ return (would_change(dd->dd_parent, delta, ancestor));
+}
+
+typedef struct dsl_dir_rename_arg {
+ const char *ddra_oldname;
+ const char *ddra_newname;
+ cred_t *ddra_cred;
+ proc_t *ddra_proc;
+} dsl_dir_rename_arg_t;
+
+typedef struct dsl_valid_rename_arg {
+ int char_delta;
+ int nest_delta;
+} dsl_valid_rename_arg_t;
+
+/* ARGSUSED */
+static int
+dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
+{
+ dsl_valid_rename_arg_t *dvra = arg;
+ char namebuf[ZFS_MAX_DATASET_NAME_LEN];
+
+ dsl_dataset_name(ds, namebuf);
+
+ ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
+ <, ZFS_MAX_DATASET_NAME_LEN);
+ int namelen = strlen(namebuf) + dvra->char_delta;
+ int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
+
+ if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
+ return (SET_ERROR(ENAMETOOLONG));
+ if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
+ return (SET_ERROR(ENAMETOOLONG));
+ return (0);
+}
+
+static int
+dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
+{
+ dsl_dir_rename_arg_t *ddra = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dir_t *dd, *newparent;
+ dsl_valid_rename_arg_t dvra;
+ dsl_dataset_t *parentds;
+ objset_t *parentos;
+ const char *mynewname;
+ int error;
+
+ /* target dir should exist */
+ error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
+ if (error != 0)
+ return (error);
+
+ /* new parent should exist */
+ error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
+ &newparent, &mynewname);
+ if (error != 0) {
+ dsl_dir_rele(dd, FTAG);
+ return (error);
+ }
+
+ /* can't rename to different pool */
+ if (dd->dd_pool != newparent->dd_pool) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (SET_ERROR(EXDEV));
+ }
+
+ /* new name should not already exist */
+ if (mynewname == NULL) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (SET_ERROR(EEXIST));
+ }
+
+ /* can't rename below anything but filesystems (eg. no ZVOLs) */
+ error = dsl_dataset_hold_obj(newparent->dd_pool,
+ dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
+ if (error != 0) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (error);
+ }
+ error = dmu_objset_from_ds(parentds, &parentos);
+ if (error != 0) {
+ dsl_dataset_rele(parentds, FTAG);
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (error);
+ }
+ if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
+ dsl_dataset_rele(parentds, FTAG);
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
+ }
+ dsl_dataset_rele(parentds, FTAG);
+
+ ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
+ <, ZFS_MAX_DATASET_NAME_LEN);
+ ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
+ <, ZFS_MAX_DATASET_NAME_LEN);
+ dvra.char_delta = strlen(ddra->ddra_newname)
+ - strlen(ddra->ddra_oldname);
+ dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
+ - get_dataset_depth(ddra->ddra_oldname);
+
+ /* if the name length is growing, validate child name lengths */
+ if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
+ error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
+ &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
+ if (error != 0) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (error);
+ }
+ }
+
+ if (dmu_tx_is_syncing(tx)) {
+ if (spa_feature_is_active(dp->dp_spa,
+ SPA_FEATURE_FS_SS_LIMIT)) {
+ /*
+ * Although this is the check function and we don't
+ * normally make on-disk changes in check functions,
+ * we need to do that here.
+ *
+ * Ensure this portion of the tree's counts have been
+ * initialized in case the new parent has limits set.
+ */
+ dsl_dir_init_fs_ss_count(dd, tx);
+ }
+ }
+
+ if (newparent != dd->dd_parent) {
+ /* is there enough space? */
+ uint64_t myspace =
+ MAX(dsl_dir_phys(dd)->dd_used_bytes,
+ dsl_dir_phys(dd)->dd_reserved);
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ uint64_t fs_cnt = 0;
+ uint64_t ss_cnt = 0;
+
+ if (dsl_dir_is_zapified(dd)) {
+ int err;
+
+ err = zap_lookup(os, dd->dd_object,
+ DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
+ &fs_cnt);
+ if (err != ENOENT && err != 0) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (err);
+ }
+
+ /*
+ * have to add 1 for the filesystem itself that we're
+ * moving
+ */
+ fs_cnt++;
+
+ err = zap_lookup(os, dd->dd_object,
+ DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
+ &ss_cnt);
+ if (err != ENOENT && err != 0) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (err);
+ }
+ }
+
+ /* check for encryption errors */
+ error = dsl_dir_rename_crypt_check(dd, newparent);
+ if (error != 0) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (SET_ERROR(EACCES));
+ }
+
+ /* no rename into our descendant */
+ if (closest_common_ancestor(dd, newparent) == dd) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ error = dsl_dir_transfer_possible(dd->dd_parent,
+ newparent, fs_cnt, ss_cnt, myspace,
+ ddra->ddra_cred, ddra->ddra_proc);
+ if (error != 0) {
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (error);
+ }
+ }
+
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ return (0);
+}
+
+static void
+dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
+{
+ dsl_dir_rename_arg_t *ddra = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ dsl_dir_t *dd, *newparent;
+ const char *mynewname;
+ objset_t *mos = dp->dp_meta_objset;
+
+ VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
+ VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
+ &mynewname));
+
+ /* Log this before we change the name. */
+ spa_history_log_internal_dd(dd, "rename", tx,
+ "-> %s", ddra->ddra_newname);
+
+ if (newparent != dd->dd_parent) {
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ uint64_t fs_cnt = 0;
+ uint64_t ss_cnt = 0;
+
+ /*
+ * We already made sure the dd counts were initialized in the
+ * check function.
+ */
+ if (spa_feature_is_active(dp->dp_spa,
+ SPA_FEATURE_FS_SS_LIMIT)) {
+ VERIFY0(zap_lookup(os, dd->dd_object,
+ DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
+ &fs_cnt));
+ /* add 1 for the filesystem itself that we're moving */
+ fs_cnt++;
+
+ VERIFY0(zap_lookup(os, dd->dd_object,
+ DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
+ &ss_cnt));
+ }
+
+ dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
+ DD_FIELD_FILESYSTEM_COUNT, tx);
+ dsl_fs_ss_count_adjust(newparent, fs_cnt,
+ DD_FIELD_FILESYSTEM_COUNT, tx);
+
+ dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
+ DD_FIELD_SNAPSHOT_COUNT, tx);
+ dsl_fs_ss_count_adjust(newparent, ss_cnt,
+ DD_FIELD_SNAPSHOT_COUNT, tx);
+
+ dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
+ -dsl_dir_phys(dd)->dd_used_bytes,
+ -dsl_dir_phys(dd)->dd_compressed_bytes,
+ -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
+ dsl_dir_diduse_space(newparent, DD_USED_CHILD,
+ dsl_dir_phys(dd)->dd_used_bytes,
+ dsl_dir_phys(dd)->dd_compressed_bytes,
+ dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
+
+ if (dsl_dir_phys(dd)->dd_reserved >
+ dsl_dir_phys(dd)->dd_used_bytes) {
+ uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
+ dsl_dir_phys(dd)->dd_used_bytes;
+
+ dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
+ -unused_rsrv, 0, 0, tx);
+ dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
+ unused_rsrv, 0, 0, tx);
+ }
+ }
+
+ dmu_buf_will_dirty(dd->dd_dbuf, tx);
+
+ /* remove from old parent zapobj */
+ VERIFY0(zap_remove(mos,
+ dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
+ dd->dd_myname, tx));
+
+ (void) strlcpy(dd->dd_myname, mynewname,
+ sizeof (dd->dd_myname));
+ dsl_dir_rele(dd->dd_parent, dd);
+ dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
+ VERIFY0(dsl_dir_hold_obj(dp,
+ newparent->dd_object, NULL, dd, &dd->dd_parent));
+
+ /* add to new parent zapobj */
+ VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
+ dd->dd_myname, 8, 1, &dd->dd_object, tx));
+
+ /* TODO: A rename callback to avoid these layering violations. */
+ zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
+ zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
+ ddra->ddra_newname, B_TRUE);
+
+ dsl_prop_notify_all(dd);
+
+ dsl_dir_rele(newparent, FTAG);
+ dsl_dir_rele(dd, FTAG);
+}
+
+int
+dsl_dir_rename(const char *oldname, const char *newname)
+{
+ dsl_dir_rename_arg_t ddra;
+
+ ddra.ddra_oldname = oldname;
+ ddra.ddra_newname = newname;
+ ddra.ddra_cred = CRED();
+ ddra.ddra_proc = curproc;
+
+ return (dsl_sync_task(oldname,
+ dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
+ 3, ZFS_SPACE_CHECK_RESERVED));
+}
+
+int
+dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
+ uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
+ cred_t *cr, proc_t *proc)
+{
+ dsl_dir_t *ancestor;
+ int64_t adelta;
+ uint64_t avail;
+ int err;
+
+ ancestor = closest_common_ancestor(sdd, tdd);
+ adelta = would_change(sdd, -space, ancestor);
+ avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
+ if (avail < space)
+ return (SET_ERROR(ENOSPC));
+
+ err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
+ ancestor, cr, proc);
+ if (err != 0)
+ return (err);
+ err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
+ ancestor, cr, proc);
+ if (err != 0)
+ return (err);
+
+ return (0);
+}
+
+inode_timespec_t
+dsl_dir_snap_cmtime(dsl_dir_t *dd)
+{
+ inode_timespec_t t;
+
+ mutex_enter(&dd->dd_lock);
+ t = dd->dd_snap_cmtime;
+ mutex_exit(&dd->dd_lock);
+
+ return (t);
+}
+
+void
+dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
+{
+ inode_timespec_t t;
+
+ gethrestime(&t);
+ mutex_enter(&dd->dd_lock);
+ dd->dd_snap_cmtime = t;
+ mutex_exit(&dd->dd_lock);
+}
+
+void
+dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
+{
+ objset_t *mos = dd->dd_pool->dp_meta_objset;
+ dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
+}
+
+boolean_t
+dsl_dir_is_zapified(dsl_dir_t *dd)
+{
+ dmu_object_info_t doi;
+
+ dmu_object_info_from_db(dd->dd_dbuf, &doi);
+ return (doi.doi_type == DMU_OTN_ZAP_METADATA);
+}
+
+void
+dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
+{
+ objset_t *mos = dd->dd_pool->dp_meta_objset;
+ ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
+ SPA_FEATURE_LIVELIST));
+ dsl_deadlist_open(&dd->dd_livelist, mos, obj);
+ bplist_create(&dd->dd_pending_allocs);
+ bplist_create(&dd->dd_pending_frees);
+}
+
+void
+dsl_dir_livelist_close(dsl_dir_t *dd)
+{
+ dsl_deadlist_close(&dd->dd_livelist);
+ bplist_destroy(&dd->dd_pending_allocs);
+ bplist_destroy(&dd->dd_pending_frees);
+}
+
+void
+dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
+{
+ uint64_t obj;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ spa_t *spa = dp->dp_spa;
+ livelist_condense_entry_t to_condense = spa->spa_to_condense;
+
+ if (!dsl_deadlist_is_open(&dd->dd_livelist))
+ return;
+
+ /*
+ * If the livelist being removed is set to be condensed, stop the
+ * condense zthr and indicate the cancellation in the spa_to_condense
+ * struct in case the condense no-wait synctask has already started
+ */
+ zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
+ if (ll_condense_thread != NULL &&
+ (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
+ /*
+ * We use zthr_wait_cycle_done instead of zthr_cancel
+ * because we don't want to destroy the zthr, just have
+ * it skip its current task.
+ */
+ spa->spa_to_condense.cancelled = B_TRUE;
+ zthr_wait_cycle_done(ll_condense_thread);
+ /*
+ * If we've returned from zthr_wait_cycle_done without
+ * clearing the to_condense data structure it's either
+ * because the no-wait synctask has started (which is
+ * indicated by 'syncing' field of to_condense) and we
+ * can expect it to clear to_condense on its own.
+ * Otherwise, we returned before the zthr ran. The
+ * checkfunc will now fail as cancelled == B_TRUE so we
+ * can safely NULL out ds, allowing a different dir's
+ * livelist to be condensed.
+ *
+ * We can be sure that the to_condense struct will not
+ * be repopulated at this stage because both this
+ * function and dsl_livelist_try_condense execute in
+ * syncing context.
+ */
+ if ((spa->spa_to_condense.ds != NULL) &&
+ !spa->spa_to_condense.syncing) {
+ dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
+ spa);
+ spa->spa_to_condense.ds = NULL;
+ }
+ }
+
+ dsl_dir_livelist_close(dd);
+ VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
+ DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
+ VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
+ DD_FIELD_LIVELIST, tx));
+ if (total) {
+ dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
+ spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
+ }
+}
+
+static int
+dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
+ zfs_wait_activity_t activity, boolean_t *in_progress)
+{
+ int error = 0;
+
+ ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
+
+ switch (activity) {
+ case ZFS_WAIT_DELETEQ: {
+#ifdef _KERNEL
+ objset_t *os;
+ error = dmu_objset_from_ds(ds, &os);
+ if (error != 0)
+ break;
+
+ mutex_enter(&os->os_user_ptr_lock);
+ void *user = dmu_objset_get_user(os);
+ mutex_exit(&os->os_user_ptr_lock);
+ if (dmu_objset_type(os) != DMU_OST_ZFS ||
+ user == NULL || zfs_get_vfs_flag_unmounted(os)) {
+ *in_progress = B_FALSE;
+ return (0);
+ }
+
+ uint64_t readonly = B_FALSE;
+ error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
+ NULL);
+
+ if (error != 0)
+ break;
+
+ if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
+ *in_progress = B_FALSE;
+ return (0);
+ }
+
+ uint64_t count, unlinked_obj;
+ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
+ &unlinked_obj);
+ if (error != 0) {
+ dsl_dataset_rele(ds, FTAG);
+ break;
+ }
+ error = zap_count(os, unlinked_obj, &count);
+
+ if (error == 0)
+ *in_progress = (count != 0);
+ break;
+#else
+ /*
+ * The delete queue is ZPL specific, and libzpool doesn't have
+ * it. It doesn't make sense to wait for it.
+ */
+ *in_progress = B_FALSE;
+ break;
+#endif
+ }
+ default:
+ panic("unrecognized value for activity %d", activity);
+ }
+
+ return (error);
+}
+
+int
+dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
+ boolean_t *waited)
+{
+ int error = 0;
+ boolean_t in_progress;
+ dsl_pool_t *dp = dd->dd_pool;
+ for (;;) {
+ dsl_pool_config_enter(dp, FTAG);
+ error = dsl_dir_activity_in_progress(dd, ds, activity,
+ &in_progress);
+ dsl_pool_config_exit(dp, FTAG);
+ if (error != 0 || !in_progress)
+ break;
+
+ *waited = B_TRUE;
+
+ if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
+ 0 || dd->dd_activity_cancelled) {
+ error = SET_ERROR(EINTR);
+ break;
+ }
+ }
+ return (error);
+}
+
+void
+dsl_dir_cancel_waiters(dsl_dir_t *dd)
+{
+ mutex_enter(&dd->dd_activity_lock);
+ dd->dd_activity_cancelled = B_TRUE;
+ cv_broadcast(&dd->dd_activity_cv);
+ while (dd->dd_activity_waiters > 0)
+ cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
+ mutex_exit(&dd->dd_activity_lock);
+}
+
+#if defined(_KERNEL)
+EXPORT_SYMBOL(dsl_dir_set_quota);
+EXPORT_SYMBOL(dsl_dir_set_reservation);
+#endif