aboutsummaryrefslogtreecommitdiff
path: root/tools/debugserver/source/MacOSX/arm64/DNBArchImplARM64.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tools/debugserver/source/MacOSX/arm64/DNBArchImplARM64.cpp')
-rw-r--r--tools/debugserver/source/MacOSX/arm64/DNBArchImplARM64.cpp2095
1 files changed, 2095 insertions, 0 deletions
diff --git a/tools/debugserver/source/MacOSX/arm64/DNBArchImplARM64.cpp b/tools/debugserver/source/MacOSX/arm64/DNBArchImplARM64.cpp
new file mode 100644
index 000000000000..e79d3d52e8f8
--- /dev/null
+++ b/tools/debugserver/source/MacOSX/arm64/DNBArchImplARM64.cpp
@@ -0,0 +1,2095 @@
+//===-- DNBArchMachARM64.cpp ------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Created by Greg Clayton on 6/25/07.
+//
+//===----------------------------------------------------------------------===//
+
+#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
+
+#include "MacOSX/arm64/DNBArchImplARM64.h"
+
+#if defined (ARM_THREAD_STATE64_COUNT)
+
+#include "MacOSX/MachProcess.h"
+#include "MacOSX/MachThread.h"
+#include "DNBBreakpoint.h"
+#include "DNBLog.h"
+#include "DNBRegisterInfo.h"
+#include "DNB.h"
+
+#include <inttypes.h>
+#include <sys/sysctl.h>
+
+// Break only in privileged or user mode
+// (PAC bits in the DBGWVRn_EL1 watchpoint control register)
+#define S_USER ((uint32_t)(2u << 1))
+
+#define BCR_ENABLE ((uint32_t)(1u))
+#define WCR_ENABLE ((uint32_t)(1u))
+
+// Watchpoint load/store
+// (LSC bits in the DBGWVRn_EL1 watchpoint control register)
+#define WCR_LOAD ((uint32_t)(1u << 3))
+#define WCR_STORE ((uint32_t)(1u << 4))
+
+// Enable breakpoint, watchpoint, and vector catch debug exceptions.
+// (MDE bit in the MDSCR_EL1 register. Equivalent to the MDBGen bit in DBGDSCRext in Aarch32)
+#define MDE_ENABLE ((uint32_t)(1u << 15))
+
+// Single instruction step
+// (SS bit in the MDSCR_EL1 register)
+#define SS_ENABLE ((uint32_t)(1u))
+
+static const uint8_t g_arm64_breakpoint_opcode[] = { 0x00, 0x00, 0x20, 0xD4 }; // "brk #0", 0xd4200000 in BE byte order
+static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 }; // this armv7 insn also works in arm64
+
+// If we need to set one logical watchpoint by using
+// two hardware watchpoint registers, the watchpoint
+// will be split into a "high" and "low" watchpoint.
+// Record both of them in the LoHi array.
+
+// It's safe to initialize to all 0's since
+// hi > lo and therefore LoHi[i] cannot be 0.
+static uint32_t LoHi[16] = { 0 };
+
+
+void
+DNBArchMachARM64::Initialize()
+{
+ DNBArchPluginInfo arch_plugin_info =
+ {
+ CPU_TYPE_ARM64,
+ DNBArchMachARM64::Create,
+ DNBArchMachARM64::GetRegisterSetInfo,
+ DNBArchMachARM64::SoftwareBreakpointOpcode
+ };
+
+ // Register this arch plug-in with the main protocol class
+ DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
+}
+
+
+DNBArchProtocol *
+DNBArchMachARM64::Create (MachThread *thread)
+{
+ DNBArchMachARM64 *obj = new DNBArchMachARM64 (thread);
+
+ return obj;
+}
+
+const uint8_t *
+DNBArchMachARM64::SoftwareBreakpointOpcode (nub_size_t byte_size)
+{
+ return g_arm_breakpoint_opcode;
+}
+
+uint32_t
+DNBArchMachARM64::GetCPUType()
+{
+ return CPU_TYPE_ARM64;
+}
+
+uint64_t
+DNBArchMachARM64::GetPC(uint64_t failValue)
+{
+ // Get program counter
+ if (GetGPRState(false) == KERN_SUCCESS)
+ return m_state.context.gpr.__pc;
+ return failValue;
+}
+
+kern_return_t
+DNBArchMachARM64::SetPC(uint64_t value)
+{
+ // Get program counter
+ kern_return_t err = GetGPRState(false);
+ if (err == KERN_SUCCESS)
+ {
+ m_state.context.gpr.__pc = value;
+ err = SetGPRState();
+ }
+ return err == KERN_SUCCESS;
+}
+
+uint64_t
+DNBArchMachARM64::GetSP(uint64_t failValue)
+{
+ // Get stack pointer
+ if (GetGPRState(false) == KERN_SUCCESS)
+ return m_state.context.gpr.__sp;
+ return failValue;
+}
+
+kern_return_t
+DNBArchMachARM64::GetGPRState(bool force)
+{
+ int set = e_regSetGPR;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = e_regSetGPRCount;
+ kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, (thread_state_t)&m_state.context.gpr, &count);
+ if (DNBLogEnabledForAny (LOG_THREAD))
+ {
+ uint64_t *x = &m_state.context.gpr.__x[0];
+ DNBLogThreaded("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs"
+ "\n x0=%16.16llx"
+ "\n x1=%16.16llx"
+ "\n x2=%16.16llx"
+ "\n x3=%16.16llx"
+ "\n x4=%16.16llx"
+ "\n x5=%16.16llx"
+ "\n x6=%16.16llx"
+ "\n x7=%16.16llx"
+ "\n x8=%16.16llx"
+ "\n x9=%16.16llx"
+ "\n x10=%16.16llx"
+ "\n x11=%16.16llx"
+ "\n x12=%16.16llx"
+ "\n x13=%16.16llx"
+ "\n x14=%16.16llx"
+ "\n x15=%16.16llx"
+ "\n x16=%16.16llx"
+ "\n x17=%16.16llx"
+ "\n x18=%16.16llx"
+ "\n x19=%16.16llx"
+ "\n x20=%16.16llx"
+ "\n x21=%16.16llx"
+ "\n x22=%16.16llx"
+ "\n x23=%16.16llx"
+ "\n x24=%16.16llx"
+ "\n x25=%16.16llx"
+ "\n x26=%16.16llx"
+ "\n x27=%16.16llx"
+ "\n x28=%16.16llx"
+ "\n fp=%16.16llx"
+ "\n lr=%16.16llx"
+ "\n sp=%16.16llx"
+ "\n pc=%16.16llx"
+ "\n cpsr=%8.8x",
+ m_thread->MachPortNumber(),
+ e_regSetGPR,
+ e_regSetGPRCount,
+ kret,
+ count,
+ x[0],
+ x[1],
+ x[2],
+ x[3],
+ x[4],
+ x[5],
+ x[6],
+ x[7],
+ x[8],
+ x[9],
+ x[0],
+ x[11],
+ x[12],
+ x[13],
+ x[14],
+ x[15],
+ x[16],
+ x[17],
+ x[18],
+ x[19],
+ x[20],
+ x[21],
+ x[22],
+ x[23],
+ x[24],
+ x[25],
+ x[26],
+ x[27],
+ x[28],
+ m_state.context.gpr.__fp,
+ m_state.context.gpr.__lr,
+ m_state.context.gpr.__sp,
+ m_state.context.gpr.__pc,
+ m_state.context.gpr.__cpsr);
+ }
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t
+DNBArchMachARM64::GetVFPState(bool force)
+{
+ int set = e_regSetVFP;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = e_regSetVFPCount;
+ kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64, (thread_state_t)&m_state.context.vfp, &count);
+ if (DNBLogEnabledForAny (LOG_THREAD))
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ DNBLogThreaded("thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
+ "\n q0 = 0x%16.16llx%16.16llx"
+ "\n q1 = 0x%16.16llx%16.16llx"
+ "\n q2 = 0x%16.16llx%16.16llx"
+ "\n q3 = 0x%16.16llx%16.16llx"
+ "\n q4 = 0x%16.16llx%16.16llx"
+ "\n q5 = 0x%16.16llx%16.16llx"
+ "\n q6 = 0x%16.16llx%16.16llx"
+ "\n q7 = 0x%16.16llx%16.16llx"
+ "\n q8 = 0x%16.16llx%16.16llx"
+ "\n q9 = 0x%16.16llx%16.16llx"
+ "\n q10 = 0x%16.16llx%16.16llx"
+ "\n q11 = 0x%16.16llx%16.16llx"
+ "\n q12 = 0x%16.16llx%16.16llx"
+ "\n q13 = 0x%16.16llx%16.16llx"
+ "\n q14 = 0x%16.16llx%16.16llx"
+ "\n q15 = 0x%16.16llx%16.16llx"
+ "\n q16 = 0x%16.16llx%16.16llx"
+ "\n q17 = 0x%16.16llx%16.16llx"
+ "\n q18 = 0x%16.16llx%16.16llx"
+ "\n q19 = 0x%16.16llx%16.16llx"
+ "\n q20 = 0x%16.16llx%16.16llx"
+ "\n q21 = 0x%16.16llx%16.16llx"
+ "\n q22 = 0x%16.16llx%16.16llx"
+ "\n q23 = 0x%16.16llx%16.16llx"
+ "\n q24 = 0x%16.16llx%16.16llx"
+ "\n q25 = 0x%16.16llx%16.16llx"
+ "\n q26 = 0x%16.16llx%16.16llx"
+ "\n q27 = 0x%16.16llx%16.16llx"
+ "\n q28 = 0x%16.16llx%16.16llx"
+ "\n q29 = 0x%16.16llx%16.16llx"
+ "\n q30 = 0x%16.16llx%16.16llx"
+ "\n q31 = 0x%16.16llx%16.16llx"
+ "\n fpsr = 0x%8.8x"
+ "\n fpcr = 0x%8.8x\n\n",
+ m_thread->MachPortNumber(),
+ e_regSetVFP,
+ e_regSetVFPCount,
+ kret,
+ count,
+ ((uint64_t *)&m_state.context.vfp.__v[0])[0] , ((uint64_t *)&m_state.context.vfp.__v[0])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[1])[0] , ((uint64_t *)&m_state.context.vfp.__v[1])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[2])[0] , ((uint64_t *)&m_state.context.vfp.__v[2])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[3])[0] , ((uint64_t *)&m_state.context.vfp.__v[3])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[4])[0] , ((uint64_t *)&m_state.context.vfp.__v[4])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[5])[0] , ((uint64_t *)&m_state.context.vfp.__v[5])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[6])[0] , ((uint64_t *)&m_state.context.vfp.__v[6])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[7])[0] , ((uint64_t *)&m_state.context.vfp.__v[7])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[8])[0] , ((uint64_t *)&m_state.context.vfp.__v[8])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[9])[0] , ((uint64_t *)&m_state.context.vfp.__v[9])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[10])[0], ((uint64_t *)&m_state.context.vfp.__v[10])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[11])[0], ((uint64_t *)&m_state.context.vfp.__v[11])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[12])[0], ((uint64_t *)&m_state.context.vfp.__v[12])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[13])[0], ((uint64_t *)&m_state.context.vfp.__v[13])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[14])[0], ((uint64_t *)&m_state.context.vfp.__v[14])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[15])[0], ((uint64_t *)&m_state.context.vfp.__v[15])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[16])[0], ((uint64_t *)&m_state.context.vfp.__v[16])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[17])[0], ((uint64_t *)&m_state.context.vfp.__v[17])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[18])[0], ((uint64_t *)&m_state.context.vfp.__v[18])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[19])[0], ((uint64_t *)&m_state.context.vfp.__v[19])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[20])[0], ((uint64_t *)&m_state.context.vfp.__v[20])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[21])[0], ((uint64_t *)&m_state.context.vfp.__v[21])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[22])[0], ((uint64_t *)&m_state.context.vfp.__v[22])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[23])[0], ((uint64_t *)&m_state.context.vfp.__v[23])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[24])[0], ((uint64_t *)&m_state.context.vfp.__v[24])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[25])[0], ((uint64_t *)&m_state.context.vfp.__v[25])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[26])[0], ((uint64_t *)&m_state.context.vfp.__v[26])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[27])[0], ((uint64_t *)&m_state.context.vfp.__v[27])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[28])[0], ((uint64_t *)&m_state.context.vfp.__v[28])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[29])[0], ((uint64_t *)&m_state.context.vfp.__v[29])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[30])[0], ((uint64_t *)&m_state.context.vfp.__v[30])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[31])[0], ((uint64_t *)&m_state.context.vfp.__v[31])[1],
+ m_state.context.vfp.__fpsr,
+ m_state.context.vfp.__fpcr);
+#endif
+ }
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t
+DNBArchMachARM64::GetEXCState(bool force)
+{
+ int set = e_regSetEXC;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = e_regSetEXCCount;
+ kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, (thread_state_t)&m_state.context.exc, &count);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+static void
+DumpDBGState(const arm_debug_state_t& dbg)
+{
+ uint32_t i = 0;
+ for (i=0; i<16; i++)
+ DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
+ i, i, dbg.__bvr[i], dbg.__bcr[i],
+ i, i, dbg.__wvr[i], dbg.__wcr[i]);
+}
+
+kern_return_t
+DNBArchMachARM64::GetDBGState(bool force)
+{
+ int set = e_regSetDBG;
+
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = e_regSetDBGCount;
+ kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, (thread_state_t)&m_state.dbg, &count);
+ m_state.SetError(set, Read, kret);
+
+ return kret;
+}
+
+kern_return_t
+DNBArchMachARM64::SetGPRState()
+{
+ int set = e_regSetGPR;
+ kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, (thread_state_t)&m_state.context.gpr, e_regSetGPRCount);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM64::SetVFPState()
+{
+ int set = e_regSetVFP;
+ kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_NEON_STATE64, (thread_state_t)&m_state.context.vfp, e_regSetVFPCount);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM64::SetEXCState()
+{
+ int set = e_regSetEXC;
+ kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, (thread_state_t)&m_state.context.exc, e_regSetEXCCount);
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+ return kret; // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM64::SetDBGState(bool also_set_on_task)
+{
+ int set = e_regSetDBG;
+ kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE64, (thread_state_t)&m_state.dbg, e_regSetDBGCount);
+ if (also_set_on_task)
+ {
+ kern_return_t task_kret = task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64, (thread_state_t)&m_state.dbg, e_regSetDBGCount);
+ if (task_kret != KERN_SUCCESS)
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed to set debug control register state: 0x%8.8x.", task_kret);
+ }
+ m_state.SetError(set, Write, kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
+
+ return kret; // Return the error code
+}
+
+void
+DNBArchMachARM64::ThreadWillResume()
+{
+ // Do we need to step this thread? If so, let the mach thread tell us so.
+ if (m_thread->IsStepping())
+ {
+ EnableHardwareSingleStep(true);
+ }
+
+ // Disable the triggered watchpoint temporarily before we resume.
+ // Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
+ if (m_watchpoint_did_occur)
+ {
+ if (m_watchpoint_hw_index >= 0)
+ {
+ kern_return_t kret = GetDBGState(false);
+ if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
+ // The watchpoint might have been disabled by the user. We don't need to do anything at all
+ // to enable hardware single stepping.
+ m_watchpoint_did_occur = false;
+ m_watchpoint_hw_index = -1;
+ return;
+ }
+
+ DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
+ m_watchpoint_hw_index);
+
+ // Enable hardware single step to move past the watchpoint-triggering instruction.
+ m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
+
+ // If we are not able to enable single step to move past the watchpoint-triggering instruction,
+ // at least we should reset the two watchpoint member variables so that the next time around
+ // this callback function is invoked, the enclosing logical branch is skipped.
+ if (!m_watchpoint_resume_single_step_enabled) {
+ // Reset the two watchpoint member variables.
+ m_watchpoint_did_occur = false;
+ m_watchpoint_hw_index = -1;
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
+ }
+ else
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
+ }
+ }
+}
+
+bool
+DNBArchMachARM64::NotifyException(MachException::Data& exc)
+{
+
+ switch (exc.exc_type)
+ {
+ default:
+ break;
+ case EXC_BREAKPOINT:
+ if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
+ {
+ // The data break address is passed as exc_data[1].
+ nub_addr_t addr = exc.exc_data[1];
+ // Find the hardware index with the side effect of possibly massaging the
+ // addr to return the starting address as seen from the debugger side.
+ uint32_t hw_index = GetHardwareWatchpointHit(addr);
+
+ // One logical watchpoint was split into two watchpoint locations because
+ // it was too big. If the watchpoint exception is indicating the 2nd half
+ // of the two-parter, find the address of the 1st half and report that --
+ // that's what lldb is going to expect to see.
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException watchpoint %d was hit on address 0x%llx", hw_index, (uint64_t) addr);
+ const int num_watchpoints = NumSupportedHardwareWatchpoints ();
+ for (int i = 0; i < num_watchpoints; i++)
+ {
+ if (LoHi[i] != 0
+ && LoHi[i] == hw_index
+ && LoHi[i] != i
+ && GetWatchpointAddressByIndex (i) != INVALID_NUB_ADDRESS)
+ {
+ addr = GetWatchpointAddressByIndex (i);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException It is a linked watchpoint; rewritten to index %d addr 0x%llx", LoHi[i], (uint64_t) addr);
+ }
+ }
+
+ if (hw_index != INVALID_NUB_HW_INDEX)
+ {
+ m_watchpoint_did_occur = true;
+ m_watchpoint_hw_index = hw_index;
+ exc.exc_data[1] = addr;
+ // Piggyback the hw_index in the exc.data.
+ exc.exc_data.push_back(hw_index);
+ }
+
+ return true;
+ }
+ break;
+ }
+ return false;
+}
+
+bool
+DNBArchMachARM64::ThreadDidStop()
+{
+ bool success = true;
+
+ m_state.InvalidateAllRegisterStates();
+
+ if (m_watchpoint_resume_single_step_enabled)
+ {
+ // Great! We now disable the hardware single step as well as re-enable the hardware watchpoint.
+ // See also ThreadWillResume().
+ if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
+ {
+ if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
+ {
+ ReenableHardwareWatchpoint(m_watchpoint_hw_index);
+ m_watchpoint_resume_single_step_enabled = false;
+ m_watchpoint_did_occur = false;
+ m_watchpoint_hw_index = -1;
+ }
+ else
+ {
+ DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
+ }
+ }
+ else
+ {
+ DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
+ }
+ }
+
+ // Are we stepping a single instruction?
+ if (GetGPRState(true) == KERN_SUCCESS)
+ {
+ // We are single stepping, was this the primary thread?
+ if (m_thread->IsStepping())
+ {
+ // This was the primary thread, we need to clear the trace
+ // bit if so.
+ success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
+ }
+ else
+ {
+ // The MachThread will automatically restore the suspend count
+ // in ThreadDidStop(), so we don't need to do anything here if
+ // we weren't the primary thread the last time
+ }
+ }
+ return success;
+}
+
+// Set the single step bit in the processor status register.
+kern_return_t
+DNBArchMachARM64::EnableHardwareSingleStep (bool enable)
+{
+ DNBError err;
+ DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
+
+ err = GetGPRState(false);
+
+ if (err.Fail())
+ {
+ err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
+ return err.Error();
+ }
+
+ err = GetDBGState(false);
+
+ if (err.Fail())
+ {
+ err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
+ return err.Error();
+ }
+
+ if (enable)
+ {
+ DNBLogThreadedIf(LOG_STEP, "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
+ m_state.dbg.__mdscr_el1 |= SS_ENABLE;
+ }
+ else
+ {
+ DNBLogThreadedIf(LOG_STEP, "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
+ m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE);
+ }
+
+ return SetDBGState(false);
+}
+
+// return 1 if bit "BIT" is set in "value"
+static inline uint32_t bit(uint32_t value, uint32_t bit)
+{
+ return (value >> bit) & 1u;
+}
+
+// return the bitfield "value[msbit:lsbit]".
+static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit)
+{
+ assert(msbit >= lsbit);
+ uint64_t shift_left = sizeof(value) * 8 - 1 - msbit;
+ value <<= shift_left; // shift anything above the msbit off of the unsigned edge
+ value >>= shift_left + lsbit; // shift it back again down to the lsbit (including undoing any shift from above)
+ return value; // return our result
+}
+
+uint32_t
+DNBArchMachARM64::NumSupportedHardwareWatchpoints()
+{
+ // Set the init value to something that will let us know that we need to
+ // autodetect how many watchpoints are supported dynamically...
+ static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
+ if (g_num_supported_hw_watchpoints == UINT_MAX)
+ {
+ // Set this to zero in case we can't tell if there are any HW breakpoints
+ g_num_supported_hw_watchpoints = 0;
+
+
+ size_t len;
+ uint32_t n = 0;
+ len = sizeof (n);
+ if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
+ {
+ g_num_supported_hw_watchpoints = n;
+ DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
+ }
+ else
+ {
+ // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in EL0 so it can't
+ // access that reg. The kernel should have filled in the sysctls based on it though.
+#if defined (__arm__)
+ uint32_t register_DBGDIDR;
+
+ asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
+ uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
+ // Zero is reserved for the WRP count, so don't increment it if it is zero
+ if (numWRPs > 0)
+ numWRPs++;
+ g_num_supported_hw_watchpoints = numWRPs;
+ DNBLogThreadedIf(LOG_THREAD, "Number of supported hw watchpoints via asm(): %d", g_num_supported_hw_watchpoints);
+#endif
+ }
+ }
+ return g_num_supported_hw_watchpoints;
+}
+
+uint32_t
+DNBArchMachARM64::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task)
+{
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
+
+ const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
+
+ // Can't watch zero bytes
+ if (size == 0)
+ return INVALID_NUB_HW_INDEX;
+
+ // We must watch for either read or write
+ if (read == false && write == false)
+ return INVALID_NUB_HW_INDEX;
+
+ // Otherwise, can't watch more than 8 bytes per WVR/WCR pair
+ if (size > 8)
+ return INVALID_NUB_HW_INDEX;
+
+ // arm64 watchpoints really have an 8-byte alignment requirement. You can put a watchpoint on a 4-byte
+ // offset address but you can only watch 4 bytes with that watchpoint.
+
+ // arm64 watchpoints on an 8-byte (double word) aligned addr can watch any bytes in that
+ // 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd byte, etc, or any
+ // combination therein by setting the bits in the BAS [12:5] (Byte Address Select) field of
+ // the DBGWCRn_EL1 reg for the watchpoint.
+
+ // If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to monitor a larger region
+ // of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield then selects a larger
+ // range of bytes, instead of individual bytes. See the ARMv8 Debug Architecture manual for details.
+ // This implementation does not currently use the MASK bits; the largest single region watched by a single
+ // watchpoint right now is 8-bytes.
+
+ nub_addr_t aligned_wp_address = addr & ~0x7;
+ uint32_t addr_dword_offset = addr & 0x7;
+
+ // Do we need to split up this logical watchpoint into two hardware watchpoint
+ // registers?
+ // e.g. a watchpoint of length 4 on address 6. We need do this with
+ // one watchpoint on address 0 with bytes 6 & 7 being monitored
+ // one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
+
+ if (addr_dword_offset + size > 8)
+ {
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu) needs two hardware watchpoints slots to monitor", (uint64_t)addr, size);
+ int low_watchpoint_size = 8 - addr_dword_offset;
+ int high_watchpoint_size = addr_dword_offset + size - 8;
+
+ uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read, write, also_set_on_task);
+ if (lo == INVALID_NUB_HW_INDEX)
+ return INVALID_NUB_HW_INDEX;
+ uint32_t hi = EnableHardwareWatchpoint (aligned_wp_address + 8, high_watchpoint_size, read, write, also_set_on_task);
+ if (hi == INVALID_NUB_HW_INDEX)
+ {
+ DisableHardwareWatchpoint (lo, also_set_on_task);
+ return INVALID_NUB_HW_INDEX;
+ }
+ // Tag this lo->hi mapping in our database.
+ LoHi[lo] = hi;
+ return lo;
+ }
+
+ // At this point
+ // 1 aligned_wp_address is the requested address rounded down to 8-byte alignment
+ // 2 addr_dword_offset is the offset into that double word (8-byte) region that we are watching
+ // 3 size is the number of bytes within that 8-byte region that we are watching
+
+ // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the above.
+ // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, etc, up to 0b11111111 for 8.
+ // then we shift those bits left by the offset into this dword that we are interested in.
+ // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of 0b11110000.
+ uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
+
+ // Read the debug state
+ kern_return_t kret = GetDBGState(false);
+
+ if (kret == KERN_SUCCESS)
+ {
+ // Check to make sure we have the needed hardware support
+ uint32_t i = 0;
+
+ for (i=0; i<num_hw_watchpoints; ++i)
+ {
+ if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
+ break; // We found an available hw watchpoint slot (in i)
+ }
+
+ // See if we found an available hw watchpoint slot above
+ if (i < num_hw_watchpoints)
+ {
+ //DumpDBGState(m_state.dbg);
+
+ // Clear any previous LoHi joined-watchpoint that may have been in use
+ LoHi[i] = 0;
+
+ // shift our Byte Address Select bits up to the correct bit range for the DBGWCRn_EL1
+ byte_address_select = byte_address_select << 5;
+
+ // Make sure bits 1:0 are clear in our address
+ m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
+ m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch
+ S_USER | // Stop only in user mode
+ (read ? WCR_LOAD : 0) | // Stop on read access?
+ (write ? WCR_STORE : 0) | // Stop on write access?
+ WCR_ENABLE; // Enable this watchpoint;
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
+
+ // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
+
+ kret = SetDBGState(also_set_on_task);
+ //DumpDBGState(m_state.dbg);
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
+
+ if (kret == KERN_SUCCESS)
+ return i;
+ }
+ else
+ {
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
+ }
+ }
+ return INVALID_NUB_HW_INDEX;
+}
+
+bool
+DNBArchMachARM64::ReenableHardwareWatchpoint (uint32_t hw_index)
+{
+ // If this logical watchpoint # is actually implemented using
+ // two hardware watchpoint registers, re-enable both of them.
+
+ if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
+ {
+ return ReenableHardwareWatchpoint_helper (hw_index) && ReenableHardwareWatchpoint_helper (LoHi[hw_index]);
+ }
+ else
+ {
+ return ReenableHardwareWatchpoint_helper (hw_index);
+ }
+}
+
+bool
+DNBArchMachARM64::ReenableHardwareWatchpoint_helper (uint32_t hw_index)
+{
+ kern_return_t kret = GetDBGState(false);
+ if (kret != KERN_SUCCESS)
+ return false;
+
+ const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
+ if (hw_index >= num_hw_points)
+ return false;
+
+ m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
+ m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
+ hw_index,
+ hw_index,
+ (uint64_t) m_state.dbg.__wvr[hw_index],
+ hw_index,
+ (uint64_t) m_state.dbg.__wcr[hw_index]);
+
+ // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
+
+ kret = SetDBGState(false);
+
+ return (kret == KERN_SUCCESS);
+}
+
+bool
+DNBArchMachARM64::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task)
+{
+ if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
+ {
+ return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task) && DisableHardwareWatchpoint_helper (LoHi[hw_index], also_set_on_task);
+ }
+ else
+ {
+ return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task);
+ }
+}
+
+bool
+DNBArchMachARM64::DisableHardwareWatchpoint_helper (uint32_t hw_index, bool also_set_on_task)
+{
+ kern_return_t kret = GetDBGState(false);
+ if (kret != KERN_SUCCESS)
+ return false;
+
+ const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
+ if (hw_index >= num_hw_points)
+ return false;
+
+ m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
+ m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
+
+ m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
+ hw_index,
+ hw_index,
+ (uint64_t) m_state.dbg.__wvr[hw_index],
+ hw_index,
+ (uint64_t) m_state.dbg.__wcr[hw_index]);
+
+ kret = SetDBGState(also_set_on_task);
+
+ return (kret == KERN_SUCCESS);
+}
+
+// This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control register.
+// Returns -1 if the trailing bit patterns are not one of:
+// { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000, 0b?1000000, 0b10000000 }.
+static inline
+int32_t
+LowestBitSet(uint32_t val)
+{
+ for (unsigned i = 0; i < 8; ++i) {
+ if (bit(val, i))
+ return i;
+ }
+ return -1;
+}
+
+// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
+// As a side effect, the starting address as understood by the debugger is returned which could be
+// different from 'addr' passed as an in/out argument.
+uint32_t
+DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr)
+{
+ // Read the debug state
+ kern_return_t kret = GetDBGState(true);
+ //DumpDBGState(m_state.dbg);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
+
+ // This is the watchpoint value to match against, i.e., word address.
+ nub_addr_t wp_val = addr & ~((nub_addr_t)3);
+ if (kret == KERN_SUCCESS)
+ {
+ DBG &debug_state = m_state.dbg;
+ uint32_t i, num = NumSupportedHardwareWatchpoints();
+ for (i = 0; i < num; ++i)
+ {
+ nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
+ DNBLogThreadedIf(LOG_WATCHPOINTS,
+ "DNBArchMachARM64::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
+ i, (uint64_t)wp_addr);
+ if (wp_val == wp_addr) {
+ uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
+
+ // Sanity check the byte_mask, first.
+ if (LowestBitSet(byte_mask) < 0)
+ continue;
+
+ // Check that the watchpoint is enabled.
+ if (!IsWatchpointEnabled(debug_state, i))
+ continue;
+
+ // Compute the starting address (from the point of view of the debugger).
+ addr = wp_addr + LowestBitSet(byte_mask);
+ return i;
+ }
+ }
+ }
+ return INVALID_NUB_HW_INDEX;
+}
+
+nub_addr_t
+DNBArchMachARM64::GetWatchpointAddressByIndex (uint32_t hw_index)
+{
+ kern_return_t kret = GetDBGState(true);
+ if (kret != KERN_SUCCESS)
+ return INVALID_NUB_ADDRESS;
+ const uint32_t num = NumSupportedHardwareWatchpoints();
+ if (hw_index >= num)
+ return INVALID_NUB_ADDRESS;
+ if (IsWatchpointEnabled (m_state.dbg, hw_index))
+ return GetWatchAddress (m_state.dbg, hw_index);
+ return INVALID_NUB_ADDRESS;
+}
+
+bool
+DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
+{
+ // Watchpoint Control Registers, bitfield definitions
+ // ...
+ // Bits Value Description
+ // [0] 0 Watchpoint disabled
+ // 1 Watchpoint enabled.
+ return (debug_state.__wcr[hw_index] & 1u);
+}
+
+nub_addr_t
+DNBArchMachARM64::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
+{
+ // Watchpoint Value Registers, bitfield definitions
+ // Bits Description
+ // [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
+ // [1:0] RAZ/SBZP
+ return bits(debug_state.__wvr[hw_index], 63, 0);
+}
+
+//----------------------------------------------------------------------
+// Register information definitions for 64 bit ARMv8.
+//----------------------------------------------------------------------
+enum gpr_regnums
+{
+ gpr_x0 = 0,
+ gpr_x1,
+ gpr_x2,
+ gpr_x3,
+ gpr_x4,
+ gpr_x5,
+ gpr_x6,
+ gpr_x7,
+ gpr_x8,
+ gpr_x9,
+ gpr_x10,
+ gpr_x11,
+ gpr_x12,
+ gpr_x13,
+ gpr_x14,
+ gpr_x15,
+ gpr_x16,
+ gpr_x17,
+ gpr_x18,
+ gpr_x19,
+ gpr_x20,
+ gpr_x21,
+ gpr_x22,
+ gpr_x23,
+ gpr_x24,
+ gpr_x25,
+ gpr_x26,
+ gpr_x27,
+ gpr_x28,
+ gpr_fp, gpr_x29 = gpr_fp,
+ gpr_lr, gpr_x30 = gpr_lr,
+ gpr_sp, gpr_x31 = gpr_sp,
+ gpr_pc,
+ gpr_cpsr,
+ gpr_w0,
+ gpr_w1,
+ gpr_w2,
+ gpr_w3,
+ gpr_w4,
+ gpr_w5,
+ gpr_w6,
+ gpr_w7,
+ gpr_w8,
+ gpr_w9,
+ gpr_w10,
+ gpr_w11,
+ gpr_w12,
+ gpr_w13,
+ gpr_w14,
+ gpr_w15,
+ gpr_w16,
+ gpr_w17,
+ gpr_w18,
+ gpr_w19,
+ gpr_w20,
+ gpr_w21,
+ gpr_w22,
+ gpr_w23,
+ gpr_w24,
+ gpr_w25,
+ gpr_w26,
+ gpr_w27,
+ gpr_w28
+
+};
+
+enum
+{
+ vfp_v0 = 0,
+ vfp_v1,
+ vfp_v2,
+ vfp_v3,
+ vfp_v4,
+ vfp_v5,
+ vfp_v6,
+ vfp_v7,
+ vfp_v8,
+ vfp_v9,
+ vfp_v10,
+ vfp_v11,
+ vfp_v12,
+ vfp_v13,
+ vfp_v14,
+ vfp_v15,
+ vfp_v16,
+ vfp_v17,
+ vfp_v18,
+ vfp_v19,
+ vfp_v20,
+ vfp_v21,
+ vfp_v22,
+ vfp_v23,
+ vfp_v24,
+ vfp_v25,
+ vfp_v26,
+ vfp_v27,
+ vfp_v28,
+ vfp_v29,
+ vfp_v30,
+ vfp_v31,
+ vfp_fpsr,
+ vfp_fpcr,
+
+ // lower 32 bits of the corresponding vfp_v<n> reg.
+ vfp_s0,
+ vfp_s1,
+ vfp_s2,
+ vfp_s3,
+ vfp_s4,
+ vfp_s5,
+ vfp_s6,
+ vfp_s7,
+ vfp_s8,
+ vfp_s9,
+ vfp_s10,
+ vfp_s11,
+ vfp_s12,
+ vfp_s13,
+ vfp_s14,
+ vfp_s15,
+ vfp_s16,
+ vfp_s17,
+ vfp_s18,
+ vfp_s19,
+ vfp_s20,
+ vfp_s21,
+ vfp_s22,
+ vfp_s23,
+ vfp_s24,
+ vfp_s25,
+ vfp_s26,
+ vfp_s27,
+ vfp_s28,
+ vfp_s29,
+ vfp_s30,
+ vfp_s31,
+
+ // lower 64 bits of the corresponding vfp_v<n> reg.
+ vfp_d0,
+ vfp_d1,
+ vfp_d2,
+ vfp_d3,
+ vfp_d4,
+ vfp_d5,
+ vfp_d6,
+ vfp_d7,
+ vfp_d8,
+ vfp_d9,
+ vfp_d10,
+ vfp_d11,
+ vfp_d12,
+ vfp_d13,
+ vfp_d14,
+ vfp_d15,
+ vfp_d16,
+ vfp_d17,
+ vfp_d18,
+ vfp_d19,
+ vfp_d20,
+ vfp_d21,
+ vfp_d22,
+ vfp_d23,
+ vfp_d24,
+ vfp_d25,
+ vfp_d26,
+ vfp_d27,
+ vfp_d28,
+ vfp_d29,
+ vfp_d30,
+ vfp_d31
+};
+
+enum
+{
+ exc_far = 0,
+ exc_esr,
+ exc_exception
+};
+
+// These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)" document.
+
+enum
+{
+ dwarf_x0 = 0,
+ dwarf_x1,
+ dwarf_x2,
+ dwarf_x3,
+ dwarf_x4,
+ dwarf_x5,
+ dwarf_x6,
+ dwarf_x7,
+ dwarf_x8,
+ dwarf_x9,
+ dwarf_x10,
+ dwarf_x11,
+ dwarf_x12,
+ dwarf_x13,
+ dwarf_x14,
+ dwarf_x15,
+ dwarf_x16,
+ dwarf_x17,
+ dwarf_x18,
+ dwarf_x19,
+ dwarf_x20,
+ dwarf_x21,
+ dwarf_x22,
+ dwarf_x23,
+ dwarf_x24,
+ dwarf_x25,
+ dwarf_x26,
+ dwarf_x27,
+ dwarf_x28,
+ dwarf_x29,
+ dwarf_x30,
+ dwarf_x31,
+ dwarf_pc = 32,
+ dwarf_elr_mode = 33,
+ dwarf_fp = dwarf_x29,
+ dwarf_lr = dwarf_x30,
+ dwarf_sp = dwarf_x31,
+ // 34-63 reserved
+
+ // V0-V31 (128 bit vector registers)
+ dwarf_v0 = 64,
+ dwarf_v1,
+ dwarf_v2,
+ dwarf_v3,
+ dwarf_v4,
+ dwarf_v5,
+ dwarf_v6,
+ dwarf_v7,
+ dwarf_v8,
+ dwarf_v9,
+ dwarf_v10,
+ dwarf_v11,
+ dwarf_v12,
+ dwarf_v13,
+ dwarf_v14,
+ dwarf_v15,
+ dwarf_v16,
+ dwarf_v17,
+ dwarf_v18,
+ dwarf_v19,
+ dwarf_v20,
+ dwarf_v21,
+ dwarf_v22,
+ dwarf_v23,
+ dwarf_v24,
+ dwarf_v25,
+ dwarf_v26,
+ dwarf_v27,
+ dwarf_v28,
+ dwarf_v29,
+ dwarf_v30,
+ dwarf_v31
+
+ // 96-127 reserved
+};
+
+enum
+{
+ debugserver_gpr_x0 = 0,
+ debugserver_gpr_x1,
+ debugserver_gpr_x2,
+ debugserver_gpr_x3,
+ debugserver_gpr_x4,
+ debugserver_gpr_x5,
+ debugserver_gpr_x6,
+ debugserver_gpr_x7,
+ debugserver_gpr_x8,
+ debugserver_gpr_x9,
+ debugserver_gpr_x10,
+ debugserver_gpr_x11,
+ debugserver_gpr_x12,
+ debugserver_gpr_x13,
+ debugserver_gpr_x14,
+ debugserver_gpr_x15,
+ debugserver_gpr_x16,
+ debugserver_gpr_x17,
+ debugserver_gpr_x18,
+ debugserver_gpr_x19,
+ debugserver_gpr_x20,
+ debugserver_gpr_x21,
+ debugserver_gpr_x22,
+ debugserver_gpr_x23,
+ debugserver_gpr_x24,
+ debugserver_gpr_x25,
+ debugserver_gpr_x26,
+ debugserver_gpr_x27,
+ debugserver_gpr_x28,
+ debugserver_gpr_fp, // x29
+ debugserver_gpr_lr, // x30
+ debugserver_gpr_sp, // sp aka xsp
+ debugserver_gpr_pc,
+ debugserver_gpr_cpsr,
+ debugserver_vfp_v0,
+ debugserver_vfp_v1,
+ debugserver_vfp_v2,
+ debugserver_vfp_v3,
+ debugserver_vfp_v4,
+ debugserver_vfp_v5,
+ debugserver_vfp_v6,
+ debugserver_vfp_v7,
+ debugserver_vfp_v8,
+ debugserver_vfp_v9,
+ debugserver_vfp_v10,
+ debugserver_vfp_v11,
+ debugserver_vfp_v12,
+ debugserver_vfp_v13,
+ debugserver_vfp_v14,
+ debugserver_vfp_v15,
+ debugserver_vfp_v16,
+ debugserver_vfp_v17,
+ debugserver_vfp_v18,
+ debugserver_vfp_v19,
+ debugserver_vfp_v20,
+ debugserver_vfp_v21,
+ debugserver_vfp_v22,
+ debugserver_vfp_v23,
+ debugserver_vfp_v24,
+ debugserver_vfp_v25,
+ debugserver_vfp_v26,
+ debugserver_vfp_v27,
+ debugserver_vfp_v28,
+ debugserver_vfp_v29,
+ debugserver_vfp_v30,
+ debugserver_vfp_v31,
+ debugserver_vfp_fpsr,
+ debugserver_vfp_fpcr
+};
+
+const char *g_contained_x0[] {"x0", NULL };
+const char *g_contained_x1[] {"x1", NULL };
+const char *g_contained_x2[] {"x2", NULL };
+const char *g_contained_x3[] {"x3", NULL };
+const char *g_contained_x4[] {"x4", NULL };
+const char *g_contained_x5[] {"x5", NULL };
+const char *g_contained_x6[] {"x6", NULL };
+const char *g_contained_x7[] {"x7", NULL };
+const char *g_contained_x8[] {"x8", NULL };
+const char *g_contained_x9[] {"x9", NULL };
+const char *g_contained_x10[] {"x10", NULL };
+const char *g_contained_x11[] {"x11", NULL };
+const char *g_contained_x12[] {"x12", NULL };
+const char *g_contained_x13[] {"x13", NULL };
+const char *g_contained_x14[] {"x14", NULL };
+const char *g_contained_x15[] {"x15", NULL };
+const char *g_contained_x16[] {"x16", NULL };
+const char *g_contained_x17[] {"x17", NULL };
+const char *g_contained_x18[] {"x18", NULL };
+const char *g_contained_x19[] {"x19", NULL };
+const char *g_contained_x20[] {"x20", NULL };
+const char *g_contained_x21[] {"x21", NULL };
+const char *g_contained_x22[] {"x22", NULL };
+const char *g_contained_x23[] {"x23", NULL };
+const char *g_contained_x24[] {"x24", NULL };
+const char *g_contained_x25[] {"x25", NULL };
+const char *g_contained_x26[] {"x26", NULL };
+const char *g_contained_x27[] {"x27", NULL };
+const char *g_contained_x28[] {"x28", NULL };
+
+const char *g_invalidate_x0[] {"x0", "w0", NULL };
+const char *g_invalidate_x1[] {"x1", "w1", NULL };
+const char *g_invalidate_x2[] {"x2", "w2", NULL };
+const char *g_invalidate_x3[] {"x3", "w3", NULL };
+const char *g_invalidate_x4[] {"x4", "w4", NULL };
+const char *g_invalidate_x5[] {"x5", "w5", NULL };
+const char *g_invalidate_x6[] {"x6", "w6", NULL };
+const char *g_invalidate_x7[] {"x7", "w7", NULL };
+const char *g_invalidate_x8[] {"x8", "w8", NULL };
+const char *g_invalidate_x9[] {"x9", "w9", NULL };
+const char *g_invalidate_x10[] {"x10", "w10", NULL };
+const char *g_invalidate_x11[] {"x11", "w11", NULL };
+const char *g_invalidate_x12[] {"x12", "w12", NULL };
+const char *g_invalidate_x13[] {"x13", "w13", NULL };
+const char *g_invalidate_x14[] {"x14", "w14", NULL };
+const char *g_invalidate_x15[] {"x15", "w15", NULL };
+const char *g_invalidate_x16[] {"x16", "w16", NULL };
+const char *g_invalidate_x17[] {"x17", "w17", NULL };
+const char *g_invalidate_x18[] {"x18", "w18", NULL };
+const char *g_invalidate_x19[] {"x19", "w19", NULL };
+const char *g_invalidate_x20[] {"x20", "w20", NULL };
+const char *g_invalidate_x21[] {"x21", "w21", NULL };
+const char *g_invalidate_x22[] {"x22", "w22", NULL };
+const char *g_invalidate_x23[] {"x23", "w23", NULL };
+const char *g_invalidate_x24[] {"x24", "w24", NULL };
+const char *g_invalidate_x25[] {"x25", "w25", NULL };
+const char *g_invalidate_x26[] {"x26", "w26", NULL };
+const char *g_invalidate_x27[] {"x27", "w27", NULL };
+const char *g_invalidate_x28[] {"x28", "w28", NULL };
+
+#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM64::GPR, __x[idx]))
+
+#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM64::GPR , __##reg))
+
+// These macros will auto define the register name, alt name, register size,
+// register offset, encoding, format and native register. This ensures that
+// the register state structures are defined correctly and have the correct
+// sizes and offsets.
+#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx) , dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, g_invalidate_x##idx }
+#define DEFINE_GPR_NAME(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL }
+#define DEFINE_PSEUDO_GPR_IDX(idx, reg) { e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_x##idx, g_invalidate_x##idx }
+
+//_STRUCT_ARM_THREAD_STATE64
+//{
+// uint64_t x[29]; /* General purpose registers x0-x28 */
+// uint64_t fp; /* Frame pointer x29 */
+// uint64_t lr; /* Link register x30 */
+// uint64_t sp; /* Stack pointer x31 */
+// uint64_t pc; /* Program counter */
+// uint32_t cpsr; /* Current program status register */
+//};
+
+
+// General purpose registers
+const DNBRegisterInfo
+DNBArchMachARM64::g_gpr_registers[] =
+{
+ DEFINE_GPR_IDX ( 0, x0, "arg1", GENERIC_REGNUM_ARG1 ),
+ DEFINE_GPR_IDX ( 1, x1, "arg2", GENERIC_REGNUM_ARG2 ),
+ DEFINE_GPR_IDX ( 2, x2, "arg3", GENERIC_REGNUM_ARG3 ),
+ DEFINE_GPR_IDX ( 3, x3, "arg4", GENERIC_REGNUM_ARG4 ),
+ DEFINE_GPR_IDX ( 4, x4, "arg5", GENERIC_REGNUM_ARG5 ),
+ DEFINE_GPR_IDX ( 5, x5, "arg6", GENERIC_REGNUM_ARG6 ),
+ DEFINE_GPR_IDX ( 6, x6, "arg7", GENERIC_REGNUM_ARG7 ),
+ DEFINE_GPR_IDX ( 7, x7, "arg8", GENERIC_REGNUM_ARG8 ),
+ DEFINE_GPR_IDX ( 8, x8, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX ( 9, x9, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (10, x10, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (11, x11, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (12, x12, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (13, x13, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (14, x14, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (15, x15, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (16, x16, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (17, x17, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (18, x18, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (19, x19, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (20, x20, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (21, x21, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (22, x22, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (23, x23, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (24, x24, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (25, x25, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (26, x26, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (27, x27, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_IDX (28, x28, NULL, INVALID_NUB_REGNUM ),
+ DEFINE_GPR_NAME (fp, "x29", GENERIC_REGNUM_FP),
+ DEFINE_GPR_NAME (lr, "x30", GENERIC_REGNUM_RA),
+ DEFINE_GPR_NAME (sp, "xsp", GENERIC_REGNUM_SP),
+ DEFINE_GPR_NAME (pc, NULL, GENERIC_REGNUM_PC),
+
+ // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp, lr.
+ // this should be specified for arm64 too even though debugserver is only used for
+ // userland debugging.
+ { e_regSetGPR, gpr_cpsr, "cpsr", "flags", Uint, Hex, 4, GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, INVALID_NUB_REGNUM, debugserver_gpr_cpsr, NULL, NULL },
+
+ DEFINE_PSEUDO_GPR_IDX ( 0, w0),
+ DEFINE_PSEUDO_GPR_IDX ( 1, w1),
+ DEFINE_PSEUDO_GPR_IDX ( 2, w2),
+ DEFINE_PSEUDO_GPR_IDX ( 3, w3),
+ DEFINE_PSEUDO_GPR_IDX ( 4, w4),
+ DEFINE_PSEUDO_GPR_IDX ( 5, w5),
+ DEFINE_PSEUDO_GPR_IDX ( 6, w6),
+ DEFINE_PSEUDO_GPR_IDX ( 7, w7),
+ DEFINE_PSEUDO_GPR_IDX ( 8, w8),
+ DEFINE_PSEUDO_GPR_IDX ( 9, w9),
+ DEFINE_PSEUDO_GPR_IDX (10, w10),
+ DEFINE_PSEUDO_GPR_IDX (11, w11),
+ DEFINE_PSEUDO_GPR_IDX (12, w12),
+ DEFINE_PSEUDO_GPR_IDX (13, w13),
+ DEFINE_PSEUDO_GPR_IDX (14, w14),
+ DEFINE_PSEUDO_GPR_IDX (15, w15),
+ DEFINE_PSEUDO_GPR_IDX (16, w16),
+ DEFINE_PSEUDO_GPR_IDX (17, w17),
+ DEFINE_PSEUDO_GPR_IDX (18, w18),
+ DEFINE_PSEUDO_GPR_IDX (19, w19),
+ DEFINE_PSEUDO_GPR_IDX (20, w20),
+ DEFINE_PSEUDO_GPR_IDX (21, w21),
+ DEFINE_PSEUDO_GPR_IDX (22, w22),
+ DEFINE_PSEUDO_GPR_IDX (23, w23),
+ DEFINE_PSEUDO_GPR_IDX (24, w24),
+ DEFINE_PSEUDO_GPR_IDX (25, w25),
+ DEFINE_PSEUDO_GPR_IDX (26, w26),
+ DEFINE_PSEUDO_GPR_IDX (27, w27),
+ DEFINE_PSEUDO_GPR_IDX (28, w28)
+};
+
+const char *g_contained_v0[] {"v0", NULL };
+const char *g_contained_v1[] {"v1", NULL };
+const char *g_contained_v2[] {"v2", NULL };
+const char *g_contained_v3[] {"v3", NULL };
+const char *g_contained_v4[] {"v4", NULL };
+const char *g_contained_v5[] {"v5", NULL };
+const char *g_contained_v6[] {"v6", NULL };
+const char *g_contained_v7[] {"v7", NULL };
+const char *g_contained_v8[] {"v8", NULL };
+const char *g_contained_v9[] {"v9", NULL };
+const char *g_contained_v10[] {"v10", NULL };
+const char *g_contained_v11[] {"v11", NULL };
+const char *g_contained_v12[] {"v12", NULL };
+const char *g_contained_v13[] {"v13", NULL };
+const char *g_contained_v14[] {"v14", NULL };
+const char *g_contained_v15[] {"v15", NULL };
+const char *g_contained_v16[] {"v16", NULL };
+const char *g_contained_v17[] {"v17", NULL };
+const char *g_contained_v18[] {"v18", NULL };
+const char *g_contained_v19[] {"v19", NULL };
+const char *g_contained_v20[] {"v20", NULL };
+const char *g_contained_v21[] {"v21", NULL };
+const char *g_contained_v22[] {"v22", NULL };
+const char *g_contained_v23[] {"v23", NULL };
+const char *g_contained_v24[] {"v24", NULL };
+const char *g_contained_v25[] {"v25", NULL };
+const char *g_contained_v26[] {"v26", NULL };
+const char *g_contained_v27[] {"v27", NULL };
+const char *g_contained_v28[] {"v28", NULL };
+const char *g_contained_v29[] {"v29", NULL };
+const char *g_contained_v30[] {"v30", NULL };
+const char *g_contained_v31[] {"v31", NULL };
+
+const char *g_invalidate_v0[] {"v0", "d0", "s0", NULL };
+const char *g_invalidate_v1[] {"v1", "d1", "s1", NULL };
+const char *g_invalidate_v2[] {"v2", "d2", "s2", NULL };
+const char *g_invalidate_v3[] {"v3", "d3", "s3", NULL };
+const char *g_invalidate_v4[] {"v4", "d4", "s4", NULL };
+const char *g_invalidate_v5[] {"v5", "d5", "s5", NULL };
+const char *g_invalidate_v6[] {"v6", "d6", "s6", NULL };
+const char *g_invalidate_v7[] {"v7", "d7", "s7", NULL };
+const char *g_invalidate_v8[] {"v8", "d8", "s8", NULL };
+const char *g_invalidate_v9[] {"v9", "d9", "s9", NULL };
+const char *g_invalidate_v10[] {"v10", "d10", "s10", NULL };
+const char *g_invalidate_v11[] {"v11", "d11", "s11", NULL };
+const char *g_invalidate_v12[] {"v12", "d12", "s12", NULL };
+const char *g_invalidate_v13[] {"v13", "d13", "s13", NULL };
+const char *g_invalidate_v14[] {"v14", "d14", "s14", NULL };
+const char *g_invalidate_v15[] {"v15", "d15", "s15", NULL };
+const char *g_invalidate_v16[] {"v16", "d16", "s16", NULL };
+const char *g_invalidate_v17[] {"v17", "d17", "s17", NULL };
+const char *g_invalidate_v18[] {"v18", "d18", "s18", NULL };
+const char *g_invalidate_v19[] {"v19", "d19", "s19", NULL };
+const char *g_invalidate_v20[] {"v20", "d20", "s20", NULL };
+const char *g_invalidate_v21[] {"v21", "d21", "s21", NULL };
+const char *g_invalidate_v22[] {"v22", "d22", "s22", NULL };
+const char *g_invalidate_v23[] {"v23", "d23", "s23", NULL };
+const char *g_invalidate_v24[] {"v24", "d24", "s24", NULL };
+const char *g_invalidate_v25[] {"v25", "d25", "s25", NULL };
+const char *g_invalidate_v26[] {"v26", "d26", "s26", NULL };
+const char *g_invalidate_v27[] {"v27", "d27", "s27", NULL };
+const char *g_invalidate_v28[] {"v28", "d28", "s28", NULL };
+const char *g_invalidate_v29[] {"v29", "d29", "s29", NULL };
+const char *g_invalidate_v30[] {"v30", "d30", "s30", NULL };
+const char *g_invalidate_v31[] {"v31", "d31", "s31", NULL };
+
+#if defined (__arm64__) || defined (__aarch64__)
+#define VFP_V_OFFSET_IDX(idx) (offsetof (DNBArchMachARM64::FPU, __v) + (idx * 16) + offsetof (DNBArchMachARM64::Context, vfp))
+#else
+#define VFP_V_OFFSET_IDX(idx) (offsetof (DNBArchMachARM64::FPU, opaque) + (idx * 16) + offsetof (DNBArchMachARM64::Context, vfp))
+#endif
+#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM64::FPU, reg) + offsetof (DNBArchMachARM64::Context, vfp))
+#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM64::EXC, reg) + offsetof (DNBArchMachARM64::Context, exc))
+
+//#define FLOAT_FORMAT Float
+#define DEFINE_VFP_V_IDX(idx) { e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16, VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx, INVALID_NUB_REGNUM, debugserver_vfp_v##idx, NULL, g_invalidate_v##idx }
+#define DEFINE_PSEUDO_VFP_S_IDX(idx) { e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx }
+#define DEFINE_PSEUDO_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx }
+
+// Floating point registers
+const DNBRegisterInfo
+DNBArchMachARM64::g_vfp_registers[] =
+{
+ DEFINE_VFP_V_IDX ( 0),
+ DEFINE_VFP_V_IDX ( 1),
+ DEFINE_VFP_V_IDX ( 2),
+ DEFINE_VFP_V_IDX ( 3),
+ DEFINE_VFP_V_IDX ( 4),
+ DEFINE_VFP_V_IDX ( 5),
+ DEFINE_VFP_V_IDX ( 6),
+ DEFINE_VFP_V_IDX ( 7),
+ DEFINE_VFP_V_IDX ( 8),
+ DEFINE_VFP_V_IDX ( 9),
+ DEFINE_VFP_V_IDX (10),
+ DEFINE_VFP_V_IDX (11),
+ DEFINE_VFP_V_IDX (12),
+ DEFINE_VFP_V_IDX (13),
+ DEFINE_VFP_V_IDX (14),
+ DEFINE_VFP_V_IDX (15),
+ DEFINE_VFP_V_IDX (16),
+ DEFINE_VFP_V_IDX (17),
+ DEFINE_VFP_V_IDX (18),
+ DEFINE_VFP_V_IDX (19),
+ DEFINE_VFP_V_IDX (20),
+ DEFINE_VFP_V_IDX (21),
+ DEFINE_VFP_V_IDX (22),
+ DEFINE_VFP_V_IDX (23),
+ DEFINE_VFP_V_IDX (24),
+ DEFINE_VFP_V_IDX (25),
+ DEFINE_VFP_V_IDX (26),
+ DEFINE_VFP_V_IDX (27),
+ DEFINE_VFP_V_IDX (28),
+ DEFINE_VFP_V_IDX (29),
+ DEFINE_VFP_V_IDX (30),
+ DEFINE_VFP_V_IDX (31),
+ { e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_V_OFFSET_IDX (32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
+ { e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_V_OFFSET_IDX (32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
+
+ DEFINE_PSEUDO_VFP_S_IDX (0),
+ DEFINE_PSEUDO_VFP_S_IDX (1),
+ DEFINE_PSEUDO_VFP_S_IDX (2),
+ DEFINE_PSEUDO_VFP_S_IDX (3),
+ DEFINE_PSEUDO_VFP_S_IDX (4),
+ DEFINE_PSEUDO_VFP_S_IDX (5),
+ DEFINE_PSEUDO_VFP_S_IDX (6),
+ DEFINE_PSEUDO_VFP_S_IDX (7),
+ DEFINE_PSEUDO_VFP_S_IDX (8),
+ DEFINE_PSEUDO_VFP_S_IDX (9),
+ DEFINE_PSEUDO_VFP_S_IDX (10),
+ DEFINE_PSEUDO_VFP_S_IDX (11),
+ DEFINE_PSEUDO_VFP_S_IDX (12),
+ DEFINE_PSEUDO_VFP_S_IDX (13),
+ DEFINE_PSEUDO_VFP_S_IDX (14),
+ DEFINE_PSEUDO_VFP_S_IDX (15),
+ DEFINE_PSEUDO_VFP_S_IDX (16),
+ DEFINE_PSEUDO_VFP_S_IDX (17),
+ DEFINE_PSEUDO_VFP_S_IDX (18),
+ DEFINE_PSEUDO_VFP_S_IDX (19),
+ DEFINE_PSEUDO_VFP_S_IDX (20),
+ DEFINE_PSEUDO_VFP_S_IDX (21),
+ DEFINE_PSEUDO_VFP_S_IDX (22),
+ DEFINE_PSEUDO_VFP_S_IDX (23),
+ DEFINE_PSEUDO_VFP_S_IDX (24),
+ DEFINE_PSEUDO_VFP_S_IDX (25),
+ DEFINE_PSEUDO_VFP_S_IDX (26),
+ DEFINE_PSEUDO_VFP_S_IDX (27),
+ DEFINE_PSEUDO_VFP_S_IDX (28),
+ DEFINE_PSEUDO_VFP_S_IDX (29),
+ DEFINE_PSEUDO_VFP_S_IDX (30),
+ DEFINE_PSEUDO_VFP_S_IDX (31),
+
+ DEFINE_PSEUDO_VFP_D_IDX (0),
+ DEFINE_PSEUDO_VFP_D_IDX (1),
+ DEFINE_PSEUDO_VFP_D_IDX (2),
+ DEFINE_PSEUDO_VFP_D_IDX (3),
+ DEFINE_PSEUDO_VFP_D_IDX (4),
+ DEFINE_PSEUDO_VFP_D_IDX (5),
+ DEFINE_PSEUDO_VFP_D_IDX (6),
+ DEFINE_PSEUDO_VFP_D_IDX (7),
+ DEFINE_PSEUDO_VFP_D_IDX (8),
+ DEFINE_PSEUDO_VFP_D_IDX (9),
+ DEFINE_PSEUDO_VFP_D_IDX (10),
+ DEFINE_PSEUDO_VFP_D_IDX (11),
+ DEFINE_PSEUDO_VFP_D_IDX (12),
+ DEFINE_PSEUDO_VFP_D_IDX (13),
+ DEFINE_PSEUDO_VFP_D_IDX (14),
+ DEFINE_PSEUDO_VFP_D_IDX (15),
+ DEFINE_PSEUDO_VFP_D_IDX (16),
+ DEFINE_PSEUDO_VFP_D_IDX (17),
+ DEFINE_PSEUDO_VFP_D_IDX (18),
+ DEFINE_PSEUDO_VFP_D_IDX (19),
+ DEFINE_PSEUDO_VFP_D_IDX (20),
+ DEFINE_PSEUDO_VFP_D_IDX (21),
+ DEFINE_PSEUDO_VFP_D_IDX (22),
+ DEFINE_PSEUDO_VFP_D_IDX (23),
+ DEFINE_PSEUDO_VFP_D_IDX (24),
+ DEFINE_PSEUDO_VFP_D_IDX (25),
+ DEFINE_PSEUDO_VFP_D_IDX (26),
+ DEFINE_PSEUDO_VFP_D_IDX (27),
+ DEFINE_PSEUDO_VFP_D_IDX (28),
+ DEFINE_PSEUDO_VFP_D_IDX (29),
+ DEFINE_PSEUDO_VFP_D_IDX (30),
+ DEFINE_PSEUDO_VFP_D_IDX (31)
+
+};
+
+
+//_STRUCT_ARM_EXCEPTION_STATE64
+//{
+// uint64_t far; /* Virtual Fault Address */
+// uint32_t esr; /* Exception syndrome */
+// uint32_t exception; /* number of arm exception taken */
+//};
+
+// Exception registers
+const DNBRegisterInfo
+DNBArchMachARM64::g_exc_registers[] =
+{
+ { e_regSetEXC, exc_far , "far" , NULL, Uint, Hex, 8, EXC_OFFSET(__far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
+ { e_regSetEXC, exc_esr , "esr" , NULL, Uint, Hex, 4, EXC_OFFSET(__esr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
+ { e_regSetEXC, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(__exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
+};
+
+// Number of registers in each register set
+const size_t DNBArchMachARM64::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
+const size_t DNBArchMachARM64::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
+const size_t DNBArchMachARM64::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
+const size_t DNBArchMachARM64::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
+
+//----------------------------------------------------------------------
+// Register set definitions. The first definitions at register set index
+// of zero is for all registers, followed by other registers sets. The
+// register information for the all register set need not be filled in.
+//----------------------------------------------------------------------
+const DNBRegisterSetInfo
+DNBArchMachARM64::g_reg_sets[] =
+{
+ { "ARM64 Registers", NULL, k_num_all_registers },
+ { "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
+ { "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
+ { "Exception State Registers", g_exc_registers, k_num_exc_registers }
+};
+// Total number of register sets for this architecture
+const size_t DNBArchMachARM64::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
+
+
+const DNBRegisterSetInfo *
+DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets)
+{
+ *num_reg_sets = k_num_register_sets;
+ return g_reg_sets;
+}
+
+bool
+DNBArchMachARM64::FixGenericRegisterNumber (uint32_t &set, uint32_t &reg)
+{
+ if (set == REGISTER_SET_GENERIC)
+ {
+ switch (reg)
+ {
+ case GENERIC_REGNUM_PC: // Program Counter
+ set = e_regSetGPR;
+ reg = gpr_pc;
+ break;
+
+ case GENERIC_REGNUM_SP: // Stack Pointer
+ set = e_regSetGPR;
+ reg = gpr_sp;
+ break;
+
+ case GENERIC_REGNUM_FP: // Frame Pointer
+ set = e_regSetGPR;
+ reg = gpr_fp;
+ break;
+
+ case GENERIC_REGNUM_RA: // Return Address
+ set = e_regSetGPR;
+ reg = gpr_lr;
+ break;
+
+ case GENERIC_REGNUM_FLAGS: // Processor flags register
+ set = e_regSetGPR;
+ reg = gpr_cpsr;
+ break;
+
+ case GENERIC_REGNUM_ARG1:
+ case GENERIC_REGNUM_ARG2:
+ case GENERIC_REGNUM_ARG3:
+ case GENERIC_REGNUM_ARG4:
+ case GENERIC_REGNUM_ARG5:
+ case GENERIC_REGNUM_ARG6:
+ set = e_regSetGPR;
+ reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1;
+ break;
+
+ default:
+ return false;
+ }
+ }
+ return true;
+}
+bool
+DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg, DNBRegisterValue *value)
+{
+ if (!FixGenericRegisterNumber (set, reg))
+ return false;
+
+ if (GetRegisterState(set, false) != KERN_SUCCESS)
+ return false;
+
+ const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+ if (regInfo)
+ {
+ value->info = *regInfo;
+ switch (set)
+ {
+ case e_regSetGPR:
+ if (reg <= gpr_pc)
+ {
+ value->value.uint64 = m_state.context.gpr.__x[reg];
+ return true;
+ }
+ else if (reg == gpr_cpsr)
+ {
+ value->value.uint32 = m_state.context.gpr.__cpsr;
+ return true;
+ }
+ break;
+
+ case e_regSetVFP:
+
+ if (reg >= vfp_v0 && reg <= vfp_v31)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0], 16);
+#else
+ memcpy (&value->value.v_uint8, ((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), 16);
+#endif
+ return true;
+ }
+ else if (reg == vfp_fpsr)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&value->value.uint32, &m_state.context.vfp.__fpsr, 4);
+#else
+ memcpy (&value->value.uint32, ((uint8_t *) &m_state.context.vfp.opaque) + (32 * 16) + 0, 4);
+#endif
+ return true;
+ }
+ else if (reg == vfp_fpcr)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&value->value.uint32, &m_state.context.vfp.__fpcr, 4);
+#else
+ memcpy (&value->value.uint32, ((uint8_t *) &m_state.context.vfp.opaque) + (32 * 16) + 4, 4);
+#endif
+ return true;
+ }
+ else if (reg >= vfp_s0 && reg <= vfp_s31)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0], 4);
+#else
+ memcpy (&value->value.v_uint8, ((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), 4);
+#endif
+ return true;
+ }
+ else if (reg >= vfp_d0 && reg <= vfp_d31)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0], 8);
+#else
+ memcpy (&value->value.v_uint8, ((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), 8);
+#endif
+ return true;
+ }
+ break;
+
+ case e_regSetEXC:
+ if (reg == exc_far)
+ {
+ value->value.uint64 = m_state.context.exc.__far;
+ return true;
+ }
+ else if (reg == exc_esr)
+ {
+ value->value.uint32 = m_state.context.exc.__esr;
+ return true;
+ }
+ else if (reg == exc_exception)
+ {
+ value->value.uint32 = m_state.context.exc.__exception;
+ return true;
+ }
+ break;
+ }
+ }
+ return false;
+}
+
+bool
+DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg, const DNBRegisterValue *value)
+{
+ if (!FixGenericRegisterNumber (set, reg))
+ return false;
+
+ if (GetRegisterState(set, false) != KERN_SUCCESS)
+ return false;
+
+ bool success = false;
+ const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+ if (regInfo)
+ {
+ switch (set)
+ {
+ case e_regSetGPR:
+ if (reg <= gpr_pc)
+ {
+ m_state.context.gpr.__x[reg] = value->value.uint64;
+ success = true;
+ }
+ else if (reg == gpr_cpsr)
+ {
+ m_state.context.gpr.__cpsr = value->value.uint32;
+ success = true;
+ }
+ break;
+
+ case e_regSetVFP:
+ if (reg >= vfp_v0 && reg <= vfp_v31)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8, 16);
+#else
+ memcpy (((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), &value->value.v_uint8, 16);
+#endif
+ success = true;
+ }
+ else if (reg == vfp_fpsr)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&m_state.context.vfp.__fpsr, &value->value.uint32, 4);
+#else
+ memcpy (((uint8_t *) &m_state.context.vfp.opaque) + (32 * 16) + 0, &value->value.uint32, 4);
+#endif
+ success = true;
+ }
+ else if (reg == vfp_fpcr)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&m_state.context.vfp.__fpcr, &value->value.uint32, 4);
+#else
+ memcpy (((uint8_t *) m_state.context.vfp.opaque) + (32 * 16) + 4, &value->value.uint32, 4);
+#endif
+ success = true;
+ }
+ else if (reg >= vfp_s0 && reg <= vfp_s31)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8, 4);
+#else
+ memcpy (((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), &value->value.v_uint8, 4);
+#endif
+ success = true;
+ }
+ else if (reg >= vfp_d0 && reg <= vfp_d31)
+ {
+#if defined (__arm64__) || defined (__aarch64__)
+ memcpy (&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8, 8);
+#else
+ memcpy (((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), &value->value.v_uint8, 8);
+#endif
+ success = true;
+ }
+ break;
+
+ case e_regSetEXC:
+ if (reg == exc_far)
+ {
+ m_state.context.exc.__far = value->value.uint64;
+ success = true;
+ }
+ else if (reg == exc_esr)
+ {
+ m_state.context.exc.__esr = value->value.uint32;
+ success = true;
+ }
+ else if (reg == exc_exception)
+ {
+ m_state.context.exc.__exception = value->value.uint32;
+ success = true;
+ }
+ break;
+ }
+
+ }
+ if (success)
+ return SetRegisterState(set) == KERN_SUCCESS;
+ return false;
+}
+
+kern_return_t
+DNBArchMachARM64::GetRegisterState(int set, bool force)
+{
+ switch (set)
+ {
+ case e_regSetALL: return GetGPRState(force) |
+ GetVFPState(force) |
+ GetEXCState(force) |
+ GetDBGState(force);
+ case e_regSetGPR: return GetGPRState(force);
+ case e_regSetVFP: return GetVFPState(force);
+ case e_regSetEXC: return GetEXCState(force);
+ case e_regSetDBG: return GetDBGState(force);
+ default: break;
+ }
+ return KERN_INVALID_ARGUMENT;
+}
+
+kern_return_t
+DNBArchMachARM64::SetRegisterState(int set)
+{
+ // Make sure we have a valid context to set.
+ kern_return_t err = GetRegisterState(set, false);
+ if (err != KERN_SUCCESS)
+ return err;
+
+ switch (set)
+ {
+ case e_regSetALL: return SetGPRState() |
+ SetVFPState() |
+ SetEXCState() |
+ SetDBGState(false);
+ case e_regSetGPR: return SetGPRState();
+ case e_regSetVFP: return SetVFPState();
+ case e_regSetEXC: return SetEXCState();
+ case e_regSetDBG: return SetDBGState(false);
+ default: break;
+ }
+ return KERN_INVALID_ARGUMENT;
+}
+
+bool
+DNBArchMachARM64::RegisterSetStateIsValid (int set) const
+{
+ return m_state.RegsAreValid(set);
+}
+
+
+nub_size_t
+DNBArchMachARM64::GetRegisterContext (void *buf, nub_size_t buf_len)
+{
+ nub_size_t size = sizeof (m_state.context.gpr) +
+ sizeof (m_state.context.vfp) +
+ sizeof (m_state.context.exc);
+
+ if (buf && buf_len)
+ {
+ if (size > buf_len)
+ size = buf_len;
+
+ bool force = false;
+ if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
+ return 0;
+
+ // Copy each struct individually to avoid any padding that might be between the structs in m_state.context
+ uint8_t *p = (uint8_t *)buf;
+ ::memcpy (p, &m_state.context.gpr, sizeof(m_state.context.gpr));
+ p += sizeof(m_state.context.gpr);
+ ::memcpy (p, &m_state.context.vfp, sizeof(m_state.context.vfp));
+ p += sizeof(m_state.context.vfp);
+ ::memcpy (p, &m_state.context.exc, sizeof(m_state.context.exc));
+ p += sizeof(m_state.context.exc);
+
+ size_t bytes_written = p - (uint8_t *)buf;
+ UNUSED_IF_ASSERT_DISABLED(bytes_written);
+ assert (bytes_written == size);
+ }
+ DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
+ // Return the size of the register context even if NULL was passed in
+ return size;
+}
+
+nub_size_t
+DNBArchMachARM64::SetRegisterContext (const void *buf, nub_size_t buf_len)
+{
+ nub_size_t size = sizeof (m_state.context.gpr) +
+ sizeof (m_state.context.vfp) +
+ sizeof (m_state.context.exc);
+
+ if (buf == NULL || buf_len == 0)
+ size = 0;
+
+ if (size)
+ {
+ if (size > buf_len)
+ size = buf_len;
+
+ // Copy each struct individually to avoid any padding that might be between the structs in m_state.context
+ uint8_t *p = (uint8_t *)buf;
+ ::memcpy (&m_state.context.gpr, p, sizeof(m_state.context.gpr));
+ p += sizeof(m_state.context.gpr);
+ ::memcpy (&m_state.context.vfp, p, sizeof(m_state.context.vfp));
+ p += sizeof(m_state.context.vfp);
+ ::memcpy (&m_state.context.exc, p, sizeof(m_state.context.exc));
+ p += sizeof(m_state.context.exc);
+
+ size_t bytes_written = p - (uint8_t *)buf;
+ UNUSED_IF_ASSERT_DISABLED(bytes_written);
+ assert (bytes_written == size);
+ SetGPRState();
+ SetVFPState();
+ SetEXCState();
+ }
+ DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
+ return size;
+}
+
+uint32_t
+DNBArchMachARM64::SaveRegisterState ()
+{
+ kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
+ DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
+
+ // Always re-read the registers because above we call thread_abort_safely();
+ bool force = true;
+
+ if ((kret = GetGPRState(force)) != KERN_SUCCESS)
+ {
+ DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () error: GPR regs failed to read: %u ", kret);
+ }
+ else if ((kret = GetVFPState(force)) != KERN_SUCCESS)
+ {
+ DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () error: %s regs failed to read: %u", "VFP", kret);
+ }
+ else
+ {
+ const uint32_t save_id = GetNextRegisterStateSaveID ();
+ m_saved_register_states[save_id] = m_state.context;
+ return save_id;
+ }
+ return UINT32_MAX;
+}
+
+bool
+DNBArchMachARM64::RestoreRegisterState (uint32_t save_id)
+{
+ SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
+ if (pos != m_saved_register_states.end())
+ {
+ m_state.context.gpr = pos->second.gpr;
+ m_state.context.vfp = pos->second.vfp;
+ kern_return_t kret;
+ bool success = true;
+ if ((kret = SetGPRState()) != KERN_SUCCESS)
+ {
+ DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState (save_id = %u) error: GPR regs failed to write: %u", save_id, kret);
+ success = false;
+ }
+ else if ((kret = SetVFPState()) != KERN_SUCCESS)
+ {
+ DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState (save_id = %u) error: %s regs failed to write: %u", save_id, "VFP", kret);
+ success = false;
+ }
+ m_saved_register_states.erase(pos);
+ return success;
+ }
+ return false;
+}
+
+
+#endif // #if defined (ARM_THREAD_STATE64_COUNT)
+#endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)