diff options
Diffstat (limited to 'tools/llvm-objcopy/MachO/Object.h')
-rw-r--r-- | tools/llvm-objcopy/MachO/Object.h | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/tools/llvm-objcopy/MachO/Object.h b/tools/llvm-objcopy/MachO/Object.h new file mode 100644 index 000000000000..ed85fcbc47f7 --- /dev/null +++ b/tools/llvm-objcopy/MachO/Object.h @@ -0,0 +1,232 @@ +//===- Object.h - Mach-O object file model ----------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_OBJCOPY_MACHO_OBJECT_H +#define LLVM_OBJCOPY_MACHO_OBJECT_H + +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/BinaryFormat/MachO.h" +#include "llvm/MC/StringTableBuilder.h" +#include "llvm/ObjectYAML/DWARFYAML.h" +#include "llvm/Support/YAMLTraits.h" +#include <cstdint> +#include <string> +#include <vector> + +namespace llvm { +namespace objcopy { +namespace macho { + +struct MachHeader { + uint32_t Magic; + uint32_t CPUType; + uint32_t CPUSubType; + uint32_t FileType; + uint32_t NCmds; + uint32_t SizeOfCmds; + uint32_t Flags; + uint32_t Reserved = 0; +}; + +struct RelocationInfo; +struct Section { + std::string Sectname; + std::string Segname; + uint64_t Addr; + uint64_t Size; + uint32_t Offset; + uint32_t Align; + uint32_t RelOff; + uint32_t NReloc; + uint32_t Flags; + uint32_t Reserved1; + uint32_t Reserved2; + uint32_t Reserved3; + + StringRef Content; + std::vector<RelocationInfo> Relocations; + + MachO::SectionType getType() const { + return static_cast<MachO::SectionType>(Flags & MachO::SECTION_TYPE); + } + + bool isVirtualSection() const { + return (getType() == MachO::S_ZEROFILL || + getType() == MachO::S_GB_ZEROFILL || + getType() == MachO::S_THREAD_LOCAL_ZEROFILL); + } +}; + +struct LoadCommand { + // The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h + // and it is a union of all the structs corresponding to various load + // commands. + MachO::macho_load_command MachOLoadCommand; + + // The raw content of the payload of the load command (located right after the + // corresponding struct). In some cases it is either empty or can be + // copied-over without digging into its structure. + ArrayRef<uint8_t> Payload; + + // Some load commands can contain (inside the payload) an array of sections, + // though the contents of the sections are stored separately. The struct + // Section describes only sections' metadata and where to find the + // corresponding content inside the binary. + std::vector<Section> Sections; +}; + +// A symbol information. Fields which starts with "n_" are same as them in the +// nlist. +struct SymbolEntry { + std::string Name; + uint32_t Index; + uint8_t n_type; + uint8_t n_sect; + uint16_t n_desc; + uint64_t n_value; +}; + +/// The location of the symbol table inside the binary is described by LC_SYMTAB +/// load command. +struct SymbolTable { + std::vector<std::unique_ptr<SymbolEntry>> Symbols; + + const SymbolEntry *getSymbolByIndex(uint32_t Index) const; +}; + +/// The location of the string table inside the binary is described by LC_SYMTAB +/// load command. +struct StringTable { + std::vector<std::string> Strings; +}; + +struct RelocationInfo { + const SymbolEntry *Symbol; + // True if Info is a scattered_relocation_info. + bool Scattered; + MachO::any_relocation_info Info; +}; + +/// The location of the rebase info inside the binary is described by +/// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at +/// an address different from its preferred address. The rebase information is +/// a stream of byte sized opcodes whose symbolic names start with +/// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples: +/// <seg-index, seg-offset, type> +/// The opcodes are a compressed way to encode the table by only +/// encoding when a column changes. In addition simple patterns +/// like "every n'th offset for m times" can be encoded in a few +/// bytes. +struct RebaseInfo { + // At the moment we do not parse this info (and it is simply copied over), + // but the proper support will be added later. + ArrayRef<uint8_t> Opcodes; +}; + +/// The location of the bind info inside the binary is described by +/// LC_DYLD_INFO load command. Dyld binds an image during the loading process, +/// if the image requires any pointers to be initialized to symbols in other +/// images. The bind information is a stream of byte sized opcodes whose +/// symbolic names start with BIND_OPCODE_. Conceptually the bind information is +/// a table of tuples: <seg-index, seg-offset, type, symbol-library-ordinal, +/// symbol-name, addend> The opcodes are a compressed way to encode the table by +/// only encoding when a column changes. In addition simple patterns like for +/// runs of pointers initialized to the same value can be encoded in a few +/// bytes. +struct BindInfo { + // At the moment we do not parse this info (and it is simply copied over), + // but the proper support will be added later. + ArrayRef<uint8_t> Opcodes; +}; + +/// The location of the weak bind info inside the binary is described by +/// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols +/// so that all images in the process use the same copy of some code/data. This +/// step is done after binding. The content of the weak_bind info is an opcode +/// stream like the bind_info. But it is sorted alphabetically by symbol name. +/// This enable dyld to walk all images with weak binding information in order +/// and look for collisions. If there are no collisions, dyld does no updating. +/// That means that some fixups are also encoded in the bind_info. For +/// instance, all calls to "operator new" are first bound to libstdc++.dylib +/// using the information in bind_info. Then if some image overrides operator +/// new that is detected when the weak_bind information is processed and the +/// call to operator new is then rebound. +struct WeakBindInfo { + // At the moment we do not parse this info (and it is simply copied over), + // but the proper support will be added later. + ArrayRef<uint8_t> Opcodes; +}; + +/// The location of the lazy bind info inside the binary is described by +/// LC_DYLD_INFO load command. Some uses of external symbols do not need to be +/// bound immediately. Instead they can be lazily bound on first use. The +/// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal +/// use is that dyld ignores the lazy_bind section when loading an image. +/// Instead the static linker arranged for the lazy pointer to initially point +/// to a helper function which pushes the offset into the lazy_bind area for the +/// symbol needing to be bound, then jumps to dyld which simply adds the offset +/// to lazy_bind_off to get the information on what to bind. +struct LazyBindInfo { + ArrayRef<uint8_t> Opcodes; +}; + +/// The location of the export info inside the binary is described by +/// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a +/// trie. This is a compact representation that factors out common prefixes. It +/// also reduces LINKEDIT pages in RAM because it encodes all information (name, +/// address, flags) in one small, contiguous range. The export area is a stream +/// of nodes. The first node sequentially is the start node for the trie. Nodes +/// for a symbol start with a uleb128 that is the length of the exported symbol +/// information for the string so far. If there is no exported symbol, the node +/// starts with a zero byte. If there is exported info, it follows the length. +/// First is a uleb128 containing flags. Normally, it is followed by +/// a uleb128 encoded offset which is location of the content named +/// by the symbol from the mach_header for the image. If the flags +/// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is +/// a uleb128 encoded library ordinal, then a zero terminated +/// UTF8 string. If the string is zero length, then the symbol +/// is re-export from the specified dylib with the same name. +/// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following +/// the flags is two uleb128s: the stub offset and the resolver offset. +/// The stub is used by non-lazy pointers. The resolver is used +/// by lazy pointers and must be called to get the actual address to use. +/// After the optional exported symbol information is a byte of +/// how many edges (0-255) that this node has leaving it, +/// followed by each edge. +/// Each edge is a zero terminated UTF8 of the addition chars +/// in the symbol, followed by a uleb128 offset for the node that +/// edge points to. +struct ExportInfo { + ArrayRef<uint8_t> Trie; +}; + +struct Object { + MachHeader Header; + std::vector<LoadCommand> LoadCommands; + + SymbolTable SymTable; + StringTable StrTable; + + RebaseInfo Rebases; + BindInfo Binds; + WeakBindInfo WeakBinds; + LazyBindInfo LazyBinds; + ExportInfo Exports; + + /// The index of LC_SYMTAB load command if present. + Optional<size_t> SymTabCommandIndex; + /// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present. + Optional<size_t> DyLdInfoCommandIndex; +}; + +} // end namespace macho +} // end namespace objcopy +} // end namespace llvm + +#endif // LLVM_OBJCOPY_MACHO_OBJECT_H |