aboutsummaryrefslogtreecommitdiff
path: root/umac.c
diff options
context:
space:
mode:
Diffstat (limited to 'umac.c')
-rw-r--r--umac.c194
1 files changed, 97 insertions, 97 deletions
diff --git a/umac.c b/umac.c
index 9f2187c9af98..eab831072395 100644
--- a/umac.c
+++ b/umac.c
@@ -1,6 +1,6 @@
-/* $OpenBSD: umac.c,v 1.12 2017/05/31 08:09:45 markus Exp $ */
+/* $OpenBSD: umac.c,v 1.16 2017/12/12 15:06:12 naddy Exp $ */
/* -----------------------------------------------------------------------
- *
+ *
* umac.c -- C Implementation UMAC Message Authentication
*
* Version 0.93b of rfc4418.txt -- 2006 July 18
@@ -10,7 +10,7 @@
* Please report bugs and suggestions to the UMAC webpage.
*
* Copyright (c) 1999-2006 Ted Krovetz
- *
+ *
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and with or without fee, is hereby
* granted provided that the above copyright notice appears in all copies
@@ -18,10 +18,10 @@
* holder not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior permission.
*
- * Comments should be directed to Ted Krovetz (tdk@acm.org)
- *
+ * Comments should be directed to Ted Krovetz (tdk@acm.org)
+ *
* ---------------------------------------------------------------------- */
-
+
/* ////////////////////// IMPORTANT NOTES /////////////////////////////////
*
* 1) This version does not work properly on messages larger than 16MB
@@ -47,7 +47,7 @@
* produced under gcc with optimizations set -O3 or higher. Dunno why.
*
/////////////////////////////////////////////////////////////////////// */
-
+
/* ---------------------------------------------------------------------- */
/* --- User Switches ---------------------------------------------------- */
/* ---------------------------------------------------------------------- */
@@ -187,11 +187,11 @@ static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
UINT8 out_buf[AES_BLOCK_LEN];
UINT8 *dst_buf = (UINT8 *)bufp;
int i;
-
+
/* Setup the initial value */
in_buf[AES_BLOCK_LEN-9] = ndx;
in_buf[AES_BLOCK_LEN-1] = i = 1;
-
+
while (nbytes >= AES_BLOCK_LEN) {
aes_encryption(in_buf, out_buf, key);
memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
@@ -208,7 +208,7 @@ static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
}
/* The final UHASH result is XOR'd with the output of a pseudorandom
- * function. Here, we use AES to generate random output and
+ * function. Here, we use AES to generate random output and
* xor the appropriate bytes depending on the last bits of nonce.
* This scheme is optimized for sequential, increasing big-endian nonces.
*/
@@ -222,10 +222,10 @@ typedef struct {
static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
{
UINT8 buf[UMAC_KEY_LEN];
-
+
kdf(buf, prf_key, 0, UMAC_KEY_LEN);
aes_key_setup(buf, pc->prf_key);
-
+
/* Initialize pdf and cache */
memset(pc->nonce, 0, sizeof(pc->nonce));
aes_encryption(pc->nonce, pc->cache, pc->prf_key);
@@ -238,7 +238,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
* of the AES output. If last time around we returned the ndx-1st
* element, then we may have the result in the cache already.
*/
-
+
#if (UMAC_OUTPUT_LEN == 4)
#define LOW_BIT_MASK 3
#elif (UMAC_OUTPUT_LEN == 8)
@@ -255,7 +255,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
#endif
*(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
-
+
if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
(((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
{
@@ -263,7 +263,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
aes_encryption(pc->nonce, pc->cache, pc->prf_key);
}
-
+
#if (UMAC_OUTPUT_LEN == 4)
*((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
#elif (UMAC_OUTPUT_LEN == 8)
@@ -284,28 +284,28 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
/* ---------------------------------------------------------------------- */
/* The NH-based hash functions used in UMAC are described in the UMAC paper
- * and specification, both of which can be found at the UMAC website.
- * The interface to this implementation has two
+ * and specification, both of which can be found at the UMAC website.
+ * The interface to this implementation has two
* versions, one expects the entire message being hashed to be passed
* in a single buffer and returns the hash result immediately. The second
- * allows the message to be passed in a sequence of buffers. In the
- * muliple-buffer interface, the client calls the routine nh_update() as
- * many times as necessary. When there is no more data to be fed to the
- * hash, the client calls nh_final() which calculates the hash output.
- * Before beginning another hash calculation the nh_reset() routine
- * must be called. The single-buffer routine, nh(), is equivalent to
- * the sequence of calls nh_update() and nh_final(); however it is
+ * allows the message to be passed in a sequence of buffers. In the
+ * muliple-buffer interface, the client calls the routine nh_update() as
+ * many times as necessary. When there is no more data to be fed to the
+ * hash, the client calls nh_final() which calculates the hash output.
+ * Before beginning another hash calculation the nh_reset() routine
+ * must be called. The single-buffer routine, nh(), is equivalent to
+ * the sequence of calls nh_update() and nh_final(); however it is
* optimized and should be prefered whenever the multiple-buffer interface
- * is not necessary. When using either interface, it is the client's
- * responsability to pass no more than L1_KEY_LEN bytes per hash result.
- *
- * The routine nh_init() initializes the nh_ctx data structure and
- * must be called once, before any other PDF routine.
+ * is not necessary. When using either interface, it is the client's
+ * responsability to pass no more than L1_KEY_LEN bytes per hash result.
+ *
+ * The routine nh_init() initializes the nh_ctx data structure and
+ * must be called once, before any other PDF routine.
*/
-
+
/* The "nh_aux" routines do the actual NH hashing work. They
* expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
- * produce output for all STREAMS NH iterations in one call,
+ * produce output for all STREAMS NH iterations in one call,
* allowing the parallel implementation of the streams.
*/
@@ -328,10 +328,10 @@ typedef struct {
#if (UMAC_OUTPUT_LEN == 4)
static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
-/* NH hashing primitive. Previous (partial) hash result is loaded and
+/* NH hashing primitive. Previous (partial) hash result is loaded and
* then stored via hp pointer. The length of the data pointed at by "dp",
* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
-* is expected to be endian compensated in memory at key setup.
+* is expected to be endian compensated in memory at key setup.
*/
{
UINT64 h;
@@ -340,7 +340,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
const UINT32 *d = (const UINT32 *)dp;
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
-
+
h = *((UINT64 *)hp);
do {
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
@@ -353,7 +353,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
h += MUL64((k1 + d1), (k5 + d5));
h += MUL64((k2 + d2), (k6 + d6));
h += MUL64((k3 + d3), (k7 + d7));
-
+
d += 8;
k += 8;
} while (--c);
@@ -421,7 +421,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
k8,k9,k10,k11,k12,k13,k14,k15;
-
+
h1 = *((UINT64 *)hp);
h2 = *((UINT64 *)hp + 1);
h3 = *((UINT64 *)hp + 2);
@@ -434,26 +434,26 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
-
+
h1 += MUL64((k0 + d0), (k4 + d4));
h2 += MUL64((k4 + d0), (k8 + d4));
h3 += MUL64((k8 + d0), (k12 + d4));
-
+
h1 += MUL64((k1 + d1), (k5 + d5));
h2 += MUL64((k5 + d1), (k9 + d5));
h3 += MUL64((k9 + d1), (k13 + d5));
-
+
h1 += MUL64((k2 + d2), (k6 + d6));
h2 += MUL64((k6 + d2), (k10 + d6));
h3 += MUL64((k10 + d2), (k14 + d6));
-
+
h1 += MUL64((k3 + d3), (k7 + d7));
h2 += MUL64((k7 + d3), (k11 + d7));
h3 += MUL64((k11 + d3), (k15 + d7));
-
+
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
k4 = k12; k5 = k13; k6 = k14; k7 = k15;
-
+
d += 8;
k += 8;
} while (--c);
@@ -477,7 +477,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
k8,k9,k10,k11,k12,k13,k14,k15,
k16,k17,k18,k19;
-
+
h1 = *((UINT64 *)hp);
h2 = *((UINT64 *)hp + 1);
h3 = *((UINT64 *)hp + 2);
@@ -492,31 +492,31 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
-
+
h1 += MUL64((k0 + d0), (k4 + d4));
h2 += MUL64((k4 + d0), (k8 + d4));
h3 += MUL64((k8 + d0), (k12 + d4));
h4 += MUL64((k12 + d0), (k16 + d4));
-
+
h1 += MUL64((k1 + d1), (k5 + d5));
h2 += MUL64((k5 + d1), (k9 + d5));
h3 += MUL64((k9 + d1), (k13 + d5));
h4 += MUL64((k13 + d1), (k17 + d5));
-
+
h1 += MUL64((k2 + d2), (k6 + d6));
h2 += MUL64((k6 + d2), (k10 + d6));
h3 += MUL64((k10 + d2), (k14 + d6));
h4 += MUL64((k14 + d2), (k18 + d6));
-
+
h1 += MUL64((k3 + d3), (k7 + d7));
h2 += MUL64((k7 + d3), (k11 + d7));
h3 += MUL64((k11 + d3), (k15 + d7));
h4 += MUL64((k15 + d3), (k19 + d7));
-
+
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
k4 = k12; k5 = k13; k6 = k14; k7 = k15;
k8 = k16; k9 = k17; k10 = k18; k11 = k19;
-
+
d += 8;
k += 8;
} while (--c);
@@ -541,7 +541,7 @@ static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
*/
{
UINT8 *key;
-
+
key = hc->nh_key + hc->bytes_hashed;
nh_aux(key, buf, hc->state, nbytes);
}
@@ -613,7 +613,7 @@ static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
/* even multiple of HASH_BUF_BYTES. */
{
UINT32 i,j;
-
+
j = hc->next_data_empty;
if ((j + nbytes) >= HASH_BUF_BYTES) {
if (j) {
@@ -677,12 +677,12 @@ static void nh_final(nh_ctx *hc, UINT8 *result)
if (hc->next_data_empty != 0) {
nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
~(L1_PAD_BOUNDARY - 1));
- zero_pad(hc->data + hc->next_data_empty,
+ zero_pad(hc->data + hc->next_data_empty,
nh_len - hc->next_data_empty);
nh_transform(hc, hc->data, nh_len);
hc->bytes_hashed += hc->next_data_empty;
} else if (hc->bytes_hashed == 0) {
- nh_len = L1_PAD_BOUNDARY;
+ nh_len = L1_PAD_BOUNDARY;
zero_pad(hc->data, L1_PAD_BOUNDARY);
nh_transform(hc, hc->data, nh_len);
}
@@ -711,10 +711,10 @@ static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
*/
{
UINT32 nbits;
-
+
/* Initialize the hash state */
nbits = (unpadded_len << 3);
-
+
((UINT64 *)result)[0] = nbits;
#if (UMAC_OUTPUT_LEN >= 8)
((UINT64 *)result)[1] = nbits;
@@ -725,7 +725,7 @@ static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
#if (UMAC_OUTPUT_LEN == 16)
((UINT64 *)result)[3] = nbits;
#endif
-
+
nh_aux(hc->nh_key, buf, result, padded_len);
}
@@ -744,16 +744,16 @@ static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
* buffers are presented sequentially. In the sequential interface, the
* UHASH client calls the routine uhash_update() as many times as necessary.
* When there is no more data to be fed to UHASH, the client calls
- * uhash_final() which
- * calculates the UHASH output. Before beginning another UHASH calculation
- * the uhash_reset() routine must be called. The all-at-once UHASH routine,
- * uhash(), is equivalent to the sequence of calls uhash_update() and
- * uhash_final(); however it is optimized and should be
- * used whenever the sequential interface is not necessary.
- *
- * The routine uhash_init() initializes the uhash_ctx data structure and
+ * uhash_final() which
+ * calculates the UHASH output. Before beginning another UHASH calculation
+ * the uhash_reset() routine must be called. The all-at-once UHASH routine,
+ * uhash(), is equivalent to the sequence of calls uhash_update() and
+ * uhash_final(); however it is optimized and should be
+ * used whenever the sequential interface is not necessary.
+ *
+ * The routine uhash_init() initializes the uhash_ctx data structure and
* must be called once, before any other UHASH routine.
- */
+ */
/* ---------------------------------------------------------------------- */
/* ----- Constants and uhash_ctx ---------------------------------------- */
@@ -802,13 +802,13 @@ static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
x_lo,
x_hi;
UINT64 X,T,res;
-
+
X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
x_lo = (UINT32)X;
x_hi = (UINT32)(X >> 32);
-
+
res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
-
+
T = ((UINT64)x_lo << 32);
res += T;
if (res < T)
@@ -832,10 +832,10 @@ static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
{
int i;
UINT64 *data=(UINT64*)data_in;
-
+
for (i = 0; i < STREAMS; i++) {
if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
- hc->poly_accum[i] = poly64(hc->poly_accum[i],
+ hc->poly_accum[i] = poly64(hc->poly_accum[i],
hc->poly_key_8[i], p64 - 1);
hc->poly_accum[i] = poly64(hc->poly_accum[i],
hc->poly_key_8[i], (data[i] - 59));
@@ -862,7 +862,7 @@ static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
t = t + ipkp[3] * (UINT64)(UINT16)(data);
-
+
return t;
}
@@ -870,7 +870,7 @@ static UINT32 ip_reduce_p36(UINT64 t)
{
/* Divisionless modular reduction */
UINT64 ret;
-
+
ret = (t & m36) + 5 * (t >> 36);
if (ret >= p36)
ret -= p36;
@@ -888,7 +888,7 @@ static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
{
UINT64 t;
UINT64 *nhp = (UINT64 *)nh_res;
-
+
t = ip_aux(0,ahc->ip_keys, nhp[0]);
STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
#if (UMAC_OUTPUT_LEN >= 8)
@@ -919,7 +919,7 @@ static void ip_long(uhash_ctx_t ahc, u_char *res)
if (ahc->poly_accum[i] >= p64)
ahc->poly_accum[i] -= p64;
t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
- STORE_UINT32_BIG((UINT32 *)res+i,
+ STORE_UINT32_BIG((UINT32 *)res+i,
ip_reduce_p36(t) ^ ahc->ip_trans[i]);
}
}
@@ -958,13 +958,13 @@ static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
{
int i;
UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
-
+
/* Zero the entire uhash context */
memset(ahc, 0, sizeof(uhash_ctx));
/* Initialize the L1 hash */
nh_init(&ahc->hash, prf_key);
-
+
/* Setup L2 hash variables */
kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
for (i = 0; i < STREAMS; i++) {
@@ -978,17 +978,17 @@ static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
}
-
+
/* Setup L3-1 hash variables */
kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
for (i = 0; i < STREAMS; i++)
memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
4*sizeof(UINT64));
- endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
+ endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
sizeof(ahc->ip_keys));
for (i = 0; i < STREAMS*4; i++)
ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
-
+
/* Setup L3-2 hash variables */
/* Fill buffer with index 4 key */
kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
@@ -1006,7 +1006,7 @@ static uhash_ctx_t uhash_alloc(u_char key[])
uhash_ctx_t ctx;
u_char bytes_to_add;
aes_int_key prf_key;
-
+
ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
if (ctx) {
if (ALLOC_BOUNDARY) {
@@ -1029,7 +1029,7 @@ static int uhash_free(uhash_ctx_t ctx)
{
/* Free memory allocated by uhash_alloc */
u_char bytes_to_sub;
-
+
if (ctx) {
if (ALLOC_BOUNDARY) {
bytes_to_sub = *((u_char *)ctx - 1);
@@ -1050,12 +1050,12 @@ static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
UWORD bytes_hashed, bytes_remaining;
UINT64 result_buf[STREAMS];
UINT8 *nh_result = (UINT8 *)&result_buf;
-
+
if (ctx->msg_len + len <= L1_KEY_LEN) {
nh_update(&ctx->hash, (const UINT8 *)input, len);
ctx->msg_len += len;
} else {
-
+
bytes_hashed = ctx->msg_len % L1_KEY_LEN;
if (ctx->msg_len == L1_KEY_LEN)
bytes_hashed = L1_KEY_LEN;
@@ -1128,15 +1128,15 @@ static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
UINT8 nh_result[STREAMS*sizeof(UINT64)];
UINT32 nh_len;
int extra_zeroes_needed;
-
+
/* If the message to be hashed is no longer than L1_HASH_LEN, we skip
* the polyhash.
*/
if (len <= L1_KEY_LEN) {
- if (len == 0) /* If zero length messages will not */
- nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
- else
- nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
+ if (len == 0) /* If zero length messages will not */
+ nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
+ else
+ nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
extra_zeroes_needed = nh_len - len;
zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
@@ -1161,7 +1161,7 @@ static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
ip_long(ahc, res);
}
-
+
uhash_reset(ahc);
return 1;
}
@@ -1175,9 +1175,9 @@ static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
/* The UMAC interface has two interfaces, an all-at-once interface where
* the entire message to be authenticated is passed to UMAC in one buffer,
- * and a sequential interface where the message is presented a little at a
+ * and a sequential interface where the message is presented a little at a
* time. The all-at-once is more optimaized than the sequential version and
- * should be preferred when the sequential interface is not required.
+ * should be preferred when the sequential interface is not required.
*/
struct umac_ctx {
uhash_ctx hash; /* Hash function for message compression */
@@ -1213,14 +1213,14 @@ int umac_delete(struct umac_ctx *ctx)
/* ---------------------------------------------------------------------- */
struct umac_ctx *umac_new(const u_char key[])
-/* Dynamically allocate a umac_ctx struct, initialize variables,
+/* Dynamically allocate a umac_ctx struct, initialize variables,
* generate subkeys from key. Align to 16-byte boundary.
*/
{
struct umac_ctx *ctx, *octx;
size_t bytes_to_add;
aes_int_key prf_key;
-
+
octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
if (ctx) {
if (ALLOC_BOUNDARY) {
@@ -1234,7 +1234,7 @@ struct umac_ctx *umac_new(const u_char key[])
uhash_init(&ctx->hash, prf_key);
explicit_bzero(prf_key, sizeof(prf_key));
}
-
+
return (ctx);
}
@@ -1245,7 +1245,7 @@ int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
{
uhash_final(&ctx->hash, (u_char *)tag);
pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
-
+
return (1);
}
@@ -1263,14 +1263,14 @@ int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
/* ---------------------------------------------------------------------- */
#if 0
-int umac(struct umac_ctx *ctx, u_char *input,
+int umac(struct umac_ctx *ctx, u_char *input,
long len, u_char tag[],
u_char nonce[8])
/* All-in-one version simply calls umac_update() and umac_final(). */
{
uhash(&ctx->hash, input, len, (u_char *)tag);
pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
-
+
return (1);
}
#endif