aboutsummaryrefslogtreecommitdiff
path: root/utils/TableGen/DFAPacketizerEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/TableGen/DFAPacketizerEmitter.cpp')
-rw-r--r--utils/TableGen/DFAPacketizerEmitter.cpp512
1 files changed, 512 insertions, 0 deletions
diff --git a/utils/TableGen/DFAPacketizerEmitter.cpp b/utils/TableGen/DFAPacketizerEmitter.cpp
new file mode 100644
index 000000000000..4abf54ebae2e
--- /dev/null
+++ b/utils/TableGen/DFAPacketizerEmitter.cpp
@@ -0,0 +1,512 @@
+//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class parses the Schedule.td file and produces an API that can be used
+// to reason about whether an instruction can be added to a packet on a VLIW
+// architecture. The class internally generates a deterministic finite
+// automaton (DFA) that models all possible mappings of machine instructions
+// to functional units as instructions are added to a packet.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/TableGen/Record.h"
+#include "CodeGenTarget.h"
+#include "DFAPacketizerEmitter.h"
+#include <list>
+
+using namespace llvm;
+
+//
+//
+// State represents the usage of machine resources if the packet contains
+// a set of instruction classes.
+//
+// Specifically, currentState is a set of bit-masks.
+// The nth bit in a bit-mask indicates whether the nth resource is being used
+// by this state. The set of bit-masks in a state represent the different
+// possible outcomes of transitioning to this state.
+// For example: consider a two resource architecture: resource L and resource M
+// with three instruction classes: L, M, and L_or_M.
+// From the initial state (currentState = 0x00), if we add instruction class
+// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
+// represents the possible resource states that can result from adding a L_or_M
+// instruction
+//
+// Another way of thinking about this transition is we are mapping a NDFA with
+// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
+//
+//
+namespace {
+class State {
+ public:
+ static int currentStateNum;
+ int stateNum;
+ bool isInitial;
+ std::set<unsigned> stateInfo;
+
+ State();
+ State(const State &S);
+
+ //
+ // canAddInsnClass - Returns true if an instruction of type InsnClass is a
+ // valid transition from this state, i.e., can an instruction of type InsnClass
+ // be added to the packet represented by this state.
+ //
+ // PossibleStates is the set of valid resource states that ensue from valid
+ // transitions.
+ //
+ bool canAddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
+};
+} // End anonymous namespace.
+
+
+namespace {
+struct Transition {
+ public:
+ static int currentTransitionNum;
+ int transitionNum;
+ State *from;
+ unsigned input;
+ State *to;
+
+ Transition(State *from_, unsigned input_, State *to_);
+};
+} // End anonymous namespace.
+
+
+//
+// Comparators to keep set of states sorted.
+//
+namespace {
+struct ltState {
+ bool operator()(const State *s1, const State *s2) const;
+};
+} // End anonymous namespace.
+
+
+//
+// class DFA: deterministic finite automaton for processor resource tracking.
+//
+namespace {
+class DFA {
+public:
+ DFA();
+
+ // Set of states. Need to keep this sorted to emit the transition table.
+ std::set<State*, ltState> states;
+
+ // Map from a state to the list of transitions with that state as source.
+ std::map<State*, SmallVector<Transition*, 16>, ltState> stateTransitions;
+ State *currentState;
+
+ // Highest valued Input seen.
+ unsigned LargestInput;
+
+ //
+ // Modify the DFA.
+ //
+ void initialize();
+ void addState(State *);
+ void addTransition(Transition *);
+
+ //
+ // getTransition - Return the state when a transition is made from
+ // State From with Input I. If a transition is not found, return NULL.
+ //
+ State *getTransition(State *, unsigned);
+
+ //
+ // isValidTransition: Predicate that checks if there is a valid transition
+ // from state From on input InsnClass.
+ //
+ bool isValidTransition(State *From, unsigned InsnClass);
+
+ //
+ // writeTable: Print out a table representing the DFA.
+ //
+ void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
+};
+} // End anonymous namespace.
+
+
+//
+// Constructors for State, Transition, and DFA
+//
+State::State() :
+ stateNum(currentStateNum++), isInitial(false) {}
+
+
+State::State(const State &S) :
+ stateNum(currentStateNum++), isInitial(S.isInitial),
+ stateInfo(S.stateInfo) {}
+
+
+Transition::Transition(State *from_, unsigned input_, State *to_) :
+ transitionNum(currentTransitionNum++), from(from_), input(input_),
+ to(to_) {}
+
+
+DFA::DFA() :
+ LargestInput(0) {}
+
+
+bool ltState::operator()(const State *s1, const State *s2) const {
+ return (s1->stateNum < s2->stateNum);
+}
+
+
+//
+// canAddInsnClass - Returns true if an instruction of type InsnClass is a
+// valid transition from this state i.e., can an instruction of type InsnClass
+// be added to the packet represented by this state.
+//
+// PossibleStates is the set of valid resource states that ensue from valid
+// transitions.
+//
+bool State::canAddInsnClass(unsigned InsnClass,
+ std::set<unsigned> &PossibleStates) {
+ //
+ // Iterate over all resource states in currentState.
+ //
+ bool AddedState = false;
+
+ for (std::set<unsigned>::iterator SI = stateInfo.begin();
+ SI != stateInfo.end(); ++SI) {
+ unsigned thisState = *SI;
+
+ //
+ // Iterate over all possible resources used in InsnClass.
+ // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
+ //
+
+ DenseSet<unsigned> VisitedResourceStates;
+ for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
+ if ((0x1 << j) & InsnClass) {
+ //
+ // For each possible resource used in InsnClass, generate the
+ // resource state if that resource was used.
+ //
+ unsigned ResultingResourceState = thisState | (0x1 << j);
+ //
+ // Check if the resulting resource state can be accommodated in this
+ // packet.
+ // We compute ResultingResourceState OR thisState.
+ // If the result of the OR is different than thisState, it implies
+ // that there is at least one resource that can be used to schedule
+ // InsnClass in the current packet.
+ // Insert ResultingResourceState into PossibleStates only if we haven't
+ // processed ResultingResourceState before.
+ //
+ if ((ResultingResourceState != thisState) &&
+ (VisitedResourceStates.count(ResultingResourceState) == 0)) {
+ VisitedResourceStates.insert(ResultingResourceState);
+ PossibleStates.insert(ResultingResourceState);
+ AddedState = true;
+ }
+ }
+ }
+ }
+
+ return AddedState;
+}
+
+
+void DFA::initialize() {
+ currentState->isInitial = true;
+}
+
+
+void DFA::addState(State *S) {
+ assert(!states.count(S) && "State already exists");
+ states.insert(S);
+}
+
+
+void DFA::addTransition(Transition *T) {
+ // Update LargestInput.
+ if (T->input > LargestInput)
+ LargestInput = T->input;
+
+ // Add the new transition.
+ stateTransitions[T->from].push_back(T);
+}
+
+
+//
+// getTransition - Return the state when a transition is made from
+// State From with Input I. If a transition is not found, return NULL.
+//
+State *DFA::getTransition(State *From, unsigned I) {
+ // Do we have a transition from state From?
+ if (!stateTransitions.count(From))
+ return NULL;
+
+ // Do we have a transition from state From with Input I?
+ for (SmallVector<Transition*, 16>::iterator VI =
+ stateTransitions[From].begin();
+ VI != stateTransitions[From].end(); ++VI)
+ if ((*VI)->input == I)
+ return (*VI)->to;
+
+ return NULL;
+}
+
+
+bool DFA::isValidTransition(State *From, unsigned InsnClass) {
+ return (getTransition(From, InsnClass) != NULL);
+}
+
+
+int State::currentStateNum = 0;
+int Transition::currentTransitionNum = 0;
+
+DFAGen::DFAGen(RecordKeeper &R):
+ TargetName(CodeGenTarget(R).getName()),
+ allInsnClasses(), Records(R) {}
+
+
+//
+// writeTableAndAPI - Print out a table representing the DFA and the
+// associated API to create a DFA packetizer.
+//
+// Format:
+// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
+// transitions.
+// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
+// the ith state.
+//
+//
+void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
+ std::set<State*, ltState>::iterator SI = states.begin();
+ // This table provides a map to the beginning of the transitions for State s
+ // in DFAStateInputTable.
+ std::vector<int> StateEntry(states.size());
+
+ OS << "namespace llvm {\n\n";
+ OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
+
+ // Tracks the total valid transitions encountered so far. It is used
+ // to construct the StateEntry table.
+ int ValidTransitions = 0;
+ for (unsigned i = 0; i < states.size(); ++i, ++SI) {
+ StateEntry[i] = ValidTransitions;
+ for (unsigned j = 0; j <= LargestInput; ++j) {
+ assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
+ if (!isValidTransition(*SI, j))
+ continue;
+
+ OS << "{" << j << ", "
+ << getTransition(*SI, j)->stateNum
+ << "}, ";
+ ++ValidTransitions;
+ }
+
+ // If there are no valid transitions from this stage, we need a sentinel
+ // transition.
+ if (ValidTransitions == StateEntry[i]) {
+ OS << "{-1, -1},";
+ ++ValidTransitions;
+ }
+
+ OS << "\n";
+ }
+ OS << "};\n\n";
+ OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
+
+ // Multiply i by 2 since each entry in DFAStateInputTable is a set of
+ // two numbers.
+ for (unsigned i = 0; i < states.size(); ++i)
+ OS << StateEntry[i] << ", ";
+
+ OS << "\n};\n";
+ OS << "} // namespace\n";
+
+
+ //
+ // Emit DFA Packetizer tables if the target is a VLIW machine.
+ //
+ std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
+ OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
+ OS << "namespace llvm {\n";
+ OS << "DFAPacketizer *" << SubTargetClassName << "::"
+ << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
+ << " return new DFAPacketizer(IID, " << TargetName
+ << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
+ OS << "} // End llvm namespace \n";
+}
+
+
+//
+// collectAllInsnClasses - Populate allInsnClasses which is a set of units
+// used in each stage.
+//
+void DFAGen::collectAllInsnClasses(const std::string &Name,
+ Record *ItinData,
+ unsigned &NStages,
+ raw_ostream &OS) {
+ // Collect processor itineraries.
+ std::vector<Record*> ProcItinList =
+ Records.getAllDerivedDefinitions("ProcessorItineraries");
+
+ // If just no itinerary then don't bother.
+ if (ProcItinList.size() < 2)
+ return;
+ std::map<std::string, unsigned> NameToBitsMap;
+
+ // Parse functional units for all the itineraries.
+ for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
+ Record *Proc = ProcItinList[i];
+ std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
+
+ // Convert macros to bits for each stage.
+ for (unsigned i = 0, N = FUs.size(); i < N; ++i)
+ NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
+ }
+
+ const std::vector<Record*> &StageList =
+ ItinData->getValueAsListOfDefs("Stages");
+
+ // The number of stages.
+ NStages = StageList.size();
+
+ // For each unit.
+ unsigned UnitBitValue = 0;
+
+ // Compute the bitwise or of each unit used in this stage.
+ for (unsigned i = 0; i < NStages; ++i) {
+ const Record *Stage = StageList[i];
+
+ // Get unit list.
+ const std::vector<Record*> &UnitList =
+ Stage->getValueAsListOfDefs("Units");
+
+ for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
+ // Conduct bitwise or.
+ std::string UnitName = UnitList[j]->getName();
+ assert(NameToBitsMap.count(UnitName));
+ UnitBitValue |= NameToBitsMap[UnitName];
+ }
+
+ if (UnitBitValue != 0)
+ allInsnClasses.insert(UnitBitValue);
+ }
+}
+
+
+//
+// Run the worklist algorithm to generate the DFA.
+//
+void DFAGen::run(raw_ostream &OS) {
+ EmitSourceFileHeader("Target DFA Packetizer Tables", OS);
+
+ // Collect processor iteraries.
+ std::vector<Record*> ProcItinList =
+ Records.getAllDerivedDefinitions("ProcessorItineraries");
+
+ //
+ // Collect the instruction classes.
+ //
+ for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
+ Record *Proc = ProcItinList[i];
+
+ // Get processor itinerary name.
+ const std::string &Name = Proc->getName();
+
+ // Skip default.
+ if (Name == "NoItineraries")
+ continue;
+
+ // Sanity check for at least one instruction itinerary class.
+ unsigned NItinClasses =
+ Records.getAllDerivedDefinitions("InstrItinClass").size();
+ if (NItinClasses == 0)
+ return;
+
+ // Get itinerary data list.
+ std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
+
+ // Collect instruction classes for all itinerary data.
+ for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
+ Record *ItinData = ItinDataList[j];
+ unsigned NStages;
+ collectAllInsnClasses(Name, ItinData, NStages, OS);
+ }
+ }
+
+
+ //
+ // Run a worklist algorithm to generate the DFA.
+ //
+ DFA D;
+ State *Initial = new State;
+ Initial->isInitial = true;
+ Initial->stateInfo.insert(0x0);
+ D.addState(Initial);
+ SmallVector<State*, 32> WorkList;
+ std::map<std::set<unsigned>, State*> Visited;
+
+ WorkList.push_back(Initial);
+
+ //
+ // Worklist algorithm to create a DFA for processor resource tracking.
+ // C = {set of InsnClasses}
+ // Begin with initial node in worklist. Initial node does not have
+ // any consumed resources,
+ // ResourceState = 0x0
+ // Visited = {}
+ // While worklist != empty
+ // S = first element of worklist
+ // For every instruction class C
+ // if we can accommodate C in S:
+ // S' = state with resource states = {S Union C}
+ // Add a new transition: S x C -> S'
+ // If S' is not in Visited:
+ // Add S' to worklist
+ // Add S' to Visited
+ //
+ while (!WorkList.empty()) {
+ State *current = WorkList.pop_back_val();
+ for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
+ CE = allInsnClasses.end(); CI != CE; ++CI) {
+ unsigned InsnClass = *CI;
+
+ std::set<unsigned> NewStateResources;
+ //
+ // If we haven't already created a transition for this input
+ // and the state can accommodate this InsnClass, create a transition.
+ //
+ if (!D.getTransition(current, InsnClass) &&
+ current->canAddInsnClass(InsnClass, NewStateResources)) {
+ State *NewState = NULL;
+
+ //
+ // If we have seen this state before, then do not create a new state.
+ //
+ //
+ std::map<std::set<unsigned>, State*>::iterator VI;
+ if ((VI = Visited.find(NewStateResources)) != Visited.end())
+ NewState = VI->second;
+ else {
+ NewState = new State;
+ NewState->stateInfo = NewStateResources;
+ D.addState(NewState);
+ Visited[NewStateResources] = NewState;
+ WorkList.push_back(NewState);
+ }
+
+ Transition *NewTransition = new Transition(current, InsnClass,
+ NewState);
+ D.addTransition(NewTransition);
+ }
+ }
+ }
+
+ // Print out the table.
+ D.writeTableAndAPI(OS, TargetName);
+}