//===- Relocations.cpp ----------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains platform-independent functions to process relocations. // I'll describe the overview of this file here. // // Simple relocations are easy to handle for the linker. For example, // for R_X86_64_PC64 relocs, the linker just has to fix up locations // with the relative offsets to the target symbols. It would just be // reading records from relocation sections and applying them to output. // // But not all relocations are that easy to handle. For example, for // R_386_GOTOFF relocs, the linker has to create new GOT entries for // symbols if they don't exist, and fix up locations with GOT entry // offsets from the beginning of GOT section. So there is more than // fixing addresses in relocation processing. // // ELF defines a large number of complex relocations. // // The functions in this file analyze relocations and do whatever needs // to be done. It includes, but not limited to, the following. // // - create GOT/PLT entries // - create new relocations in .dynsym to let the dynamic linker resolve // them at runtime (since ELF supports dynamic linking, not all // relocations can be resolved at link-time) // - create COPY relocs and reserve space in .bss // - replace expensive relocs (in terms of runtime cost) with cheap ones // - error out infeasible combinations such as PIC and non-relative relocs // // Note that the functions in this file don't actually apply relocations // because it doesn't know about the output file nor the output file buffer. // It instead stores Relocation objects to InputSection's Relocations // vector to let it apply later in InputSection::writeTo. // //===----------------------------------------------------------------------===// #include "Relocations.h" #include "Config.h" #include "Memory.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; // Construct a message in the following format. // // >>> defined in /home/alice/src/foo.o // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) // >>> /home/alice/src/bar.o:(.text+0x1) template static std::string getLocation(InputSectionBase &S, const SymbolBody &Sym, uint64_t Off) { std::string Msg = "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by "; std::string Src = S.getSrcMsg(Off); if (!Src.empty()) Msg += Src + "\n>>> "; return Msg + S.getObjMsg(Off); } static bool isPreemptible(const SymbolBody &Body, uint32_t Type) { // In case of MIPS GP-relative relocations always resolve to a definition // in a regular input file, ignoring the one-definition rule. So we, // for example, should not attempt to create a dynamic relocation even // if the target symbol is preemptible. There are two two MIPS GP-relative // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16 // can be against a preemptible symbol. // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all // relocation types occupy eight bit. In case of N64 ABI we extract first // relocation from 3-in-1 packet because only the first relocation can // be against a real symbol. if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16) return false; return Body.isPreemptible(); } // This function is similar to the `handleTlsRelocation`. MIPS does not // support any relaxations for TLS relocations so by factoring out MIPS // handling in to the separate function we can simplify the code and do not // pollute other `handleTlsRelocation` by MIPS `ifs` statements. // Mips has a custom MipsGotSection that handles the writing of GOT entries // without dynamic relocations. template static unsigned handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, uint64_t Offset, int64_t Addend, RelExpr Expr) { if (Expr == R_MIPS_TLSLD) { if (In::MipsGot->addTlsIndex() && Config->Pic) In::RelaDyn->addReloc({Target->TlsModuleIndexRel, In::MipsGot, In::MipsGot->getTlsIndexOff(), false, nullptr, 0}); C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } if (Expr == R_MIPS_TLSGD) { if (In::MipsGot->addDynTlsEntry(Body) && Body.isPreemptible()) { uint64_t Off = In::MipsGot->getGlobalDynOffset(Body); In::RelaDyn->addReloc( {Target->TlsModuleIndexRel, In::MipsGot, Off, false, &Body, 0}); if (Body.isPreemptible()) In::RelaDyn->addReloc({Target->TlsOffsetRel, In::MipsGot, Off + Config->Wordsize, false, &Body, 0}); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } return 0; } // This function is similar to the `handleMipsTlsRelocation`. ARM also does not // support any relaxations for TLS relocations. ARM is logically similar to Mips // in how it handles TLS, but Mips uses its own custom GOT which handles some // of the cases that ARM uses GOT relocations for. // // We look for TLS global dynamic and local dynamic relocations, these may // require the generation of a pair of GOT entries that have associated // dynamic relocations. When the results of the dynamic relocations can be // resolved at static link time we do so. This is necessary for static linking // as there will be no dynamic loader to resolve them at load-time. // // The pair of GOT entries created are of the form // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) // GOT[e1] Offset of symbol in TLS block template static unsigned handleARMTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, uint64_t Offset, int64_t Addend, RelExpr Expr) { // The Dynamic TLS Module Index Relocation for a symbol defined in an // executable is always 1. If the target Symbol is not preemtible then // we know the offset into the TLS block at static link time. bool NeedDynId = Body.isPreemptible() || Config->Shared; bool NeedDynOff = Body.isPreemptible(); auto AddTlsReloc = [&](uint64_t Off, uint32_t Type, SymbolBody *Dest, bool Dyn) { if (Dyn) In::RelaDyn->addReloc({Type, In::Got, Off, false, Dest, 0}); else In::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); }; // Local Dynamic is for access to module local TLS variables, while still // being suitable for being dynamically loaded via dlopen. // GOT[e0] is the module index, with a special value of 0 for the current // module. GOT[e1] is unused. There only needs to be one module index entry. if (Expr == R_TLSLD_PC && In::Got->addTlsIndex()) { AddTlsReloc(In::Got->getTlsIndexOff(), Target->TlsModuleIndexRel, NeedDynId ? nullptr : &Body, NeedDynId); C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } // Global Dynamic is the most general purpose access model. When we know // the module index and offset of symbol in TLS block we can fill these in // using static GOT relocations. if (Expr == R_TLSGD_PC) { if (In::Got->addDynTlsEntry(Body)) { uint64_t Off = In::Got->getGlobalDynOffset(Body); AddTlsReloc(Off, Target->TlsModuleIndexRel, &Body, NeedDynId); AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Body, NeedDynOff); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } return 0; } // Returns the number of relocations processed. template static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { if (!(C.Flags & SHF_ALLOC)) return 0; if (!Body.isTls()) return 0; if (Config->EMachine == EM_ARM) return handleARMTlsRelocation(Type, Body, C, Offset, Addend, Expr); if (Config->EMachine == EM_MIPS) return handleMipsTlsRelocation(Type, Body, C, Offset, Addend, Expr); bool IsPreemptible = isPreemptible(Body, Type); if (isRelExprOneOf(Expr) && Config->Shared) { if (In::Got->addDynTlsEntry(Body)) { uint64_t Off = In::Got->getGlobalDynOffset(Body); In::RelaDyn->addReloc({Target->TlsDescRel, In::Got, Off, !IsPreemptible, &Body, 0}); } if (Expr != R_TLSDESC_CALL) C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } if (isRelExprOneOf(Expr)) { // Local-Dynamic relocs can be relaxed to Local-Exec. if (!Config->Shared) { C.Relocations.push_back( {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); return 2; } if (In::Got->addTlsIndex()) In::RelaDyn->addReloc({Target->TlsModuleIndexRel, In::Got, In::Got->getTlsIndexOff(), false, nullptr, 0}); C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } // Local-Dynamic relocs can be relaxed to Local-Exec. if (isRelExprOneOf(Expr) && !Config->Shared) { C.Relocations.push_back( {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); return 1; } if (isRelExprOneOf(Expr)) { if (Config->Shared) { if (In::Got->addDynTlsEntry(Body)) { uint64_t Off = In::Got->getGlobalDynOffset(Body); In::RelaDyn->addReloc( {Target->TlsModuleIndexRel, In::Got, Off, false, &Body, 0}); // If the symbol is preemptible we need the dynamic linker to write // the offset too. uint64_t OffsetOff = Off + Config->Wordsize; if (IsPreemptible) In::RelaDyn->addReloc({Target->TlsOffsetRel, In::Got, OffsetOff, false, &Body, 0}); else In::Got->Relocations.push_back( {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Body}); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); return 1; } // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec // depending on the symbol being locally defined or not. if (IsPreemptible) { C.Relocations.push_back( {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, Offset, Addend, &Body}); if (!Body.isInGot()) { In::Got->addEntry(Body); In::RelaDyn->addReloc({Target->TlsGotRel, In::Got, Body.getGotOffset(), false, &Body, 0}); } } else { C.Relocations.push_back( {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, Offset, Addend, &Body}); } return Target->TlsGdRelaxSkip; } // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally // defined. if (isRelExprOneOf(Expr) && !Config->Shared && !IsPreemptible) { C.Relocations.push_back( {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); return 1; } if (Expr == R_TLSDESC_CALL) return 1; return 0; } static uint32_t getMipsPairType(uint32_t Type, const SymbolBody &Sym) { switch (Type) { case R_MIPS_HI16: return R_MIPS_LO16; case R_MIPS_GOT16: return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; case R_MIPS_PCHI16: return R_MIPS_PCLO16; case R_MICROMIPS_HI16: return R_MICROMIPS_LO16; default: return R_MIPS_NONE; } } // True if non-preemptable symbol always has the same value regardless of where // the DSO is loaded. static bool isAbsolute(const SymbolBody &Body) { if (Body.isUndefined()) return !Body.isLocal() && Body.symbol()->isWeak(); if (const auto *DR = dyn_cast(&Body)) return DR->Section == nullptr; // Absolute symbol. return false; } static bool isAbsoluteValue(const SymbolBody &Body) { return isAbsolute(Body) || Body.isTls(); } // Returns true if Expr refers a PLT entry. static bool needsPlt(RelExpr Expr) { return isRelExprOneOf(Expr); } // Returns true if Expr refers a GOT entry. Note that this function // returns false for TLS variables even though they need GOT, because // TLS variables uses GOT differently than the regular variables. static bool needsGot(RelExpr Expr) { return isRelExprOneOf(Expr); } // True if this expression is of the form Sym - X, where X is a position in the // file (PC, or GOT for example). static bool isRelExpr(RelExpr Expr) { return isRelExprOneOf(Expr); } // Returns true if a given relocation can be computed at link-time. // // For instance, we know the offset from a relocation to its target at // link-time if the relocation is PC-relative and refers a // non-interposable function in the same executable. This function // will return true for such relocation. // // If this function returns false, that means we need to emit a // dynamic relocation so that the relocation will be fixed at load-time. template static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type, const SymbolBody &Body, InputSectionBase &S, uint64_t RelOff) { // These expressions always compute a constant if (isRelExprOneOf(E)) return true; // These never do, except if the entire file is position dependent or if // only the low bits are used. if (E == R_GOT || E == R_PLT || E == R_TLSDESC) return Target->usesOnlyLowPageBits(Type) || !Config->Pic; if (isPreemptible(Body, Type)) return false; if (!Config->Pic) return true; // For the target and the relocation, we want to know if they are // absolute or relative. bool AbsVal = isAbsoluteValue(Body); bool RelE = isRelExpr(E); if (AbsVal && !RelE) return true; if (!AbsVal && RelE) return true; if (!AbsVal && !RelE) return Target->usesOnlyLowPageBits(Type); // Relative relocation to an absolute value. This is normally unrepresentable, // but if the relocation refers to a weak undefined symbol, we allow it to // resolve to the image base. This is a little strange, but it allows us to // link function calls to such symbols. Normally such a call will be guarded // with a comparison, which will load a zero from the GOT. // Another special case is MIPS _gp_disp symbol which represents offset // between start of a function and '_gp' value and defined as absolute just // to simplify the code. assert(AbsVal && RelE); if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) return true; error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + toString(Body) + getLocation(S, Body, RelOff)); return true; } static RelExpr toPlt(RelExpr Expr) { if (Expr == R_PPC_OPD) return R_PPC_PLT_OPD; if (Expr == R_PC) return R_PLT_PC; if (Expr == R_PAGE_PC) return R_PLT_PAGE_PC; if (Expr == R_ABS) return R_PLT; return Expr; } static RelExpr fromPlt(RelExpr Expr) { // We decided not to use a plt. Optimize a reference to the plt to a // reference to the symbol itself. if (Expr == R_PLT_PC) return R_PC; if (Expr == R_PPC_PLT_OPD) return R_PPC_OPD; if (Expr == R_PLT) return R_ABS; return Expr; } // Returns true if a given shared symbol is in a read-only segment in a DSO. template static bool isReadOnly(SharedSymbol *SS) { typedef typename ELFT::Phdr Elf_Phdr; uint64_t Value = SS->getValue(); // Determine if the symbol is read-only by scanning the DSO's program headers. auto *File = cast>(SS->File); for (const Elf_Phdr &Phdr : check(File->getObj().program_headers())) if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && !(Phdr.p_flags & ELF::PF_W) && Value >= Phdr.p_vaddr && Value < Phdr.p_vaddr + Phdr.p_memsz) return true; return false; } // Returns symbols at the same offset as a given symbol, including SS itself. // // If two or more symbols are at the same offset, and at least one of // them are copied by a copy relocation, all of them need to be copied. // Otherwise, they would refer different places at runtime. template static std::vector getSymbolsAt(SharedSymbol *SS) { typedef typename ELFT::Sym Elf_Sym; auto *File = cast>(SS->File); uint64_t Shndx = SS->getShndx(); uint64_t Value = SS->getValue(); std::vector Ret; for (const Elf_Sym &S : File->getGlobalSymbols()) { if (S.st_shndx != Shndx || S.st_value != Value) continue; StringRef Name = check(S.getName(File->getStringTable())); SymbolBody *Sym = Symtab::X->find(Name); if (auto *Alias = dyn_cast_or_null(Sym)) Ret.push_back(Alias); } return Ret; } // Reserve space in .bss or .bss.rel.ro for copy relocation. // // The copy relocation is pretty much a hack. If you use a copy relocation // in your program, not only the symbol name but the symbol's size, RW/RO // bit and alignment become part of the ABI. In addition to that, if the // symbol has aliases, the aliases become part of the ABI. That's subtle, // but if you violate that implicit ABI, that can cause very counter- // intuitive consequences. // // So, what is the copy relocation? It's for linking non-position // independent code to DSOs. In an ideal world, all references to data // exported by DSOs should go indirectly through GOT. But if object files // are compiled as non-PIC, all data references are direct. There is no // way for the linker to transform the code to use GOT, as machine // instructions are already set in stone in object files. This is where // the copy relocation takes a role. // // A copy relocation instructs the dynamic linker to copy data from a DSO // to a specified address (which is usually in .bss) at load-time. If the // static linker (that's us) finds a direct data reference to a DSO // symbol, it creates a copy relocation, so that the symbol can be // resolved as if it were in .bss rather than in a DSO. // // As you can see in this function, we create a copy relocation for the // dynamic linker, and the relocation contains not only symbol name but // various other informtion about the symbol. So, such attributes become a // part of the ABI. // // Note for application developers: I can give you a piece of advice if // you are writing a shared library. You probably should export only // functions from your library. You shouldn't export variables. // // As an example what can happen when you export variables without knowing // the semantics of copy relocations, assume that you have an exported // variable of type T. It is an ABI-breaking change to add new members at // end of T even though doing that doesn't change the layout of the // existing members. That's because the space for the new members are not // reserved in .bss unless you recompile the main program. That means they // are likely to overlap with other data that happens to be laid out next // to the variable in .bss. This kind of issue is sometimes very hard to // debug. What's a solution? Instead of exporting a varaible V from a DSO, // define an accessor getV(). template static void addCopyRelSymbol(SharedSymbol *SS) { // Copy relocation against zero-sized symbol doesn't make sense. uint64_t SymSize = SS->template getSize(); if (SymSize == 0) fatal("cannot create a copy relocation for symbol " + toString(*SS)); // See if this symbol is in a read-only segment. If so, preserve the symbol's // memory protection by reserving space in the .bss.rel.ro section. bool IsReadOnly = isReadOnly(SS); BssSection *Sec = IsReadOnly ? In::BssRelRo : In::Bss; uint64_t Off = Sec->reserveSpace(SymSize, SS->getAlignment()); // Look through the DSO's dynamic symbol table for aliases and create a // dynamic symbol for each one. This causes the copy relocation to correctly // interpose any aliases. for (SharedSymbol *Sym : getSymbolsAt(SS)) { Sym->NeedsCopy = true; Sym->CopyRelSec = Sec; Sym->CopyRelSecOff = Off; Sym->symbol()->IsUsedInRegularObj = true; } In::RelaDyn->addReloc({Target->CopyRel, Sec, Off, false, SS, 0}); } template static RelExpr adjustExpr(SymbolBody &Body, RelExpr Expr, uint32_t Type, const uint8_t *Data, InputSectionBase &S, typename ELFT::uint RelOff) { if (Body.isGnuIFunc()) { Expr = toPlt(Expr); } else if (!isPreemptible(Body, Type)) { if (needsPlt(Expr)) Expr = fromPlt(Expr); if (Expr == R_GOT_PC && !isAbsoluteValue(Body)) Expr = Target->adjustRelaxExpr(Type, Data, Expr); } bool IsWrite = !Config->ZText || (S.Flags & SHF_WRITE); if (IsWrite || isStaticLinkTimeConstant(Expr, Type, Body, S, RelOff)) return Expr; // This relocation would require the dynamic linker to write a value to read // only memory. We can hack around it if we are producing an executable and // the refered symbol can be preemepted to refer to the executable. if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) { error("can't create dynamic relocation " + toString(Type) + " against " + (Body.getName().empty() ? "local symbol in readonly segment" : "symbol: " + toString(Body)) + getLocation(S, Body, RelOff)); return Expr; } if (Body.getVisibility() != STV_DEFAULT) { error("cannot preempt symbol: " + toString(Body) + getLocation(S, Body, RelOff)); return Expr; } if (Body.isObject()) { // Produce a copy relocation. auto *B = cast(&Body); if (!B->NeedsCopy) { if (Config->ZNocopyreloc) error("unresolvable relocation " + toString(Type) + " against symbol '" + toString(*B) + "'; recompile with -fPIC or remove '-z nocopyreloc'" + getLocation(S, Body, RelOff)); addCopyRelSymbol(B); } return Expr; } if (Body.isFunc()) { // This handles a non PIC program call to function in a shared library. In // an ideal world, we could just report an error saying the relocation can // overflow at runtime. In the real world with glibc, crt1.o has a // R_X86_64_PC32 pointing to libc.so. // // The general idea on how to handle such cases is to create a PLT entry and // use that as the function value. // // For the static linking part, we just return a plt expr and everything // else will use the the PLT entry as the address. // // The remaining problem is making sure pointer equality still works. We // need the help of the dynamic linker for that. We let it know that we have // a direct reference to a so symbol by creating an undefined symbol with a // non zero st_value. Seeing that, the dynamic linker resolves the symbol to // the value of the symbol we created. This is true even for got entries, so // pointer equality is maintained. To avoid an infinite loop, the only entry // that points to the real function is a dedicated got entry used by the // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, // R_386_JMP_SLOT, etc). Body.NeedsPltAddr = true; return toPlt(Expr); } error("symbol '" + toString(Body) + "' defined in " + toString(Body.File) + " has no type"); return Expr; } // Returns an addend of a given relocation. If it is RELA, an addend // is in a relocation itself. If it is REL, we need to read it from an // input section. template static int64_t computeAddend(const RelTy &Rel, const uint8_t *Buf) { uint32_t Type = Rel.getType(Config->IsMips64EL); int64_t A = RelTy::IsRela ? getAddend(Rel) : Target->getImplicitAddend(Buf + Rel.r_offset, Type); if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) A += getPPC64TocBase(); return A; } // MIPS has an odd notion of "paired" relocations to calculate addends. // For example, if a relocation is of R_MIPS_HI16, there must be a // R_MIPS_LO16 relocation after that, and an addend is calculated using // the two relocations. template static int64_t computeMipsAddend(const RelTy &Rel, InputSectionBase &Sec, RelExpr Expr, SymbolBody &Body, const RelTy *End) { if (Expr == R_MIPS_GOTREL && Body.isLocal()) return Sec.getFile()->MipsGp0; // The ABI says that the paired relocation is used only for REL. // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (RelTy::IsRela) return 0; uint32_t Type = Rel.getType(Config->IsMips64EL); uint32_t PairTy = getMipsPairType(Type, Body); if (PairTy == R_MIPS_NONE) return 0; const uint8_t *Buf = Sec.Data.data(); uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); // To make things worse, paired relocations might not be contiguous in // the relocation table, so we need to do linear search. *sigh* for (const RelTy *RI = &Rel; RI != End; ++RI) { if (RI->getType(Config->IsMips64EL) != PairTy) continue; if (RI->getSymbol(Config->IsMips64EL) != SymIndex) continue; endianness E = Config->Endianness; int32_t Hi = (read32(Buf + Rel.r_offset, E) & 0xffff) << 16; int32_t Lo = SignExtend32<16>(read32(Buf + RI->r_offset, E)); return Hi + Lo; } warn("can't find matching " + toString(PairTy) + " relocation for " + toString(Type)); return 0; } template static void reportUndefined(SymbolBody &Sym, InputSectionBase &S, uint64_t Offset) { if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll) return; bool CanBeExternal = Sym.symbol()->computeBinding() != STB_LOCAL && Sym.getVisibility() == STV_DEFAULT; if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) return; std::string Msg = "undefined symbol: " + toString(Sym) + "\n>>> referenced by "; std::string Src = S.getSrcMsg(Offset); if (!Src.empty()) Msg += Src + "\n>>> "; Msg += S.getObjMsg(Offset); if (Config->UnresolvedSymbols == UnresolvedPolicy::WarnAll || (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal)) { warn(Msg); } else { error(Msg); } } template static std::pair mergeMipsN32RelTypes(uint32_t Type, uint32_t Offset, RelTy *I, RelTy *E) { // MIPS N32 ABI treats series of successive relocations with the same offset // as a single relocation. The similar approach used by N64 ABI, but this ABI // packs all relocations into the single relocation record. Here we emulate // this for the N32 ABI. Iterate over relocation with the same offset and put // theirs types into the single bit-set. uint32_t Processed = 0; for (; I != E && Offset == I->r_offset; ++I) { ++Processed; Type |= I->getType(Config->IsMips64EL) << (8 * Processed); } return std::make_pair(Type, Processed); } // .eh_frame sections are mergeable input sections, so their input // offsets are not linearly mapped to output section. For each input // offset, we need to find a section piece containing the offset and // add the piece's base address to the input offset to compute the // output offset. That isn't cheap. // // This class is to speed up the offset computation. When we process // relocations, we access offsets in the monotonically increasing // order. So we can optimize for that access pattern. // // For sections other than .eh_frame, this class doesn't do anything. namespace { class OffsetGetter { public: explicit OffsetGetter(InputSectionBase &Sec) { if (auto *Eh = dyn_cast(&Sec)) { P = Eh->Pieces; Size = Eh->Pieces.size(); } } // Translates offsets in input sections to offsets in output sections. // Given offset must increase monotonically. We assume that P is // sorted by InputOff. uint64_t get(uint64_t Off) { if (P.empty()) return Off; while (I != Size && P[I].InputOff + P[I].size() <= Off) ++I; if (I == Size) return Off; // P must be contiguous, so there must be no holes in between. assert(P[I].InputOff <= Off && "Relocation not in any piece"); // Offset -1 means that the piece is dead (i.e. garbage collected). if (P[I].OutputOff == -1) return -1; return P[I].OutputOff + Off - P[I].InputOff; } private: ArrayRef P; size_t I = 0; size_t Size; }; } // namespace template static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, RelocationSection *Rel, uint32_t Type, SymbolBody &Sym, bool UseSymVA) { Plt->addEntry(Sym); GotPlt->addEntry(Sym); Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0}); } template static void addGotEntry(SymbolBody &Sym, bool Preemptible) { In::Got->addEntry(Sym); uint64_t Off = Sym.getGotOffset(); uint32_t DynType; RelExpr Expr = R_ABS; if (Sym.isTls()) { DynType = Target->TlsGotRel; Expr = R_TLS; } else if (!Preemptible && Config->Pic && !isAbsolute(Sym)) { DynType = Target->RelativeRel; } else { DynType = Target->GotRel; } bool Constant = !Preemptible && !(Config->Pic && !isAbsolute(Sym)); if (!Constant) In::RelaDyn->addReloc( {DynType, In::Got, Off, !Preemptible, &Sym, 0}); if (Constant || (!Config->IsRela && !Preemptible)) In::Got->Relocations.push_back({Expr, DynType, Off, 0, &Sym}); } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. // This would have some drawbacks. For example, we would only know if .rela.dyn // is needed after applying relocations. If it is, it will go after rw and rx // sections. Given that it is ro, we will need an extra PT_LOAD. This // complicates things for the dynamic linker and means we would have to reserve // space for the extra PT_LOAD even if we end up not using it. template static void scanRelocs(InputSectionBase &Sec, ArrayRef Rels) { OffsetGetter GetOffset(Sec); for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) { const RelTy &Rel = *I; SymbolBody &Body = Sec.getFile()->getRelocTargetSym(Rel); uint32_t Type = Rel.getType(Config->IsMips64EL); if (Config->MipsN32Abi) { uint32_t Processed; std::tie(Type, Processed) = mergeMipsN32RelTypes(Type, Rel.r_offset, I + 1, End); I += Processed; } // Compute the offset of this section in the output section. uint64_t Offset = GetOffset.get(Rel.r_offset); if (Offset == uint64_t(-1)) continue; // Report undefined symbols. The fact that we report undefined // symbols here means that we report undefined symbols only when // they have relocations pointing to them. We don't care about // undefined symbols that are in dead-stripped sections. if (!Body.isLocal() && Body.isUndefined() && !Body.symbol()->isWeak()) reportUndefined(Body, Sec, Rel.r_offset); RelExpr Expr = Target->getRelExpr(Type, Body, Sec.Data.begin() + Rel.r_offset); // Ignore "hint" relocations because they are only markers for relaxation. if (isRelExprOneOf(Expr)) continue; bool Preemptible = isPreemptible(Body, Type); Expr = adjustExpr(Body, Expr, Type, Sec.Data.data() + Rel.r_offset, Sec, Rel.r_offset); if (ErrorCount) continue; // This relocation does not require got entry, but it is relative to got and // needs it to be created. Here we request for that. if (isRelExprOneOf(Expr)) In::Got->HasGotOffRel = true; // Read an addend. int64_t Addend = computeAddend(Rel, Sec.Data.data()); if (Config->EMachine == EM_MIPS) Addend += computeMipsAddend(Rel, Sec, Expr, Body, End); // Process some TLS relocations, including relaxing TLS relocations. // Note that this function does not handle all TLS relocations. if (unsigned Processed = handleTlsRelocation(Type, Body, Sec, Offset, Addend, Expr)) { I += (Processed - 1); continue; } // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. if (needsPlt(Expr) && !Body.isInPlt()) { if (Body.isGnuIFunc() && !Preemptible) addPltEntry(InX::Iplt, In::IgotPlt, In::RelaIplt, Target->IRelativeRel, Body, true); else addPltEntry(InX::Plt, In::GotPlt, In::RelaPlt, Target->PltRel, Body, !Preemptible); } // Create a GOT slot if a relocation needs GOT. if (needsGot(Expr)) { if (Config->EMachine == EM_MIPS) { // MIPS ABI has special rules to process GOT entries and doesn't // require relocation entries for them. A special case is TLS // relocations. In that case dynamic loader applies dynamic // relocations to initialize TLS GOT entries. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf In::MipsGot->addEntry(Body, Addend, Expr); if (Body.isTls() && Body.isPreemptible()) In::RelaDyn->addReloc({Target->TlsGotRel, In::MipsGot, Body.getGotOffset(), false, &Body, 0}); } else if (!Body.isInGot()) { addGotEntry(Body, Preemptible); } } if (!needsPlt(Expr) && !needsGot(Expr) && isPreemptible(Body, Type)) { // We don't know anything about the finaly symbol. Just ask the dynamic // linker to handle the relocation for us. if (!Target->isPicRel(Type)) error("relocation " + toString(Type) + " cannot be used against shared object; recompile with -fPIC" + getLocation(Sec, Body, Offset)); In::RelaDyn->addReloc( {Target->getDynRel(Type), &Sec, Offset, false, &Body, Addend}); // MIPS ABI turns using of GOT and dynamic relocations inside out. // While regular ABI uses dynamic relocations to fill up GOT entries // MIPS ABI requires dynamic linker to fills up GOT entries using // specially sorted dynamic symbol table. This affects even dynamic // relocations against symbols which do not require GOT entries // creation explicitly, i.e. do not have any GOT-relocations. So if // a preemptible symbol has a dynamic relocation we anyway have // to create a GOT entry for it. // If a non-preemptible symbol has a dynamic relocation against it, // dynamic linker takes it st_value, adds offset and writes down // result of the dynamic relocation. In case of preemptible symbol // dynamic linker performs symbol resolution, writes the symbol value // to the GOT entry and reads the GOT entry when it needs to perform // a dynamic relocation. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 if (Config->EMachine == EM_MIPS) In::MipsGot->addEntry(Body, Addend, Expr); continue; } // If the relocation points to something in the file, we can process it. bool IsConstant = isStaticLinkTimeConstant(Expr, Type, Body, Sec, Rel.r_offset); // If the output being produced is position independent, the final value // is still not known. In that case we still need some help from the // dynamic linker. We can however do better than just copying the incoming // relocation. We can process some of it and and just ask the dynamic // linker to add the load address. if (!IsConstant) In::RelaDyn->addReloc( {Target->RelativeRel, &Sec, Offset, true, &Body, Addend}); // If the produced value is a constant, we just remember to write it // when outputting this section. We also have to do it if the format // uses Elf_Rel, since in that case the written value is the addend. if (IsConstant || !RelTy::IsRela) Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); } } template void elf::scanRelocations(InputSectionBase &S) { if (S.AreRelocsRela) scanRelocs(S, S.relas()); else scanRelocs(S, S.rels()); } // Insert the Thunks for OutputSection OS into their designated place // in the Sections vector, and recalculate the InputSection output section // offsets. // This may invalidate any output section offsets stored outside of InputSection template void ThunkCreator::mergeThunks(OutputSection *OS, std::vector &Thunks) { // Order Thunks in ascending OutSecOff auto ThunkCmp = [](const ThunkSection *A, const ThunkSection *B) { return A->OutSecOff < B->OutSecOff; }; std::stable_sort(Thunks.begin(), Thunks.end(), ThunkCmp); // Merge sorted vectors of Thunks and InputSections by OutSecOff std::vector Tmp; Tmp.reserve(OS->Sections.size() + Thunks.size()); auto MergeCmp = [](const InputSection *A, const InputSection *B) { // std::merge requires a strict weak ordering. if (A->OutSecOff < B->OutSecOff) return true; if (A->OutSecOff == B->OutSecOff) // Check if Thunk is immediately before any specific Target InputSection // for example Mips LA25 Thunks. if (auto *TA = dyn_cast(A)) if (TA && TA->getTargetInputSection() == B) return true; return false; }; std::merge(OS->Sections.begin(), OS->Sections.end(), Thunks.begin(), Thunks.end(), std::back_inserter(Tmp), MergeCmp); OS->Sections = std::move(Tmp); OS->assignOffsets(); } template ThunkSection *ThunkCreator::getOSThunkSec(ThunkSection *&TS, OutputSection *OS) { if (TS == nullptr) { uint32_t Off = 0; for (auto *IS : OS->Sections) { Off = IS->OutSecOff + IS->getSize(); if ((IS->Flags & SHF_EXECINSTR) == 0) break; } TS = make(OS, Off); ThunkSections[OS].push_back(TS); } return TS; } template ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS, OutputSection *OS) { ThunkSection *TS = ThunkedSections.lookup(IS); if (TS) return TS; auto *TOS = cast(IS->OutSec); TS = make(TOS, IS->OutSecOff); ThunkSections[TOS].push_back(TS); ThunkedSections[IS] = TS; return TS; } template std::pair ThunkCreator::getThunk(SymbolBody &Body, uint32_t Type) { auto res = ThunkedSymbols.insert({&Body, nullptr}); if (res.second) res.first->second = addThunk(Type, Body); return std::make_pair(res.first->second, res.second); } // Process all relocations from the InputSections that have been assigned // to OutputSections and redirect through Thunks if needed. // // createThunks must be called after scanRelocs has created the Relocations for // each InputSection. It must be called before the static symbol table is // finalized. If any Thunks are added to an OutputSection the output section // offsets of the InputSections will change. // // FIXME: All Thunks are assumed to be in range of the relocation. Range // extension Thunks are not yet supported. template bool ThunkCreator::createThunks( ArrayRef OutputSections) { // Create all the Thunks and insert them into synthetic ThunkSections. The // ThunkSections are later inserted back into the OutputSection. // We separate the creation of ThunkSections from the insertion of the // ThunkSections back into the OutputSection as ThunkSections are not always // inserted into the same OutputSection as the caller. for (OutputSection *OS : OutputSections) { ThunkSection *OSTS = nullptr; for (InputSection *IS : OS->Sections) { for (Relocation &Rel : IS->Relocations) { SymbolBody &Body = *Rel.Sym; if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Body)) continue; Thunk *T; bool IsNew; std::tie(T, IsNew) = getThunk(Body, Rel.Type); if (IsNew) { // Find or create a ThunkSection for the new Thunk ThunkSection *TS; if (auto *TIS = T->getTargetInputSection()) TS = getISThunkSec(TIS, OS); else TS = getOSThunkSec(OSTS, OS); TS->addThunk(T); } // Redirect relocation to Thunk, we never go via the PLT to a Thunk Rel.Sym = T->ThunkSym; Rel.Expr = fromPlt(Rel.Expr); } } } // Merge all created synthetic ThunkSections back into OutputSection for (auto &KV : ThunkSections) mergeThunks(KV.first, KV.second); return !ThunkSections.empty(); } template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template class elf::ThunkCreator; template class elf::ThunkCreator; template class elf::ThunkCreator; template class elf::ThunkCreator;