/* * Single-precision SVE cospi(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "mathlib.h" #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_sve_f32.h" static const struct data { float poly[6]; float range_val; } data = { /* Taylor series coefficents for sin(pi * x). */ .poly = { 0x1.921fb6p1f, -0x1.4abbcep2f, 0x1.466bc6p1f, -0x1.32d2ccp-1f, 0x1.50783p-4f, -0x1.e30750p-8f }, .range_val = 0x1p31f, }; /* A fast SVE implementation of cospif. Maximum error: 2.60 ULP: _ZGVsMxv_cospif(+/-0x1.cae664p-4) got 0x1.e09c9ep-1 want 0x1.e09c98p-1. */ svfloat32_t SV_NAME_F1 (cospi) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); /* Using cospi(x) = sinpi(0.5 - x) range reduction and offset into sinpi range -1/2 .. 1/2 r = 0.5 - |x - rint(x)|. */ svfloat32_t n = svrinta_x (pg, x); svfloat32_t r = svsub_x (pg, x, n); r = svsub_x (pg, sv_f32 (0.5f), svabs_x (pg, r)); /* Result should be negated based on if n is odd or not. If ax >= 2^31, the result will always be positive. */ svbool_t cmp = svaclt (pg, x, d->range_val); svuint32_t intn = svreinterpret_u32 (svcvt_s32_x (pg, n)); svuint32_t sign = svlsl_z (cmp, intn, 31); /* y = sin(r). */ svfloat32_t r2 = svmul_x (pg, r, r); svfloat32_t y = sv_horner_5_f32_x (pg, r2, d->poly); y = svmul_x (pg, y, r); return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign)); } PL_SIG (SV, F, 1, cospi, -0.9, 0.9) PL_TEST_ULP (SV_NAME_F1 (cospi), 2.08) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (cospi), 0, 0x1p-31, 5000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (cospi), 0x1p-31, 0.5, 10000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (cospi), 0.5, 0x1p31f, 10000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (cospi), 0x1p31f, inf, 10000)