/* * Single-precision SVE log10 function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { float poly_0246[4]; float poly_1357[4]; float ln2, inv_ln10; } data = { .poly_1357 = { /* Coefficients copied from the AdvSIMD routine, then rearranged so that coeffs 1, 3, 5 and 7 can be loaded as a single quad-word, hence used with _lane variant of MLA intrinsic. */ 0x1.2879c8p-3f, 0x1.6408f8p-4f, 0x1.f0e514p-5f, 0x1.f5f76ap-5f }, .poly_0246 = { -0x1.bcb79cp-3f, -0x1.bcd472p-4f, -0x1.246f8p-4f, -0x1.0fc92cp-4f }, .ln2 = 0x1.62e43p-1f, .inv_ln10 = 0x1.bcb7b2p-2f, }; #define Min 0x00800000 #define Max 0x7f800000 #define Thres 0x7f000000 /* Max - Min. */ #define Offset 0x3f2aaaab /* 0.666667. */ #define MantissaMask 0x007fffff static svfloat32_t NOINLINE special_case (svfloat32_t x, svfloat32_t y, svbool_t special) { return sv_call_f32 (log10f, x, y, special); } /* Optimised implementation of SVE log10f using the same algorithm and polynomial as AdvSIMD log10f. Maximum error is 3.31ulps: SV_NAME_F1 (log10)(0x1.555c16p+0) got 0x1.ffe2fap-4 want 0x1.ffe2f4p-4. */ svfloat32_t SV_NAME_F1 (log10) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svuint32_t ix = svreinterpret_u32 (x); svbool_t special = svcmpge (pg, svsub_x (pg, ix, Min), Thres); /* x = 2^n * (1+r), where 2/3 < 1+r < 4/3. */ ix = svsub_x (pg, ix, Offset); svfloat32_t n = svcvt_f32_x ( pg, svasr_x (pg, svreinterpret_s32 (ix), 23)); /* signextend. */ ix = svand_x (pg, ix, MantissaMask); ix = svadd_x (pg, ix, Offset); svfloat32_t r = svsub_x (pg, svreinterpret_f32 (ix), 1.0f); /* y = log10(1+r) + n*log10(2) log10(1+r) ~ r * InvLn(10) + P(r) where P(r) is a polynomial. Use order 9 for log10(1+x), i.e. order 8 for log10(1+x)/x, with x in [-1/3, 1/3] (offset=2/3). */ svfloat32_t r2 = svmul_x (pg, r, r); svfloat32_t r4 = svmul_x (pg, r2, r2); svfloat32_t p_1357 = svld1rq (svptrue_b32 (), &d->poly_1357[0]); svfloat32_t q_01 = svmla_lane (sv_f32 (d->poly_0246[0]), r, p_1357, 0); svfloat32_t q_23 = svmla_lane (sv_f32 (d->poly_0246[1]), r, p_1357, 1); svfloat32_t q_45 = svmla_lane (sv_f32 (d->poly_0246[2]), r, p_1357, 2); svfloat32_t q_67 = svmla_lane (sv_f32 (d->poly_0246[3]), r, p_1357, 3); svfloat32_t q_47 = svmla_x (pg, q_45, r2, q_67); svfloat32_t q_03 = svmla_x (pg, q_01, r2, q_23); svfloat32_t y = svmla_x (pg, q_03, r4, q_47); /* Using hi = Log10(2)*n + r*InvLn(10) is faster but less accurate. */ svfloat32_t hi = svmla_x (pg, r, n, d->ln2); hi = svmul_x (pg, hi, d->inv_ln10); if (unlikely (svptest_any (pg, special))) return special_case (x, svmla_x (svnot_z (pg, special), hi, r2, y), special); return svmla_x (pg, hi, r2, y); } PL_SIG (SV, F, 1, log10, 0.01, 11.1) PL_TEST_ULP (SV_NAME_F1 (log10), 2.82) PL_TEST_INTERVAL (SV_NAME_F1 (log10), -0.0, -0x1p126, 100) PL_TEST_INTERVAL (SV_NAME_F1 (log10), 0x1p-149, 0x1p-126, 4000) PL_TEST_INTERVAL (SV_NAME_F1 (log10), 0x1p-126, 0x1p-23, 50000) PL_TEST_INTERVAL (SV_NAME_F1 (log10), 0x1p-23, 1.0, 50000) PL_TEST_INTERVAL (SV_NAME_F1 (log10), 1.0, 100, 50000) PL_TEST_INTERVAL (SV_NAME_F1 (log10), 100, inf, 50000)