//===--- SemaStmtAttr.cpp - Statement Attribute Handling ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements stmt-related attribute processing. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/StringExtras.h" using namespace clang; using namespace sema; static Attr *handleFallThroughAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { FallThroughAttr Attr(S.Context, A); if (isa(St)) { S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_wrong_target) << A << St->getBeginLoc(); SourceLocation L = S.getLocForEndOfToken(Range.getEnd()); S.Diag(L, diag::note_fallthrough_insert_semi_fixit) << FixItHint::CreateInsertion(L, ";"); return nullptr; } auto *FnScope = S.getCurFunction(); if (FnScope->SwitchStack.empty()) { S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_outside_switch); return nullptr; } // If this is spelled as the standard C++17 attribute, but not in C++17, warn // about using it as an extension. if (!S.getLangOpts().CPlusPlus17 && A.isCXX11Attribute() && !A.getScopeName()) S.Diag(A.getLoc(), diag::ext_cxx17_attr) << A; FnScope->setHasFallthroughStmt(); return ::new (S.Context) FallThroughAttr(S.Context, A); } static Attr *handleSuppressAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { std::vector DiagnosticIdentifiers; for (unsigned I = 0, E = A.getNumArgs(); I != E; ++I) { StringRef RuleName; if (!S.checkStringLiteralArgumentAttr(A, I, RuleName, nullptr)) return nullptr; // FIXME: Warn if the rule name is unknown. This is tricky because only // clang-tidy knows about available rules. DiagnosticIdentifiers.push_back(RuleName); } return ::new (S.Context) SuppressAttr( S.Context, A, DiagnosticIdentifiers.data(), DiagnosticIdentifiers.size()); } static Attr *handleLoopHintAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange) { IdentifierLoc *PragmaNameLoc = A.getArgAsIdent(0); IdentifierLoc *OptionLoc = A.getArgAsIdent(1); IdentifierLoc *StateLoc = A.getArgAsIdent(2); Expr *ValueExpr = A.getArgAsExpr(3); StringRef PragmaName = llvm::StringSwitch(PragmaNameLoc->Ident->getName()) .Cases("unroll", "nounroll", "unroll_and_jam", "nounroll_and_jam", PragmaNameLoc->Ident->getName()) .Default("clang loop"); // This could be handled automatically by adding a Subjects definition in // Attr.td, but that would make the diagnostic behavior worse in this case // because the user spells this attribute as a pragma. if (!isa(St)) { std::string Pragma = "#pragma " + std::string(PragmaName); S.Diag(St->getBeginLoc(), diag::err_pragma_loop_precedes_nonloop) << Pragma; return nullptr; } LoopHintAttr::OptionType Option; LoopHintAttr::LoopHintState State; auto SetHints = [&Option, &State](LoopHintAttr::OptionType O, LoopHintAttr::LoopHintState S) { Option = O; State = S; }; if (PragmaName == "nounroll") { SetHints(LoopHintAttr::Unroll, LoopHintAttr::Disable); } else if (PragmaName == "unroll") { // #pragma unroll N if (ValueExpr) SetHints(LoopHintAttr::UnrollCount, LoopHintAttr::Numeric); else SetHints(LoopHintAttr::Unroll, LoopHintAttr::Enable); } else if (PragmaName == "nounroll_and_jam") { SetHints(LoopHintAttr::UnrollAndJam, LoopHintAttr::Disable); } else if (PragmaName == "unroll_and_jam") { // #pragma unroll_and_jam N if (ValueExpr) SetHints(LoopHintAttr::UnrollAndJamCount, LoopHintAttr::Numeric); else SetHints(LoopHintAttr::UnrollAndJam, LoopHintAttr::Enable); } else { // #pragma clang loop ... assert(OptionLoc && OptionLoc->Ident && "Attribute must have valid option info."); Option = llvm::StringSwitch( OptionLoc->Ident->getName()) .Case("vectorize", LoopHintAttr::Vectorize) .Case("vectorize_width", LoopHintAttr::VectorizeWidth) .Case("interleave", LoopHintAttr::Interleave) .Case("vectorize_predicate", LoopHintAttr::VectorizePredicate) .Case("interleave_count", LoopHintAttr::InterleaveCount) .Case("unroll", LoopHintAttr::Unroll) .Case("unroll_count", LoopHintAttr::UnrollCount) .Case("pipeline", LoopHintAttr::PipelineDisabled) .Case("pipeline_initiation_interval", LoopHintAttr::PipelineInitiationInterval) .Case("distribute", LoopHintAttr::Distribute) .Default(LoopHintAttr::Vectorize); if (Option == LoopHintAttr::VectorizeWidth) { assert((ValueExpr || (StateLoc && StateLoc->Ident)) && "Attribute must have a valid value expression or argument."); if (ValueExpr && S.CheckLoopHintExpr(ValueExpr, St->getBeginLoc())) return nullptr; if (StateLoc && StateLoc->Ident && StateLoc->Ident->isStr("scalable")) State = LoopHintAttr::ScalableWidth; else State = LoopHintAttr::FixedWidth; } else if (Option == LoopHintAttr::InterleaveCount || Option == LoopHintAttr::UnrollCount || Option == LoopHintAttr::PipelineInitiationInterval) { assert(ValueExpr && "Attribute must have a valid value expression."); if (S.CheckLoopHintExpr(ValueExpr, St->getBeginLoc())) return nullptr; State = LoopHintAttr::Numeric; } else if (Option == LoopHintAttr::Vectorize || Option == LoopHintAttr::Interleave || Option == LoopHintAttr::VectorizePredicate || Option == LoopHintAttr::Unroll || Option == LoopHintAttr::Distribute || Option == LoopHintAttr::PipelineDisabled) { assert(StateLoc && StateLoc->Ident && "Loop hint must have an argument"); if (StateLoc->Ident->isStr("disable")) State = LoopHintAttr::Disable; else if (StateLoc->Ident->isStr("assume_safety")) State = LoopHintAttr::AssumeSafety; else if (StateLoc->Ident->isStr("full")) State = LoopHintAttr::Full; else if (StateLoc->Ident->isStr("enable")) State = LoopHintAttr::Enable; else llvm_unreachable("bad loop hint argument"); } else llvm_unreachable("bad loop hint"); } return LoopHintAttr::CreateImplicit(S.Context, Option, State, ValueExpr, A); } namespace { class CallExprFinder : public ConstEvaluatedExprVisitor { bool FoundAsmStmt = false; std::vector CallExprs; public: typedef ConstEvaluatedExprVisitor Inherited; CallExprFinder(Sema &S, const Stmt *St) : Inherited(S.Context) { Visit(St); } bool foundCallExpr() { return !CallExprs.empty(); } const std::vector &getCallExprs() { return CallExprs; } bool foundAsmStmt() { return FoundAsmStmt; } void VisitCallExpr(const CallExpr *E) { CallExprs.push_back(E); } void VisitAsmStmt(const AsmStmt *S) { FoundAsmStmt = true; } void Visit(const Stmt *St) { if (!St) return; ConstEvaluatedExprVisitor::Visit(St); } }; } // namespace static Attr *handleNoMergeAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { NoMergeAttr NMA(S.Context, A); CallExprFinder CEF(S, St); if (!CEF.foundCallExpr() && !CEF.foundAsmStmt()) { S.Diag(St->getBeginLoc(), diag::warn_attribute_ignored_no_calls_in_stmt) << A; return nullptr; } return ::new (S.Context) NoMergeAttr(S.Context, A); } static Attr *handleNoInlineAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { NoInlineAttr NIA(S.Context, A); if (!NIA.isClangNoInline()) { S.Diag(St->getBeginLoc(), diag::warn_function_attribute_ignored_in_stmt) << "[[clang::noinline]]"; return nullptr; } CallExprFinder CEF(S, St); if (!CEF.foundCallExpr()) { S.Diag(St->getBeginLoc(), diag::warn_attribute_ignored_no_calls_in_stmt) << A; return nullptr; } for (const auto *CallExpr : CEF.getCallExprs()) { const Decl *Decl = CallExpr->getCalleeDecl(); if (Decl->hasAttr() || Decl->hasAttr()) S.Diag(St->getBeginLoc(), diag::warn_function_stmt_attribute_precedence) << A << (Decl->hasAttr() ? 0 : 1); } return ::new (S.Context) NoInlineAttr(S.Context, A); } static Attr *handleAlwaysInlineAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { AlwaysInlineAttr AIA(S.Context, A); if (!AIA.isClangAlwaysInline()) { S.Diag(St->getBeginLoc(), diag::warn_function_attribute_ignored_in_stmt) << "[[clang::always_inline]]"; return nullptr; } CallExprFinder CEF(S, St); if (!CEF.foundCallExpr()) { S.Diag(St->getBeginLoc(), diag::warn_attribute_ignored_no_calls_in_stmt) << A; return nullptr; } for (const auto *CallExpr : CEF.getCallExprs()) { const Decl *Decl = CallExpr->getCalleeDecl(); if (Decl->hasAttr() || Decl->hasAttr()) S.Diag(St->getBeginLoc(), diag::warn_function_stmt_attribute_precedence) << A << (Decl->hasAttr() ? 2 : 1); } return ::new (S.Context) AlwaysInlineAttr(S.Context, A); } static Attr *handleMustTailAttr(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { // Validation is in Sema::ActOnAttributedStmt(). return ::new (S.Context) MustTailAttr(S.Context, A); } static Attr *handleLikely(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { if (!S.getLangOpts().CPlusPlus20 && A.isCXX11Attribute() && !A.getScopeName()) S.Diag(A.getLoc(), diag::ext_cxx20_attr) << A << Range; return ::new (S.Context) LikelyAttr(S.Context, A); } static Attr *handleUnlikely(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { if (!S.getLangOpts().CPlusPlus20 && A.isCXX11Attribute() && !A.getScopeName()) S.Diag(A.getLoc(), diag::ext_cxx20_attr) << A << Range; return ::new (S.Context) UnlikelyAttr(S.Context, A); } #define WANT_STMT_MERGE_LOGIC #include "clang/Sema/AttrParsedAttrImpl.inc" #undef WANT_STMT_MERGE_LOGIC static void CheckForIncompatibleAttributes(Sema &S, const SmallVectorImpl &Attrs) { // The vast majority of attributed statements will only have one attribute // on them, so skip all of the checking in the common case. if (Attrs.size() < 2) return; // First, check for the easy cases that are table-generated for us. if (!DiagnoseMutualExclusions(S, Attrs)) return; // There are 6 categories of loop hints attributes: vectorize, interleave, // unroll, unroll_and_jam, pipeline and distribute. Except for distribute they // come in two variants: a state form and a numeric form. The state form // selectively defaults/enables/disables the transformation for the loop // (for unroll, default indicates full unrolling rather than enabling the // transformation). The numeric form form provides an integer hint (for // example, unroll count) to the transformer. The following array accumulates // the hints encountered while iterating through the attributes to check for // compatibility. struct { const LoopHintAttr *StateAttr; const LoopHintAttr *NumericAttr; } HintAttrs[] = {{nullptr, nullptr}, {nullptr, nullptr}, {nullptr, nullptr}, {nullptr, nullptr}, {nullptr, nullptr}, {nullptr, nullptr}, {nullptr, nullptr}}; for (const auto *I : Attrs) { const LoopHintAttr *LH = dyn_cast(I); // Skip non loop hint attributes if (!LH) continue; LoopHintAttr::OptionType Option = LH->getOption(); enum { Vectorize, Interleave, Unroll, UnrollAndJam, Distribute, Pipeline, VectorizePredicate } Category; switch (Option) { case LoopHintAttr::Vectorize: case LoopHintAttr::VectorizeWidth: Category = Vectorize; break; case LoopHintAttr::Interleave: case LoopHintAttr::InterleaveCount: Category = Interleave; break; case LoopHintAttr::Unroll: case LoopHintAttr::UnrollCount: Category = Unroll; break; case LoopHintAttr::UnrollAndJam: case LoopHintAttr::UnrollAndJamCount: Category = UnrollAndJam; break; case LoopHintAttr::Distribute: // Perform the check for duplicated 'distribute' hints. Category = Distribute; break; case LoopHintAttr::PipelineDisabled: case LoopHintAttr::PipelineInitiationInterval: Category = Pipeline; break; case LoopHintAttr::VectorizePredicate: Category = VectorizePredicate; break; }; assert(Category < sizeof(HintAttrs) / sizeof(HintAttrs[0])); auto &CategoryState = HintAttrs[Category]; const LoopHintAttr *PrevAttr; if (Option == LoopHintAttr::Vectorize || Option == LoopHintAttr::Interleave || Option == LoopHintAttr::Unroll || Option == LoopHintAttr::UnrollAndJam || Option == LoopHintAttr::VectorizePredicate || Option == LoopHintAttr::PipelineDisabled || Option == LoopHintAttr::Distribute) { // Enable|Disable|AssumeSafety hint. For example, vectorize(enable). PrevAttr = CategoryState.StateAttr; CategoryState.StateAttr = LH; } else { // Numeric hint. For example, vectorize_width(8). PrevAttr = CategoryState.NumericAttr; CategoryState.NumericAttr = LH; } PrintingPolicy Policy(S.Context.getLangOpts()); SourceLocation OptionLoc = LH->getRange().getBegin(); if (PrevAttr) // Cannot specify same type of attribute twice. S.Diag(OptionLoc, diag::err_pragma_loop_compatibility) << /*Duplicate=*/true << PrevAttr->getDiagnosticName(Policy) << LH->getDiagnosticName(Policy); if (CategoryState.StateAttr && CategoryState.NumericAttr && (Category == Unroll || Category == UnrollAndJam || CategoryState.StateAttr->getState() == LoopHintAttr::Disable)) { // Disable hints are not compatible with numeric hints of the same // category. As a special case, numeric unroll hints are also not // compatible with enable or full form of the unroll pragma because these // directives indicate full unrolling. S.Diag(OptionLoc, diag::err_pragma_loop_compatibility) << /*Duplicate=*/false << CategoryState.StateAttr->getDiagnosticName(Policy) << CategoryState.NumericAttr->getDiagnosticName(Policy); } } } static Attr *handleOpenCLUnrollHint(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { // Although the feature was introduced only in OpenCL C v2.0 s6.11.5, it's // useful for OpenCL 1.x too and doesn't require HW support. // opencl_unroll_hint can have 0 arguments (compiler // determines unrolling factor) or 1 argument (the unroll factor provided // by the user). unsigned UnrollFactor = 0; if (A.getNumArgs() == 1) { Expr *E = A.getArgAsExpr(0); Optional ArgVal; if (!(ArgVal = E->getIntegerConstantExpr(S.Context))) { S.Diag(A.getLoc(), diag::err_attribute_argument_type) << A << AANT_ArgumentIntegerConstant << E->getSourceRange(); return nullptr; } int Val = ArgVal->getSExtValue(); if (Val <= 0) { S.Diag(A.getRange().getBegin(), diag::err_attribute_requires_positive_integer) << A << /* positive */ 0; return nullptr; } UnrollFactor = static_cast(Val); } return ::new (S.Context) OpenCLUnrollHintAttr(S.Context, A, UnrollFactor); } static Attr *ProcessStmtAttribute(Sema &S, Stmt *St, const ParsedAttr &A, SourceRange Range) { if (A.isInvalid() || A.getKind() == ParsedAttr::IgnoredAttribute) return nullptr; // Unknown attributes are automatically warned on. Target-specific attributes // which do not apply to the current target architecture are treated as // though they were unknown attributes. const TargetInfo *Aux = S.Context.getAuxTargetInfo(); if (A.getKind() == ParsedAttr::UnknownAttribute || !(A.existsInTarget(S.Context.getTargetInfo()) || (S.Context.getLangOpts().SYCLIsDevice && Aux && A.existsInTarget(*Aux)))) { S.Diag(A.getLoc(), A.isDeclspecAttribute() ? (unsigned)diag::warn_unhandled_ms_attribute_ignored : (unsigned)diag::warn_unknown_attribute_ignored) << A << A.getRange(); return nullptr; } if (S.checkCommonAttributeFeatures(St, A)) return nullptr; switch (A.getKind()) { case ParsedAttr::AT_AlwaysInline: return handleAlwaysInlineAttr(S, St, A, Range); case ParsedAttr::AT_FallThrough: return handleFallThroughAttr(S, St, A, Range); case ParsedAttr::AT_LoopHint: return handleLoopHintAttr(S, St, A, Range); case ParsedAttr::AT_OpenCLUnrollHint: return handleOpenCLUnrollHint(S, St, A, Range); case ParsedAttr::AT_Suppress: return handleSuppressAttr(S, St, A, Range); case ParsedAttr::AT_NoMerge: return handleNoMergeAttr(S, St, A, Range); case ParsedAttr::AT_NoInline: return handleNoInlineAttr(S, St, A, Range); case ParsedAttr::AT_MustTail: return handleMustTailAttr(S, St, A, Range); case ParsedAttr::AT_Likely: return handleLikely(S, St, A, Range); case ParsedAttr::AT_Unlikely: return handleUnlikely(S, St, A, Range); default: // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a // declaration attribute is not written on a statement, but this code is // needed for attributes in Attr.td that do not list any subjects. S.Diag(A.getRange().getBegin(), diag::err_decl_attribute_invalid_on_stmt) << A << St->getBeginLoc(); return nullptr; } } void Sema::ProcessStmtAttributes(Stmt *S, const ParsedAttributes &InAttrs, SmallVectorImpl &OutAttrs) { for (const ParsedAttr &AL : InAttrs) { if (const Attr *A = ProcessStmtAttribute(*this, S, AL, InAttrs.Range)) OutAttrs.push_back(A); } CheckForIncompatibleAttributes(*this, OutAttrs); }