//===-- sanitizer_allocator.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries. // This allocator is used inside run-times. //===----------------------------------------------------------------------===// #include "sanitizer_allocator.h" #include "sanitizer_allocator_checks.h" #include "sanitizer_allocator_internal.h" #include "sanitizer_atomic.h" #include "sanitizer_common.h" #include "sanitizer_platform.h" namespace __sanitizer { // Default allocator names. const char *PrimaryAllocatorName = "SizeClassAllocator"; const char *SecondaryAllocatorName = "LargeMmapAllocator"; static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)]; static atomic_uint8_t internal_allocator_initialized; static StaticSpinMutex internal_alloc_init_mu; static InternalAllocatorCache internal_allocator_cache; static StaticSpinMutex internal_allocator_cache_mu; InternalAllocator *internal_allocator() { InternalAllocator *internal_allocator_instance = reinterpret_cast(&internal_alloc_placeholder); if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) { SpinMutexLock l(&internal_alloc_init_mu); if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) == 0) { internal_allocator_instance->Init(kReleaseToOSIntervalNever); atomic_store(&internal_allocator_initialized, 1, memory_order_release); } } return internal_allocator_instance; } static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { if (alignment == 0) alignment = 8; if (cache == 0) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Allocate(&internal_allocator_cache, size, alignment); } return internal_allocator()->Allocate(cache, size, alignment); } static void *RawInternalRealloc(void *ptr, uptr size, InternalAllocatorCache *cache) { uptr alignment = 8; if (cache == 0) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Reallocate(&internal_allocator_cache, ptr, size, alignment); } return internal_allocator()->Reallocate(cache, ptr, size, alignment); } static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { if (!cache) { SpinMutexLock l(&internal_allocator_cache_mu); return internal_allocator()->Deallocate(&internal_allocator_cache, ptr); } internal_allocator()->Deallocate(cache, ptr); } static void NORETURN ReportInternalAllocatorOutOfMemory(uptr requested_size) { SetAllocatorOutOfMemory(); Report("FATAL: %s: internal allocator is out of memory trying to allocate " "0x%zx bytes\n", SanitizerToolName, requested_size); Die(); } void *InternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) { void *p = RawInternalAlloc(size, cache, alignment); if (UNLIKELY(!p)) ReportInternalAllocatorOutOfMemory(size); return p; } void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) { void *p = RawInternalRealloc(addr, size, cache); if (UNLIKELY(!p)) ReportInternalAllocatorOutOfMemory(size); return p; } void *InternalReallocArray(void *addr, uptr count, uptr size, InternalAllocatorCache *cache) { if (UNLIKELY(CheckForCallocOverflow(count, size))) { Report( "FATAL: %s: reallocarray parameters overflow: count * size (%zd * %zd) " "cannot be represented in type size_t\n", SanitizerToolName, count, size); Die(); } return InternalRealloc(addr, count * size, cache); } void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) { if (UNLIKELY(CheckForCallocOverflow(count, size))) { Report("FATAL: %s: calloc parameters overflow: count * size (%zd * %zd) " "cannot be represented in type size_t\n", SanitizerToolName, count, size); Die(); } void *p = InternalAlloc(count * size, cache); if (LIKELY(p)) internal_memset(p, 0, count * size); return p; } void InternalFree(void *addr, InternalAllocatorCache *cache) { RawInternalFree(addr, cache); } void InternalAllocatorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { internal_allocator_cache_mu.Lock(); internal_allocator()->ForceLock(); } void InternalAllocatorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { internal_allocator()->ForceUnlock(); internal_allocator_cache_mu.Unlock(); } // LowLevelAllocator constexpr uptr kLowLevelAllocatorDefaultAlignment = 8; constexpr uptr kMinNumPagesRounded = 16; constexpr uptr kMinRoundedSize = 65536; static uptr low_level_alloc_min_alignment = kLowLevelAllocatorDefaultAlignment; static LowLevelAllocateCallback low_level_alloc_callback; static LowLevelAllocator Alloc; LowLevelAllocator &GetGlobalLowLevelAllocator() { return Alloc; } void *LowLevelAllocator::Allocate(uptr size) { // Align allocation size. size = RoundUpTo(size, low_level_alloc_min_alignment); if (allocated_end_ - allocated_current_ < (sptr)size) { uptr size_to_allocate = RoundUpTo( size, Min(GetPageSizeCached() * kMinNumPagesRounded, kMinRoundedSize)); allocated_current_ = (char *)MmapOrDie(size_to_allocate, __func__); allocated_end_ = allocated_current_ + size_to_allocate; if (low_level_alloc_callback) { low_level_alloc_callback((uptr)allocated_current_, size_to_allocate); } } CHECK(allocated_end_ - allocated_current_ >= (sptr)size); void *res = allocated_current_; allocated_current_ += size; return res; } void SetLowLevelAllocateMinAlignment(uptr alignment) { CHECK(IsPowerOfTwo(alignment)); low_level_alloc_min_alignment = Max(alignment, low_level_alloc_min_alignment); } void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) { low_level_alloc_callback = callback; } // Allocator's OOM and other errors handling support. static atomic_uint8_t allocator_out_of_memory = {0}; static atomic_uint8_t allocator_may_return_null = {0}; bool IsAllocatorOutOfMemory() { return atomic_load_relaxed(&allocator_out_of_memory); } void SetAllocatorOutOfMemory() { atomic_store_relaxed(&allocator_out_of_memory, 1); } bool AllocatorMayReturnNull() { return atomic_load(&allocator_may_return_null, memory_order_relaxed); } void SetAllocatorMayReturnNull(bool may_return_null) { atomic_store(&allocator_may_return_null, may_return_null, memory_order_relaxed); } void PrintHintAllocatorCannotReturnNull() { Report("HINT: if you don't care about these errors you may set " "allocator_may_return_null=1\n"); } static atomic_uint8_t rss_limit_exceeded; bool IsRssLimitExceeded() { return atomic_load(&rss_limit_exceeded, memory_order_relaxed); } void SetRssLimitExceeded(bool limit_exceeded) { atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed); } } // namespace __sanitizer