//===-- LinuxPTraceDefines_arm64sve.h ------------------------- -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_LINUXPTRACEDEFINES_ARM64SVE_H #define LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_LINUXPTRACEDEFINES_ARM64SVE_H #include namespace lldb_private { namespace sve { /* * The SVE architecture leaves space for future expansion of the * vector length beyond its initial architectural limit of 2048 bits * (16 quadwords). * * See /Documentation/arm64/sve.rst for a description * of the vl/vq terminology. */ const uint16_t vq_bytes = 16; /* number of bytes per quadword */ const uint16_t vq_min = 1; const uint16_t vq_max = 512; const uint16_t vl_min = vq_min * vq_bytes; const uint16_t vl_max = vq_max * vq_bytes; const uint16_t num_of_zregs = 32; const uint16_t num_of_pregs = 16; inline uint16_t vl_valid(uint16_t vl) { return (vl % vq_bytes == 0 && vl >= vl_min && vl <= vl_max); } inline uint16_t vq_from_vl(uint16_t vl) { return vl / vq_bytes; } inline uint16_t vl_from_vq(uint16_t vq) { return vq * vq_bytes; } /* A new signal frame record sve_context encodes the SVE Registers on signal * delivery. sve_context struct definition may be included in asm/sigcontext.h. * We define sve_context_size which will be used by LLDB sve helper functions. * More information on sve_context can be found in Linux kernel source tree at * Documentation/arm64/sve.rst. */ const uint16_t sve_context_size = 16; /* * If the SVE registers are currently live for the thread at signal delivery, * sve_context.head.size >= * SigContextSize(vq_from_vl(sve_context.vl)) * and the register data may be accessed using the Sig*() functions. * * If sve_context.head.size < * SigContextSize(vq_from_vl(sve_context.vl)), * the SVE registers were not live for the thread and no register data * is included: in this case, the Sig*() functions should not be * used except for this check. * * The same convention applies when returning from a signal: a caller * will need to remove or resize the sve_context block if it wants to * make the SVE registers live when they were previously non-live or * vice-versa. This may require the the caller to allocate fresh * memory and/or move other context blocks in the signal frame. * * Changing the vector length during signal return is not permitted: * sve_context.vl must equal the thread's current vector length when * doing a sigreturn. * * * Note: for all these functions, the "vq" argument denotes the SVE * vector length in quadwords (i.e., units of 128 bits). * * The correct way to obtain vq is to use vq_from_vl(vl). The * result is valid if and only if vl_valid(vl) is true. This is * guaranteed for a struct sve_context written by the kernel. * * * Additional functions describe the contents and layout of the payload. * For each, Sig*Offset(args) is the start offset relative to * the start of struct sve_context, and Sig*Size(args) is the * size in bytes: * * x type description * - ---- ----------- * REGS the entire SVE context * * ZREGS __uint128_t[num_of_zregs][vq] all Z-registers * ZREG __uint128_t[vq] individual Z-register Zn * * PREGS uint16_t[num_of_pregs][vq] all P-registers * PREG uint16_t[vq] individual P-register Pn * * FFR uint16_t[vq] first-fault status register * * Additional data might be appended in the future. */ inline uint16_t SigZRegSize(uint16_t vq) { return vq * vq_bytes; } inline uint16_t SigPRegSize(uint16_t vq) { return vq * vq_bytes / 8; } inline uint16_t SigFFRSize(uint16_t vq) { return SigPRegSize(vq); } inline uint32_t SigRegsOffset() { return (sve_context_size + vq_bytes - 1) / vq_bytes * vq_bytes; } inline uint32_t SigZRegsOffset() { return SigRegsOffset(); } inline uint32_t SigZRegOffset(uint16_t vq, uint16_t n) { return SigRegsOffset() + SigZRegSize(vq) * n; } inline uint32_t SigZRegsSize(uint16_t vq) { return SigZRegOffset(vq, num_of_zregs) - SigRegsOffset(); } inline uint32_t SigPRegsOffset(uint16_t vq) { return SigRegsOffset() + SigZRegsSize(vq); } inline uint32_t SigPRegOffset(uint16_t vq, uint16_t n) { return SigPRegsOffset(vq) + SigPRegSize(vq) * n; } inline uint32_t SigpRegsSize(uint16_t vq) { return SigPRegOffset(vq, num_of_pregs) - SigPRegsOffset(vq); } inline uint32_t SigFFROffset(uint16_t vq) { return SigPRegsOffset(vq) + SigpRegsSize(vq); } inline uint32_t SigRegsSize(uint16_t vq) { return SigFFROffset(vq) + SigFFRSize(vq) - SigRegsOffset(); } inline uint32_t SVESigContextSize(uint16_t vq) { return SigRegsOffset() + SigRegsSize(vq); } struct user_sve_header { uint32_t size; /* total meaningful regset content in bytes */ uint32_t max_size; /* maxmium possible size for this thread */ uint16_t vl; /* current vector length */ uint16_t max_vl; /* maximum possible vector length */ uint16_t flags; uint16_t reserved; }; /* Definitions for user_sve_header.flags: */ const uint16_t ptrace_regs_mask = 1 << 0; const uint16_t ptrace_regs_fpsimd = 0; const uint16_t ptrace_regs_sve = ptrace_regs_mask; /* * The remainder of the SVE state follows struct user_sve_header. The * total size of the SVE state (including header) depends on the * metadata in the header: PTraceSize(vq, flags) gives the total size * of the state in bytes, including the header. * * Refer to for details of how to pass the correct * "vq" argument to these macros. */ /* Offset from the start of struct user_sve_header to the register data */ inline uint16_t PTraceRegsOffset() { return (sizeof(struct user_sve_header) + vq_bytes - 1) / vq_bytes * vq_bytes; } /* * The register data content and layout depends on the value of the * flags field. */ /* * (flags & ptrace_regs_mask) == ptrace_regs_fpsimd case: * * The payload starts at offset PTraceFPSIMDOffset, and is of type * struct user_fpsimd_state. Additional data might be appended in the * future: use PTraceFPSIMDSize(vq, flags) to compute the total size. * PTraceFPSIMDSize(vq, flags) will never be less than * sizeof(struct user_fpsimd_state). */ const uint32_t ptrace_fpsimd_offset = PTraceRegsOffset(); /* Return size of struct user_fpsimd_state from asm/ptrace.h */ inline uint32_t PTraceFPSIMDSize(uint16_t vq, uint16_t flags) { return 528; } /* * (flags & ptrace_regs_mask) == ptrace_regs_sve case: * * The payload starts at offset PTraceSVEOffset, and is of size * PTraceSVESize(vq, flags). * * Additional functions describe the contents and layout of the payload. * For each, PTrace*X*Offset(args) is the start offset relative to * the start of struct user_sve_header, and PTrace*X*Size(args) is * the size in bytes: * * x type description * - ---- ----------- * ZREGS \ * ZREG | * PREGS | refer to * PREG | * FFR / * * FPSR uint32_t FPSR * FPCR uint32_t FPCR * * Additional data might be appended in the future. */ inline uint32_t PTraceZRegSize(uint16_t vq) { return SigZRegSize(vq); } inline uint32_t PTracePRegSize(uint16_t vq) { return SigPRegSize(vq); } inline uint32_t PTraceFFRSize(uint16_t vq) { return SigFFRSize(vq); } const uint32_t fpsr_size = sizeof(uint32_t); const uint32_t fpcr_size = sizeof(uint32_t); inline uint32_t SigToPTrace(uint32_t offset) { return offset - SigRegsOffset() + PTraceRegsOffset(); } const uint32_t ptrace_sve_offset = PTraceRegsOffset(); inline uint32_t PTraceZRegsOffset(uint16_t vq) { return SigToPTrace(SigZRegsOffset()); } inline uint32_t PTraceZRegOffset(uint16_t vq, uint16_t n) { return SigToPTrace(SigZRegOffset(vq, n)); } inline uint32_t PTraceZRegsSize(uint16_t vq) { return PTraceZRegOffset(vq, num_of_zregs) - SigToPTrace(SigRegsOffset()); } inline uint32_t PTracePRegsOffset(uint16_t vq) { return SigToPTrace(SigPRegsOffset(vq)); } inline uint32_t PTracePRegOffset(uint16_t vq, uint16_t n) { return SigToPTrace(SigPRegOffset(vq, n)); } inline uint32_t PTracePRegsSize(uint16_t vq) { return PTracePRegOffset(vq, num_of_pregs) - PTracePRegsOffset(vq); } inline uint32_t PTraceFFROffset(uint16_t vq) { return SigToPTrace(SigFFROffset(vq)); } inline uint32_t PTraceFPSROffset(uint16_t vq) { return (PTraceFFROffset(vq) + PTraceFFRSize(vq) + (vq_bytes - 1)) / vq_bytes * vq_bytes; } inline uint32_t PTraceFPCROffset(uint16_t vq) { return PTraceFPSROffset(vq) + fpsr_size; } /* * Any future extension appended after FPCR must be aligned to the next * 128-bit boundary. */ inline uint32_t PTraceSVESize(uint16_t vq, uint16_t flags) { return (PTraceFPCROffset(vq) + fpcr_size - ptrace_sve_offset + vq_bytes - 1) / vq_bytes * vq_bytes; } inline uint32_t PTraceSize(uint16_t vq, uint16_t flags) { return (flags & ptrace_regs_mask) == ptrace_regs_sve ? ptrace_sve_offset + PTraceSVESize(vq, flags) : ptrace_fpsimd_offset + PTraceFPSIMDSize(vq, flags); } } // namespace SVE } // namespace lldb_private #endif // LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_LINUXPTRACEDEFINES_ARM64SVE_H