//===-------- LegalizeFloatTypes.cpp - Legalization of float types --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements float type expansion and softening for LegalizeTypes. // Softening is the act of turning a computation in an illegal floating point // type into a computation in an integer type of the same size; also known as // "soft float". For example, turning f32 arithmetic into operations using i32. // The resulting integer value is the same as what you would get by performing // the floating point operation and bitcasting the result to the integer type. // Expansion is the act of changing a computation in an illegal type to be a // computation in two identical registers of a smaller type. For example, // implementing ppcf128 arithmetic in two f64 registers. // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "legalize-types" /// GetFPLibCall - Return the right libcall for the given floating point type. /// FIXME: This is a local version of RTLIB::getFPLibCall that should be /// refactored away (see RTLIB::getPOWI for an example). static RTLIB::Libcall GetFPLibCall(EVT VT, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128) { return VT == MVT::f32 ? Call_F32 : VT == MVT::f64 ? Call_F64 : VT == MVT::f80 ? Call_F80 : VT == MVT::f128 ? Call_F128 : VT == MVT::ppcf128 ? Call_PPCF128 : RTLIB::UNKNOWN_LIBCALL; } //===----------------------------------------------------------------------===// // Convert Float Results to Integer //===----------------------------------------------------------------------===// void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) { LLVM_DEBUG(dbgs() << "Soften float result " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue R = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SoftenFloatResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to soften the result of this operator!"); case ISD::ARITH_FENCE: R = SoftenFloatRes_ARITH_FENCE(N); break; case ISD::MERGE_VALUES:R = SoftenFloatRes_MERGE_VALUES(N, ResNo); break; case ISD::BITCAST: R = SoftenFloatRes_BITCAST(N); break; case ISD::BUILD_PAIR: R = SoftenFloatRes_BUILD_PAIR(N); break; case ISD::ConstantFP: R = SoftenFloatRes_ConstantFP(N); break; case ISD::EXTRACT_VECTOR_ELT: R = SoftenFloatRes_EXTRACT_VECTOR_ELT(N, ResNo); break; case ISD::FABS: R = SoftenFloatRes_FABS(N); break; case ISD::STRICT_FMINNUM: case ISD::FMINNUM: R = SoftenFloatRes_FMINNUM(N); break; case ISD::STRICT_FMAXNUM: case ISD::FMAXNUM: R = SoftenFloatRes_FMAXNUM(N); break; case ISD::STRICT_FADD: case ISD::FADD: R = SoftenFloatRes_FADD(N); break; case ISD::FCBRT: R = SoftenFloatRes_FCBRT(N); break; case ISD::STRICT_FCEIL: case ISD::FCEIL: R = SoftenFloatRes_FCEIL(N); break; case ISD::FCOPYSIGN: R = SoftenFloatRes_FCOPYSIGN(N); break; case ISD::STRICT_FCOS: case ISD::FCOS: R = SoftenFloatRes_FCOS(N); break; case ISD::STRICT_FDIV: case ISD::FDIV: R = SoftenFloatRes_FDIV(N); break; case ISD::STRICT_FEXP: case ISD::FEXP: R = SoftenFloatRes_FEXP(N); break; case ISD::STRICT_FEXP2: case ISD::FEXP2: R = SoftenFloatRes_FEXP2(N); break; case ISD::STRICT_FFLOOR: case ISD::FFLOOR: R = SoftenFloatRes_FFLOOR(N); break; case ISD::STRICT_FLOG: case ISD::FLOG: R = SoftenFloatRes_FLOG(N); break; case ISD::STRICT_FLOG2: case ISD::FLOG2: R = SoftenFloatRes_FLOG2(N); break; case ISD::STRICT_FLOG10: case ISD::FLOG10: R = SoftenFloatRes_FLOG10(N); break; case ISD::STRICT_FMA: case ISD::FMA: R = SoftenFloatRes_FMA(N); break; case ISD::STRICT_FMUL: case ISD::FMUL: R = SoftenFloatRes_FMUL(N); break; case ISD::STRICT_FNEARBYINT: case ISD::FNEARBYINT: R = SoftenFloatRes_FNEARBYINT(N); break; case ISD::FNEG: R = SoftenFloatRes_FNEG(N); break; case ISD::STRICT_FP_EXTEND: case ISD::FP_EXTEND: R = SoftenFloatRes_FP_EXTEND(N); break; case ISD::STRICT_FP_ROUND: case ISD::FP_ROUND: R = SoftenFloatRes_FP_ROUND(N); break; case ISD::FP16_TO_FP: R = SoftenFloatRes_FP16_TO_FP(N); break; case ISD::STRICT_FPOW: case ISD::FPOW: R = SoftenFloatRes_FPOW(N); break; case ISD::STRICT_FPOWI: case ISD::FPOWI: R = SoftenFloatRes_FPOWI(N); break; case ISD::STRICT_FREM: case ISD::FREM: R = SoftenFloatRes_FREM(N); break; case ISD::STRICT_FRINT: case ISD::FRINT: R = SoftenFloatRes_FRINT(N); break; case ISD::STRICT_FROUND: case ISD::FROUND: R = SoftenFloatRes_FROUND(N); break; case ISD::STRICT_FROUNDEVEN: case ISD::FROUNDEVEN: R = SoftenFloatRes_FROUNDEVEN(N); break; case ISD::STRICT_FSIN: case ISD::FSIN: R = SoftenFloatRes_FSIN(N); break; case ISD::STRICT_FSQRT: case ISD::FSQRT: R = SoftenFloatRes_FSQRT(N); break; case ISD::STRICT_FSUB: case ISD::FSUB: R = SoftenFloatRes_FSUB(N); break; case ISD::STRICT_FTRUNC: case ISD::FTRUNC: R = SoftenFloatRes_FTRUNC(N); break; case ISD::LOAD: R = SoftenFloatRes_LOAD(N); break; case ISD::ATOMIC_SWAP: R = BitcastToInt_ATOMIC_SWAP(N); break; case ISD::SELECT: R = SoftenFloatRes_SELECT(N); break; case ISD::SELECT_CC: R = SoftenFloatRes_SELECT_CC(N); break; case ISD::FREEZE: R = SoftenFloatRes_FREEZE(N); break; case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: R = SoftenFloatRes_XINT_TO_FP(N); break; case ISD::UNDEF: R = SoftenFloatRes_UNDEF(N); break; case ISD::VAARG: R = SoftenFloatRes_VAARG(N); break; case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAX: R = SoftenFloatRes_VECREDUCE(N); break; case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_SEQ_FMUL: R = SoftenFloatRes_VECREDUCE_SEQ(N); break; } // If R is null, the sub-method took care of registering the result. if (R.getNode()) { assert(R.getNode() != N); SetSoftenedFloat(SDValue(N, ResNo), R); } } SDValue DAGTypeLegalizer::SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC) { bool IsStrict = N->isStrictFPOpcode(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned Offset = IsStrict ? 1 : 0; assert(N->getNumOperands() == (1 + Offset) && "Unexpected number of operands!"); SDValue Op = GetSoftenedFloat(N->getOperand(0 + Offset)); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; EVT OpVT = N->getOperand(0 + Offset).getValueType(); CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC) { bool IsStrict = N->isStrictFPOpcode(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned Offset = IsStrict ? 1 : 0; assert(N->getNumOperands() == (2 + Offset) && "Unexpected number of operands!"); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0 + Offset)), GetSoftenedFloat(N->getOperand(1 + Offset)) }; SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; EVT OpsVT[2] = { N->getOperand(0 + Offset).getValueType(), N->getOperand(1 + Offset).getValueType() }; CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Ops, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatRes_BITCAST(SDNode *N) { return BitConvertToInteger(N->getOperand(0)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FREEZE(SDNode *N) { EVT Ty = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); return DAG.getNode(ISD::FREEZE, SDLoc(N), Ty, GetSoftenedFloat(N->getOperand(0))); } SDValue DAGTypeLegalizer::SoftenFloatRes_ARITH_FENCE(SDNode *N) { EVT Ty = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue NewFence = DAG.getNode(ISD::ARITH_FENCE, SDLoc(N), Ty, GetSoftenedFloat(N->getOperand(0))); return NewFence; } SDValue DAGTypeLegalizer::SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo) { SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); return BitConvertToInteger(Op); } SDValue DAGTypeLegalizer::SoftenFloatRes_BUILD_PAIR(SDNode *N) { // Convert the inputs to integers, and build a new pair out of them. return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)), BitConvertToInteger(N->getOperand(0)), BitConvertToInteger(N->getOperand(1))); } SDValue DAGTypeLegalizer::SoftenFloatRes_ConstantFP(SDNode *N) { ConstantFPSDNode *CN = cast(N); // In ppcf128, the high 64 bits are always first in memory regardless // of Endianness. LLVM's APFloat representation is not Endian sensitive, // and so always converts into a 128-bit APInt in a non-Endian-sensitive // way. However, APInt's are serialized in an Endian-sensitive fashion, // so on big-Endian targets, the two doubles are output in the wrong // order. Fix this by manually flipping the order of the high 64 bits // and the low 64 bits here. if (DAG.getDataLayout().isBigEndian() && CN->getValueType(0).getSimpleVT() == llvm::MVT::ppcf128) { uint64_t words[2] = { CN->getValueAPF().bitcastToAPInt().getRawData()[1], CN->getValueAPF().bitcastToAPInt().getRawData()[0] }; APInt Val(128, words); return DAG.getConstant(Val, SDLoc(CN), TLI.getTypeToTransformTo(*DAG.getContext(), CN->getValueType(0))); } else { return DAG.getConstant(CN->getValueAPF().bitcastToAPInt(), SDLoc(CN), TLI.getTypeToTransformTo(*DAG.getContext(), CN->getValueType(0))); } } SDValue DAGTypeLegalizer::SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo) { SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0)); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NewOp.getValueType().getVectorElementType(), NewOp, N->getOperand(1)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned Size = NVT.getSizeInBits(); // Mask = ~(1 << (Size-1)) APInt API = APInt::getAllOnes(Size); API.clearBit(Size - 1); SDValue Mask = DAG.getConstant(API, SDLoc(N), NVT); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return DAG.getNode(ISD::AND, SDLoc(N), NVT, Op, Mask); } SDValue DAGTypeLegalizer::SoftenFloatRes_FMINNUM(SDNode *N) { if (SDValue SelCC = TLI.createSelectForFMINNUM_FMAXNUM(N, DAG)) return SoftenFloatRes_SELECT_CC(SelCC.getNode()); return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::FMIN_F32, RTLIB::FMIN_F64, RTLIB::FMIN_F80, RTLIB::FMIN_F128, RTLIB::FMIN_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FMAXNUM(SDNode *N) { if (SDValue SelCC = TLI.createSelectForFMINNUM_FMAXNUM(N, DAG)) return SoftenFloatRes_SELECT_CC(SelCC.getNode()); return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::FMAX_F32, RTLIB::FMAX_F64, RTLIB::FMAX_F80, RTLIB::FMAX_F128, RTLIB::FMAX_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) { return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_F128, RTLIB::ADD_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCBRT(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::CBRT_F32, RTLIB::CBRT_F64, RTLIB::CBRT_F80, RTLIB::CBRT_F128, RTLIB::CBRT_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_F128, RTLIB::CEIL_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) { SDValue LHS = GetSoftenedFloat(N->getOperand(0)); SDValue RHS = BitConvertToInteger(N->getOperand(1)); SDLoc dl(N); EVT LVT = LHS.getValueType(); EVT RVT = RHS.getValueType(); unsigned LSize = LVT.getSizeInBits(); unsigned RSize = RVT.getSizeInBits(); // First get the sign bit of second operand. SDValue SignBit = DAG.getNode( ISD::SHL, dl, RVT, DAG.getConstant(1, dl, RVT), DAG.getConstant(RSize - 1, dl, TLI.getShiftAmountTy(RVT, DAG.getDataLayout()))); SignBit = DAG.getNode(ISD::AND, dl, RVT, RHS, SignBit); // Shift right or sign-extend it if the two operands have different types. int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits(); if (SizeDiff > 0) { SignBit = DAG.getNode(ISD::SRL, dl, RVT, SignBit, DAG.getConstant(SizeDiff, dl, TLI.getShiftAmountTy(SignBit.getValueType(), DAG.getDataLayout()))); SignBit = DAG.getNode(ISD::TRUNCATE, dl, LVT, SignBit); } else if (SizeDiff < 0) { SignBit = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, SignBit); SignBit = DAG.getNode(ISD::SHL, dl, LVT, SignBit, DAG.getConstant(-SizeDiff, dl, TLI.getShiftAmountTy(SignBit.getValueType(), DAG.getDataLayout()))); } // Clear the sign bit of the first operand. SDValue Mask = DAG.getNode( ISD::SHL, dl, LVT, DAG.getConstant(1, dl, LVT), DAG.getConstant(LSize - 1, dl, TLI.getShiftAmountTy(LVT, DAG.getDataLayout()))); Mask = DAG.getNode(ISD::SUB, dl, LVT, Mask, DAG.getConstant(1, dl, LVT)); LHS = DAG.getNode(ISD::AND, dl, LVT, LHS, Mask); // Or the value with the sign bit. return DAG.getNode(ISD::OR, dl, LVT, LHS, SignBit); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_F128, RTLIB::COS_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) { return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_F128, RTLIB::DIV_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_F128, RTLIB::EXP_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, RTLIB::FLOOR_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_F128, RTLIB::LOG_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FMA(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned Offset = IsStrict ? 1 : 0; SDValue Ops[3] = { GetSoftenedFloat(N->getOperand(0 + Offset)), GetSoftenedFloat(N->getOperand(1 + Offset)), GetSoftenedFloat(N->getOperand(2 + Offset)) }; SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; EVT OpsVT[3] = { N->getOperand(0 + Offset).getValueType(), N->getOperand(1 + Offset).getValueType(), N->getOperand(2 + Offset).getValueType() }; CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, GetFPLibCall(N->getValueType(0), RTLIB::FMA_F32, RTLIB::FMA_F64, RTLIB::FMA_F80, RTLIB::FMA_F128, RTLIB::FMA_PPCF128), NVT, Ops, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) { return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_F128, RTLIB::MUL_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_F128, RTLIB::NEARBYINT_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); // Expand Y = FNEG(X) -> Y = X ^ sign mask APInt SignMask = APInt::getSignMask(NVT.getSizeInBits()); return DAG.getNode(ISD::XOR, dl, NVT, GetSoftenedFloat(N->getOperand(0)), DAG.getConstant(SignMask, dl, NVT)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = N->getOperand(IsStrict ? 1 : 0); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat) { Op = GetPromotedFloat(Op); // If the promotion did the FP_EXTEND to the destination type for us, // there's nothing left to do here. if (Op.getValueType() == N->getValueType(0)) return BitConvertToInteger(Op); } // There's only a libcall for f16 -> f32, so proceed in two stages. Also, it's // entirely possible for both f16 and f32 to be legal, so use the fully // hard-float FP_EXTEND rather than FP16_TO_FP. if (Op.getValueType() == MVT::f16 && N->getValueType(0) != MVT::f32) { if (IsStrict) { Op = DAG.getNode(ISD::STRICT_FP_EXTEND, SDLoc(N), { MVT::f32, MVT::Other }, { Chain, Op }); Chain = Op.getValue(1); } else { Op = DAG.getNode(ISD::FP_EXTEND, SDLoc(N), MVT::f32, Op); } } RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); TargetLowering::MakeLibCallOptions CallOptions; EVT OpVT = N->getOperand(IsStrict ? 1 : 0).getValueType(); CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } // FIXME: Should we just use 'normal' FP_EXTEND / FP_TRUNC instead of special // nodes? SDValue DAGTypeLegalizer::SoftenFloatRes_FP16_TO_FP(SDNode *N) { EVT MidVT = TLI.getTypeToTransformTo(*DAG.getContext(), MVT::f32); SDValue Op = N->getOperand(0); TargetLowering::MakeLibCallOptions CallOptions; EVT OpsVT[1] = { N->getOperand(0).getValueType() }; CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true); SDValue Res32 = TLI.makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MidVT, Op, CallOptions, SDLoc(N)).first; if (N->getValueType(0) == MVT::f32) return Res32; EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); RTLIB::Libcall LC = RTLIB::getFPEXT(MVT::f32, N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); return TLI.makeLibCall(DAG, LC, NVT, Res32, CallOptions, SDLoc(N)).first; } SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = N->getOperand(IsStrict ? 1 : 0); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); TargetLowering::MakeLibCallOptions CallOptions; EVT OpVT = N->getOperand(IsStrict ? 1 : 0).getValueType(); CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) { return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_F128, RTLIB::POW_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); unsigned Offset = IsStrict ? 1 : 0; assert((N->getOperand(1 + Offset).getValueType() == MVT::i16 || N->getOperand(1 + Offset).getValueType() == MVT::i32) && "Unsupported power type!"); RTLIB::Libcall LC = RTLIB::getPOWI(N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); if (!TLI.getLibcallName(LC)) { // Some targets don't have a powi libcall; use pow instead. // FIXME: Implement this if some target needs it. DAG.getContext()->emitError("Don't know how to soften fpowi to fpow"); return DAG.getUNDEF(N->getValueType(0)); } if (DAG.getLibInfo().getIntSize() != N->getOperand(1 + Offset).getValueType().getSizeInBits()) { // If the exponent does not match with sizeof(int) a libcall to RTLIB::POWI // would use the wrong type for the argument. DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); return DAG.getUNDEF(N->getValueType(0)); } EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0 + Offset)), N->getOperand(1 + Offset) }; SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; EVT OpsVT[2] = { N->getOperand(0 + Offset).getValueType(), N->getOperand(1 + Offset).getValueType() }; CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Ops, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) { return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_F128, RTLIB::REM_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_F128, RTLIB::RINT_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FROUND(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::ROUND_F32, RTLIB::ROUND_F64, RTLIB::ROUND_F80, RTLIB::ROUND_F128, RTLIB::ROUND_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FROUNDEVEN(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::ROUNDEVEN_F32, RTLIB::ROUNDEVEN_F64, RTLIB::ROUNDEVEN_F80, RTLIB::ROUNDEVEN_F128, RTLIB::ROUNDEVEN_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_F128, RTLIB::SIN_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_F128, RTLIB::SQRT_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) { return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_F128, RTLIB::SUB_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) { return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, RTLIB::TRUNC_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) { LoadSDNode *L = cast(N); EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDLoc dl(N); auto MMOFlags = L->getMemOperand()->getFlags() & ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); SDValue NewL; if (L->getExtensionType() == ISD::NON_EXTLOAD) { NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), NVT, dl, L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), NVT, L->getOriginalAlign(), MMOFlags, L->getAAInfo()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), NewL.getValue(1)); return NewL; } // Do a non-extending load followed by FP_EXTEND. NewL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD, L->getMemoryVT(), dl, L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), L->getMemoryVT(), L->getOriginalAlign(), MMOFlags, L->getAAInfo()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), NewL.getValue(1)); auto ExtendNode = DAG.getNode(ISD::FP_EXTEND, dl, VT, NewL); return BitConvertToInteger(ExtendNode); } SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT(SDNode *N) { SDValue LHS = GetSoftenedFloat(N->getOperand(1)); SDValue RHS = GetSoftenedFloat(N->getOperand(2)); return DAG.getSelect(SDLoc(N), LHS.getValueType(), N->getOperand(0), LHS, RHS); } SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) { SDValue LHS = GetSoftenedFloat(N->getOperand(2)); SDValue RHS = GetSoftenedFloat(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(), N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)); } SDValue DAGTypeLegalizer::SoftenFloatRes_UNDEF(SDNode *N) { return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0))); } SDValue DAGTypeLegalizer::SoftenFloatRes_VAARG(SDNode *N) { SDValue Chain = N->getOperand(0); // Get the chain. SDValue Ptr = N->getOperand(1); // Get the pointer. EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDLoc dl(N); SDValue NewVAARG; NewVAARG = DAG.getVAArg(NVT, dl, Chain, Ptr, N->getOperand(2), N->getConstantOperandVal(3)); // Legalized the chain result - switch anything that used the old chain to // use the new one. if (N != NewVAARG.getValue(1).getNode()) ReplaceValueWith(SDValue(N, 1), NewVAARG.getValue(1)); return NewVAARG; } SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); bool Signed = N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::STRICT_SINT_TO_FP; EVT SVT = N->getOperand(IsStrict ? 1 : 0).getValueType(); EVT RVT = N->getValueType(0); EVT NVT = EVT(); SDLoc dl(N); // If the input is not legal, eg: i1 -> fp, then it needs to be promoted to // a larger type, eg: i8 -> fp. Even if it is legal, no libcall may exactly // match. Look for an appropriate libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++t) { NVT = (MVT::SimpleValueType)t; // The source needs to big enough to hold the operand. if (NVT.bitsGE(SVT)) LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT):RTLIB::getUINTTOFP (NVT, RVT); } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!"); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); // Sign/zero extend the argument if the libcall takes a larger type. SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NVT, N->getOperand(IsStrict ? 1 : 0)); TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setSExt(Signed); CallOptions.setTypeListBeforeSoften(SVT, RVT, true); std::pair Tmp = TLI.makeLibCall(DAG, LC, TLI.getTypeToTransformTo(*DAG.getContext(), RVT), Op, CallOptions, dl, Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatRes_VECREDUCE(SDNode *N) { // Expand and soften recursively. ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduce(N, DAG)); return SDValue(); } SDValue DAGTypeLegalizer::SoftenFloatRes_VECREDUCE_SEQ(SDNode *N) { ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduceSeq(N, DAG)); return SDValue(); } //===----------------------------------------------------------------------===// // Convert Float Operand to Integer //===----------------------------------------------------------------------===// bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) { LLVM_DEBUG(dbgs() << "Soften float operand " << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SoftenFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to soften this operator's operand!"); case ISD::BITCAST: Res = SoftenFloatOp_BITCAST(N); break; case ISD::BR_CC: Res = SoftenFloatOp_BR_CC(N); break; case ISD::STRICT_FP_TO_FP16: case ISD::FP_TO_FP16: // Same as FP_ROUND for softening purposes case ISD::FP_TO_BF16: case ISD::STRICT_FP_ROUND: case ISD::FP_ROUND: Res = SoftenFloatOp_FP_ROUND(N); break; case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: Res = SoftenFloatOp_FP_TO_XINT(N); break; case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: Res = SoftenFloatOp_FP_TO_XINT_SAT(N); break; case ISD::STRICT_LROUND: case ISD::LROUND: Res = SoftenFloatOp_LROUND(N); break; case ISD::STRICT_LLROUND: case ISD::LLROUND: Res = SoftenFloatOp_LLROUND(N); break; case ISD::STRICT_LRINT: case ISD::LRINT: Res = SoftenFloatOp_LRINT(N); break; case ISD::STRICT_LLRINT: case ISD::LLRINT: Res = SoftenFloatOp_LLRINT(N); break; case ISD::SELECT_CC: Res = SoftenFloatOp_SELECT_CC(N); break; case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: case ISD::SETCC: Res = SoftenFloatOp_SETCC(N); break; case ISD::STORE: Res = SoftenFloatOp_STORE(N, OpNo); break; case ISD::FCOPYSIGN: Res = SoftenFloatOp_FCOPYSIGN(N); break; } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this to re-analyze. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand softening"); ReplaceValueWith(SDValue(N, 0), Res); return false; } SDValue DAGTypeLegalizer::SoftenFloatOp_BITCAST(SDNode *N) { SDValue Op0 = GetSoftenedFloat(N->getOperand(0)); return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0); } SDValue DAGTypeLegalizer::SoftenFloatOp_FP_ROUND(SDNode *N) { // We actually deal with the partially-softened FP_TO_FP16 node too, which // returns an i16 so doesn't meet the constraints necessary for FP_ROUND. assert(N->getOpcode() == ISD::FP_ROUND || N->getOpcode() == ISD::FP_TO_FP16 || N->getOpcode() == ISD::STRICT_FP_TO_FP16 || N->getOpcode() == ISD::FP_TO_BF16 || N->getOpcode() == ISD::STRICT_FP_ROUND); bool IsStrict = N->isStrictFPOpcode(); SDValue Op = N->getOperand(IsStrict ? 1 : 0); EVT SVT = Op.getValueType(); EVT RVT = N->getValueType(0); EVT FloatRVT = RVT; if (N->getOpcode() == ISD::FP_TO_FP16 || N->getOpcode() == ISD::STRICT_FP_TO_FP16) FloatRVT = MVT::f16; else if (N->getOpcode() == ISD::FP_TO_BF16) FloatRVT = MVT::bf16; RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, FloatRVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND libcall"); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); Op = GetSoftenedFloat(Op); TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setTypeListBeforeSoften(SVT, RVT, true); std::pair Tmp = TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, SDLoc(N), Chain); if (IsStrict) { ReplaceValueWith(SDValue(N, 1), Tmp.second); ReplaceValueWith(SDValue(N, 0), Tmp.first); return SDValue(); } return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) { SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); EVT VT = NewLHS.getValueType(); NewLHS = GetSoftenedFloat(NewLHS); NewRHS = GetSoftenedFloat(NewRHS); TLI.softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, SDLoc(N), N->getOperand(2), N->getOperand(3)); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!NewRHS.getNode()) { NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)), 0); } // Even if the result type is legal, no libcall may exactly match. (e.g. We // don't have FP-i8 conversions) This helper method looks for an appropriate // promoted libcall. static RTLIB::Libcall findFPToIntLibcall(EVT SrcVT, EVT RetVT, EVT &Promoted, bool Signed) { RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++IntVT) { Promoted = (MVT::SimpleValueType)IntVT; // The type needs to big enough to hold the result. if (Promoted.bitsGE(RetVT)) LC = Signed ? RTLIB::getFPTOSINT(SrcVT, Promoted) : RTLIB::getFPTOUINT(SrcVT, Promoted); } return LC; } SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); bool Signed = N->getOpcode() == ISD::FP_TO_SINT || N->getOpcode() == ISD::STRICT_FP_TO_SINT; SDValue Op = N->getOperand(IsStrict ? 1 : 0); EVT SVT = Op.getValueType(); EVT RVT = N->getValueType(0); EVT NVT = EVT(); SDLoc dl(N); // If the result is not legal, eg: fp -> i1, then it needs to be promoted to // a larger type, eg: fp -> i32. Even if it is legal, no libcall may exactly // match, eg. we don't have fp -> i8 conversions. // Look for an appropriate libcall. RTLIB::Libcall LC = findFPToIntLibcall(SVT, RVT, NVT, Signed); assert(LC != RTLIB::UNKNOWN_LIBCALL && NVT.isSimple() && "Unsupported FP_TO_XINT!"); Op = GetSoftenedFloat(Op); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setTypeListBeforeSoften(SVT, RVT, true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); // Truncate the result if the libcall returns a larger type. SDValue Res = DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first); if (!IsStrict) return Res; ReplaceValueWith(SDValue(N, 1), Tmp.second); ReplaceValueWith(SDValue(N, 0), Res); return SDValue(); } SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N) { SDValue Res = TLI.expandFP_TO_INT_SAT(N, DAG); return Res; } SDValue DAGTypeLegalizer::SoftenFloatOp_SELECT_CC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); EVT VT = NewLHS.getValueType(); NewLHS = GetSoftenedFloat(NewLHS); NewRHS = GetSoftenedFloat(NewRHS); TLI.softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, SDLoc(N), N->getOperand(0), N->getOperand(1)); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!NewRHS.getNode()) { NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::SoftenFloatOp_SETCC(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); SDValue Op0 = N->getOperand(IsStrict ? 1 : 0); SDValue Op1 = N->getOperand(IsStrict ? 2 : 1); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); ISD::CondCode CCCode = cast(N->getOperand(IsStrict ? 3 : 2))->get(); EVT VT = Op0.getValueType(); SDValue NewLHS = GetSoftenedFloat(Op0); SDValue NewRHS = GetSoftenedFloat(Op1); TLI.softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, SDLoc(N), Op0, Op1, Chain, N->getOpcode() == ISD::STRICT_FSETCCS); // Update N to have the operands specified. if (NewRHS.getNode()) { if (IsStrict) NewLHS = DAG.getNode(ISD::SETCC, SDLoc(N), N->getValueType(0), NewLHS, NewRHS, DAG.getCondCode(CCCode)); else return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, DAG.getCondCode(CCCode)), 0); } // Otherwise, softenSetCCOperands returned a scalar, use it. assert((NewRHS.getNode() || NewLHS.getValueType() == N->getValueType(0)) && "Unexpected setcc expansion!"); if (IsStrict) { ReplaceValueWith(SDValue(N, 0), NewLHS); ReplaceValueWith(SDValue(N, 1), Chain); return SDValue(); } return NewLHS; } SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) { assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only soften the stored value!"); StoreSDNode *ST = cast(N); SDValue Val = ST->getValue(); SDLoc dl(N); if (ST->isTruncatingStore()) // Do an FP_ROUND followed by a non-truncating store. Val = BitConvertToInteger(DAG.getNode(ISD::FP_ROUND, dl, ST->getMemoryVT(), Val, DAG.getIntPtrConstant(0, dl))); else Val = GetSoftenedFloat(Val); return DAG.getStore(ST->getChain(), dl, Val, ST->getBasePtr(), ST->getMemOperand()); } SDValue DAGTypeLegalizer::SoftenFloatOp_FCOPYSIGN(SDNode *N) { SDValue LHS = N->getOperand(0); SDValue RHS = BitConvertToInteger(N->getOperand(1)); SDLoc dl(N); EVT LVT = LHS.getValueType(); EVT ILVT = EVT::getIntegerVT(*DAG.getContext(), LVT.getSizeInBits()); EVT RVT = RHS.getValueType(); unsigned LSize = LVT.getSizeInBits(); unsigned RSize = RVT.getSizeInBits(); // Shift right or sign-extend it if the two operands have different types. int SizeDiff = RSize - LSize; if (SizeDiff > 0) { RHS = DAG.getNode(ISD::SRL, dl, RVT, RHS, DAG.getConstant(SizeDiff, dl, TLI.getShiftAmountTy(RHS.getValueType(), DAG.getDataLayout()))); RHS = DAG.getNode(ISD::TRUNCATE, dl, ILVT, RHS); } else if (SizeDiff < 0) { RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, RHS); RHS = DAG.getNode(ISD::SHL, dl, ILVT, RHS, DAG.getConstant(-SizeDiff, dl, TLI.getShiftAmountTy(RHS.getValueType(), DAG.getDataLayout()))); } RHS = DAG.getBitcast(LVT, RHS); return DAG.getNode(ISD::FCOPYSIGN, dl, LVT, LHS, RHS); } SDValue DAGTypeLegalizer::SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); bool IsStrict = N->isStrictFPOpcode(); unsigned Offset = IsStrict ? 1 : 0; SDValue Op = GetSoftenedFloat(N->getOperand(0 + Offset)); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; EVT OpVT = N->getOperand(0 + Offset).getValueType(); CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, SDLoc(N), Chain); if (IsStrict) { ReplaceValueWith(SDValue(N, 1), Tmp.second); ReplaceValueWith(SDValue(N, 0), Tmp.first); return SDValue(); } return Tmp.first; } SDValue DAGTypeLegalizer::SoftenFloatOp_LROUND(SDNode *N) { EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType(); return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT, RTLIB::LROUND_F32, RTLIB::LROUND_F64, RTLIB::LROUND_F80, RTLIB::LROUND_F128, RTLIB::LROUND_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatOp_LLROUND(SDNode *N) { EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType(); return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT, RTLIB::LLROUND_F32, RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, RTLIB::LLROUND_F128, RTLIB::LLROUND_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatOp_LRINT(SDNode *N) { EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType(); return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT, RTLIB::LRINT_F32, RTLIB::LRINT_F64, RTLIB::LRINT_F80, RTLIB::LRINT_F128, RTLIB::LRINT_PPCF128)); } SDValue DAGTypeLegalizer::SoftenFloatOp_LLRINT(SDNode *N) { EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType(); return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT, RTLIB::LLRINT_F32, RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, RTLIB::LLRINT_F128, RTLIB::LLRINT_PPCF128)); } //===----------------------------------------------------------------------===// // Float Result Expansion //===----------------------------------------------------------------------===// /// ExpandFloatResult - This method is called when the specified result of the /// specified node is found to need expansion. At this point, the node may also /// have invalid operands or may have other results that need promotion, we just /// know that (at least) one result needs expansion. void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) { LLVM_DEBUG(dbgs() << "Expand float result: "; N->dump(&DAG); dbgs() << "\n"); SDValue Lo, Hi; Lo = Hi = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) return; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ExpandFloatResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to expand the result of this operator!"); case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; case ISD::SELECT: SplitRes_Select(N, Lo, Hi); break; case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; case ISD::MERGE_VALUES: ExpandRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break; case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break; case ISD::ConstantFP: ExpandFloatRes_ConstantFP(N, Lo, Hi); break; case ISD::FABS: ExpandFloatRes_FABS(N, Lo, Hi); break; case ISD::STRICT_FMINNUM: case ISD::FMINNUM: ExpandFloatRes_FMINNUM(N, Lo, Hi); break; case ISD::STRICT_FMAXNUM: case ISD::FMAXNUM: ExpandFloatRes_FMAXNUM(N, Lo, Hi); break; case ISD::STRICT_FADD: case ISD::FADD: ExpandFloatRes_FADD(N, Lo, Hi); break; case ISD::FCBRT: ExpandFloatRes_FCBRT(N, Lo, Hi); break; case ISD::STRICT_FCEIL: case ISD::FCEIL: ExpandFloatRes_FCEIL(N, Lo, Hi); break; case ISD::FCOPYSIGN: ExpandFloatRes_FCOPYSIGN(N, Lo, Hi); break; case ISD::STRICT_FCOS: case ISD::FCOS: ExpandFloatRes_FCOS(N, Lo, Hi); break; case ISD::STRICT_FDIV: case ISD::FDIV: ExpandFloatRes_FDIV(N, Lo, Hi); break; case ISD::STRICT_FEXP: case ISD::FEXP: ExpandFloatRes_FEXP(N, Lo, Hi); break; case ISD::STRICT_FEXP2: case ISD::FEXP2: ExpandFloatRes_FEXP2(N, Lo, Hi); break; case ISD::STRICT_FFLOOR: case ISD::FFLOOR: ExpandFloatRes_FFLOOR(N, Lo, Hi); break; case ISD::STRICT_FLOG: case ISD::FLOG: ExpandFloatRes_FLOG(N, Lo, Hi); break; case ISD::STRICT_FLOG2: case ISD::FLOG2: ExpandFloatRes_FLOG2(N, Lo, Hi); break; case ISD::STRICT_FLOG10: case ISD::FLOG10: ExpandFloatRes_FLOG10(N, Lo, Hi); break; case ISD::STRICT_FMA: case ISD::FMA: ExpandFloatRes_FMA(N, Lo, Hi); break; case ISD::STRICT_FMUL: case ISD::FMUL: ExpandFloatRes_FMUL(N, Lo, Hi); break; case ISD::STRICT_FNEARBYINT: case ISD::FNEARBYINT: ExpandFloatRes_FNEARBYINT(N, Lo, Hi); break; case ISD::FNEG: ExpandFloatRes_FNEG(N, Lo, Hi); break; case ISD::STRICT_FP_EXTEND: case ISD::FP_EXTEND: ExpandFloatRes_FP_EXTEND(N, Lo, Hi); break; case ISD::STRICT_FPOW: case ISD::FPOW: ExpandFloatRes_FPOW(N, Lo, Hi); break; case ISD::STRICT_FPOWI: case ISD::FPOWI: ExpandFloatRes_FPOWI(N, Lo, Hi); break; case ISD::FREEZE: ExpandFloatRes_FREEZE(N, Lo, Hi); break; case ISD::STRICT_FRINT: case ISD::FRINT: ExpandFloatRes_FRINT(N, Lo, Hi); break; case ISD::STRICT_FROUND: case ISD::FROUND: ExpandFloatRes_FROUND(N, Lo, Hi); break; case ISD::STRICT_FROUNDEVEN: case ISD::FROUNDEVEN: ExpandFloatRes_FROUNDEVEN(N, Lo, Hi); break; case ISD::STRICT_FSIN: case ISD::FSIN: ExpandFloatRes_FSIN(N, Lo, Hi); break; case ISD::STRICT_FSQRT: case ISD::FSQRT: ExpandFloatRes_FSQRT(N, Lo, Hi); break; case ISD::STRICT_FSUB: case ISD::FSUB: ExpandFloatRes_FSUB(N, Lo, Hi); break; case ISD::STRICT_FTRUNC: case ISD::FTRUNC: ExpandFloatRes_FTRUNC(N, Lo, Hi); break; case ISD::LOAD: ExpandFloatRes_LOAD(N, Lo, Hi); break; case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: ExpandFloatRes_XINT_TO_FP(N, Lo, Hi); break; case ISD::STRICT_FREM: case ISD::FREM: ExpandFloatRes_FREM(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.getNode()) SetExpandedFloat(SDValue(N, ResNo), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); assert(NVT.getSizeInBits() == 64 && "Do not know how to expand this float constant!"); APInt C = cast(N)->getValueAPF().bitcastToAPInt(); SDLoc dl(N); Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT), APInt(64, C.getRawData()[1])), dl, NVT); Hi = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT), APInt(64, C.getRawData()[0])), dl, NVT); } void DAGTypeLegalizer::ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC, SDValue &Lo, SDValue &Hi) { bool IsStrict = N->isStrictFPOpcode(); unsigned Offset = IsStrict ? 1 : 0; SDValue Op = N->getOperand(0 + Offset); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); GetPairElements(Tmp.first, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC, SDValue &Lo, SDValue &Hi) { bool IsStrict = N->isStrictFPOpcode(); unsigned Offset = IsStrict ? 1 : 0; SDValue Ops[] = { N->getOperand(0 + Offset), N->getOperand(1 + Offset) }; SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); GetPairElements(Tmp.first, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FABS(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDLoc dl(N); SDValue Tmp; GetExpandedFloat(N->getOperand(0), Lo, Tmp); Hi = DAG.getNode(ISD::FABS, dl, Tmp.getValueType(), Tmp); // Lo = Hi==fabs(Hi) ? Lo : -Lo; Lo = DAG.getSelectCC(dl, Tmp, Hi, Lo, DAG.getNode(ISD::FNEG, dl, Lo.getValueType(), Lo), ISD::SETEQ); } void DAGTypeLegalizer::ExpandFloatRes_FMINNUM(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::FMIN_F32, RTLIB::FMIN_F64, RTLIB::FMIN_F80, RTLIB::FMIN_F128, RTLIB::FMIN_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FMAXNUM(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::FMAX_F32, RTLIB::FMAX_F64, RTLIB::FMAX_F80, RTLIB::FMAX_F128, RTLIB::FMAX_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FADD(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_F128, RTLIB::ADD_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCBRT(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::CBRT_F32, RTLIB::CBRT_F64, RTLIB::CBRT_F80, RTLIB::CBRT_F128, RTLIB::CBRT_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCEIL(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_F128, RTLIB::CEIL_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::COPYSIGN_F32, RTLIB::COPYSIGN_F64, RTLIB::COPYSIGN_F80, RTLIB::COPYSIGN_F128, RTLIB::COPYSIGN_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCOS(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_F128, RTLIB::COS_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FDIV(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_F128, RTLIB::DIV_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FEXP(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_F128, RTLIB::EXP_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FEXP2(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FFLOOR(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, RTLIB::FLOOR_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FLOG(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_F128, RTLIB::LOG_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FLOG2(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FLOG10(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FMA(SDNode *N, SDValue &Lo, SDValue &Hi) { bool IsStrict = N->isStrictFPOpcode(); unsigned Offset = IsStrict ? 1 : 0; SDValue Ops[3] = { N->getOperand(0 + Offset), N->getOperand(1 + Offset), N->getOperand(2 + Offset) }; SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, GetFPLibCall(N->getValueType(0), RTLIB::FMA_F32, RTLIB::FMA_F64, RTLIB::FMA_F80, RTLIB::FMA_F128, RTLIB::FMA_PPCF128), N->getValueType(0), Ops, CallOptions, SDLoc(N), Chain); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Tmp.second); GetPairElements(Tmp.first, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FMUL(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_F128, RTLIB::MUL_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_F128, RTLIB::NEARBYINT_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FNEG(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); GetExpandedFloat(N->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::FNEG, dl, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::FNEG, dl, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandFloatRes_FP_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); bool IsStrict = N->isStrictFPOpcode(); SDValue Chain; if (IsStrict) { // If the expanded type is the same as the input type, just bypass the node. if (NVT == N->getOperand(1).getValueType()) { Hi = N->getOperand(1); Chain = N->getOperand(0); } else { // Other we need to extend. Hi = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, { NVT, MVT::Other }, { N->getOperand(0), N->getOperand(1) }); Chain = Hi.getValue(1); } } else { Hi = DAG.getNode(ISD::FP_EXTEND, dl, NVT, N->getOperand(0)); } Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT), APInt(NVT.getSizeInBits(), 0)), dl, NVT); if (IsStrict) ReplaceValueWith(SDValue(N, 1), Chain); } void DAGTypeLegalizer::ExpandFloatRes_FPOW(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_F128, RTLIB::POW_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, RTLIB::getPOWI(N->getValueType(0)), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FREEZE(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDLoc dl(N); GetExpandedFloat(N->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::FREEZE, dl, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::FREEZE, dl, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandFloatRes_FREM(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_F128, RTLIB::REM_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FRINT(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_F128, RTLIB::RINT_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FROUND(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::ROUND_F32, RTLIB::ROUND_F64, RTLIB::ROUND_F80, RTLIB::ROUND_F128, RTLIB::ROUND_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::ROUNDEVEN_F32, RTLIB::ROUNDEVEN_F64, RTLIB::ROUNDEVEN_F80, RTLIB::ROUNDEVEN_F128, RTLIB::ROUNDEVEN_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FSIN(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_F128, RTLIB::SIN_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FSQRT(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_F128, RTLIB::SQRT_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FSUB(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_F128, RTLIB::SUB_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FTRUNC(SDNode *N, SDValue &Lo, SDValue &Hi) { ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, RTLIB::TRUNC_PPCF128), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo, SDValue &Hi) { if (ISD::isNormalLoad(N)) { ExpandRes_NormalLoad(N, Lo, Hi); return; } assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); LoadSDNode *LD = cast(N); SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0)); assert(NVT.isByteSized() && "Expanded type not byte sized!"); assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?"); Hi = DAG.getExtLoad(LD->getExtensionType(), dl, NVT, Chain, Ptr, LD->getMemoryVT(), LD->getMemOperand()); // Remember the chain. Chain = Hi.getValue(1); // The low part is zero. Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT), APInt(NVT.getSizeInBits(), 0)), dl, NVT); // Modified the chain - switch anything that used the old chain to use the // new one. ReplaceValueWith(SDValue(LD, 1), Chain); } void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Unsupported XINT_TO_FP!"); EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); bool Strict = N->isStrictFPOpcode(); SDValue Src = N->getOperand(Strict ? 1 : 0); EVT SrcVT = Src.getValueType(); bool isSigned = N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::STRICT_SINT_TO_FP; SDLoc dl(N); SDValue Chain = Strict ? N->getOperand(0) : DAG.getEntryNode(); // TODO: Any other flags to propagate? SDNodeFlags Flags; Flags.setNoFPExcept(N->getFlags().hasNoFPExcept()); // First do an SINT_TO_FP, whether the original was signed or unsigned. // When promoting partial word types to i32 we must honor the signedness, // though. if (SrcVT.bitsLE(MVT::i32)) { // The integer can be represented exactly in an f64. Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT), APInt(NVT.getSizeInBits(), 0)), dl, NVT); if (Strict) { Hi = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(NVT, MVT::Other), {Chain, Src}, Flags); Chain = Hi.getValue(1); } else Hi = DAG.getNode(N->getOpcode(), dl, NVT, Src); } else { RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (SrcVT.bitsLE(MVT::i64)) { Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, MVT::i64, Src); LC = RTLIB::SINTTOFP_I64_PPCF128; } else if (SrcVT.bitsLE(MVT::i128)) { Src = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i128, Src); LC = RTLIB::SINTTOFP_I128_PPCF128; } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!"); TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setSExt(true); std::pair Tmp = TLI.makeLibCall(DAG, LC, VT, Src, CallOptions, dl, Chain); if (Strict) Chain = Tmp.second; GetPairElements(Tmp.first, Lo, Hi); } // No need to complement for unsigned 32-bit integers if (isSigned || SrcVT.bitsLE(MVT::i32)) { if (Strict) ReplaceValueWith(SDValue(N, 1), Chain); return; } // Unsigned - fix up the SINT_TO_FP value just calculated. // FIXME: For unsigned i128 to ppc_fp128 conversion, we need to carefully // keep semantics correctness if the integer is not exactly representable // here. See ExpandLegalINT_TO_FP. Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); SrcVT = Src.getValueType(); // x>=0 ? (ppcf128)(iN)x : (ppcf128)(iN)x + 2^N; N=32,64,128. static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; static const uint64_t TwoE128[] = { 0x47f0000000000000LL, 0 }; ArrayRef Parts; switch (SrcVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported UINT_TO_FP!"); case MVT::i32: Parts = TwoE32; break; case MVT::i64: Parts = TwoE64; break; case MVT::i128: Parts = TwoE128; break; } // TODO: Are there other fast-math-flags to propagate to this FADD? SDValue NewLo = DAG.getConstantFP( APFloat(APFloat::PPCDoubleDouble(), APInt(128, Parts)), dl, MVT::ppcf128); if (Strict) { Lo = DAG.getNode(ISD::STRICT_FADD, dl, DAG.getVTList(VT, MVT::Other), {Chain, Hi, NewLo}, Flags); Chain = Lo.getValue(1); ReplaceValueWith(SDValue(N, 1), Chain); } else Lo = DAG.getNode(ISD::FADD, dl, VT, Hi, NewLo); Lo = DAG.getSelectCC(dl, Src, DAG.getConstant(0, dl, SrcVT), Lo, Hi, ISD::SETLT); GetPairElements(Lo, Lo, Hi); } //===----------------------------------------------------------------------===// // Float Operand Expansion //===----------------------------------------------------------------------===// /// ExpandFloatOperand - This method is called when the specified operand of the /// specified node is found to need expansion. At this point, all of the result /// types of the node are known to be legal, but other operands of the node may /// need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) { LLVM_DEBUG(dbgs() << "Expand float operand: "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) return false; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ExpandFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to expand this operator's operand!"); case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break; case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; case ISD::BR_CC: Res = ExpandFloatOp_BR_CC(N); break; case ISD::FCOPYSIGN: Res = ExpandFloatOp_FCOPYSIGN(N); break; case ISD::STRICT_FP_ROUND: case ISD::FP_ROUND: Res = ExpandFloatOp_FP_ROUND(N); break; case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: Res = ExpandFloatOp_FP_TO_XINT(N); break; case ISD::LROUND: Res = ExpandFloatOp_LROUND(N); break; case ISD::LLROUND: Res = ExpandFloatOp_LLROUND(N); break; case ISD::LRINT: Res = ExpandFloatOp_LRINT(N); break; case ISD::LLRINT: Res = ExpandFloatOp_LLRINT(N); break; case ISD::SELECT_CC: Res = ExpandFloatOp_SELECT_CC(N); break; case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: case ISD::SETCC: Res = ExpandFloatOp_SETCC(N); break; case ISD::STORE: Res = ExpandFloatOp_STORE(cast(N), OpNo); break; } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// FloatExpandSetCCOperands - Expand the operands of a comparison. This code /// is shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &dl, SDValue &Chain, bool IsSignaling) { SDValue LHSLo, LHSHi, RHSLo, RHSHi; GetExpandedFloat(NewLHS, LHSLo, LHSHi); GetExpandedFloat(NewRHS, RHSLo, RHSHi); assert(NewLHS.getValueType() == MVT::ppcf128 && "Unsupported setcc type!"); // FIXME: This generated code sucks. We want to generate // FCMPU crN, hi1, hi2 // BNE crN, L: // FCMPU crN, lo1, lo2 // The following can be improved, but not that much. SDValue Tmp1, Tmp2, Tmp3, OutputChain; Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETOEQ, Chain, IsSignaling); OutputChain = Tmp1->getNumValues() > 1 ? Tmp1.getValue(1) : SDValue(); Tmp2 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, CCCode, OutputChain, IsSignaling); OutputChain = Tmp2->getNumValues() > 1 ? Tmp2.getValue(1) : SDValue(); Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETUNE, OutputChain, IsSignaling); OutputChain = Tmp1->getNumValues() > 1 ? Tmp1.getValue(1) : SDValue(); Tmp2 = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, CCCode, OutputChain, IsSignaling); OutputChain = Tmp2->getNumValues() > 1 ? Tmp2.getValue(1) : SDValue(); Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); NewLHS = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3); NewRHS = SDValue(); // LHS is the result, not a compare. Chain = OutputChain; } SDValue DAGTypeLegalizer::ExpandFloatOp_BR_CC(SDNode *N) { SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); SDValue Chain; FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N), Chain); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!NewRHS.getNode()) { NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)), 0); } SDValue DAGTypeLegalizer::ExpandFloatOp_FCOPYSIGN(SDNode *N) { assert(N->getOperand(1).getValueType() == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDValue Lo, Hi; GetExpandedFloat(N->getOperand(1), Lo, Hi); // The ppcf128 value is providing only the sign; take it from the // higher-order double (which must have the larger magnitude). return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), N->getValueType(0), N->getOperand(0), Hi); } SDValue DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); assert(N->getOperand(IsStrict ? 1 : 0).getValueType() == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDValue Lo, Hi; GetExpandedFloat(N->getOperand(IsStrict ? 1 : 0), Lo, Hi); if (!IsStrict) // Round it the rest of the way (e.g. to f32) if needed. return DAG.getNode(ISD::FP_ROUND, SDLoc(N), N->getValueType(0), Hi, N->getOperand(1)); // Eliminate the node if the input float type is the same as the output float // type. if (Hi.getValueType() == N->getValueType(0)) { // Connect the output chain to the input chain, unlinking the node. ReplaceValueWith(SDValue(N, 1), N->getOperand(0)); ReplaceValueWith(SDValue(N, 0), Hi); return SDValue(); } SDValue Expansion = DAG.getNode(ISD::STRICT_FP_ROUND, SDLoc(N), {N->getValueType(0), MVT::Other}, {N->getOperand(0), Hi, N->getOperand(2)}); ReplaceValueWith(SDValue(N, 1), Expansion.getValue(1)); ReplaceValueWith(SDValue(N, 0), Expansion); return SDValue(); } SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_XINT(SDNode *N) { EVT RVT = N->getValueType(0); SDLoc dl(N); bool IsStrict = N->isStrictFPOpcode(); bool Signed = N->getOpcode() == ISD::FP_TO_SINT || N->getOpcode() == ISD::STRICT_FP_TO_SINT; SDValue Op = N->getOperand(IsStrict ? 1 : 0); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); EVT NVT; RTLIB::Libcall LC = findFPToIntLibcall(Op.getValueType(), RVT, NVT, Signed); assert(LC != RTLIB::UNKNOWN_LIBCALL && NVT.isSimple() && "Unsupported FP_TO_XINT!"); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); if (!IsStrict) return Tmp.first; ReplaceValueWith(SDValue(N, 1), Tmp.second); ReplaceValueWith(SDValue(N, 0), Tmp.first); return SDValue(); } SDValue DAGTypeLegalizer::ExpandFloatOp_SELECT_CC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); SDValue Chain; FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N), Chain); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!NewRHS.getNode()) { NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::ExpandFloatOp_SETCC(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); SDValue NewLHS = N->getOperand(IsStrict ? 1 : 0); SDValue NewRHS = N->getOperand(IsStrict ? 2 : 1); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); ISD::CondCode CCCode = cast(N->getOperand(IsStrict ? 3 : 2))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N), Chain, N->getOpcode() == ISD::STRICT_FSETCCS); // FloatExpandSetCCOperands always returned a scalar. assert(!NewRHS.getNode() && "Expect to return scalar"); assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); if (Chain) { ReplaceValueWith(SDValue(N, 0), NewLHS); ReplaceValueWith(SDValue(N, 1), Chain); return SDValue(); } return NewLHS; } SDValue DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) { if (ISD::isNormalStore(N)) return ExpandOp_NormalStore(N, OpNo); assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only expand the stored value so far"); StoreSDNode *ST = cast(N); SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ST->getValue().getValueType()); assert(NVT.isByteSized() && "Expanded type not byte sized!"); assert(ST->getMemoryVT().bitsLE(NVT) && "Float type not round?"); (void)NVT; SDValue Lo, Hi; GetExpandedOp(ST->getValue(), Lo, Hi); return DAG.getTruncStore(Chain, SDLoc(N), Hi, Ptr, ST->getMemoryVT(), ST->getMemOperand()); } SDValue DAGTypeLegalizer::ExpandFloatOp_LROUND(SDNode *N) { EVT RVT = N->getValueType(0); EVT RetVT = N->getOperand(0).getValueType(); TargetLowering::MakeLibCallOptions CallOptions; return TLI.makeLibCall(DAG, GetFPLibCall(RetVT, RTLIB::LROUND_F32, RTLIB::LROUND_F64, RTLIB::LROUND_F80, RTLIB::LROUND_F128, RTLIB::LROUND_PPCF128), RVT, N->getOperand(0), CallOptions, SDLoc(N)).first; } SDValue DAGTypeLegalizer::ExpandFloatOp_LLROUND(SDNode *N) { EVT RVT = N->getValueType(0); EVT RetVT = N->getOperand(0).getValueType(); TargetLowering::MakeLibCallOptions CallOptions; return TLI.makeLibCall(DAG, GetFPLibCall(RetVT, RTLIB::LLROUND_F32, RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, RTLIB::LLROUND_F128, RTLIB::LLROUND_PPCF128), RVT, N->getOperand(0), CallOptions, SDLoc(N)).first; } SDValue DAGTypeLegalizer::ExpandFloatOp_LRINT(SDNode *N) { EVT RVT = N->getValueType(0); EVT RetVT = N->getOperand(0).getValueType(); TargetLowering::MakeLibCallOptions CallOptions; return TLI.makeLibCall(DAG, GetFPLibCall(RetVT, RTLIB::LRINT_F32, RTLIB::LRINT_F64, RTLIB::LRINT_F80, RTLIB::LRINT_F128, RTLIB::LRINT_PPCF128), RVT, N->getOperand(0), CallOptions, SDLoc(N)).first; } SDValue DAGTypeLegalizer::ExpandFloatOp_LLRINT(SDNode *N) { EVT RVT = N->getValueType(0); EVT RetVT = N->getOperand(0).getValueType(); TargetLowering::MakeLibCallOptions CallOptions; return TLI.makeLibCall(DAG, GetFPLibCall(RetVT, RTLIB::LLRINT_F32, RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, RTLIB::LLRINT_F128, RTLIB::LLRINT_PPCF128), RVT, N->getOperand(0), CallOptions, SDLoc(N)).first; } //===----------------------------------------------------------------------===// // Float Operand Promotion //===----------------------------------------------------------------------===// // static ISD::NodeType GetPromotionOpcode(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f16) { return ISD::FP16_TO_FP; } else if (RetVT == MVT::f16) { return ISD::FP_TO_FP16; } else if (OpVT == MVT::bf16) { return ISD::BF16_TO_FP; } else if (RetVT == MVT::bf16) { return ISD::FP_TO_BF16; } report_fatal_error("Attempt at an invalid promotion-related conversion"); } bool DAGTypeLegalizer::PromoteFloatOperand(SDNode *N, unsigned OpNo) { LLVM_DEBUG(dbgs() << "Promote float operand " << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue R = SDValue(); if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) { LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n"); return false; } // Nodes that use a promotion-requiring floating point operand, but doesn't // produce a promotion-requiring floating point result, need to be legalized // to use the promoted float operand. Nodes that produce at least one // promotion-requiring floating point result have their operands legalized as // a part of PromoteFloatResult. switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "PromoteFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to promote this operator's operand!"); case ISD::BITCAST: R = PromoteFloatOp_BITCAST(N, OpNo); break; case ISD::FCOPYSIGN: R = PromoteFloatOp_FCOPYSIGN(N, OpNo); break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: R = PromoteFloatOp_FP_TO_XINT(N, OpNo); break; case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: R = PromoteFloatOp_FP_TO_XINT_SAT(N, OpNo); break; case ISD::FP_EXTEND: R = PromoteFloatOp_FP_EXTEND(N, OpNo); break; case ISD::SELECT_CC: R = PromoteFloatOp_SELECT_CC(N, OpNo); break; case ISD::SETCC: R = PromoteFloatOp_SETCC(N, OpNo); break; case ISD::STORE: R = PromoteFloatOp_STORE(N, OpNo); break; } if (R.getNode()) ReplaceValueWith(SDValue(N, 0), R); return false; } SDValue DAGTypeLegalizer::PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo) { SDValue Op = N->getOperand(0); EVT OpVT = Op->getValueType(0); SDValue Promoted = GetPromotedFloat(N->getOperand(0)); EVT PromotedVT = Promoted->getValueType(0); // Convert the promoted float value to the desired IVT. EVT IVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); SDValue Convert = DAG.getNode(GetPromotionOpcode(PromotedVT, OpVT), SDLoc(N), IVT, Promoted); // The final result type might not be an scalar so we need a bitcast. The // bitcast will be further legalized if needed. return DAG.getBitcast(N->getValueType(0), Convert); } // Promote Operand 1 of FCOPYSIGN. Operand 0 ought to be handled by // PromoteFloatRes_FCOPYSIGN. SDValue DAGTypeLegalizer::PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo) { assert (OpNo == 1 && "Only Operand 1 must need promotion here"); SDValue Op1 = GetPromotedFloat(N->getOperand(1)); return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), N->getOperand(0), Op1); } // Convert the promoted float value to the desired integer type SDValue DAGTypeLegalizer::PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo) { SDValue Op = GetPromotedFloat(N->getOperand(0)); return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), Op); } SDValue DAGTypeLegalizer::PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo) { SDValue Op = GetPromotedFloat(N->getOperand(0)); return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo) { SDValue Op = GetPromotedFloat(N->getOperand(0)); EVT VT = N->getValueType(0); // Desired VT is same as promoted type. Use promoted float directly. if (VT == Op->getValueType(0)) return Op; // Else, extend the promoted float value to the desired VT. return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Op); } // Promote the float operands used for comparison. The true- and false- // operands have the same type as the result and are promoted, if needed, by // PromoteFloatRes_SELECT_CC SDValue DAGTypeLegalizer::PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo) { SDValue LHS = GetPromotedFloat(N->getOperand(0)); SDValue RHS = GetPromotedFloat(N->getOperand(1)); return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0), LHS, RHS, N->getOperand(2), N->getOperand(3), N->getOperand(4)); } // Construct a SETCC that compares the promoted values and sets the conditional // code. SDValue DAGTypeLegalizer::PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo) { EVT VT = N->getValueType(0); SDValue Op0 = GetPromotedFloat(N->getOperand(0)); SDValue Op1 = GetPromotedFloat(N->getOperand(1)); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); return DAG.getSetCC(SDLoc(N), VT, Op0, Op1, CCCode); } // Lower the promoted Float down to the integer value of same size and construct // a STORE of the integer value. SDValue DAGTypeLegalizer::PromoteFloatOp_STORE(SDNode *N, unsigned OpNo) { StoreSDNode *ST = cast(N); SDValue Val = ST->getValue(); SDLoc DL(N); SDValue Promoted = GetPromotedFloat(Val); EVT VT = ST->getOperand(1).getValueType(); EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); SDValue NewVal; NewVal = DAG.getNode(GetPromotionOpcode(Promoted.getValueType(), VT), DL, IVT, Promoted); return DAG.getStore(ST->getChain(), DL, NewVal, ST->getBasePtr(), ST->getMemOperand()); } //===----------------------------------------------------------------------===// // Float Result Promotion //===----------------------------------------------------------------------===// void DAGTypeLegalizer::PromoteFloatResult(SDNode *N, unsigned ResNo) { LLVM_DEBUG(dbgs() << "Promote float result " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue R = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) { LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n"); return; } switch (N->getOpcode()) { // These opcodes cannot appear if promotion of FP16 is done in the backend // instead of Clang case ISD::FP16_TO_FP: case ISD::FP_TO_FP16: default: #ifndef NDEBUG dbgs() << "PromoteFloatResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to promote this operator's result!"); case ISD::BITCAST: R = PromoteFloatRes_BITCAST(N); break; case ISD::ConstantFP: R = PromoteFloatRes_ConstantFP(N); break; case ISD::EXTRACT_VECTOR_ELT: R = PromoteFloatRes_EXTRACT_VECTOR_ELT(N); break; case ISD::FCOPYSIGN: R = PromoteFloatRes_FCOPYSIGN(N); break; // Unary FP Operations case ISD::FABS: case ISD::FCBRT: case ISD::FCEIL: case ISD::FCOS: case ISD::FEXP: case ISD::FEXP2: case ISD::FFLOOR: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FNEARBYINT: case ISD::FNEG: case ISD::FRINT: case ISD::FROUND: case ISD::FROUNDEVEN: case ISD::FSIN: case ISD::FSQRT: case ISD::FTRUNC: case ISD::FCANONICALIZE: R = PromoteFloatRes_UnaryOp(N); break; // Binary FP Operations case ISD::FADD: case ISD::FDIV: case ISD::FMAXIMUM: case ISD::FMINIMUM: case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMUL: case ISD::FPOW: case ISD::FREM: case ISD::FSUB: R = PromoteFloatRes_BinOp(N); break; case ISD::FMA: // FMA is same as FMAD case ISD::FMAD: R = PromoteFloatRes_FMAD(N); break; case ISD::FPOWI: R = PromoteFloatRes_FPOWI(N); break; case ISD::FP_ROUND: R = PromoteFloatRes_FP_ROUND(N); break; case ISD::LOAD: R = PromoteFloatRes_LOAD(N); break; case ISD::SELECT: R = PromoteFloatRes_SELECT(N); break; case ISD::SELECT_CC: R = PromoteFloatRes_SELECT_CC(N); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: R = PromoteFloatRes_XINT_TO_FP(N); break; case ISD::UNDEF: R = PromoteFloatRes_UNDEF(N); break; case ISD::ATOMIC_SWAP: R = BitcastToInt_ATOMIC_SWAP(N); break; case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAX: R = PromoteFloatRes_VECREDUCE(N); break; case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_SEQ_FMUL: R = PromoteFloatRes_VECREDUCE_SEQ(N); break; } if (R.getNode()) SetPromotedFloat(SDValue(N, ResNo), R); } // Bitcast from i16 to f16: convert the i16 to a f32 value instead. // At this point, it is not possible to determine if the bitcast value is // eventually stored to memory or promoted to f32 or promoted to a floating // point at a higher precision. Some of these cases are handled by FP_EXTEND, // STORE promotion handlers. SDValue DAGTypeLegalizer::PromoteFloatRes_BITCAST(SDNode *N) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); // Input type isn't guaranteed to be a scalar int so bitcast if not. The // bitcast will be legalized further if necessary. EVT IVT = EVT::getIntegerVT(*DAG.getContext(), N->getOperand(0).getValueType().getSizeInBits()); SDValue Cast = DAG.getBitcast(IVT, N->getOperand(0)); return DAG.getNode(GetPromotionOpcode(VT, NVT), SDLoc(N), NVT, Cast); } SDValue DAGTypeLegalizer::PromoteFloatRes_ConstantFP(SDNode *N) { ConstantFPSDNode *CFPNode = cast(N); EVT VT = N->getValueType(0); SDLoc DL(N); // Get the (bit-cast) APInt of the APFloat and build an integer constant EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); SDValue C = DAG.getConstant(CFPNode->getValueAPF().bitcastToAPInt(), DL, IVT); // Convert the Constant to the desired FP type // FIXME We might be able to do the conversion during compilation and get rid // of it from the object code EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); return DAG.getNode(GetPromotionOpcode(VT, NVT), DL, NVT, C); } // If the Index operand is a constant, try to redirect the extract operation to // the correct legalized vector. If not, bit-convert the input vector to // equivalent integer vector. Extract the element as an (bit-cast) integer // value and convert it to the promoted type. SDValue DAGTypeLegalizer::PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N) { SDLoc DL(N); // If the index is constant, try to extract the value from the legalized // vector type. if (isa(N->getOperand(1))) { SDValue Vec = N->getOperand(0); SDValue Idx = N->getOperand(1); EVT VecVT = Vec->getValueType(0); EVT EltVT = VecVT.getVectorElementType(); uint64_t IdxVal = cast(Idx)->getZExtValue(); switch (getTypeAction(VecVT)) { default: break; case TargetLowering::TypeScalarizeVector: { SDValue Res = GetScalarizedVector(N->getOperand(0)); ReplaceValueWith(SDValue(N, 0), Res); return SDValue(); } case TargetLowering::TypeWidenVector: { Vec = GetWidenedVector(Vec); SDValue Res = DAG.getNode(N->getOpcode(), DL, EltVT, Vec, Idx); ReplaceValueWith(SDValue(N, 0), Res); return SDValue(); } case TargetLowering::TypeSplitVector: { SDValue Lo, Hi; GetSplitVector(Vec, Lo, Hi); uint64_t LoElts = Lo.getValueType().getVectorNumElements(); SDValue Res; if (IdxVal < LoElts) Res = DAG.getNode(N->getOpcode(), DL, EltVT, Lo, Idx); else Res = DAG.getNode(N->getOpcode(), DL, EltVT, Hi, DAG.getConstant(IdxVal - LoElts, DL, Idx.getValueType())); ReplaceValueWith(SDValue(N, 0), Res); return SDValue(); } } } // Bit-convert the input vector to the equivalent integer vector SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0)); EVT IVT = NewOp.getValueType().getVectorElementType(); // Extract the element as an (bit-cast) integer value SDValue NewVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IVT, NewOp, N->getOperand(1)); // Convert the element to the desired FP type EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); return DAG.getNode(GetPromotionOpcode(VT, NVT), SDLoc(N), NVT, NewVal); } // FCOPYSIGN(X, Y) returns the value of X with the sign of Y. If the result // needs promotion, so does the argument X. Note that Y, if needed, will be // handled during operand promotion. SDValue DAGTypeLegalizer::PromoteFloatRes_FCOPYSIGN(SDNode *N) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Op0 = GetPromotedFloat(N->getOperand(0)); SDValue Op1 = N->getOperand(1); return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1); } // Unary operation where the result and the operand have PromoteFloat type // action. Construct a new SDNode with the promoted float value of the old // operand. SDValue DAGTypeLegalizer::PromoteFloatRes_UnaryOp(SDNode *N) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Op = GetPromotedFloat(N->getOperand(0)); return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op); } // Binary operations where the result and both operands have PromoteFloat type // action. Construct a new SDNode with the promoted float values of the old // operands. SDValue DAGTypeLegalizer::PromoteFloatRes_BinOp(SDNode *N) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Op0 = GetPromotedFloat(N->getOperand(0)); SDValue Op1 = GetPromotedFloat(N->getOperand(1)); return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1, N->getFlags()); } SDValue DAGTypeLegalizer::PromoteFloatRes_FMAD(SDNode *N) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Op0 = GetPromotedFloat(N->getOperand(0)); SDValue Op1 = GetPromotedFloat(N->getOperand(1)); SDValue Op2 = GetPromotedFloat(N->getOperand(2)); return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1, Op2); } // Promote the Float (first) operand and retain the Integer (second) operand SDValue DAGTypeLegalizer::PromoteFloatRes_FPOWI(SDNode *N) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Op0 = GetPromotedFloat(N->getOperand(0)); SDValue Op1 = N->getOperand(1); return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1); } // Explicit operation to reduce precision. Reduce the value to half precision // and promote it back to the legal type. SDValue DAGTypeLegalizer::PromoteFloatRes_FP_ROUND(SDNode *N) { SDLoc DL(N); SDValue Op = N->getOperand(0); EVT VT = N->getValueType(0); EVT OpVT = Op->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); // Round promoted float to desired precision SDValue Round = DAG.getNode(GetPromotionOpcode(OpVT, VT), DL, IVT, Op); // Promote it back to the legal output type return DAG.getNode(GetPromotionOpcode(VT, NVT), DL, NVT, Round); } SDValue DAGTypeLegalizer::PromoteFloatRes_LOAD(SDNode *N) { LoadSDNode *L = cast(N); EVT VT = N->getValueType(0); // Load the value as an integer value with the same number of bits. EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); SDValue newL = DAG.getLoad( L->getAddressingMode(), L->getExtensionType(), IVT, SDLoc(N), L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), IVT, L->getOriginalAlign(), L->getMemOperand()->getFlags(), L->getAAInfo()); // Legalize the chain result by replacing uses of the old value chain with the // new one ReplaceValueWith(SDValue(N, 1), newL.getValue(1)); // Convert the integer value to the desired FP type EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); return DAG.getNode(GetPromotionOpcode(VT, NVT), SDLoc(N), NVT, newL); } // Construct a new SELECT node with the promoted true- and false- values. SDValue DAGTypeLegalizer::PromoteFloatRes_SELECT(SDNode *N) { SDValue TrueVal = GetPromotedFloat(N->getOperand(1)); SDValue FalseVal = GetPromotedFloat(N->getOperand(2)); return DAG.getNode(ISD::SELECT, SDLoc(N), TrueVal->getValueType(0), N->getOperand(0), TrueVal, FalseVal); } // Construct a new SELECT_CC node with the promoted true- and false- values. // The operands used for comparison are promoted by PromoteFloatOp_SELECT_CC. SDValue DAGTypeLegalizer::PromoteFloatRes_SELECT_CC(SDNode *N) { SDValue TrueVal = GetPromotedFloat(N->getOperand(2)); SDValue FalseVal = GetPromotedFloat(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, SDLoc(N), TrueVal.getNode()->getValueType(0), N->getOperand(0), N->getOperand(1), TrueVal, FalseVal, N->getOperand(4)); } // Construct a SDNode that transforms the SINT or UINT operand to the promoted // float type. SDValue DAGTypeLegalizer::PromoteFloatRes_XINT_TO_FP(SDNode *N) { SDLoc DL(N); EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue NV = DAG.getNode(N->getOpcode(), DL, NVT, N->getOperand(0)); // Round the value to the desired precision (that of the source type). return DAG.getNode( ISD::FP_EXTEND, DL, NVT, DAG.getNode(ISD::FP_ROUND, DL, VT, NV, DAG.getIntPtrConstant(0, DL))); } SDValue DAGTypeLegalizer::PromoteFloatRes_UNDEF(SDNode *N) { return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0))); } SDValue DAGTypeLegalizer::PromoteFloatRes_VECREDUCE(SDNode *N) { // Expand and promote recursively. // TODO: This is non-optimal, but dealing with the concurrently happening // vector-legalization is non-trivial. We could do something similar to // PromoteFloatRes_EXTRACT_VECTOR_ELT here. ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduce(N, DAG)); return SDValue(); } SDValue DAGTypeLegalizer::PromoteFloatRes_VECREDUCE_SEQ(SDNode *N) { ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduceSeq(N, DAG)); return SDValue(); } SDValue DAGTypeLegalizer::BitcastToInt_ATOMIC_SWAP(SDNode *N) { EVT VT = N->getValueType(0); AtomicSDNode *AM = cast(N); SDLoc SL(N); SDValue CastVal = BitConvertToInteger(AM->getVal()); EVT CastVT = CastVal.getValueType(); SDValue NewAtomic = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, CastVT, DAG.getVTList(CastVT, MVT::Other), { AM->getChain(), AM->getBasePtr(), CastVal }, AM->getMemOperand()); SDValue Result = NewAtomic; if (getTypeAction(VT) == TargetLowering::TypePromoteFloat) { EVT NFPVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); Result = DAG.getNode(GetPromotionOpcode(VT, NFPVT), SL, NFPVT, NewAtomic); } // Legalize the chain result by replacing uses of the old value chain with the // new one ReplaceValueWith(SDValue(N, 1), NewAtomic.getValue(1)); return Result; } //===----------------------------------------------------------------------===// // Half Result Soft Promotion //===----------------------------------------------------------------------===// void DAGTypeLegalizer::SoftPromoteHalfResult(SDNode *N, unsigned ResNo) { LLVM_DEBUG(dbgs() << "Soft promote half result " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue R = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) { LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n"); return; } switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SoftPromoteHalfResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to soft promote this operator's result!"); case ISD::BITCAST: R = SoftPromoteHalfRes_BITCAST(N); break; case ISD::ConstantFP: R = SoftPromoteHalfRes_ConstantFP(N); break; case ISD::EXTRACT_VECTOR_ELT: R = SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(N); break; case ISD::FCOPYSIGN: R = SoftPromoteHalfRes_FCOPYSIGN(N); break; case ISD::STRICT_FP_ROUND: case ISD::FP_ROUND: R = SoftPromoteHalfRes_FP_ROUND(N); break; // Unary FP Operations case ISD::FABS: case ISD::FCBRT: case ISD::FCEIL: case ISD::FCOS: case ISD::FEXP: case ISD::FEXP2: case ISD::FFLOOR: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FNEARBYINT: case ISD::FNEG: case ISD::FREEZE: case ISD::FRINT: case ISD::FROUND: case ISD::FROUNDEVEN: case ISD::FSIN: case ISD::FSQRT: case ISD::FTRUNC: case ISD::FCANONICALIZE: R = SoftPromoteHalfRes_UnaryOp(N); break; // Binary FP Operations case ISD::FADD: case ISD::FDIV: case ISD::FMAXIMUM: case ISD::FMINIMUM: case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMUL: case ISD::FPOW: case ISD::FREM: case ISD::FSUB: R = SoftPromoteHalfRes_BinOp(N); break; case ISD::FMA: // FMA is same as FMAD case ISD::FMAD: R = SoftPromoteHalfRes_FMAD(N); break; case ISD::FPOWI: R = SoftPromoteHalfRes_FPOWI(N); break; case ISD::LOAD: R = SoftPromoteHalfRes_LOAD(N); break; case ISD::SELECT: R = SoftPromoteHalfRes_SELECT(N); break; case ISD::SELECT_CC: R = SoftPromoteHalfRes_SELECT_CC(N); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: R = SoftPromoteHalfRes_XINT_TO_FP(N); break; case ISD::UNDEF: R = SoftPromoteHalfRes_UNDEF(N); break; case ISD::ATOMIC_SWAP: R = BitcastToInt_ATOMIC_SWAP(N); break; case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAX: R = SoftPromoteHalfRes_VECREDUCE(N); break; case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_SEQ_FMUL: R = SoftPromoteHalfRes_VECREDUCE_SEQ(N); break; } if (R.getNode()) SetSoftPromotedHalf(SDValue(N, ResNo), R); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_BITCAST(SDNode *N) { return BitConvertToInteger(N->getOperand(0)); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_ConstantFP(SDNode *N) { ConstantFPSDNode *CN = cast(N); // Get the (bit-cast) APInt of the APFloat and build an integer constant return DAG.getConstant(CN->getValueAPF().bitcastToAPInt(), SDLoc(CN), MVT::i16); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N) { SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0)); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NewOp.getValueType().getVectorElementType(), NewOp, N->getOperand(1)); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FCOPYSIGN(SDNode *N) { SDValue LHS = GetSoftPromotedHalf(N->getOperand(0)); SDValue RHS = BitConvertToInteger(N->getOperand(1)); SDLoc dl(N); EVT LVT = LHS.getValueType(); EVT RVT = RHS.getValueType(); unsigned LSize = LVT.getSizeInBits(); unsigned RSize = RVT.getSizeInBits(); // First get the sign bit of second operand. SDValue SignBit = DAG.getNode( ISD::SHL, dl, RVT, DAG.getConstant(1, dl, RVT), DAG.getConstant(RSize - 1, dl, TLI.getShiftAmountTy(RVT, DAG.getDataLayout()))); SignBit = DAG.getNode(ISD::AND, dl, RVT, RHS, SignBit); // Shift right or sign-extend it if the two operands have different types. int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits(); if (SizeDiff > 0) { SignBit = DAG.getNode(ISD::SRL, dl, RVT, SignBit, DAG.getConstant(SizeDiff, dl, TLI.getShiftAmountTy(SignBit.getValueType(), DAG.getDataLayout()))); SignBit = DAG.getNode(ISD::TRUNCATE, dl, LVT, SignBit); } else if (SizeDiff < 0) { SignBit = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, SignBit); SignBit = DAG.getNode(ISD::SHL, dl, LVT, SignBit, DAG.getConstant(-SizeDiff, dl, TLI.getShiftAmountTy(SignBit.getValueType(), DAG.getDataLayout()))); } // Clear the sign bit of the first operand. SDValue Mask = DAG.getNode( ISD::SHL, dl, LVT, DAG.getConstant(1, dl, LVT), DAG.getConstant(LSize - 1, dl, TLI.getShiftAmountTy(LVT, DAG.getDataLayout()))); Mask = DAG.getNode(ISD::SUB, dl, LVT, Mask, DAG.getConstant(1, dl, LVT)); LHS = DAG.getNode(ISD::AND, dl, LVT, LHS, Mask); // Or the value with the sign bit. return DAG.getNode(ISD::OR, dl, LVT, LHS, SignBit); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FMAD(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0)); SDValue Op1 = GetSoftPromotedHalf(N->getOperand(1)); SDValue Op2 = GetSoftPromotedHalf(N->getOperand(2)); SDLoc dl(N); // Promote to the larger FP type. Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0); Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1); Op2 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op2); SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op0, Op1, Op2); // Convert back to FP16 as an integer. return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FPOWI(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0)); SDValue Op1 = N->getOperand(1); SDLoc dl(N); Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0); SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op0, Op1); // Convert back to FP16 as an integer. return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FP_ROUND(SDNode *N) { if (N->isStrictFPOpcode()) { SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_FP16, SDLoc(N), {MVT::i16, MVT::Other}, {N->getOperand(0), N->getOperand(1)}); ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); return Res; } return DAG.getNode(ISD::FP_TO_FP16, SDLoc(N), MVT::i16, N->getOperand(0)); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_LOAD(SDNode *N) { LoadSDNode *L = cast(N); // Load the value as an integer value with the same number of bits. assert(L->getExtensionType() == ISD::NON_EXTLOAD && "Unexpected extension!"); SDValue NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), MVT::i16, SDLoc(N), L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), MVT::i16, L->getOriginalAlign(), L->getMemOperand()->getFlags(), L->getAAInfo()); // Legalize the chain result by replacing uses of the old value chain with the // new one ReplaceValueWith(SDValue(N, 1), NewL.getValue(1)); return NewL; } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_SELECT(SDNode *N) { SDValue Op1 = GetSoftPromotedHalf(N->getOperand(1)); SDValue Op2 = GetSoftPromotedHalf(N->getOperand(2)); return DAG.getSelect(SDLoc(N), Op1.getValueType(), N->getOperand(0), Op1, Op2); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_SELECT_CC(SDNode *N) { SDValue Op2 = GetSoftPromotedHalf(N->getOperand(2)); SDValue Op3 = GetSoftPromotedHalf(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, SDLoc(N), Op2.getValueType(), N->getOperand(0), N->getOperand(1), Op2, Op3, N->getOperand(4)); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_XINT_TO_FP(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0)); // Round the value to the softened type. return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_UNDEF(SDNode *N) { return DAG.getUNDEF(MVT::i16); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_UnaryOp(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftPromotedHalf(N->getOperand(0)); SDLoc dl(N); // Promote to the larger FP type. Op = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op); SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op); // Convert back to FP16 as an integer. return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_BinOp(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0)); SDValue Op1 = GetSoftPromotedHalf(N->getOperand(1)); SDLoc dl(N); // Promote to the larger FP type. Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0); Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1); SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op0, Op1); // Convert back to FP16 as an integer. return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_VECREDUCE(SDNode *N) { // Expand and soften recursively. ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduce(N, DAG)); return SDValue(); } SDValue DAGTypeLegalizer::SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N) { // Expand and soften. ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduceSeq(N, DAG)); return SDValue(); } //===----------------------------------------------------------------------===// // Half Operand Soft Promotion //===----------------------------------------------------------------------===// bool DAGTypeLegalizer::SoftPromoteHalfOperand(SDNode *N, unsigned OpNo) { LLVM_DEBUG(dbgs() << "Soft promote half operand " << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) { LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n"); return false; } // Nodes that use a promotion-requiring floating point operand, but doesn't // produce a soft promotion-requiring floating point result, need to be // legalized to use the soft promoted float operand. Nodes that produce at // least one soft promotion-requiring floating point result have their // operands legalized as a part of PromoteFloatResult. switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SoftPromoteHalfOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to soft promote this operator's operand!"); case ISD::BITCAST: Res = SoftPromoteHalfOp_BITCAST(N); break; case ISD::FCOPYSIGN: Res = SoftPromoteHalfOp_FCOPYSIGN(N, OpNo); break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: Res = SoftPromoteHalfOp_FP_TO_XINT(N); break; case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: Res = SoftPromoteHalfOp_FP_TO_XINT_SAT(N); break; case ISD::STRICT_FP_EXTEND: case ISD::FP_EXTEND: Res = SoftPromoteHalfOp_FP_EXTEND(N); break; case ISD::SELECT_CC: Res = SoftPromoteHalfOp_SELECT_CC(N, OpNo); break; case ISD::SETCC: Res = SoftPromoteHalfOp_SETCC(N); break; case ISD::STORE: Res = SoftPromoteHalfOp_STORE(N, OpNo); break; case ISD::STACKMAP: Res = SoftPromoteHalfOp_STACKMAP(N, OpNo); break; case ISD::PATCHPOINT: Res = SoftPromoteHalfOp_PATCHPOINT(N, OpNo); break; } if (!Res.getNode()) return false; assert(Res.getNode() != N && "Expected a new node!"); assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_BITCAST(SDNode *N) { SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0)); return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo) { assert(OpNo == 1 && "Only Operand 1 must need promotion here"); SDValue Op1 = N->getOperand(1); SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op1.getValueType()); Op1 = GetSoftPromotedHalf(Op1); Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1); return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), N->getOperand(0), Op1); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FP_EXTEND(SDNode *N) { bool IsStrict = N->isStrictFPOpcode(); SDValue Op = GetSoftPromotedHalf(N->getOperand(IsStrict ? 1 : 0)); if (IsStrict) { SDValue Res = DAG.getNode(ISD::STRICT_FP16_TO_FP, SDLoc(N), {N->getValueType(0), MVT::Other}, {N->getOperand(0), Op}); ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); ReplaceValueWith(SDValue(N, 0), Res); return SDValue(); } return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), Op); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FP_TO_XINT(SDNode *N) { SDValue Op = N->getOperand(0); SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()); Op = GetSoftPromotedHalf(Op); SDValue Res = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op); return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), Res); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N) { SDValue Op = N->getOperand(0); SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()); Op = GetSoftPromotedHalf(Op); SDValue Res = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op); return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), Res, N->getOperand(1)); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Can only soften the comparison values"); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op0.getValueType()); Op0 = GetSoftPromotedHalf(Op0); Op1 = GetSoftPromotedHalf(Op1); // Promote to the larger FP type. Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0); Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1); return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0), Op0, Op1, N->getOperand(2), N->getOperand(3), N->getOperand(4)); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_SETCC(SDNode *N) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op0.getValueType()); Op0 = GetSoftPromotedHalf(Op0); Op1 = GetSoftPromotedHalf(Op1); // Promote to the larger FP type. Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0); Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1); return DAG.getSetCC(SDLoc(N), N->getValueType(0), Op0, Op1, CCCode); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo) { assert(OpNo == 1 && "Can only soften the stored value!"); StoreSDNode *ST = cast(N); SDValue Val = ST->getValue(); SDLoc dl(N); assert(!ST->isTruncatingStore() && "Unexpected truncating store."); SDValue Promoted = GetSoftPromotedHalf(Val); return DAG.getStore(ST->getChain(), dl, Promoted, ST->getBasePtr(), ST->getMemOperand()); } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo) { assert(OpNo > 1); // Because the first two arguments are guaranteed legal. SmallVector NewOps(N->ops().begin(), N->ops().end()); SDValue Op = N->getOperand(OpNo); NewOps[OpNo] = GetSoftPromotedHalf(Op); SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), N->getVTList(), NewOps); for (unsigned ResNum = 0; ResNum < N->getNumValues(); ResNum++) ReplaceValueWith(SDValue(N, ResNum), NewNode.getValue(ResNum)); return SDValue(); // Signal that we replaced the node ourselves. } SDValue DAGTypeLegalizer::SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo) { assert(OpNo >= 7); SmallVector NewOps(N->ops().begin(), N->ops().end()); SDValue Op = N->getOperand(OpNo); NewOps[OpNo] = GetSoftPromotedHalf(Op); SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), N->getVTList(), NewOps); for (unsigned ResNum = 0; ResNum < N->getNumValues(); ResNum++) ReplaceValueWith(SDValue(N, ResNum), NewNode.getValue(ResNum)); return SDValue(); // Signal that we replaced the node ourselves. }