//===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Populates the VFABI attribute with the scalar-to-vector mappings // from the TargetLibraryInfo. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/InjectTLIMappings.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; #define DEBUG_TYPE "inject-tli-mappings" STATISTIC(NumCallInjected, "Number of calls in which the mappings have been injected."); STATISTIC(NumVFDeclAdded, "Number of function declarations that have been added."); STATISTIC(NumCompUsedAdded, "Number of `@llvm.compiler.used` operands that have been added."); /// A helper function that adds the vector function declaration that /// vectorizes the CallInst CI with a vectorization factor of VF /// lanes. The TLI assumes that all parameters and the return type of /// CI (other than void) need to be widened to a VectorType of VF /// lanes. static void addVariantDeclaration(CallInst &CI, const unsigned VF, const StringRef VFName) { Module *M = CI.getModule(); // Add function declaration. Type *RetTy = ToVectorTy(CI.getType(), VF); SmallVector Tys; for (Value *ArgOperand : CI.arg_operands()) Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); assert(!CI.getFunctionType()->isVarArg() && "VarArg functions are not supported."); FunctionType *FTy = FunctionType::get(RetTy, Tys, /*isVarArg=*/false); Function *VectorF = Function::Create(FTy, Function::ExternalLinkage, VFName, M); VectorF->copyAttributesFrom(CI.getCalledFunction()); ++NumVFDeclAdded; LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName << "` of type " << *(VectorF->getType()) << "\n"); // Make function declaration (without a body) "sticky" in the IR by // listing it in the @llvm.compiler.used intrinsic. assert(!VectorF->size() && "VFABI attribute requires `@llvm.compiler.used` " "only on declarations."); appendToCompilerUsed(*M, {VectorF}); LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName << "` to `@llvm.compiler.used`.\n"); ++NumCompUsedAdded; } static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) { // This is needed to make sure we don't query the TLI for calls to // bitcast of function pointers, like `%call = call i32 (i32*, ...) // bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`, // as such calls make the `isFunctionVectorizable` raise an // exception. if (CI.isNoBuiltin() || !CI.getCalledFunction()) return; StringRef ScalarName = CI.getCalledFunction()->getName(); // Nothing to be done if the TLI thinks the function is not // vectorizable. if (!TLI.isFunctionVectorizable(ScalarName)) return; SmallVector Mappings; VFABI::getVectorVariantNames(CI, Mappings); Module *M = CI.getModule(); const SetVector OriginalSetOfMappings(Mappings.begin(), Mappings.end()); // All VFs in the TLI are powers of 2. for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); VF <= WidestVF; VF *= 2) { const std::string TLIName = std::string(TLI.getVectorizedFunction(ScalarName, VF)); if (!TLIName.empty()) { std::string MangledName = VFABI::mangleTLIVectorName( TLIName, ScalarName, CI.getNumArgOperands(), VF); if (!OriginalSetOfMappings.count(MangledName)) { Mappings.push_back(MangledName); ++NumCallInjected; } Function *VariantF = M->getFunction(TLIName); if (!VariantF) addVariantDeclaration(CI, VF, TLIName); } } VFABI::setVectorVariantNames(&CI, Mappings); } static bool runImpl(const TargetLibraryInfo &TLI, Function &F) { for (auto &I : instructions(F)) if (auto CI = dyn_cast(&I)) addMappingsFromTLI(TLI, *CI); // Even if the pass adds IR attributes, the analyses are preserved. return false; } //////////////////////////////////////////////////////////////////////////////// // New pass manager implementation. //////////////////////////////////////////////////////////////////////////////// PreservedAnalyses InjectTLIMappings::run(Function &F, FunctionAnalysisManager &AM) { const TargetLibraryInfo &TLI = AM.getResult(F); runImpl(TLI, F); // Even if the pass adds IR attributes, the analyses are preserved. return PreservedAnalyses::all(); } //////////////////////////////////////////////////////////////////////////////// // Legacy PM Implementation. //////////////////////////////////////////////////////////////////////////////// bool InjectTLIMappingsLegacy::runOnFunction(Function &F) { const TargetLibraryInfo &TLI = getAnalysis().getTLI(F); return runImpl(TLI, F); } void InjectTLIMappingsLegacy::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } //////////////////////////////////////////////////////////////////////////////// // Legacy Pass manager initialization //////////////////////////////////////////////////////////////////////////////// char InjectTLIMappingsLegacy::ID = 0; INITIALIZE_PASS_BEGIN(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings", false, false) FunctionPass *llvm::createInjectTLIMappingsLegacyPass() { return new InjectTLIMappingsLegacy(); }