//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the CFG and CFGBuilder classes for representing and // building Control-Flow Graphs (CFGs) from ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_ANALYSIS_CFG_H #define LLVM_CLANG_ANALYSIS_CFG_H #include "clang/AST/Stmt.h" #include "clang/Analysis/Support/BumpVector.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include namespace clang { class CXXDestructorDecl; class Decl; class Stmt; class Expr; class FieldDecl; class VarDecl; class CXXCtorInitializer; class CXXBaseSpecifier; class CXXBindTemporaryExpr; class CFG; class PrinterHelper; class LangOptions; class ASTContext; class CXXRecordDecl; class CXXDeleteExpr; class CXXNewExpr; class BinaryOperator; /// CFGElement - Represents a top-level expression in a basic block. class CFGElement { public: enum Kind { // main kind Statement, Initializer, NewAllocator, // dtor kind AutomaticObjectDtor, DeleteDtor, BaseDtor, MemberDtor, TemporaryDtor, DTOR_BEGIN = AutomaticObjectDtor, DTOR_END = TemporaryDtor }; protected: // The int bits are used to mark the kind. llvm::PointerIntPair Data1; llvm::PointerIntPair Data2; CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr) : Data1(const_cast(Ptr1), ((unsigned) kind) & 0x3), Data2(const_cast(Ptr2), (((unsigned) kind) >> 2) & 0x3) { assert(getKind() == kind); } CFGElement() {} public: /// \brief Convert to the specified CFGElement type, asserting that this /// CFGElement is of the desired type. template T castAs() const { assert(T::isKind(*this)); T t; CFGElement& e = t; e = *this; return t; } /// \brief Convert to the specified CFGElement type, returning None if this /// CFGElement is not of the desired type. template Optional getAs() const { if (!T::isKind(*this)) return None; T t; CFGElement& e = t; e = *this; return t; } Kind getKind() const { unsigned x = Data2.getInt(); x <<= 2; x |= Data1.getInt(); return (Kind) x; } }; class CFGStmt : public CFGElement { public: CFGStmt(Stmt *S) : CFGElement(Statement, S) {} const Stmt *getStmt() const { return static_cast(Data1.getPointer()); } private: friend class CFGElement; CFGStmt() {} static bool isKind(const CFGElement &E) { return E.getKind() == Statement; } }; /// CFGInitializer - Represents C++ base or member initializer from /// constructor's initialization list. class CFGInitializer : public CFGElement { public: CFGInitializer(CXXCtorInitializer *initializer) : CFGElement(Initializer, initializer) {} CXXCtorInitializer* getInitializer() const { return static_cast(Data1.getPointer()); } private: friend class CFGElement; CFGInitializer() {} static bool isKind(const CFGElement &E) { return E.getKind() == Initializer; } }; /// CFGNewAllocator - Represents C++ allocator call. class CFGNewAllocator : public CFGElement { public: explicit CFGNewAllocator(const CXXNewExpr *S) : CFGElement(NewAllocator, S) {} // Get the new expression. const CXXNewExpr *getAllocatorExpr() const { return static_cast(Data1.getPointer()); } private: friend class CFGElement; CFGNewAllocator() {} static bool isKind(const CFGElement &elem) { return elem.getKind() == NewAllocator; } }; /// CFGImplicitDtor - Represents C++ object destructor implicitly generated /// by compiler on various occasions. class CFGImplicitDtor : public CFGElement { protected: CFGImplicitDtor() {} CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr) : CFGElement(kind, data1, data2) { assert(kind >= DTOR_BEGIN && kind <= DTOR_END); } public: const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const; bool isNoReturn(ASTContext &astContext) const; private: friend class CFGElement; static bool isKind(const CFGElement &E) { Kind kind = E.getKind(); return kind >= DTOR_BEGIN && kind <= DTOR_END; } }; /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated /// for automatic object or temporary bound to const reference at the point /// of leaving its local scope. class CFGAutomaticObjDtor: public CFGImplicitDtor { public: CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt) : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {} const VarDecl *getVarDecl() const { return static_cast(Data1.getPointer()); } // Get statement end of which triggered the destructor call. const Stmt *getTriggerStmt() const { return static_cast(Data2.getPointer()); } private: friend class CFGElement; CFGAutomaticObjDtor() {} static bool isKind(const CFGElement &elem) { return elem.getKind() == AutomaticObjectDtor; } }; /// CFGDeleteDtor - Represents C++ object destructor generated /// from a call to delete. class CFGDeleteDtor : public CFGImplicitDtor { public: CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE) : CFGImplicitDtor(DeleteDtor, RD, DE) {} const CXXRecordDecl *getCXXRecordDecl() const { return static_cast(Data1.getPointer()); } // Get Delete expression which triggered the destructor call. const CXXDeleteExpr *getDeleteExpr() const { return static_cast(Data2.getPointer()); } private: friend class CFGElement; CFGDeleteDtor() {} static bool isKind(const CFGElement &elem) { return elem.getKind() == DeleteDtor; } }; /// CFGBaseDtor - Represents C++ object destructor implicitly generated for /// base object in destructor. class CFGBaseDtor : public CFGImplicitDtor { public: CFGBaseDtor(const CXXBaseSpecifier *base) : CFGImplicitDtor(BaseDtor, base) {} const CXXBaseSpecifier *getBaseSpecifier() const { return static_cast(Data1.getPointer()); } private: friend class CFGElement; CFGBaseDtor() {} static bool isKind(const CFGElement &E) { return E.getKind() == BaseDtor; } }; /// CFGMemberDtor - Represents C++ object destructor implicitly generated for /// member object in destructor. class CFGMemberDtor : public CFGImplicitDtor { public: CFGMemberDtor(const FieldDecl *field) : CFGImplicitDtor(MemberDtor, field, nullptr) {} const FieldDecl *getFieldDecl() const { return static_cast(Data1.getPointer()); } private: friend class CFGElement; CFGMemberDtor() {} static bool isKind(const CFGElement &E) { return E.getKind() == MemberDtor; } }; /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated /// at the end of full expression for temporary object. class CFGTemporaryDtor : public CFGImplicitDtor { public: CFGTemporaryDtor(CXXBindTemporaryExpr *expr) : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {} const CXXBindTemporaryExpr *getBindTemporaryExpr() const { return static_cast(Data1.getPointer()); } private: friend class CFGElement; CFGTemporaryDtor() {} static bool isKind(const CFGElement &E) { return E.getKind() == TemporaryDtor; } }; /// CFGTerminator - Represents CFGBlock terminator statement. /// /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch /// in control flow of destructors of temporaries. In this case terminator /// statement is the same statement that branches control flow in evaluation /// of matching full expression. class CFGTerminator { llvm::PointerIntPair Data; public: CFGTerminator() {} CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false) : Data(S, TemporaryDtorsBranch) {} Stmt *getStmt() { return Data.getPointer(); } const Stmt *getStmt() const { return Data.getPointer(); } bool isTemporaryDtorsBranch() const { return Data.getInt(); } operator Stmt *() { return getStmt(); } operator const Stmt *() const { return getStmt(); } Stmt *operator->() { return getStmt(); } const Stmt *operator->() const { return getStmt(); } Stmt &operator*() { return *getStmt(); } const Stmt &operator*() const { return *getStmt(); } explicit operator bool() const { return getStmt(); } }; /// CFGBlock - Represents a single basic block in a source-level CFG. /// It consists of: /// /// (1) A set of statements/expressions (which may contain subexpressions). /// (2) A "terminator" statement (not in the set of statements). /// (3) A list of successors and predecessors. /// /// Terminator: The terminator represents the type of control-flow that occurs /// at the end of the basic block. The terminator is a Stmt* referring to an /// AST node that has control-flow: if-statements, breaks, loops, etc. /// If the control-flow is conditional, the condition expression will appear /// within the set of statements in the block (usually the last statement). /// /// Predecessors: the order in the set of predecessors is arbitrary. /// /// Successors: the order in the set of successors is NOT arbitrary. We /// currently have the following orderings based on the terminator: /// /// Terminator Successor Ordering /// ----------------------------------------------------- /// if Then Block; Else Block /// ? operator LHS expression; RHS expression /// &&, || expression that uses result of && or ||, RHS /// /// But note that any of that may be NULL in case of optimized-out edges. /// class CFGBlock { class ElementList { typedef BumpVector ImplTy; ImplTy Impl; public: ElementList(BumpVectorContext &C) : Impl(C, 4) {} typedef std::reverse_iterator iterator; typedef std::reverse_iterator const_iterator; typedef ImplTy::iterator reverse_iterator; typedef ImplTy::const_iterator const_reverse_iterator; typedef ImplTy::const_reference const_reference; void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); } reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E, BumpVectorContext &C) { return Impl.insert(I, Cnt, E, C); } const_reference front() const { return Impl.back(); } const_reference back() const { return Impl.front(); } iterator begin() { return Impl.rbegin(); } iterator end() { return Impl.rend(); } const_iterator begin() const { return Impl.rbegin(); } const_iterator end() const { return Impl.rend(); } reverse_iterator rbegin() { return Impl.begin(); } reverse_iterator rend() { return Impl.end(); } const_reverse_iterator rbegin() const { return Impl.begin(); } const_reverse_iterator rend() const { return Impl.end(); } CFGElement operator[](size_t i) const { assert(i < Impl.size()); return Impl[Impl.size() - 1 - i]; } size_t size() const { return Impl.size(); } bool empty() const { return Impl.empty(); } }; /// Stmts - The set of statements in the basic block. ElementList Elements; /// Label - An (optional) label that prefixes the executable /// statements in the block. When this variable is non-NULL, it is /// either an instance of LabelStmt, SwitchCase or CXXCatchStmt. Stmt *Label; /// Terminator - The terminator for a basic block that /// indicates the type of control-flow that occurs between a block /// and its successors. CFGTerminator Terminator; /// LoopTarget - Some blocks are used to represent the "loop edge" to /// the start of a loop from within the loop body. This Stmt* will be /// refer to the loop statement for such blocks (and be null otherwise). const Stmt *LoopTarget; /// BlockID - A numerical ID assigned to a CFGBlock during construction /// of the CFG. unsigned BlockID; public: /// This class represents a potential adjacent block in the CFG. It encodes /// whether or not the block is actually reachable, or can be proved to be /// trivially unreachable. For some cases it allows one to encode scenarios /// where a block was substituted because the original (now alternate) block /// is unreachable. class AdjacentBlock { enum Kind { AB_Normal, AB_Unreachable, AB_Alternate }; CFGBlock *ReachableBlock; llvm::PointerIntPair UnreachableBlock; public: /// Construct an AdjacentBlock with a possibly unreachable block. AdjacentBlock(CFGBlock *B, bool IsReachable); /// Construct an AdjacentBlock with a reachable block and an alternate /// unreachable block. AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock); /// Get the reachable block, if one exists. CFGBlock *getReachableBlock() const { return ReachableBlock; } /// Get the potentially unreachable block. CFGBlock *getPossiblyUnreachableBlock() const { return UnreachableBlock.getPointer(); } /// Provide an implicit conversion to CFGBlock* so that /// AdjacentBlock can be substituted for CFGBlock*. operator CFGBlock*() const { return getReachableBlock(); } CFGBlock& operator *() const { return *getReachableBlock(); } CFGBlock* operator ->() const { return getReachableBlock(); } bool isReachable() const { Kind K = (Kind) UnreachableBlock.getInt(); return K == AB_Normal || K == AB_Alternate; } }; private: /// Predecessors/Successors - Keep track of the predecessor / successor /// CFG blocks. typedef BumpVector AdjacentBlocks; AdjacentBlocks Preds; AdjacentBlocks Succs; /// NoReturn - This bit is set when the basic block contains a function call /// or implicit destructor that is attributed as 'noreturn'. In that case, /// control cannot technically ever proceed past this block. All such blocks /// will have a single immediate successor: the exit block. This allows them /// to be easily reached from the exit block and using this bit quickly /// recognized without scanning the contents of the block. /// /// Optimization Note: This bit could be profitably folded with Terminator's /// storage if the memory usage of CFGBlock becomes an issue. unsigned HasNoReturnElement : 1; /// Parent - The parent CFG that owns this CFGBlock. CFG *Parent; public: explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent) : Elements(C), Label(nullptr), Terminator(nullptr), LoopTarget(nullptr), BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false), Parent(parent) {} // Statement iterators typedef ElementList::iterator iterator; typedef ElementList::const_iterator const_iterator; typedef ElementList::reverse_iterator reverse_iterator; typedef ElementList::const_reverse_iterator const_reverse_iterator; CFGElement front() const { return Elements.front(); } CFGElement back() const { return Elements.back(); } iterator begin() { return Elements.begin(); } iterator end() { return Elements.end(); } const_iterator begin() const { return Elements.begin(); } const_iterator end() const { return Elements.end(); } reverse_iterator rbegin() { return Elements.rbegin(); } reverse_iterator rend() { return Elements.rend(); } const_reverse_iterator rbegin() const { return Elements.rbegin(); } const_reverse_iterator rend() const { return Elements.rend(); } unsigned size() const { return Elements.size(); } bool empty() const { return Elements.empty(); } CFGElement operator[](size_t i) const { return Elements[i]; } // CFG iterators typedef AdjacentBlocks::iterator pred_iterator; typedef AdjacentBlocks::const_iterator const_pred_iterator; typedef AdjacentBlocks::reverse_iterator pred_reverse_iterator; typedef AdjacentBlocks::const_reverse_iterator const_pred_reverse_iterator; typedef llvm::iterator_range pred_range; typedef llvm::iterator_range pred_const_range; typedef AdjacentBlocks::iterator succ_iterator; typedef AdjacentBlocks::const_iterator const_succ_iterator; typedef AdjacentBlocks::reverse_iterator succ_reverse_iterator; typedef AdjacentBlocks::const_reverse_iterator const_succ_reverse_iterator; typedef llvm::iterator_range succ_range; typedef llvm::iterator_range succ_const_range; pred_iterator pred_begin() { return Preds.begin(); } pred_iterator pred_end() { return Preds.end(); } const_pred_iterator pred_begin() const { return Preds.begin(); } const_pred_iterator pred_end() const { return Preds.end(); } pred_reverse_iterator pred_rbegin() { return Preds.rbegin(); } pred_reverse_iterator pred_rend() { return Preds.rend(); } const_pred_reverse_iterator pred_rbegin() const { return Preds.rbegin(); } const_pred_reverse_iterator pred_rend() const { return Preds.rend(); } pred_range preds() { return pred_range(pred_begin(), pred_end()); } pred_const_range preds() const { return pred_const_range(pred_begin(), pred_end()); } succ_iterator succ_begin() { return Succs.begin(); } succ_iterator succ_end() { return Succs.end(); } const_succ_iterator succ_begin() const { return Succs.begin(); } const_succ_iterator succ_end() const { return Succs.end(); } succ_reverse_iterator succ_rbegin() { return Succs.rbegin(); } succ_reverse_iterator succ_rend() { return Succs.rend(); } const_succ_reverse_iterator succ_rbegin() const { return Succs.rbegin(); } const_succ_reverse_iterator succ_rend() const { return Succs.rend(); } succ_range succs() { return succ_range(succ_begin(), succ_end()); } succ_const_range succs() const { return succ_const_range(succ_begin(), succ_end()); } unsigned succ_size() const { return Succs.size(); } bool succ_empty() const { return Succs.empty(); } unsigned pred_size() const { return Preds.size(); } bool pred_empty() const { return Preds.empty(); } class FilterOptions { public: FilterOptions() { IgnoreNullPredecessors = 1; IgnoreDefaultsWithCoveredEnums = 0; } unsigned IgnoreNullPredecessors : 1; unsigned IgnoreDefaultsWithCoveredEnums : 1; }; static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src, const CFGBlock *Dst); template class FilteredCFGBlockIterator { private: IMPL I, E; const FilterOptions F; const CFGBlock *From; public: explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e, const CFGBlock *from, const FilterOptions &f) : I(i), E(e), F(f), From(from) { while (hasMore() && Filter(*I)) ++I; } bool hasMore() const { return I != E; } FilteredCFGBlockIterator &operator++() { do { ++I; } while (hasMore() && Filter(*I)); return *this; } const CFGBlock *operator*() const { return *I; } private: bool Filter(const CFGBlock *To) { return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To); } }; typedef FilteredCFGBlockIterator filtered_pred_iterator; typedef FilteredCFGBlockIterator filtered_succ_iterator; filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const { return filtered_pred_iterator(pred_begin(), pred_end(), this, f); } filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const { return filtered_succ_iterator(succ_begin(), succ_end(), this, f); } // Manipulation of block contents void setTerminator(CFGTerminator Term) { Terminator = Term; } void setLabel(Stmt *Statement) { Label = Statement; } void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; } void setHasNoReturnElement() { HasNoReturnElement = true; } CFGTerminator getTerminator() { return Terminator; } const CFGTerminator getTerminator() const { return Terminator; } Stmt *getTerminatorCondition(bool StripParens = true); const Stmt *getTerminatorCondition(bool StripParens = true) const { return const_cast(this)->getTerminatorCondition(StripParens); } const Stmt *getLoopTarget() const { return LoopTarget; } Stmt *getLabel() { return Label; } const Stmt *getLabel() const { return Label; } bool hasNoReturnElement() const { return HasNoReturnElement; } unsigned getBlockID() const { return BlockID; } CFG *getParent() const { return Parent; } void dump() const; void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const; void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO, bool ShowColors) const; void printTerminator(raw_ostream &OS, const LangOptions &LO) const; void printAsOperand(raw_ostream &OS, bool /*PrintType*/) { OS << "BB#" << getBlockID(); } /// Adds a (potentially unreachable) successor block to the current block. void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C); void appendStmt(Stmt *statement, BumpVectorContext &C) { Elements.push_back(CFGStmt(statement), C); } void appendInitializer(CXXCtorInitializer *initializer, BumpVectorContext &C) { Elements.push_back(CFGInitializer(initializer), C); } void appendNewAllocator(CXXNewExpr *NE, BumpVectorContext &C) { Elements.push_back(CFGNewAllocator(NE), C); } void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) { Elements.push_back(CFGBaseDtor(BS), C); } void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) { Elements.push_back(CFGMemberDtor(FD), C); } void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) { Elements.push_back(CFGTemporaryDtor(E), C); } void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) { Elements.push_back(CFGAutomaticObjDtor(VD, S), C); } void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) { Elements.push_back(CFGDeleteDtor(RD, DE), C); } // Destructors must be inserted in reversed order. So insertion is in two // steps. First we prepare space for some number of elements, then we insert // the elements beginning at the last position in prepared space. iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt, BumpVectorContext &C) { return iterator(Elements.insert(I.base(), Cnt, CFGAutomaticObjDtor(nullptr, nullptr), C)); } iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) { *I = CFGAutomaticObjDtor(VD, S); return ++I; } }; /// \brief CFGCallback defines methods that should be called when a logical /// operator error is found when building the CFG. class CFGCallback { public: CFGCallback() {} virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {} virtual void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) {} virtual ~CFGCallback() {} }; /// CFG - Represents a source-level, intra-procedural CFG that represents the /// control-flow of a Stmt. The Stmt can represent an entire function body, /// or a single expression. A CFG will always contain one empty block that /// represents the Exit point of the CFG. A CFG will also contain a designated /// Entry block. The CFG solely represents control-flow; it consists of /// CFGBlocks which are simply containers of Stmt*'s in the AST the CFG /// was constructed from. class CFG { public: //===--------------------------------------------------------------------===// // CFG Construction & Manipulation. //===--------------------------------------------------------------------===// class BuildOptions { std::bitset alwaysAddMask; public: typedef llvm::DenseMap ForcedBlkExprs; ForcedBlkExprs **forcedBlkExprs; CFGCallback *Observer; bool PruneTriviallyFalseEdges; bool AddEHEdges; bool AddInitializers; bool AddImplicitDtors; bool AddTemporaryDtors; bool AddStaticInitBranches; bool AddCXXNewAllocator; bool AddCXXDefaultInitExprInCtors; bool alwaysAdd(const Stmt *stmt) const { return alwaysAddMask[stmt->getStmtClass()]; } BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) { alwaysAddMask[stmtClass] = val; return *this; } BuildOptions &setAllAlwaysAdd() { alwaysAddMask.set(); return *this; } BuildOptions() : forcedBlkExprs(nullptr), Observer(nullptr), PruneTriviallyFalseEdges(true), AddEHEdges(false), AddInitializers(false), AddImplicitDtors(false), AddTemporaryDtors(false), AddStaticInitBranches(false), AddCXXNewAllocator(false), AddCXXDefaultInitExprInCtors(false) {} }; /// buildCFG - Builds a CFG from an AST. static std::unique_ptr buildCFG(const Decl *D, Stmt *AST, ASTContext *C, const BuildOptions &BO); /// createBlock - Create a new block in the CFG. The CFG owns the block; /// the caller should not directly free it. CFGBlock *createBlock(); /// setEntry - Set the entry block of the CFG. This is typically used /// only during CFG construction. Most CFG clients expect that the /// entry block has no predecessors and contains no statements. void setEntry(CFGBlock *B) { Entry = B; } /// setIndirectGotoBlock - Set the block used for indirect goto jumps. /// This is typically used only during CFG construction. void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; } //===--------------------------------------------------------------------===// // Block Iterators //===--------------------------------------------------------------------===// typedef BumpVector CFGBlockListTy; typedef CFGBlockListTy::iterator iterator; typedef CFGBlockListTy::const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; CFGBlock & front() { return *Blocks.front(); } CFGBlock & back() { return *Blocks.back(); } iterator begin() { return Blocks.begin(); } iterator end() { return Blocks.end(); } const_iterator begin() const { return Blocks.begin(); } const_iterator end() const { return Blocks.end(); } iterator nodes_begin() { return iterator(Blocks.begin()); } iterator nodes_end() { return iterator(Blocks.end()); } const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); } const_iterator nodes_end() const { return const_iterator(Blocks.end()); } reverse_iterator rbegin() { return Blocks.rbegin(); } reverse_iterator rend() { return Blocks.rend(); } const_reverse_iterator rbegin() const { return Blocks.rbegin(); } const_reverse_iterator rend() const { return Blocks.rend(); } CFGBlock & getEntry() { return *Entry; } const CFGBlock & getEntry() const { return *Entry; } CFGBlock & getExit() { return *Exit; } const CFGBlock & getExit() const { return *Exit; } CFGBlock * getIndirectGotoBlock() { return IndirectGotoBlock; } const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; } typedef std::vector::const_iterator try_block_iterator; try_block_iterator try_blocks_begin() const { return TryDispatchBlocks.begin(); } try_block_iterator try_blocks_end() const { return TryDispatchBlocks.end(); } void addTryDispatchBlock(const CFGBlock *block) { TryDispatchBlocks.push_back(block); } /// Records a synthetic DeclStmt and the DeclStmt it was constructed from. /// /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains /// multiple decls. void addSyntheticDeclStmt(const DeclStmt *Synthetic, const DeclStmt *Source) { assert(Synthetic->isSingleDecl() && "Can handle single declarations only"); assert(Synthetic != Source && "Don't include original DeclStmts in map"); assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map"); SyntheticDeclStmts[Synthetic] = Source; } typedef llvm::DenseMap::const_iterator synthetic_stmt_iterator; typedef llvm::iterator_range synthetic_stmt_range; /// Iterates over synthetic DeclStmts in the CFG. /// /// Each element is a (synthetic statement, source statement) pair. /// /// \sa addSyntheticDeclStmt synthetic_stmt_iterator synthetic_stmt_begin() const { return SyntheticDeclStmts.begin(); } /// \sa synthetic_stmt_begin synthetic_stmt_iterator synthetic_stmt_end() const { return SyntheticDeclStmts.end(); } /// \sa synthetic_stmt_begin synthetic_stmt_range synthetic_stmts() const { return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end()); } //===--------------------------------------------------------------------===// // Member templates useful for various batch operations over CFGs. //===--------------------------------------------------------------------===// template void VisitBlockStmts(CALLBACK& O) const { for (const_iterator I=begin(), E=end(); I != E; ++I) for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end(); BI != BE; ++BI) { if (Optional stmt = BI->getAs()) O(const_cast(stmt->getStmt())); } } //===--------------------------------------------------------------------===// // CFG Introspection. //===--------------------------------------------------------------------===// /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which /// start at 0). unsigned getNumBlockIDs() const { return NumBlockIDs; } /// size - Return the total number of CFGBlocks within the CFG /// This is simply a renaming of the getNumBlockIDs(). This is necessary /// because the dominator implementation needs such an interface. unsigned size() const { return NumBlockIDs; } //===--------------------------------------------------------------------===// // CFG Debugging: Pretty-Printing and Visualization. //===--------------------------------------------------------------------===// void viewCFG(const LangOptions &LO) const; void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const; void dump(const LangOptions &LO, bool ShowColors) const; //===--------------------------------------------------------------------===// // Internal: constructors and data. //===--------------------------------------------------------------------===// CFG() : Entry(nullptr), Exit(nullptr), IndirectGotoBlock(nullptr), NumBlockIDs(0), Blocks(BlkBVC, 10) {} llvm::BumpPtrAllocator& getAllocator() { return BlkBVC.getAllocator(); } BumpVectorContext &getBumpVectorContext() { return BlkBVC; } private: CFGBlock *Entry; CFGBlock *Exit; CFGBlock* IndirectGotoBlock; // Special block to contain collective dispatch // for indirect gotos unsigned NumBlockIDs; BumpVectorContext BlkBVC; CFGBlockListTy Blocks; /// C++ 'try' statements are modeled with an indirect dispatch block. /// This is the collection of such blocks present in the CFG. std::vector TryDispatchBlocks; /// Collects DeclStmts synthesized for this CFG and maps each one back to its /// source DeclStmt. llvm::DenseMap SyntheticDeclStmts; }; } // end namespace clang //===----------------------------------------------------------------------===// // GraphTraits specializations for CFG basic block graphs (source-level CFGs) //===----------------------------------------------------------------------===// namespace llvm { /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from /// CFGTerminator to a specific Stmt class. template <> struct simplify_type< ::clang::CFGTerminator> { typedef ::clang::Stmt *SimpleType; static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) { return Val.getStmt(); } }; // Traits for: CFGBlock template <> struct GraphTraits< ::clang::CFGBlock *> { typedef ::clang::CFGBlock *NodeRef; typedef ::clang::CFGBlock::succ_iterator ChildIteratorType; static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; } static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } }; template <> struct GraphTraits< const ::clang::CFGBlock *> { typedef const ::clang::CFGBlock *NodeRef; typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType; static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; } static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } }; template <> struct GraphTraits > { typedef ::clang::CFGBlock *NodeRef; typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType; static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) { return G.Graph; } static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } }; template <> struct GraphTraits > { typedef const ::clang::CFGBlock *NodeRef; typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType; static NodeRef getEntryNode(Inverse G) { return G.Graph; } static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } }; // Traits for: CFG template <> struct GraphTraits< ::clang::CFG* > : public GraphTraits< ::clang::CFGBlock *> { typedef ::clang::CFG::iterator nodes_iterator; static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); } static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();} static nodes_iterator nodes_end(::clang::CFG* F) { return F->nodes_end(); } static unsigned size(::clang::CFG* F) { return F->size(); } }; template <> struct GraphTraits : public GraphTraits { typedef ::clang::CFG::const_iterator nodes_iterator; static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); } static nodes_iterator nodes_begin( const ::clang::CFG* F) { return F->nodes_begin(); } static nodes_iterator nodes_end( const ::clang::CFG* F) { return F->nodes_end(); } static unsigned size(const ::clang::CFG* F) { return F->size(); } }; template <> struct GraphTraits > : public GraphTraits > { typedef ::clang::CFG::iterator nodes_iterator; static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); } static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();} static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); } }; template <> struct GraphTraits > : public GraphTraits > { typedef ::clang::CFG::const_iterator nodes_iterator; static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); } static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->nodes_begin(); } static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->nodes_end(); } }; } // end llvm namespace #endif // LLVM_CLANG_ANALYSIS_CFG_H