//== llvm/Support/LowLevelTypeImpl.h --------------------------- -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// Implement a low-level type suitable for MachineInstr level instruction /// selection. /// /// For a type attached to a MachineInstr, we only care about 2 details: total /// size and the number of vector lanes (if any). Accordingly, there are 4 /// possible valid type-kinds: /// /// * `sN` for scalars and aggregates /// * `` for vectors, which must have at least 2 elements. /// * `pN` for pointers /// /// Other information required for correct selection is expected to be carried /// by the opcode, or non-type flags. For example the distinction between G_ADD /// and G_FADD for int/float or fast-math flags. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_LOWLEVELTYPEIMPL_H #define LLVM_SUPPORT_LOWLEVELTYPEIMPL_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/CodeGen/MachineValueType.h" #include namespace llvm { class DataLayout; class Type; class raw_ostream; class LLT { public: /// Get a low-level scalar or aggregate "bag of bits". static LLT scalar(unsigned SizeInBits) { assert(SizeInBits > 0 && "invalid scalar size"); return LLT{/*isPointer=*/false, /*isVector=*/false, /*NumElements=*/0, SizeInBits, /*AddressSpace=*/0}; } /// Get a low-level pointer in the given address space (defaulting to 0). static LLT pointer(uint16_t AddressSpace, unsigned SizeInBits) { assert(SizeInBits > 0 && "invalid pointer size"); return LLT{/*isPointer=*/true, /*isVector=*/false, /*NumElements=*/0, SizeInBits, AddressSpace}; } /// Get a low-level vector of some number of elements and element width. /// \p NumElements must be at least 2. static LLT vector(uint16_t NumElements, unsigned ScalarSizeInBits) { assert(NumElements > 1 && "invalid number of vector elements"); assert(ScalarSizeInBits > 0 && "invalid vector element size"); return LLT{/*isPointer=*/false, /*isVector=*/true, NumElements, ScalarSizeInBits, /*AddressSpace=*/0}; } /// Get a low-level vector of some number of elements and element type. static LLT vector(uint16_t NumElements, LLT ScalarTy) { assert(NumElements > 1 && "invalid number of vector elements"); assert(!ScalarTy.isVector() && "invalid vector element type"); return LLT{ScalarTy.isPointer(), /*isVector=*/true, NumElements, ScalarTy.getSizeInBits(), ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0}; } explicit LLT(bool isPointer, bool isVector, uint16_t NumElements, unsigned SizeInBits, unsigned AddressSpace) { init(isPointer, isVector, NumElements, SizeInBits, AddressSpace); } explicit LLT() : IsPointer(false), IsVector(false), RawData(0) {} explicit LLT(MVT VT); bool isValid() const { return RawData != 0; } bool isScalar() const { return isValid() && !IsPointer && !IsVector; } bool isPointer() const { return isValid() && IsPointer && !IsVector; } bool isVector() const { return isValid() && IsVector; } /// Returns the number of elements in a vector LLT. Must only be called on /// vector types. uint16_t getNumElements() const { assert(IsVector && "cannot get number of elements on scalar/aggregate"); if (!IsPointer) return getFieldValue(VectorElementsFieldInfo); else return getFieldValue(PointerVectorElementsFieldInfo); } /// Returns the total size of the type. Must only be called on sized types. unsigned getSizeInBits() const { if (isPointer() || isScalar()) return getScalarSizeInBits(); return getScalarSizeInBits() * getNumElements(); } unsigned getScalarSizeInBits() const { assert(RawData != 0 && "Invalid Type"); if (!IsVector) { if (!IsPointer) return getFieldValue(ScalarSizeFieldInfo); else return getFieldValue(PointerSizeFieldInfo); } else { if (!IsPointer) return getFieldValue(VectorSizeFieldInfo); else return getFieldValue(PointerVectorSizeFieldInfo); } } unsigned getAddressSpace() const { assert(RawData != 0 && "Invalid Type"); assert(IsPointer && "cannot get address space of non-pointer type"); if (!IsVector) return getFieldValue(PointerAddressSpaceFieldInfo); else return getFieldValue(PointerVectorAddressSpaceFieldInfo); } /// Returns the vector's element type. Only valid for vector types. LLT getElementType() const { assert(isVector() && "cannot get element type of scalar/aggregate"); if (IsPointer) return pointer(getAddressSpace(), getScalarSizeInBits()); else return scalar(getScalarSizeInBits()); } /// Get a low-level type with half the size of the original, by halving the /// size of the scalar type involved. For example `s32` will become `s16`, /// `<2 x s32>` will become `<2 x s16>`. LLT halfScalarSize() const { assert(!IsPointer && getScalarSizeInBits() > 1 && getScalarSizeInBits() % 2 == 0 && "cannot half size of this type"); return LLT{/*isPointer=*/false, IsVector ? true : false, IsVector ? getNumElements() : (uint16_t)0, getScalarSizeInBits() / 2, /*AddressSpace=*/0}; } /// Get a low-level type with twice the size of the original, by doubling the /// size of the scalar type involved. For example `s32` will become `s64`, /// `<2 x s32>` will become `<2 x s64>`. LLT doubleScalarSize() const { assert(!IsPointer && "cannot change size of this type"); return LLT{/*isPointer=*/false, IsVector ? true : false, IsVector ? getNumElements() : (uint16_t)0, getScalarSizeInBits() * 2, /*AddressSpace=*/0}; } /// Get a low-level type with half the size of the original, by halving the /// number of vector elements of the scalar type involved. The source must be /// a vector type with an even number of elements. For example `<4 x s32>` /// will become `<2 x s32>`, `<2 x s32>` will become `s32`. LLT halfElements() const { assert(isVector() && getNumElements() % 2 == 0 && "cannot half odd vector"); if (getNumElements() == 2) return scalar(getScalarSizeInBits()); return LLT{/*isPointer=*/false, /*isVector=*/true, (uint16_t)(getNumElements() / 2), getScalarSizeInBits(), /*AddressSpace=*/0}; } /// Get a low-level type with twice the size of the original, by doubling the /// number of vector elements of the scalar type involved. The source must be /// a vector type. For example `<2 x s32>` will become `<4 x s32>`. Doubling /// the number of elements in sN produces <2 x sN>. LLT doubleElements() const { return LLT{IsPointer ? true : false, /*isVector=*/true, (uint16_t)(getNumElements() * 2), getScalarSizeInBits(), IsPointer ? getAddressSpace() : 0}; } void print(raw_ostream &OS) const; bool operator==(const LLT &RHS) const { return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector && RHS.RawData == RawData; } bool operator!=(const LLT &RHS) const { return !(*this == RHS); } friend struct DenseMapInfo; private: /// LLT is packed into 64 bits as follows: /// isPointer : 1 /// isVector : 1 /// with 62 bits remaining for Kind-specific data, packed in bitfields /// as described below. As there isn't a simple portable way to pack bits /// into bitfields, here the different fields in the packed structure is /// described in static const *Field variables. Each of these variables /// is a 2-element array, with the first element describing the bitfield size /// and the second element describing the bitfield offset. typedef int BitFieldInfo[2]; /// /// This is how the bitfields are packed per Kind: /// * Invalid: /// gets encoded as RawData == 0, as that is an invalid encoding, since for /// valid encodings, SizeInBits/SizeOfElement must be larger than 0. /// * Non-pointer scalar (isPointer == 0 && isVector == 0): /// SizeInBits: 32; static const constexpr BitFieldInfo ScalarSizeFieldInfo{32, 0}; /// * Pointer (isPointer == 1 && isVector == 0): /// SizeInBits: 16; /// AddressSpace: 23; static const constexpr BitFieldInfo PointerSizeFieldInfo{16, 0}; static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{ 23, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]}; /// * Vector-of-non-pointer (isPointer == 0 && isVector == 1): /// NumElements: 16; /// SizeOfElement: 32; static const constexpr BitFieldInfo VectorElementsFieldInfo{16, 0}; static const constexpr BitFieldInfo VectorSizeFieldInfo{ 32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]}; /// * Vector-of-pointer (isPointer == 1 && isVector == 1): /// NumElements: 16; /// SizeOfElement: 16; /// AddressSpace: 23; static const constexpr BitFieldInfo PointerVectorElementsFieldInfo{16, 0}; static const constexpr BitFieldInfo PointerVectorSizeFieldInfo{ 16, PointerVectorElementsFieldInfo[1] + PointerVectorElementsFieldInfo[0]}; static const constexpr BitFieldInfo PointerVectorAddressSpaceFieldInfo{ 23, PointerVectorSizeFieldInfo[1] + PointerVectorSizeFieldInfo[0]}; uint64_t IsPointer : 1; uint64_t IsVector : 1; uint64_t RawData : 62; static uint64_t getMask(const BitFieldInfo FieldInfo) { const int FieldSizeInBits = FieldInfo[0]; return (((uint64_t)1) << FieldSizeInBits) - 1; } static uint64_t maskAndShift(uint64_t Val, uint64_t Mask, uint8_t Shift) { assert(Val <= Mask && "Value too large for field"); return (Val & Mask) << Shift; } static uint64_t maskAndShift(uint64_t Val, const BitFieldInfo FieldInfo) { return maskAndShift(Val, getMask(FieldInfo), FieldInfo[1]); } uint64_t getFieldValue(const BitFieldInfo FieldInfo) const { return getMask(FieldInfo) & (RawData >> FieldInfo[1]); } void init(bool IsPointer, bool IsVector, uint16_t NumElements, unsigned SizeInBits, unsigned AddressSpace) { this->IsPointer = IsPointer; this->IsVector = IsVector; if (!IsVector) { if (!IsPointer) RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo); else RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) | maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo); } else { assert(NumElements > 1 && "invalid number of vector elements"); if (!IsPointer) RawData = maskAndShift(NumElements, VectorElementsFieldInfo) | maskAndShift(SizeInBits, VectorSizeFieldInfo); else RawData = maskAndShift(NumElements, PointerVectorElementsFieldInfo) | maskAndShift(SizeInBits, PointerVectorSizeFieldInfo) | maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo); } } }; inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) { Ty.print(OS); return OS; } template<> struct DenseMapInfo { static inline LLT getEmptyKey() { LLT Invalid; Invalid.IsPointer = true; return Invalid; } static inline LLT getTombstoneKey() { LLT Invalid; Invalid.IsVector = true; return Invalid; } static inline unsigned getHashValue(const LLT &Ty) { uint64_t Val = ((uint64_t)Ty.RawData) << 2 | ((uint64_t)Ty.IsPointer) << 1 | ((uint64_t)Ty.IsVector); return DenseMapInfo::getHashValue(Val); } static bool isEqual(const LLT &LHS, const LLT &RHS) { return LHS == RHS; } }; } #endif // LLVM_SUPPORT_LOWLEVELTYPEIMPL_H