//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/CodeGen/BackendUtil.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/TargetOptions.h" #include "clang/Frontend/CodeGenOptions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/HeaderSearchOptions.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/Bitcode/BitcodeWriterPass.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/Verifier.h" #include "llvm/LTO/LTOBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Object/ModuleSummaryIndexObjectFile.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/Coroutines.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/AlwaysInliner.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/ObjCARC.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Utils/SymbolRewriter.h" #include using namespace clang; using namespace llvm; namespace { // Default filename used for profile generation. static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; class EmitAssemblyHelper { DiagnosticsEngine &Diags; const HeaderSearchOptions &HSOpts; const CodeGenOptions &CodeGenOpts; const clang::TargetOptions &TargetOpts; const LangOptions &LangOpts; Module *TheModule; Timer CodeGenerationTime; std::unique_ptr OS; TargetIRAnalysis getTargetIRAnalysis() const { if (TM) return TM->getTargetIRAnalysis(); return TargetIRAnalysis(); } void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); /// Generates the TargetMachine. /// Leaves TM unchanged if it is unable to create the target machine. /// Some of our clang tests specify triples which are not built /// into clang. This is okay because these tests check the generated /// IR, and they require DataLayout which depends on the triple. /// In this case, we allow this method to fail and not report an error. /// When MustCreateTM is used, we print an error if we are unable to load /// the requested target. void CreateTargetMachine(bool MustCreateTM); /// Add passes necessary to emit assembly or LLVM IR. /// /// \return True on success. bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, raw_pwrite_stream &OS); public: EmitAssemblyHelper(DiagnosticsEngine &_Diags, const HeaderSearchOptions &HeaderSearchOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, Module *M) : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), CodeGenerationTime("codegen", "Code Generation Time") {} ~EmitAssemblyHelper() { if (CodeGenOpts.DisableFree) BuryPointer(std::move(TM)); } std::unique_ptr TM; void EmitAssembly(BackendAction Action, std::unique_ptr OS); void EmitAssemblyWithNewPassManager(BackendAction Action, std::unique_ptr OS); }; // We need this wrapper to access LangOpts and CGOpts from extension functions // that we add to the PassManagerBuilder. class PassManagerBuilderWrapper : public PassManagerBuilder { public: PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, const LangOptions &LangOpts) : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} const CodeGenOptions &getCGOpts() const { return CGOpts; } const LangOptions &getLangOpts() const { return LangOpts; } private: const CodeGenOptions &CGOpts; const LangOptions &LangOpts; }; } static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { if (Builder.OptLevel > 0) PM.add(createObjCARCAPElimPass()); } static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { if (Builder.OptLevel > 0) PM.add(createObjCARCExpandPass()); } static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { if (Builder.OptLevel > 0) PM.add(createObjCARCOptPass()); } static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createAddDiscriminatorsPass()); } static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createBoundsCheckingPass()); } static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { const PassManagerBuilderWrapper &BuilderWrapper = static_cast(Builder); const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); SanitizerCoverageOptions Opts; Opts.CoverageType = static_cast(CGOpts.SanitizeCoverageType); Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; Opts.TracePC = CGOpts.SanitizeCoverageTracePC; Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; PM.add(createSanitizerCoverageModulePass(Opts)); } static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { const PassManagerBuilderWrapper &BuilderWrapper = static_cast(Builder); const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, UseAfterScope)); PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); } static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createAddressSanitizerFunctionPass( /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, /*Recover*/true)); } static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { const PassManagerBuilderWrapper &BuilderWrapper = static_cast(Builder); const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); PM.add(createMemorySanitizerPass(TrackOrigins, Recover)); // MemorySanitizer inserts complex instrumentation that mostly follows // the logic of the original code, but operates on "shadow" values. // It can benefit from re-running some general purpose optimization passes. if (Builder.OptLevel > 0) { PM.add(createEarlyCSEPass()); PM.add(createReassociatePass()); PM.add(createLICMPass()); PM.add(createGVNPass()); PM.add(createInstructionCombiningPass()); PM.add(createDeadStoreEliminationPass()); } } static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createThreadSanitizerPass()); } static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { const PassManagerBuilderWrapper &BuilderWrapper = static_cast(Builder); const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); } static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { const PassManagerBuilderWrapper &BuilderWrapper = static_cast(Builder); const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); EfficiencySanitizerOptions Opts; if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag)) Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet)) Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; PM.add(createEfficiencySanitizerPass(Opts)); } static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts) { TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); if (!CodeGenOpts.SimplifyLibCalls) TLII->disableAllFunctions(); else { // Disable individual libc/libm calls in TargetLibraryInfo. LibFunc F; for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) if (TLII->getLibFunc(FuncName, F)) TLII->setUnavailable(F); } switch (CodeGenOpts.getVecLib()) { case CodeGenOptions::Accelerate: TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); break; case CodeGenOptions::SVML: TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); break; default: break; } return TLII; } static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM) { llvm::SymbolRewriter::RewriteDescriptorList DL; llvm::SymbolRewriter::RewriteMapParser MapParser; for (const auto &MapFile : Opts.RewriteMapFiles) MapParser.parse(MapFile, &DL); MPM->add(createRewriteSymbolsPass(DL)); } static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { switch (CodeGenOpts.OptimizationLevel) { default: llvm_unreachable("Invalid optimization level!"); case 0: return CodeGenOpt::None; case 1: return CodeGenOpt::Less; case 2: return CodeGenOpt::Default; // O2/Os/Oz case 3: return CodeGenOpt::Aggressive; } } static llvm::CodeModel::Model getCodeModel(const CodeGenOptions &CodeGenOpts) { unsigned CodeModel = llvm::StringSwitch(CodeGenOpts.CodeModel) .Case("small", llvm::CodeModel::Small) .Case("kernel", llvm::CodeModel::Kernel) .Case("medium", llvm::CodeModel::Medium) .Case("large", llvm::CodeModel::Large) .Case("default", llvm::CodeModel::Default) .Default(~0u); assert(CodeModel != ~0u && "invalid code model!"); return static_cast(CodeModel); } static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) { // Keep this synced with the equivalent code in // lib/Frontend/CompilerInvocation.cpp llvm::Optional RM; RM = llvm::StringSwitch(CodeGenOpts.RelocationModel) .Case("static", llvm::Reloc::Static) .Case("pic", llvm::Reloc::PIC_) .Case("ropi", llvm::Reloc::ROPI) .Case("rwpi", llvm::Reloc::RWPI) .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI) .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC); assert(RM.hasValue() && "invalid PIC model!"); return *RM; } static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { if (Action == Backend_EmitObj) return TargetMachine::CGFT_ObjectFile; else if (Action == Backend_EmitMCNull) return TargetMachine::CGFT_Null; else { assert(Action == Backend_EmitAssembly && "Invalid action!"); return TargetMachine::CGFT_AssemblyFile; } } static void initTargetOptions(llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts) { Options.ThreadModel = llvm::StringSwitch(CodeGenOpts.ThreadModel) .Case("posix", llvm::ThreadModel::POSIX) .Case("single", llvm::ThreadModel::Single); // Set float ABI type. assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && "Invalid Floating Point ABI!"); Options.FloatABIType = llvm::StringSwitch(CodeGenOpts.FloatABI) .Case("soft", llvm::FloatABI::Soft) .Case("softfp", llvm::FloatABI::Soft) .Case("hard", llvm::FloatABI::Hard) .Default(llvm::FloatABI::Default); // Set FP fusion mode. switch (LangOpts.getDefaultFPContractMode()) { case LangOptions::FPC_Off: // Preserve any contraction performed by the front-end. (Strict performs // splitting of the muladd instrinsic in the backend.) Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; break; case LangOptions::FPC_On: Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; break; case LangOptions::FPC_Fast: Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; break; } Options.UseInitArray = CodeGenOpts.UseInitArray; Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; // Set EABI version. Options.EABIVersion = llvm::StringSwitch(TargetOpts.EABIVersion) .Case("4", llvm::EABI::EABI4) .Case("5", llvm::EABI::EABI5) .Case("gnu", llvm::EABI::GNU) .Default(llvm::EABI::Default); if (LangOpts.SjLjExceptions) Options.ExceptionModel = llvm::ExceptionHandling::SjLj; Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; Options.FunctionSections = CodeGenOpts.FunctionSections; Options.DataSections = CodeGenOpts.DataSections; Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; Options.MCOptions.MCIncrementalLinkerCompatible = CodeGenOpts.IncrementalLinkerCompatible; Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; Options.MCOptions.ABIName = TargetOpts.ABI; for (const auto &Entry : HSOpts.UserEntries) if (!Entry.IsFramework && (Entry.Group == frontend::IncludeDirGroup::Quoted || Entry.Group == frontend::IncludeDirGroup::Angled || Entry.Group == frontend::IncludeDirGroup::System)) Options.MCOptions.IASSearchPaths.push_back( Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); } void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM) { // Handle disabling of all LLVM passes, where we want to preserve the // internal module before any optimization. if (CodeGenOpts.DisableLLVMPasses) return; PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) // are inserted before PMBuilder ones - they'd get the default-constructed // TLI with an unknown target otherwise. Triple TargetTriple(TheModule->getTargetTriple()); std::unique_ptr TLII( createTLII(TargetTriple, CodeGenOpts)); // At O0 and O1 we only run the always inliner which is more efficient. At // higher optimization levels we run the normal inliner. if (CodeGenOpts.OptimizationLevel <= 1) { bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && !CodeGenOpts.DisableLifetimeMarkers); PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); } else { // We do not want to inline hot callsites for SamplePGO module-summary build // because profile annotation will happen again in ThinLTO backend, and we // want the IR of the hot path to match the profile. PMBuilder.Inliner = createFunctionInliningPass( CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, (!CodeGenOpts.SampleProfileFile.empty() && CodeGenOpts.EmitSummaryIndex)); } PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex; PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); if (TM) TM->adjustPassManager(PMBuilder); if (CodeGenOpts.DebugInfoForProfiling || !CodeGenOpts.SampleProfileFile.empty()) PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, addAddDiscriminatorsPass); // In ObjC ARC mode, add the main ARC optimization passes. if (LangOpts.ObjCAutoRefCount) { PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, addObjCARCExpandPass); PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, addObjCARCAPElimPass); PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, addObjCARCOptPass); } if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, addBoundsCheckingPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addBoundsCheckingPass); } if (CodeGenOpts.SanitizeCoverageType || CodeGenOpts.SanitizeCoverageIndirectCalls || CodeGenOpts.SanitizeCoverageTraceCmp) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addSanitizerCoveragePass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addSanitizerCoveragePass); } if (LangOpts.Sanitize.has(SanitizerKind::Address)) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addAddressSanitizerPasses); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addAddressSanitizerPasses); } if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addKernelAddressSanitizerPasses); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addKernelAddressSanitizerPasses); } if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addMemorySanitizerPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addMemorySanitizerPass); } if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addThreadSanitizerPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addThreadSanitizerPass); } if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addDataFlowSanitizerPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addDataFlowSanitizerPass); } if (LangOpts.CoroutinesTS) addCoroutinePassesToExtensionPoints(PMBuilder); if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addEfficiencySanitizerPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addEfficiencySanitizerPass); } // Set up the per-function pass manager. FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); if (CodeGenOpts.VerifyModule) FPM.add(createVerifierPass()); // Set up the per-module pass manager. if (!CodeGenOpts.RewriteMapFiles.empty()) addSymbolRewriterPass(CodeGenOpts, &MPM); if (!CodeGenOpts.DisableGCov && (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if // LLVM's -default-gcov-version flag is set to something invalid. GCOVOptions Options; Options.EmitNotes = CodeGenOpts.EmitGcovNotes; Options.EmitData = CodeGenOpts.EmitGcovArcs; memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; Options.NoRedZone = CodeGenOpts.DisableRedZone; Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; MPM.add(createGCOVProfilerPass(Options)); if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) MPM.add(createStripSymbolsPass(true)); } if (CodeGenOpts.hasProfileClangInstr()) { InstrProfOptions Options; Options.NoRedZone = CodeGenOpts.DisableRedZone; Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; MPM.add(createInstrProfilingLegacyPass(Options)); } if (CodeGenOpts.hasProfileIRInstr()) { PMBuilder.EnablePGOInstrGen = true; if (!CodeGenOpts.InstrProfileOutput.empty()) PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; else PMBuilder.PGOInstrGen = DefaultProfileGenName; } if (CodeGenOpts.hasProfileIRUse()) PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; if (!CodeGenOpts.SampleProfileFile.empty()) PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; PMBuilder.populateFunctionPassManager(FPM); PMBuilder.populateModulePassManager(MPM); } static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { SmallVector BackendArgs; BackendArgs.push_back("clang"); // Fake program name. if (!CodeGenOpts.DebugPass.empty()) { BackendArgs.push_back("-debug-pass"); BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); } if (!CodeGenOpts.LimitFloatPrecision.empty()) { BackendArgs.push_back("-limit-float-precision"); BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); } for (const std::string &BackendOption : CodeGenOpts.BackendOptions) BackendArgs.push_back(BackendOption.c_str()); BackendArgs.push_back(nullptr); llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, BackendArgs.data()); } void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { // Create the TargetMachine for generating code. std::string Error; std::string Triple = TheModule->getTargetTriple(); const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) { if (MustCreateTM) Diags.Report(diag::err_fe_unable_to_create_target) << Error; return; } llvm::CodeModel::Model CM = getCodeModel(CodeGenOpts); std::string FeaturesStr = llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); llvm::Reloc::Model RM = getRelocModel(CodeGenOpts); CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); llvm::TargetOptions Options; initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, Options, RM, CM, OptLevel)); } bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, raw_pwrite_stream &OS) { // Add LibraryInfo. llvm::Triple TargetTriple(TheModule->getTargetTriple()); std::unique_ptr TLII( createTLII(TargetTriple, CodeGenOpts)); CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); // Normal mode, emit a .s or .o file by running the code generator. Note, // this also adds codegenerator level optimization passes. TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); // Add ObjC ARC final-cleanup optimizations. This is done as part of the // "codegen" passes so that it isn't run multiple times when there is // inlining happening. if (CodeGenOpts.OptimizationLevel > 0) CodeGenPasses.add(createObjCARCContractPass()); if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT, /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { Diags.Report(diag::err_fe_unable_to_interface_with_target); return false; } return true; } void EmitAssemblyHelper::EmitAssembly(BackendAction Action, std::unique_ptr OS) { TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); setCommandLineOpts(CodeGenOpts); bool UsesCodeGen = (Action != Backend_EmitNothing && Action != Backend_EmitBC && Action != Backend_EmitLL); CreateTargetMachine(UsesCodeGen); if (UsesCodeGen && !TM) return; if (TM) TheModule->setDataLayout(TM->createDataLayout()); legacy::PassManager PerModulePasses; PerModulePasses.add( createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); legacy::FunctionPassManager PerFunctionPasses(TheModule); PerFunctionPasses.add( createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); CreatePasses(PerModulePasses, PerFunctionPasses); legacy::PassManager CodeGenPasses; CodeGenPasses.add( createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); std::unique_ptr ThinLinkOS; switch (Action) { case Backend_EmitNothing: break; case Backend_EmitBC: if (CodeGenOpts.EmitSummaryIndex) { if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { std::error_code EC; ThinLinkOS.reset(new llvm::raw_fd_ostream( CodeGenOpts.ThinLinkBitcodeFile, EC, llvm::sys::fs::F_None)); if (EC) { Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile << EC.message(); return; } } PerModulePasses.add( createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get())); } else PerModulePasses.add( createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists)); break; case Backend_EmitLL: PerModulePasses.add( createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); break; default: if (!AddEmitPasses(CodeGenPasses, Action, *OS)) return; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); // Run passes. For now we do all passes at once, but eventually we // would like to have the option of streaming code generation. { PrettyStackTraceString CrashInfo("Per-function optimization"); PerFunctionPasses.doInitialization(); for (Function &F : *TheModule) if (!F.isDeclaration()) PerFunctionPasses.run(F); PerFunctionPasses.doFinalization(); } { PrettyStackTraceString CrashInfo("Per-module optimization passes"); PerModulePasses.run(*TheModule); } { PrettyStackTraceString CrashInfo("Code generation"); CodeGenPasses.run(*TheModule); } } static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { switch (Opts.OptimizationLevel) { default: llvm_unreachable("Invalid optimization level!"); case 1: return PassBuilder::O1; case 2: switch (Opts.OptimizeSize) { default: llvm_unreachable("Invalide optimization level for size!"); case 0: return PassBuilder::O2; case 1: return PassBuilder::Os; case 2: return PassBuilder::Oz; } case 3: return PassBuilder::O3; } } /// A clean version of `EmitAssembly` that uses the new pass manager. /// /// Not all features are currently supported in this system, but where /// necessary it falls back to the legacy pass manager to at least provide /// basic functionality. /// /// This API is planned to have its functionality finished and then to replace /// `EmitAssembly` at some point in the future when the default switches. void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( BackendAction Action, std::unique_ptr OS) { TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); setCommandLineOpts(CodeGenOpts); // The new pass manager always makes a target machine available to passes // during construction. CreateTargetMachine(/*MustCreateTM*/ true); if (!TM) // This will already be diagnosed, just bail. return; TheModule->setDataLayout(TM->createDataLayout()); PGOOptions PGOOpt; // -fprofile-generate. PGOOpt.RunProfileGen = CodeGenOpts.hasProfileIRInstr(); if (PGOOpt.RunProfileGen) PGOOpt.ProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ? DefaultProfileGenName : CodeGenOpts.InstrProfileOutput; // -fprofile-use. if (CodeGenOpts.hasProfileIRUse()) PGOOpt.ProfileUseFile = CodeGenOpts.ProfileInstrumentUsePath; // Only pass a PGO options struct if -fprofile-generate or // -fprofile-use were passed on the cmdline. PassBuilder PB(TM.get(), (PGOOpt.RunProfileGen || !PGOOpt.ProfileUseFile.empty()) ? Optional(PGOOpt) : None); LoopAnalysisManager LAM; FunctionAnalysisManager FAM; CGSCCAnalysisManager CGAM; ModuleAnalysisManager MAM; // Register the AA manager first so that our version is the one used. FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); // Register all the basic analyses with the managers. PB.registerModuleAnalyses(MAM); PB.registerCGSCCAnalyses(CGAM); PB.registerFunctionAnalyses(FAM); PB.registerLoopAnalyses(LAM); PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); ModulePassManager MPM; if (!CodeGenOpts.DisableLLVMPasses) { if (CodeGenOpts.OptimizationLevel == 0) { // Build a minimal pipeline based on the semantics required by Clang, // which is just that always inlining occurs. MPM.addPass(AlwaysInlinerPass()); } else { // Otherwise, use the default pass pipeline. We also have to map our // optimization levels into one of the distinct levels used to configure // the pipeline. PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); MPM = PB.buildPerModuleDefaultPipeline(Level); } } // FIXME: We still use the legacy pass manager to do code generation. We // create that pass manager here and use it as needed below. legacy::PassManager CodeGenPasses; bool NeedCodeGen = false; // Append any output we need to the pass manager. switch (Action) { case Backend_EmitNothing: break; case Backend_EmitBC: MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitSummaryIndex, CodeGenOpts.EmitSummaryIndex)); break; case Backend_EmitLL: MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); break; case Backend_EmitAssembly: case Backend_EmitMCNull: case Backend_EmitObj: NeedCodeGen = true; CodeGenPasses.add( createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); if (!AddEmitPasses(CodeGenPasses, Action, *OS)) // FIXME: Should we handle this error differently? return; break; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); // Now that we have all of the passes ready, run them. { PrettyStackTraceString CrashInfo("Optimizer"); MPM.run(*TheModule, MAM); } // Now if needed, run the legacy PM for codegen. if (NeedCodeGen) { PrettyStackTraceString CrashInfo("Code generation"); CodeGenPasses.run(*TheModule); } } Expected clang::FindThinLTOModule(MemoryBufferRef MBRef) { Expected> BMsOrErr = getBitcodeModuleList(MBRef); if (!BMsOrErr) return BMsOrErr.takeError(); // The bitcode file may contain multiple modules, we want the one with a // summary. for (BitcodeModule &BM : *BMsOrErr) { Expected HasSummary = BM.hasSummary(); if (HasSummary && *HasSummary) return BM; } return make_error("Could not find module summary", inconvertibleErrorCode()); } static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr OS, std::string SampleProfile, BackendAction Action) { StringMap> ModuleToDefinedGVSummaries; CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); setCommandLineOpts(CGOpts); // We can simply import the values mentioned in the combined index, since // we should only invoke this using the individual indexes written out // via a WriteIndexesThinBackend. FunctionImporter::ImportMapTy ImportList; for (auto &GlobalList : *CombinedIndex) { auto GUID = GlobalList.first; assert(GlobalList.second.size() == 1 && "Expected individual combined index to have one summary per GUID"); auto &Summary = GlobalList.second[0]; // Skip the summaries for the importing module. These are included to // e.g. record required linkage changes. if (Summary->modulePath() == M->getModuleIdentifier()) continue; // Doesn't matter what value we plug in to the map, just needs an entry // to provoke importing by thinBackend. ImportList[Summary->modulePath()][GUID] = 1; } std::vector> OwnedImports; MapVector ModuleMap; for (auto &I : ImportList) { ErrorOr> MBOrErr = llvm::MemoryBuffer::getFile(I.first()); if (!MBOrErr) { errs() << "Error loading imported file '" << I.first() << "': " << MBOrErr.getError().message() << "\n"; return; } Expected BMOrErr = FindThinLTOModule(**MBOrErr); if (!BMOrErr) { handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { errs() << "Error loading imported file '" << I.first() << "': " << EIB.message() << '\n'; }); return; } ModuleMap.insert({I.first(), *BMOrErr}); OwnedImports.push_back(std::move(*MBOrErr)); } auto AddStream = [&](size_t Task) { return llvm::make_unique(std::move(OS)); }; lto::Config Conf; Conf.CPU = TOpts.CPU; Conf.CodeModel = getCodeModel(CGOpts); Conf.MAttrs = TOpts.Features; Conf.RelocModel = getRelocModel(CGOpts); Conf.CGOptLevel = getCGOptLevel(CGOpts); initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); Conf.SampleProfile = std::move(SampleProfile); switch (Action) { case Backend_EmitNothing: Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { return false; }; break; case Backend_EmitLL: Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); return false; }; break; case Backend_EmitBC: Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists); return false; }; break; default: Conf.CGFileType = getCodeGenFileType(Action); break; } if (Error E = thinBackend( Conf, 0, AddStream, *M, *CombinedIndex, ImportList, ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; }); } } void clang::EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, Module *M, BackendAction Action, std::unique_ptr OS) { if (!CGOpts.ThinLTOIndexFile.empty()) { // If we are performing a ThinLTO importing compile, load the function index // into memory and pass it into runThinLTOBackend, which will run the // function importer and invoke LTO passes. Expected> IndexOrErr = llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile); if (!IndexOrErr) { logAllUnhandledErrors(IndexOrErr.takeError(), errs(), "Error loading index file '" + CGOpts.ThinLTOIndexFile + "': "); return; } std::unique_ptr CombinedIndex = std::move(*IndexOrErr); // A null CombinedIndex means we should skip ThinLTO compilation // (LLVM will optionally ignore empty index files, returning null instead // of an error). bool DoThinLTOBackend = CombinedIndex != nullptr; if (DoThinLTOBackend) { runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, Action); return; } } EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); if (CGOpts.ExperimentalNewPassManager) AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); else AsmHelper.EmitAssembly(Action, std::move(OS)); // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's // DataLayout. if (AsmHelper.TM) { std::string DLDesc = M->getDataLayout().getStringRepresentation(); if (DLDesc != TDesc.getStringRepresentation()) { unsigned DiagID = Diags.getCustomDiagID( DiagnosticsEngine::Error, "backend data layout '%0' does not match " "expected target description '%1'"); Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); } } } static const char* getSectionNameForBitcode(const Triple &T) { switch (T.getObjectFormat()) { case Triple::MachO: return "__LLVM,__bitcode"; case Triple::COFF: case Triple::ELF: case Triple::Wasm: case Triple::UnknownObjectFormat: return ".llvmbc"; } llvm_unreachable("Unimplemented ObjectFormatType"); } static const char* getSectionNameForCommandline(const Triple &T) { switch (T.getObjectFormat()) { case Triple::MachO: return "__LLVM,__cmdline"; case Triple::COFF: case Triple::ELF: case Triple::Wasm: case Triple::UnknownObjectFormat: return ".llvmcmd"; } llvm_unreachable("Unimplemented ObjectFormatType"); } // With -fembed-bitcode, save a copy of the llvm IR as data in the // __LLVM,__bitcode section. void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf) { if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) return; // Save llvm.compiler.used and remote it. SmallVector UsedArray; SmallSet UsedGlobals; Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); for (auto *GV : UsedGlobals) { if (GV->getName() != "llvm.embedded.module" && GV->getName() != "llvm.cmdline") UsedArray.push_back( ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); } if (Used) Used->eraseFromParent(); // Embed the bitcode for the llvm module. std::string Data; ArrayRef ModuleData; Triple T(M->getTargetTriple()); // Create a constant that contains the bitcode. // In case of embedding a marker, ignore the input Buf and use the empty // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { if (!isBitcode((const unsigned char *)Buf.getBufferStart(), (const unsigned char *)Buf.getBufferEnd())) { // If the input is LLVM Assembly, bitcode is produced by serializing // the module. Use-lists order need to be perserved in this case. llvm::raw_string_ostream OS(Data); llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); ModuleData = ArrayRef((const uint8_t *)OS.str().data(), OS.str().size()); } else // If the input is LLVM bitcode, write the input byte stream directly. ModuleData = ArrayRef((const uint8_t *)Buf.getBufferStart(), Buf.getBufferSize()); } llvm::Constant *ModuleConstant = llvm::ConstantDataArray::get(M->getContext(), ModuleData); llvm::GlobalVariable *GV = new llvm::GlobalVariable( *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, ModuleConstant); GV->setSection(getSectionNameForBitcode(T)); UsedArray.push_back( ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); if (llvm::GlobalVariable *Old = M->getGlobalVariable("llvm.embedded.module", true)) { assert(Old->hasOneUse() && "llvm.embedded.module can only be used once in llvm.compiler.used"); GV->takeName(Old); Old->eraseFromParent(); } else { GV->setName("llvm.embedded.module"); } // Skip if only bitcode needs to be embedded. if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { // Embed command-line options. ArrayRef CmdData(const_cast(CGOpts.CmdArgs.data()), CGOpts.CmdArgs.size()); llvm::Constant *CmdConstant = llvm::ConstantDataArray::get(M->getContext(), CmdData); GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, CmdConstant); GV->setSection(getSectionNameForCommandline(T)); UsedArray.push_back( ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); if (llvm::GlobalVariable *Old = M->getGlobalVariable("llvm.cmdline", true)) { assert(Old->hasOneUse() && "llvm.cmdline can only be used once in llvm.compiler.used"); GV->takeName(Old); Old->eraseFromParent(); } else { GV->setName("llvm.cmdline"); } } if (UsedArray.empty()) return; // Recreate llvm.compiler.used. ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); auto *NewUsed = new GlobalVariable( *M, ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); NewUsed->setSection("llvm.metadata"); }