//===----- CGCoroutine.cpp - Emit LLVM Code for C++ coroutines ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of coroutines. // //===----------------------------------------------------------------------===// #include "CGCleanup.h" #include "CodeGenFunction.h" #include "llvm/ADT/ScopeExit.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtVisitor.h" using namespace clang; using namespace CodeGen; using llvm::Value; using llvm::BasicBlock; namespace { enum class AwaitKind { Init, Normal, Yield, Final }; static constexpr llvm::StringLiteral AwaitKindStr[] = {"init", "await", "yield", "final"}; } struct clang::CodeGen::CGCoroData { // What is the current await expression kind and how many // await/yield expressions were encountered so far. // These are used to generate pretty labels for await expressions in LLVM IR. AwaitKind CurrentAwaitKind = AwaitKind::Init; unsigned AwaitNum = 0; unsigned YieldNum = 0; // How many co_return statements are in the coroutine. Used to decide whether // we need to add co_return; equivalent at the end of the user authored body. unsigned CoreturnCount = 0; // A branch to this block is emitted when coroutine needs to suspend. llvm::BasicBlock *SuspendBB = nullptr; // Stores the jump destination just before the coroutine memory is freed. // This is the destination that every suspend point jumps to for the cleanup // branch. CodeGenFunction::JumpDest CleanupJD; // Stores the jump destination just before the final suspend. The co_return // statements jumps to this point after calling return_xxx promise member. CodeGenFunction::JumpDest FinalJD; // Stores the llvm.coro.id emitted in the function so that we can supply it // as the first argument to coro.begin, coro.alloc and coro.free intrinsics. // Note: llvm.coro.id returns a token that cannot be directly expressed in a // builtin. llvm::CallInst *CoroId = nullptr; // Stores the llvm.coro.begin emitted in the function so that we can replace // all coro.frame intrinsics with direct SSA value of coro.begin that returns // the address of the coroutine frame of the current coroutine. llvm::CallInst *CoroBegin = nullptr; // Stores the last emitted coro.free for the deallocate expressions, we use it // to wrap dealloc code with if(auto mem = coro.free) dealloc(mem). llvm::CallInst *LastCoroFree = nullptr; // If coro.id came from the builtin, remember the expression to give better // diagnostic. If CoroIdExpr is nullptr, the coro.id was created by // EmitCoroutineBody. CallExpr const *CoroIdExpr = nullptr; }; // Defining these here allows to keep CGCoroData private to this file. clang::CodeGen::CodeGenFunction::CGCoroInfo::CGCoroInfo() {} CodeGenFunction::CGCoroInfo::~CGCoroInfo() {} static void createCoroData(CodeGenFunction &CGF, CodeGenFunction::CGCoroInfo &CurCoro, llvm::CallInst *CoroId, CallExpr const *CoroIdExpr = nullptr) { if (CurCoro.Data) { if (CurCoro.Data->CoroIdExpr) CGF.CGM.Error(CoroIdExpr->getLocStart(), "only one __builtin_coro_id can be used in a function"); else if (CoroIdExpr) CGF.CGM.Error(CoroIdExpr->getLocStart(), "__builtin_coro_id shall not be used in a C++ coroutine"); else llvm_unreachable("EmitCoroutineBodyStatement called twice?"); return; } CurCoro.Data = std::unique_ptr(new CGCoroData); CurCoro.Data->CoroId = CoroId; CurCoro.Data->CoroIdExpr = CoroIdExpr; } // Synthesize a pretty name for a suspend point. static SmallString<32> buildSuspendPrefixStr(CGCoroData &Coro, AwaitKind Kind) { unsigned No = 0; switch (Kind) { case AwaitKind::Init: case AwaitKind::Final: break; case AwaitKind::Normal: No = ++Coro.AwaitNum; break; case AwaitKind::Yield: No = ++Coro.YieldNum; break; } SmallString<32> Prefix(AwaitKindStr[static_cast(Kind)]); if (No > 1) { Twine(No).toVector(Prefix); } return Prefix; } // Emit suspend expression which roughly looks like: // // auto && x = CommonExpr(); // if (!x.await_ready()) { // llvm_coro_save(); // x.await_suspend(...); (*) // llvm_coro_suspend(); (**) // } // x.await_resume(); // // where the result of the entire expression is the result of x.await_resume() // // (*) If x.await_suspend return type is bool, it allows to veto a suspend: // if (x.await_suspend(...)) // llvm_coro_suspend(); // // (**) llvm_coro_suspend() encodes three possible continuations as // a switch instruction: // // %where-to = call i8 @llvm.coro.suspend(...) // switch i8 %where-to, label %coro.ret [ ; jump to epilogue to suspend // i8 0, label %yield.ready ; go here when resumed // i8 1, label %yield.cleanup ; go here when destroyed // ] // // See llvm's docs/Coroutines.rst for more details. // static RValue emitSuspendExpression(CodeGenFunction &CGF, CGCoroData &Coro, CoroutineSuspendExpr const &S, AwaitKind Kind, AggValueSlot aggSlot, bool ignoreResult) { auto *E = S.getCommonExpr(); // FIXME: rsmith 5/22/2017. Does it still make sense for us to have a // UO_Coawait at all? As I recall, the only purpose it ever had was to // represent a dependent co_await expression that couldn't yet be resolved to // a CoawaitExpr. But now we have (and need!) a separate DependentCoawaitExpr // node to store unqualified lookup results, it seems that the UnaryOperator // portion of the representation serves no purpose (and as seen in this patch, // it's getting in the way). Can we remove it? // Skip passthrough operator co_await (present when awaiting on an LValue). if (auto *UO = dyn_cast(E)) if (UO->getOpcode() == UO_Coawait) E = UO->getSubExpr(); auto Binder = CodeGenFunction::OpaqueValueMappingData::bind(CGF, S.getOpaqueValue(), E); auto UnbindOnExit = llvm::make_scope_exit([&] { Binder.unbind(CGF); }); auto Prefix = buildSuspendPrefixStr(Coro, Kind); BasicBlock *ReadyBlock = CGF.createBasicBlock(Prefix + Twine(".ready")); BasicBlock *SuspendBlock = CGF.createBasicBlock(Prefix + Twine(".suspend")); BasicBlock *CleanupBlock = CGF.createBasicBlock(Prefix + Twine(".cleanup")); // If expression is ready, no need to suspend. CGF.EmitBranchOnBoolExpr(S.getReadyExpr(), ReadyBlock, SuspendBlock, 0); // Otherwise, emit suspend logic. CGF.EmitBlock(SuspendBlock); auto &Builder = CGF.Builder; llvm::Function *CoroSave = CGF.CGM.getIntrinsic(llvm::Intrinsic::coro_save); auto *NullPtr = llvm::ConstantPointerNull::get(CGF.CGM.Int8PtrTy); auto *SaveCall = Builder.CreateCall(CoroSave, {NullPtr}); auto *SuspendRet = CGF.EmitScalarExpr(S.getSuspendExpr()); if (SuspendRet != nullptr) { // Veto suspension if requested by bool returning await_suspend. assert(SuspendRet->getType()->isIntegerTy(1) && "Sema should have already checked that it is void or bool"); BasicBlock *RealSuspendBlock = CGF.createBasicBlock(Prefix + Twine(".suspend.bool")); CGF.Builder.CreateCondBr(SuspendRet, RealSuspendBlock, ReadyBlock); SuspendBlock = RealSuspendBlock; CGF.EmitBlock(RealSuspendBlock); } // Emit the suspend point. const bool IsFinalSuspend = (Kind == AwaitKind::Final); llvm::Function *CoroSuspend = CGF.CGM.getIntrinsic(llvm::Intrinsic::coro_suspend); auto *SuspendResult = Builder.CreateCall( CoroSuspend, {SaveCall, Builder.getInt1(IsFinalSuspend)}); // Create a switch capturing three possible continuations. auto *Switch = Builder.CreateSwitch(SuspendResult, Coro.SuspendBB, 2); Switch->addCase(Builder.getInt8(0), ReadyBlock); Switch->addCase(Builder.getInt8(1), CleanupBlock); // Emit cleanup for this suspend point. CGF.EmitBlock(CleanupBlock); CGF.EmitBranchThroughCleanup(Coro.CleanupJD); // Emit await_resume expression. CGF.EmitBlock(ReadyBlock); return CGF.EmitAnyExpr(S.getResumeExpr(), aggSlot, ignoreResult); } RValue CodeGenFunction::EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot, bool ignoreResult) { return emitSuspendExpression(*this, *CurCoro.Data, E, CurCoro.Data->CurrentAwaitKind, aggSlot, ignoreResult); } RValue CodeGenFunction::EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot, bool ignoreResult) { return emitSuspendExpression(*this, *CurCoro.Data, E, AwaitKind::Yield, aggSlot, ignoreResult); } void CodeGenFunction::EmitCoreturnStmt(CoreturnStmt const &S) { ++CurCoro.Data->CoreturnCount; EmitStmt(S.getPromiseCall()); EmitBranchThroughCleanup(CurCoro.Data->FinalJD); } // Hunts for the parameter reference in the parameter copy/move declaration. namespace { struct GetParamRef : public StmtVisitor { public: DeclRefExpr *Expr = nullptr; GetParamRef() {} void VisitDeclRefExpr(DeclRefExpr *E) { assert(Expr == nullptr && "multilple declref in param move"); Expr = E; } void VisitStmt(Stmt *S) { for (auto *C : S->children()) { if (C) Visit(C); } } }; } // This class replaces references to parameters to their copies by changing // the addresses in CGF.LocalDeclMap and restoring back the original values in // its destructor. namespace { struct ParamReferenceReplacerRAII { CodeGenFunction::DeclMapTy SavedLocals; CodeGenFunction::DeclMapTy& LocalDeclMap; ParamReferenceReplacerRAII(CodeGenFunction::DeclMapTy &LocalDeclMap) : LocalDeclMap(LocalDeclMap) {} void addCopy(DeclStmt const *PM) { // Figure out what param it refers to. assert(PM->isSingleDecl()); VarDecl const*VD = static_cast(PM->getSingleDecl()); Expr const *InitExpr = VD->getInit(); GetParamRef Visitor; Visitor.Visit(const_cast(InitExpr)); assert(Visitor.Expr); auto *DREOrig = cast(Visitor.Expr); auto *PD = DREOrig->getDecl(); auto it = LocalDeclMap.find(PD); assert(it != LocalDeclMap.end() && "parameter is not found"); SavedLocals.insert({ PD, it->second }); auto copyIt = LocalDeclMap.find(VD); assert(copyIt != LocalDeclMap.end() && "parameter copy is not found"); it->second = copyIt->getSecond(); } ~ParamReferenceReplacerRAII() { for (auto&& SavedLocal : SavedLocals) { LocalDeclMap.insert({SavedLocal.first, SavedLocal.second}); } } }; } // For WinEH exception representation backend needs to know what funclet coro.end // belongs to. That information is passed in a funclet bundle. static SmallVector getBundlesForCoroEnd(CodeGenFunction &CGF) { SmallVector BundleList; if (llvm::Instruction *EHPad = CGF.CurrentFuncletPad) BundleList.emplace_back("funclet", EHPad); return BundleList; } namespace { // We will insert coro.end to cut any of the destructors for objects that // do not need to be destroyed once the coroutine is resumed. // See llvm/docs/Coroutines.rst for more details about coro.end. struct CallCoroEnd final : public EHScopeStack::Cleanup { void Emit(CodeGenFunction &CGF, Flags flags) override { auto &CGM = CGF.CGM; auto *NullPtr = llvm::ConstantPointerNull::get(CGF.Int8PtrTy); llvm::Function *CoroEndFn = CGM.getIntrinsic(llvm::Intrinsic::coro_end); // See if we have a funclet bundle to associate coro.end with. (WinEH) auto Bundles = getBundlesForCoroEnd(CGF); auto *CoroEnd = CGF.Builder.CreateCall( CoroEndFn, {NullPtr, CGF.Builder.getTrue()}, Bundles); if (Bundles.empty()) { // Otherwise, (landingpad model), create a conditional branch that leads // either to a cleanup block or a block with EH resume instruction. auto *ResumeBB = CGF.getEHResumeBlock(/*cleanup=*/true); auto *CleanupContBB = CGF.createBasicBlock("cleanup.cont"); CGF.Builder.CreateCondBr(CoroEnd, ResumeBB, CleanupContBB); CGF.EmitBlock(CleanupContBB); } } }; } namespace { // Make sure to call coro.delete on scope exit. struct CallCoroDelete final : public EHScopeStack::Cleanup { Stmt *Deallocate; // Emit "if (coro.free(CoroId, CoroBegin)) Deallocate;" // Note: That deallocation will be emitted twice: once for a normal exit and // once for exceptional exit. This usage is safe because Deallocate does not // contain any declarations. The SubStmtBuilder::makeNewAndDeleteExpr() // builds a single call to a deallocation function which is safe to emit // multiple times. void Emit(CodeGenFunction &CGF, Flags) override { // Remember the current point, as we are going to emit deallocation code // first to get to coro.free instruction that is an argument to a delete // call. BasicBlock *SaveInsertBlock = CGF.Builder.GetInsertBlock(); auto *FreeBB = CGF.createBasicBlock("coro.free"); CGF.EmitBlock(FreeBB); CGF.EmitStmt(Deallocate); auto *AfterFreeBB = CGF.createBasicBlock("after.coro.free"); CGF.EmitBlock(AfterFreeBB); // We should have captured coro.free from the emission of deallocate. auto *CoroFree = CGF.CurCoro.Data->LastCoroFree; if (!CoroFree) { CGF.CGM.Error(Deallocate->getLocStart(), "Deallocation expressoin does not refer to coro.free"); return; } // Get back to the block we were originally and move coro.free there. auto *InsertPt = SaveInsertBlock->getTerminator(); CoroFree->moveBefore(InsertPt); CGF.Builder.SetInsertPoint(InsertPt); // Add if (auto *mem = coro.free) Deallocate; auto *NullPtr = llvm::ConstantPointerNull::get(CGF.Int8PtrTy); auto *Cond = CGF.Builder.CreateICmpNE(CoroFree, NullPtr); CGF.Builder.CreateCondBr(Cond, FreeBB, AfterFreeBB); // No longer need old terminator. InsertPt->eraseFromParent(); CGF.Builder.SetInsertPoint(AfterFreeBB); } explicit CallCoroDelete(Stmt *DeallocStmt) : Deallocate(DeallocStmt) {} }; } namespace { struct GetReturnObjectManager { CodeGenFunction &CGF; CGBuilderTy &Builder; const CoroutineBodyStmt &S; Address GroActiveFlag; CodeGenFunction::AutoVarEmission GroEmission; GetReturnObjectManager(CodeGenFunction &CGF, const CoroutineBodyStmt &S) : CGF(CGF), Builder(CGF.Builder), S(S), GroActiveFlag(Address::invalid()), GroEmission(CodeGenFunction::AutoVarEmission::invalid()) {} // The gro variable has to outlive coroutine frame and coroutine promise, but, // it can only be initialized after coroutine promise was created, thus, we // split its emission in two parts. EmitGroAlloca emits an alloca and sets up // cleanups. Later when coroutine promise is available we initialize the gro // and sets the flag that the cleanup is now active. void EmitGroAlloca() { auto *GroDeclStmt = dyn_cast(S.getResultDecl()); if (!GroDeclStmt) { // If get_return_object returns void, no need to do an alloca. return; } auto *GroVarDecl = cast(GroDeclStmt->getSingleDecl()); // Set GRO flag that it is not initialized yet GroActiveFlag = CGF.CreateTempAlloca(Builder.getInt1Ty(), CharUnits::One(), "gro.active"); Builder.CreateStore(Builder.getFalse(), GroActiveFlag); GroEmission = CGF.EmitAutoVarAlloca(*GroVarDecl); // Remember the top of EHStack before emitting the cleanup. auto old_top = CGF.EHStack.stable_begin(); CGF.EmitAutoVarCleanups(GroEmission); auto top = CGF.EHStack.stable_begin(); // Make the cleanup conditional on gro.active for (auto b = CGF.EHStack.find(top), e = CGF.EHStack.find(old_top); b != e; b++) { if (auto *Cleanup = dyn_cast(&*b)) { assert(!Cleanup->hasActiveFlag() && "cleanup already has active flag?"); Cleanup->setActiveFlag(GroActiveFlag); Cleanup->setTestFlagInEHCleanup(); Cleanup->setTestFlagInNormalCleanup(); } } } void EmitGroInit() { if (!GroActiveFlag.isValid()) { // No Gro variable was allocated. Simply emit the call to // get_return_object. CGF.EmitStmt(S.getResultDecl()); return; } CGF.EmitAutoVarInit(GroEmission); Builder.CreateStore(Builder.getTrue(), GroActiveFlag); } }; } static void emitBodyAndFallthrough(CodeGenFunction &CGF, const CoroutineBodyStmt &S, Stmt *Body) { CGF.EmitStmt(Body); const bool CanFallthrough = CGF.Builder.GetInsertBlock(); if (CanFallthrough) if (Stmt *OnFallthrough = S.getFallthroughHandler()) CGF.EmitStmt(OnFallthrough); } void CodeGenFunction::EmitCoroutineBody(const CoroutineBodyStmt &S) { auto *NullPtr = llvm::ConstantPointerNull::get(Builder.getInt8PtrTy()); auto &TI = CGM.getContext().getTargetInfo(); unsigned NewAlign = TI.getNewAlign() / TI.getCharWidth(); auto *EntryBB = Builder.GetInsertBlock(); auto *AllocBB = createBasicBlock("coro.alloc"); auto *InitBB = createBasicBlock("coro.init"); auto *FinalBB = createBasicBlock("coro.final"); auto *RetBB = createBasicBlock("coro.ret"); auto *CoroId = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::coro_id), {Builder.getInt32(NewAlign), NullPtr, NullPtr, NullPtr}); createCoroData(*this, CurCoro, CoroId); CurCoro.Data->SuspendBB = RetBB; // Backend is allowed to elide memory allocations, to help it, emit // auto mem = coro.alloc() ? 0 : ... allocation code ...; auto *CoroAlloc = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::coro_alloc), {CoroId}); Builder.CreateCondBr(CoroAlloc, AllocBB, InitBB); EmitBlock(AllocBB); auto *AllocateCall = EmitScalarExpr(S.getAllocate()); auto *AllocOrInvokeContBB = Builder.GetInsertBlock(); // Handle allocation failure if 'ReturnStmtOnAllocFailure' was provided. if (auto *RetOnAllocFailure = S.getReturnStmtOnAllocFailure()) { auto *RetOnFailureBB = createBasicBlock("coro.ret.on.failure"); // See if allocation was successful. auto *NullPtr = llvm::ConstantPointerNull::get(Int8PtrTy); auto *Cond = Builder.CreateICmpNE(AllocateCall, NullPtr); Builder.CreateCondBr(Cond, InitBB, RetOnFailureBB); // If not, return OnAllocFailure object. EmitBlock(RetOnFailureBB); EmitStmt(RetOnAllocFailure); } else { Builder.CreateBr(InitBB); } EmitBlock(InitBB); // Pass the result of the allocation to coro.begin. auto *Phi = Builder.CreatePHI(VoidPtrTy, 2); Phi->addIncoming(NullPtr, EntryBB); Phi->addIncoming(AllocateCall, AllocOrInvokeContBB); auto *CoroBegin = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::coro_begin), {CoroId, Phi}); CurCoro.Data->CoroBegin = CoroBegin; GetReturnObjectManager GroManager(*this, S); GroManager.EmitGroAlloca(); CurCoro.Data->CleanupJD = getJumpDestInCurrentScope(RetBB); { ParamReferenceReplacerRAII ParamReplacer(LocalDeclMap); CodeGenFunction::RunCleanupsScope ResumeScope(*this); EHStack.pushCleanup(NormalAndEHCleanup, S.getDeallocate()); // Create parameter copies. We do it before creating a promise, since an // evolution of coroutine TS may allow promise constructor to observe // parameter copies. for (auto *PM : S.getParamMoves()) { EmitStmt(PM); ParamReplacer.addCopy(cast(PM)); // TODO: if(CoroParam(...)) need to surround ctor and dtor // for the copy, so that llvm can elide it if the copy is // not needed. } EmitStmt(S.getPromiseDeclStmt()); Address PromiseAddr = GetAddrOfLocalVar(S.getPromiseDecl()); auto *PromiseAddrVoidPtr = new llvm::BitCastInst(PromiseAddr.getPointer(), VoidPtrTy, "", CoroId); // Update CoroId to refer to the promise. We could not do it earlier because // promise local variable was not emitted yet. CoroId->setArgOperand(1, PromiseAddrVoidPtr); // Now we have the promise, initialize the GRO GroManager.EmitGroInit(); EHStack.pushCleanup(EHCleanup); CurCoro.Data->CurrentAwaitKind = AwaitKind::Init; EmitStmt(S.getInitSuspendStmt()); CurCoro.Data->FinalJD = getJumpDestInCurrentScope(FinalBB); CurCoro.Data->CurrentAwaitKind = AwaitKind::Normal; if (auto *OnException = S.getExceptionHandler()) { auto Loc = S.getLocStart(); CXXCatchStmt Catch(Loc, /*exDecl=*/nullptr, OnException); auto *TryStmt = CXXTryStmt::Create(getContext(), Loc, S.getBody(), &Catch); EnterCXXTryStmt(*TryStmt); emitBodyAndFallthrough(*this, S, TryStmt->getTryBlock()); ExitCXXTryStmt(*TryStmt); } else { emitBodyAndFallthrough(*this, S, S.getBody()); } // See if we need to generate final suspend. const bool CanFallthrough = Builder.GetInsertBlock(); const bool HasCoreturns = CurCoro.Data->CoreturnCount > 0; if (CanFallthrough || HasCoreturns) { EmitBlock(FinalBB); CurCoro.Data->CurrentAwaitKind = AwaitKind::Final; EmitStmt(S.getFinalSuspendStmt()); } else { // We don't need FinalBB. Emit it to make sure the block is deleted. EmitBlock(FinalBB, /*IsFinished=*/true); } } EmitBlock(RetBB); // Emit coro.end before getReturnStmt (and parameter destructors), since // resume and destroy parts of the coroutine should not include them. llvm::Function *CoroEnd = CGM.getIntrinsic(llvm::Intrinsic::coro_end); Builder.CreateCall(CoroEnd, {NullPtr, Builder.getFalse()}); if (Stmt *Ret = S.getReturnStmt()) EmitStmt(Ret); } // Emit coroutine intrinsic and patch up arguments of the token type. RValue CodeGenFunction::EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID) { SmallVector Args; switch (IID) { default: break; // The coro.frame builtin is replaced with an SSA value of the coro.begin // intrinsic. case llvm::Intrinsic::coro_frame: { if (CurCoro.Data && CurCoro.Data->CoroBegin) { return RValue::get(CurCoro.Data->CoroBegin); } CGM.Error(E->getLocStart(), "this builtin expect that __builtin_coro_begin " "has been used earlier in this function"); auto NullPtr = llvm::ConstantPointerNull::get(Builder.getInt8PtrTy()); return RValue::get(NullPtr); } // The following three intrinsics take a token parameter referring to a token // returned by earlier call to @llvm.coro.id. Since we cannot represent it in // builtins, we patch it up here. case llvm::Intrinsic::coro_alloc: case llvm::Intrinsic::coro_begin: case llvm::Intrinsic::coro_free: { if (CurCoro.Data && CurCoro.Data->CoroId) { Args.push_back(CurCoro.Data->CoroId); break; } CGM.Error(E->getLocStart(), "this builtin expect that __builtin_coro_id has" " been used earlier in this function"); // Fallthrough to the next case to add TokenNone as the first argument. LLVM_FALLTHROUGH; } // @llvm.coro.suspend takes a token parameter. Add token 'none' as the first // argument. case llvm::Intrinsic::coro_suspend: Args.push_back(llvm::ConstantTokenNone::get(getLLVMContext())); break; } for (auto &Arg : E->arguments()) Args.push_back(EmitScalarExpr(Arg)); llvm::Value *F = CGM.getIntrinsic(IID); llvm::CallInst *Call = Builder.CreateCall(F, Args); // Note: The following code is to enable to emit coro.id and coro.begin by // hand to experiment with coroutines in C. // If we see @llvm.coro.id remember it in the CoroData. We will update // coro.alloc, coro.begin and coro.free intrinsics to refer to it. if (IID == llvm::Intrinsic::coro_id) { createCoroData(*this, CurCoro, Call, E); } else if (IID == llvm::Intrinsic::coro_begin) { if (CurCoro.Data) CurCoro.Data->CoroBegin = Call; } else if (IID == llvm::Intrinsic::coro_free) { // Remember the last coro_free as we need it to build the conditional // deletion of the coroutine frame. if (CurCoro.Data) CurCoro.Data->LastCoroFree = Call; } return RValue::get(Call); }