//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Designator.h" #include "clang/Parse/Scope.h" using namespace clang; /// \brief Determine whether the use of this declaration is valid, and /// emit any corresponding diagnostics. /// /// This routine diagnoses various problems with referencing /// declarations that can occur when using a declaration. For example, /// it might warn if a deprecated or unavailable declaration is being /// used, or produce an error (and return true) if a C++0x deleted /// function is being used. /// /// \returns true if there was an error (this declaration cannot be /// referenced), false otherwise. bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) { // See if the decl is deprecated. if (D->getAttr()) { // Implementing deprecated stuff requires referencing deprecated // stuff. Don't warn if we are implementing a deprecated // construct. bool isSilenced = false; if (NamedDecl *ND = getCurFunctionOrMethodDecl()) { // If this reference happens *in* a deprecated function or method, don't // warn. isSilenced = ND->getAttr(); // If this is an Objective-C method implementation, check to see if the // method was deprecated on the declaration, not the definition. if (ObjCMethodDecl *MD = dyn_cast(ND)) { // The semantic decl context of a ObjCMethodDecl is the // ObjCImplementationDecl. if (ObjCImplementationDecl *Impl = dyn_cast(MD->getParent())) { MD = Impl->getClassInterface()->getMethod(Context, MD->getSelector(), MD->isInstanceMethod()); isSilenced |= MD && MD->getAttr(); } } } if (!isSilenced) Diag(Loc, diag::warn_deprecated) << D->getDeclName(); } // See if this is a deleted function. if (FunctionDecl *FD = dyn_cast(D)) { if (FD->isDeleted()) { Diag(Loc, diag::err_deleted_function_use); Diag(D->getLocation(), diag::note_unavailable_here) << true; return true; } } // See if the decl is unavailable if (D->getAttr()) { Diag(Loc, diag::warn_unavailable) << D->getDeclName(); Diag(D->getLocation(), diag::note_unavailable_here) << 0; } return false; } /// DiagnoseSentinelCalls - This routine checks on method dispatch calls /// (and other functions in future), which have been declared with sentinel /// attribute. It warns if call does not have the sentinel argument. /// void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, Expr **Args, unsigned NumArgs) { const SentinelAttr *attr = D->getAttr(); if (!attr) return; int sentinelPos = attr->getSentinel(); int nullPos = attr->getNullPos(); // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common // base class. Then we won't be needing two versions of the same code. unsigned int i = 0; bool warnNotEnoughArgs = false; int isMethod = 0; if (ObjCMethodDecl *MD = dyn_cast(D)) { // skip over named parameters. ObjCMethodDecl::param_iterator P, E = MD->param_end(); for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) { if (nullPos) --nullPos; else ++i; } warnNotEnoughArgs = (P != E || i >= NumArgs); isMethod = 1; } else if (FunctionDecl *FD = dyn_cast(D)) { // skip over named parameters. ObjCMethodDecl::param_iterator P, E = FD->param_end(); for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) { if (nullPos) --nullPos; else ++i; } warnNotEnoughArgs = (P != E || i >= NumArgs); } else if (VarDecl *V = dyn_cast(D)) { // block or function pointer call. QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType() : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType(); if (const FunctionProtoType *Proto = dyn_cast(FT)) { unsigned NumArgsInProto = Proto->getNumArgs(); unsigned k; for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) { if (nullPos) --nullPos; else ++i; } warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs); } if (Ty->isBlockPointerType()) isMethod = 2; } else return; } else return; if (warnNotEnoughArgs) { Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; return; } int sentinel = i; while (sentinelPos > 0 && i < NumArgs-1) { --sentinelPos; ++i; } if (sentinelPos > 0) { Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; return; } while (i < NumArgs-1) { ++i; ++sentinel; } Expr *sentinelExpr = Args[sentinel]; if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() || !sentinelExpr->isNullPointerConstant(Context))) { Diag(Loc, diag::warn_missing_sentinel) << isMethod; Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; } return; } SourceRange Sema::getExprRange(ExprTy *E) const { Expr *Ex = (Expr *)E; return Ex? Ex->getSourceRange() : SourceRange(); } //===----------------------------------------------------------------------===// // Standard Promotions and Conversions //===----------------------------------------------------------------------===// /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). void Sema::DefaultFunctionArrayConversion(Expr *&E) { QualType Ty = E->getType(); assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); if (Ty->isFunctionType()) ImpCastExprToType(E, Context.getPointerType(Ty)); else if (Ty->isArrayType()) { // In C90 mode, arrays only promote to pointers if the array expression is // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has // type 'array of type' is converted to an expression that has type 'pointer // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression // that has type 'array of type' ...". The relevant change is "an lvalue" // (C90) to "an expression" (C99). // // C++ 4.2p1: // An lvalue or rvalue of type "array of N T" or "array of unknown bound of // T" can be converted to an rvalue of type "pointer to T". // if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLvalue(Context) == Expr::LV_Valid) ImpCastExprToType(E, Context.getArrayDecayedType(Ty)); } } /// \brief Whether this is a promotable bitfield reference according /// to C99 6.3.1.1p2, bullet 2. /// /// \returns the type this bit-field will promote to, or NULL if no /// promotion occurs. static QualType isPromotableBitField(Expr *E, ASTContext &Context) { FieldDecl *Field = E->getBitField(); if (!Field) return QualType(); const BuiltinType *BT = Field->getType()->getAsBuiltinType(); if (!BT) return QualType(); if (BT->getKind() != BuiltinType::Bool && BT->getKind() != BuiltinType::Int && BT->getKind() != BuiltinType::UInt) return QualType(); llvm::APSInt BitWidthAP; if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context)) return QualType(); uint64_t BitWidth = BitWidthAP.getZExtValue(); uint64_t IntSize = Context.getTypeSize(Context.IntTy); if (BitWidth < IntSize || (Field->getType()->isSignedIntegerType() && BitWidth == IntSize)) return Context.IntTy; if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType()) return Context.UnsignedIntTy; return QualType(); } /// UsualUnaryConversions - Performs various conversions that are common to most /// operators (C99 6.3). The conversions of array and function types are /// sometimes surpressed. For example, the array->pointer conversion doesn't /// apply if the array is an argument to the sizeof or address (&) operators. /// In these instances, this routine should *not* be called. Expr *Sema::UsualUnaryConversions(Expr *&Expr) { QualType Ty = Expr->getType(); assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); // C99 6.3.1.1p2: // // The following may be used in an expression wherever an int or // unsigned int may be used: // - an object or expression with an integer type whose integer // conversion rank is less than or equal to the rank of int // and unsigned int. // - A bit-field of type _Bool, int, signed int, or unsigned int. // // If an int can represent all values of the original type, the // value is converted to an int; otherwise, it is converted to an // unsigned int. These are called the integer promotions. All // other types are unchanged by the integer promotions. if (Ty->isPromotableIntegerType()) { ImpCastExprToType(Expr, Context.IntTy); return Expr; } else { QualType T = isPromotableBitField(Expr, Context); if (!T.isNull()) { ImpCastExprToType(Expr, T); return Expr; } } DefaultFunctionArrayConversion(Expr); return Expr; } /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that /// do not have a prototype. Arguments that have type float are promoted to /// double. All other argument types are converted by UsualUnaryConversions(). void Sema::DefaultArgumentPromotion(Expr *&Expr) { QualType Ty = Expr->getType(); assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); // If this is a 'float' (CVR qualified or typedef) promote to double. if (const BuiltinType *BT = Ty->getAsBuiltinType()) if (BT->getKind() == BuiltinType::Float) return ImpCastExprToType(Expr, Context.DoubleTy); UsualUnaryConversions(Expr); } /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but /// will warn if the resulting type is not a POD type, and rejects ObjC /// interfaces passed by value. This returns true if the argument type is /// completely illegal. bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) { DefaultArgumentPromotion(Expr); if (Expr->getType()->isObjCInterfaceType()) { Diag(Expr->getLocStart(), diag::err_cannot_pass_objc_interface_to_vararg) << Expr->getType() << CT; return true; } if (!Expr->getType()->isPODType()) Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg) << Expr->getType() << CT; return false; } /// UsualArithmeticConversions - Performs various conversions that are common to /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this /// routine returns the first non-arithmetic type found. The client is /// responsible for emitting appropriate error diagnostics. /// FIXME: verify the conversion rules for "complex int" are consistent with /// GCC. QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, bool isCompAssign) { if (!isCompAssign) UsualUnaryConversions(lhsExpr); UsualUnaryConversions(rhsExpr); // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType lhs = Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); QualType rhs = Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); // If both types are identical, no conversion is needed. if (lhs == rhs) return lhs; // If either side is a non-arithmetic type (e.g. a pointer), we are done. // The caller can deal with this (e.g. pointer + int). if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) return lhs; // Perform bitfield promotions. QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context); if (!LHSBitfieldPromoteTy.isNull()) lhs = LHSBitfieldPromoteTy; QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context); if (!RHSBitfieldPromoteTy.isNull()) rhs = RHSBitfieldPromoteTy; QualType destType = UsualArithmeticConversionsType(lhs, rhs); if (!isCompAssign) ImpCastExprToType(lhsExpr, destType); ImpCastExprToType(rhsExpr, destType); return destType; } QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) { // Perform the usual unary conversions. We do this early so that // integral promotions to "int" can allow us to exit early, in the // lhs == rhs check. Also, for conversion purposes, we ignore any // qualifiers. For example, "const float" and "float" are // equivalent. if (lhs->isPromotableIntegerType()) lhs = Context.IntTy; else lhs = lhs.getUnqualifiedType(); if (rhs->isPromotableIntegerType()) rhs = Context.IntTy; else rhs = rhs.getUnqualifiedType(); // If both types are identical, no conversion is needed. if (lhs == rhs) return lhs; // If either side is a non-arithmetic type (e.g. a pointer), we are done. // The caller can deal with this (e.g. pointer + int). if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) return lhs; // At this point, we have two different arithmetic types. // Handle complex types first (C99 6.3.1.8p1). if (lhs->isComplexType() || rhs->isComplexType()) { // if we have an integer operand, the result is the complex type. if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { // convert the rhs to the lhs complex type. return lhs; } if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { // convert the lhs to the rhs complex type. return rhs; } // This handles complex/complex, complex/float, or float/complex. // When both operands are complex, the shorter operand is converted to the // type of the longer, and that is the type of the result. This corresponds // to what is done when combining two real floating-point operands. // The fun begins when size promotion occur across type domains. // From H&S 6.3.4: When one operand is complex and the other is a real // floating-point type, the less precise type is converted, within it's // real or complex domain, to the precision of the other type. For example, // when combining a "long double" with a "double _Complex", the // "double _Complex" is promoted to "long double _Complex". int result = Context.getFloatingTypeOrder(lhs, rhs); if (result > 0) { // The left side is bigger, convert rhs. rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs); } else if (result < 0) { // The right side is bigger, convert lhs. lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs); } // At this point, lhs and rhs have the same rank/size. Now, make sure the // domains match. This is a requirement for our implementation, C99 // does not require this promotion. if (lhs != rhs) { // Domains don't match, we have complex/float mix. if (lhs->isRealFloatingType()) { // handle "double, _Complex double". return rhs; } else { // handle "_Complex double, double". return lhs; } } return lhs; // The domain/size match exactly. } // Now handle "real" floating types (i.e. float, double, long double). if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) { // if we have an integer operand, the result is the real floating type. if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type. return lhs; } if (rhs->isComplexIntegerType()) { // convert rhs to the complex floating point type. return Context.getComplexType(lhs); } if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type. return rhs; } if (lhs->isComplexIntegerType()) { // convert lhs to the complex floating point type. return Context.getComplexType(rhs); } // We have two real floating types, float/complex combos were handled above. // Convert the smaller operand to the bigger result. int result = Context.getFloatingTypeOrder(lhs, rhs); if (result > 0) // convert the rhs return lhs; assert(result < 0 && "illegal float comparison"); return rhs; // convert the lhs } if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) { // Handle GCC complex int extension. const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); if (lhsComplexInt && rhsComplexInt) { if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), rhsComplexInt->getElementType()) >= 0) return lhs; // convert the rhs return rhs; } else if (lhsComplexInt && rhs->isIntegerType()) { // convert the rhs to the lhs complex type. return lhs; } else if (rhsComplexInt && lhs->isIntegerType()) { // convert the lhs to the rhs complex type. return rhs; } } // Finally, we have two differing integer types. // The rules for this case are in C99 6.3.1.8 int compare = Context.getIntegerTypeOrder(lhs, rhs); bool lhsSigned = lhs->isSignedIntegerType(), rhsSigned = rhs->isSignedIntegerType(); QualType destType; if (lhsSigned == rhsSigned) { // Same signedness; use the higher-ranked type destType = compare >= 0 ? lhs : rhs; } else if (compare != (lhsSigned ? 1 : -1)) { // The unsigned type has greater than or equal rank to the // signed type, so use the unsigned type destType = lhsSigned ? rhs : lhs; } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { // The two types are different widths; if we are here, that // means the signed type is larger than the unsigned type, so // use the signed type. destType = lhsSigned ? lhs : rhs; } else { // The signed type is higher-ranked than the unsigned type, // but isn't actually any bigger (like unsigned int and long // on most 32-bit systems). Use the unsigned type corresponding // to the signed type. destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); } return destType; } //===----------------------------------------------------------------------===// // Semantic Analysis for various Expression Types //===----------------------------------------------------------------------===// /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from /// multiple tokens. However, the common case is that StringToks points to one /// string. /// Action::OwningExprResult Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { assert(NumStringToks && "Must have at least one string!"); StringLiteralParser Literal(StringToks, NumStringToks, PP); if (Literal.hadError) return ExprError(); llvm::SmallVector StringTokLocs; for (unsigned i = 0; i != NumStringToks; ++i) StringTokLocs.push_back(StringToks[i].getLocation()); QualType StrTy = Context.CharTy; if (Literal.AnyWide) StrTy = Context.getWCharType(); if (Literal.Pascal) StrTy = Context.UnsignedCharTy; // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). if (getLangOptions().CPlusPlus) StrTy.addConst(); // Get an array type for the string, according to C99 6.4.5. This includes // the nul terminator character as well as the string length for pascal // strings. StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Literal.GetNumStringChars()+1), ArrayType::Normal, 0); // Pass &StringTokLocs[0], StringTokLocs.size() to factory! return Owned(StringLiteral::Create(Context, Literal.GetString(), Literal.GetStringLength(), Literal.AnyWide, StrTy, &StringTokLocs[0], StringTokLocs.size())); } /// ShouldSnapshotBlockValueReference - Return true if a reference inside of /// CurBlock to VD should cause it to be snapshotted (as we do for auto /// variables defined outside the block) or false if this is not needed (e.g. /// for values inside the block or for globals). /// /// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records /// up-to-date. /// static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock, ValueDecl *VD) { // If the value is defined inside the block, we couldn't snapshot it even if // we wanted to. if (CurBlock->TheDecl == VD->getDeclContext()) return false; // If this is an enum constant or function, it is constant, don't snapshot. if (isa(VD) || isa(VD)) return false; // If this is a reference to an extern, static, or global variable, no need to // snapshot it. // FIXME: What about 'const' variables in C++? if (const VarDecl *Var = dyn_cast(VD)) if (!Var->hasLocalStorage()) return false; // Blocks that have these can't be constant. CurBlock->hasBlockDeclRefExprs = true; // If we have nested blocks, the decl may be declared in an outer block (in // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may // be defined outside all of the current blocks (in which case the blocks do // all get the bit). Walk the nesting chain. for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock; NextBlock = NextBlock->PrevBlockInfo) { // If we found the defining block for the variable, don't mark the block as // having a reference outside it. if (NextBlock->TheDecl == VD->getDeclContext()) break; // Otherwise, the DeclRef from the inner block causes the outer one to need // a snapshot as well. NextBlock->hasBlockDeclRefExprs = true; } return true; } /// ActOnIdentifierExpr - The parser read an identifier in expression context, /// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this /// identifier is used in a function call context. /// SS is only used for a C++ qualified-id (foo::bar) to indicate the /// class or namespace that the identifier must be a member of. Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc, IdentifierInfo &II, bool HasTrailingLParen, const CXXScopeSpec *SS, bool isAddressOfOperand) { return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS, isAddressOfOperand); } /// BuildDeclRefExpr - Build either a DeclRefExpr or a /// QualifiedDeclRefExpr based on whether or not SS is a /// nested-name-specifier. DeclRefExpr * Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, bool TypeDependent, bool ValueDependent, const CXXScopeSpec *SS) { if (SS && !SS->isEmpty()) { return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent, SS->getRange(), static_cast(SS->getScopeRep())); } else return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent); } /// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or /// variable corresponding to the anonymous union or struct whose type /// is Record. static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context, RecordDecl *Record) { assert(Record->isAnonymousStructOrUnion() && "Record must be an anonymous struct or union!"); // FIXME: Once Decls are directly linked together, this will be an O(1) // operation rather than a slow walk through DeclContext's vector (which // itself will be eliminated). DeclGroups might make this even better. DeclContext *Ctx = Record->getDeclContext(); for (DeclContext::decl_iterator D = Ctx->decls_begin(Context), DEnd = Ctx->decls_end(Context); D != DEnd; ++D) { if (*D == Record) { // The object for the anonymous struct/union directly // follows its type in the list of declarations. ++D; assert(D != DEnd && "Missing object for anonymous record"); assert(!cast(*D)->getDeclName() && "Decl should be unnamed"); return *D; } } assert(false && "Missing object for anonymous record"); return 0; } /// \brief Given a field that represents a member of an anonymous /// struct/union, build the path from that field's context to the /// actual member. /// /// Construct the sequence of field member references we'll have to /// perform to get to the field in the anonymous union/struct. The /// list of members is built from the field outward, so traverse it /// backwards to go from an object in the current context to the field /// we found. /// /// \returns The variable from which the field access should begin, /// for an anonymous struct/union that is not a member of another /// class. Otherwise, returns NULL. VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field, llvm::SmallVectorImpl &Path) { assert(Field->getDeclContext()->isRecord() && cast(Field->getDeclContext())->isAnonymousStructOrUnion() && "Field must be stored inside an anonymous struct or union"); Path.push_back(Field); VarDecl *BaseObject = 0; DeclContext *Ctx = Field->getDeclContext(); do { RecordDecl *Record = cast(Ctx); Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record); if (FieldDecl *AnonField = dyn_cast(AnonObject)) Path.push_back(AnonField); else { BaseObject = cast(AnonObject); break; } Ctx = Ctx->getParent(); } while (Ctx->isRecord() && cast(Ctx)->isAnonymousStructOrUnion()); return BaseObject; } Sema::OwningExprResult Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc, FieldDecl *Field, Expr *BaseObjectExpr, SourceLocation OpLoc) { llvm::SmallVector AnonFields; VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field, AnonFields); // Build the expression that refers to the base object, from // which we will build a sequence of member references to each // of the anonymous union objects and, eventually, the field we // found via name lookup. bool BaseObjectIsPointer = false; unsigned ExtraQuals = 0; if (BaseObject) { // BaseObject is an anonymous struct/union variable (and is, // therefore, not part of another non-anonymous record). if (BaseObjectExpr) BaseObjectExpr->Destroy(Context); BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(), SourceLocation()); ExtraQuals = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers(); } else if (BaseObjectExpr) { // The caller provided the base object expression. Determine // whether its a pointer and whether it adds any qualifiers to the // anonymous struct/union fields we're looking into. QualType ObjectType = BaseObjectExpr->getType(); if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) { BaseObjectIsPointer = true; ObjectType = ObjectPtr->getPointeeType(); } ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers(); } else { // We've found a member of an anonymous struct/union that is // inside a non-anonymous struct/union, so in a well-formed // program our base object expression is "this". if (CXXMethodDecl *MD = dyn_cast(CurContext)) { if (!MD->isStatic()) { QualType AnonFieldType = Context.getTagDeclType( cast(AnonFields.back()->getDeclContext())); QualType ThisType = Context.getTagDeclType(MD->getParent()); if ((Context.getCanonicalType(AnonFieldType) == Context.getCanonicalType(ThisType)) || IsDerivedFrom(ThisType, AnonFieldType)) { // Our base object expression is "this". BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(), MD->getThisType(Context)); BaseObjectIsPointer = true; } } else { return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method) << Field->getDeclName()); } ExtraQuals = MD->getTypeQualifiers(); } if (!BaseObjectExpr) return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use) << Field->getDeclName()); } // Build the implicit member references to the field of the // anonymous struct/union. Expr *Result = BaseObjectExpr; for (llvm::SmallVector::reverse_iterator FI = AnonFields.rbegin(), FIEnd = AnonFields.rend(); FI != FIEnd; ++FI) { QualType MemberType = (*FI)->getType(); if (!(*FI)->isMutable()) { unsigned combinedQualifiers = MemberType.getCVRQualifiers() | ExtraQuals; MemberType = MemberType.getQualifiedType(combinedQualifiers); } Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI, OpLoc, MemberType); BaseObjectIsPointer = false; ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers(); } return Owned(Result); } /// ActOnDeclarationNameExpr - The parser has read some kind of name /// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine /// performs lookup on that name and returns an expression that refers /// to that name. This routine isn't directly called from the parser, /// because the parser doesn't know about DeclarationName. Rather, /// this routine is called by ActOnIdentifierExpr, /// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr, /// which form the DeclarationName from the corresponding syntactic /// forms. /// /// HasTrailingLParen indicates whether this identifier is used in a /// function call context. LookupCtx is only used for a C++ /// qualified-id (foo::bar) to indicate the class or namespace that /// the identifier must be a member of. /// /// isAddressOfOperand means that this expression is the direct operand /// of an address-of operator. This matters because this is the only /// situation where a qualified name referencing a non-static member may /// appear outside a member function of this class. Sema::OwningExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, DeclarationName Name, bool HasTrailingLParen, const CXXScopeSpec *SS, bool isAddressOfOperand) { // Could be enum-constant, value decl, instance variable, etc. if (SS && SS->isInvalid()) return ExprError(); // C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // -- a nested-name-specifier that contains a class-name that // names a dependent type. // FIXME: Member of the current instantiation. if (SS && isDependentScopeSpecifier(*SS)) { return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy, Loc, SS->getRange(), static_cast(SS->getScopeRep()))); } LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName, false, true, Loc); if (Lookup.isAmbiguous()) { DiagnoseAmbiguousLookup(Lookup, Name, Loc, SS && SS->isSet() ? SS->getRange() : SourceRange()); return ExprError(); } NamedDecl *D = Lookup.getAsDecl(); // If this reference is in an Objective-C method, then ivar lookup happens as // well. IdentifierInfo *II = Name.getAsIdentifierInfo(); if (II && getCurMethodDecl()) { // There are two cases to handle here. 1) scoped lookup could have failed, // in which case we should look for an ivar. 2) scoped lookup could have // found a decl, but that decl is outside the current instance method (i.e. // a global variable). In these two cases, we do a lookup for an ivar with // this name, if the lookup sucedes, we replace it our current decl. if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) { ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II, ClassDeclared)) { // Check if referencing a field with __attribute__((deprecated)). if (DiagnoseUseOfDecl(IV, Loc)) return ExprError(); // If we're referencing an invalid decl, just return this as a silent // error node. The error diagnostic was already emitted on the decl. if (IV->isInvalidDecl()) return ExprError(); bool IsClsMethod = getCurMethodDecl()->isClassMethod(); // If a class method attemps to use a free standing ivar, this is // an error. if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod()) return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) << IV->getDeclName()); // If a class method uses a global variable, even if an ivar with // same name exists, use the global. if (!IsClsMethod) { if (IV->getAccessControl() == ObjCIvarDecl::Private && ClassDeclared != IFace) Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); // FIXME: This should use a new expr for a direct reference, don't // turn this into Self->ivar, just return a BareIVarExpr or something. IdentifierInfo &II = Context.Idents.get("self"); OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false); return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), Loc, SelfExpr.takeAs(), true, true)); } } } else if (getCurMethodDecl()->isInstanceMethod()) { // We should warn if a local variable hides an ivar. ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II, ClassDeclared)) { if (IV->getAccessControl() != ObjCIvarDecl::Private || IFace == ClassDeclared) Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); } } // Needed to implement property "super.method" notation. if (D == 0 && II->isStr("super")) { QualType T; if (getCurMethodDecl()->isInstanceMethod()) T = Context.getPointerType(Context.getObjCInterfaceType( getCurMethodDecl()->getClassInterface())); else T = Context.getObjCClassType(); return Owned(new (Context) ObjCSuperExpr(Loc, T)); } } // Determine whether this name might be a candidate for // argument-dependent lookup. bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) && HasTrailingLParen; if (ADL && D == 0) { // We've seen something of the form // // identifier( // // and we did not find any entity by the name // "identifier". However, this identifier is still subject to // argument-dependent lookup, so keep track of the name. return Owned(new (Context) UnresolvedFunctionNameExpr(Name, Context.OverloadTy, Loc)); } if (D == 0) { // Otherwise, this could be an implicitly declared function reference (legal // in C90, extension in C99). if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) // Not in C++. D = ImplicitlyDefineFunction(Loc, *II, S); else { // If this name wasn't predeclared and if this is not a function call, // diagnose the problem. if (SS && !SS->isEmpty()) return ExprError(Diag(Loc, diag::err_typecheck_no_member) << Name << SS->getRange()); else if (Name.getNameKind() == DeclarationName::CXXOperatorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName) return ExprError(Diag(Loc, diag::err_undeclared_use) << Name.getAsString()); else return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name); } } // If this is an expression of the form &Class::member, don't build an // implicit member ref, because we want a pointer to the member in general, // not any specific instance's member. if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) { DeclContext *DC = computeDeclContext(*SS); if (D && isa(DC)) { QualType DType; if (FieldDecl *FD = dyn_cast(D)) { DType = FD->getType().getNonReferenceType(); } else if (CXXMethodDecl *Method = dyn_cast(D)) { DType = Method->getType(); } else if (isa(D)) { DType = Context.OverloadTy; } // Could be an inner type. That's diagnosed below, so ignore it here. if (!DType.isNull()) { // The pointer is type- and value-dependent if it points into something // dependent. bool Dependent = DC->isDependentContext(); return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS)); } } } // We may have found a field within an anonymous union or struct // (C++ [class.union]). if (FieldDecl *FD = dyn_cast(D)) if (cast(FD->getDeclContext())->isAnonymousStructOrUnion()) return BuildAnonymousStructUnionMemberReference(Loc, FD); if (CXXMethodDecl *MD = dyn_cast(CurContext)) { if (!MD->isStatic()) { // C++ [class.mfct.nonstatic]p2: // [...] if name lookup (3.4.1) resolves the name in the // id-expression to a nonstatic nontype member of class X or of // a base class of X, the id-expression is transformed into a // class member access expression (5.2.5) using (*this) (9.3.2) // as the postfix-expression to the left of the '.' operator. DeclContext *Ctx = 0; QualType MemberType; if (FieldDecl *FD = dyn_cast(D)) { Ctx = FD->getDeclContext(); MemberType = FD->getType(); if (const ReferenceType *RefType = MemberType->getAsReferenceType()) MemberType = RefType->getPointeeType(); else if (!FD->isMutable()) { unsigned combinedQualifiers = MemberType.getCVRQualifiers() | MD->getTypeQualifiers(); MemberType = MemberType.getQualifiedType(combinedQualifiers); } } else if (CXXMethodDecl *Method = dyn_cast(D)) { if (!Method->isStatic()) { Ctx = Method->getParent(); MemberType = Method->getType(); } } else if (OverloadedFunctionDecl *Ovl = dyn_cast(D)) { for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), FuncEnd = Ovl->function_end(); Func != FuncEnd; ++Func) { if (CXXMethodDecl *DMethod = dyn_cast(*Func)) if (!DMethod->isStatic()) { Ctx = Ovl->getDeclContext(); MemberType = Context.OverloadTy; break; } } } if (Ctx && Ctx->isRecord()) { QualType CtxType = Context.getTagDeclType(cast(Ctx)); QualType ThisType = Context.getTagDeclType(MD->getParent()); if ((Context.getCanonicalType(CtxType) == Context.getCanonicalType(ThisType)) || IsDerivedFrom(ThisType, CtxType)) { // Build the implicit member access expression. Expr *This = new (Context) CXXThisExpr(SourceLocation(), MD->getThisType(Context)); return Owned(new (Context) MemberExpr(This, true, D, Loc, MemberType)); } } } } if (FieldDecl *FD = dyn_cast(D)) { if (CXXMethodDecl *MD = dyn_cast(CurContext)) { if (MD->isStatic()) // "invalid use of member 'x' in static member function" return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method) << FD->getDeclName()); } // Any other ways we could have found the field in a well-formed // program would have been turned into implicit member expressions // above. return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use) << FD->getDeclName()); } if (isa(D)) return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name); if (isa(D)) return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name); if (isa(D)) return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name); // Make the DeclRefExpr or BlockDeclRefExpr for the decl. if (OverloadedFunctionDecl *Ovl = dyn_cast(D)) return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc, false, false, SS)); else if (TemplateDecl *Template = dyn_cast(D)) return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc, false, false, SS)); ValueDecl *VD = cast(D); // Check whether this declaration can be used. Note that we suppress // this check when we're going to perform argument-dependent lookup // on this function name, because this might not be the function // that overload resolution actually selects. if (!(ADL && isa(VD)) && DiagnoseUseOfDecl(VD, Loc)) return ExprError(); if (VarDecl *Var = dyn_cast(VD)) { // Warn about constructs like: // if (void *X = foo()) { ... } else { X }. // In the else block, the pointer is always false. // FIXME: In a template instantiation, we don't have scope // information to check this property. if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) { Scope *CheckS = S; while (CheckS) { if (CheckS->isWithinElse() && CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) { if (Var->getType()->isBooleanType()) ExprError(Diag(Loc, diag::warn_value_always_false) << Var->getDeclName()); else ExprError(Diag(Loc, diag::warn_value_always_zero) << Var->getDeclName()); break; } // Move up one more control parent to check again. CheckS = CheckS->getControlParent(); if (CheckS) CheckS = CheckS->getParent(); } } } else if (FunctionDecl *Func = dyn_cast(VD)) { if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) { // C99 DR 316 says that, if a function type comes from a // function definition (without a prototype), that type is only // used for checking compatibility. Therefore, when referencing // the function, we pretend that we don't have the full function // type. QualType T = Func->getType(); QualType NoProtoType = T; if (const FunctionProtoType *Proto = T->getAsFunctionProtoType()) NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType()); return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS)); } } // Only create DeclRefExpr's for valid Decl's. if (VD->isInvalidDecl()) return ExprError(); // If the identifier reference is inside a block, and it refers to a value // that is outside the block, create a BlockDeclRefExpr instead of a // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when // the block is formed. // // We do not do this for things like enum constants, global variables, etc, // as they do not get snapshotted. // if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) { QualType ExprTy = VD->getType().getNonReferenceType(); // The BlocksAttr indicates the variable is bound by-reference. if (VD->getAttr()) return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true)); // Variable will be bound by-copy, make it const within the closure. ExprTy.addConst(); return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false)); } // If this reference is not in a block or if the referenced variable is // within the block, create a normal DeclRefExpr. bool TypeDependent = false; bool ValueDependent = false; if (getLangOptions().CPlusPlus) { // C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // - an identifier that was declared with a dependent type, if (VD->getType()->isDependentType()) TypeDependent = true; // - FIXME: a template-id that is dependent, // - a conversion-function-id that specifies a dependent type, else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && Name.getCXXNameType()->isDependentType()) TypeDependent = true; // - a nested-name-specifier that contains a class-name that // names a dependent type. else if (SS && !SS->isEmpty()) { for (DeclContext *DC = computeDeclContext(*SS); DC; DC = DC->getParent()) { // FIXME: could stop early at namespace scope. if (DC->isRecord()) { CXXRecordDecl *Record = cast(DC); if (Context.getTypeDeclType(Record)->isDependentType()) { TypeDependent = true; break; } } } } // C++ [temp.dep.constexpr]p2: // // An identifier is value-dependent if it is: // - a name declared with a dependent type, if (TypeDependent) ValueDependent = true; // - the name of a non-type template parameter, else if (isa(VD)) ValueDependent = true; // - a constant with integral or enumeration type and is // initialized with an expression that is value-dependent else if (const VarDecl *Dcl = dyn_cast(VD)) { if (Dcl->getType().getCVRQualifiers() == QualType::Const && Dcl->getInit()) { ValueDependent = Dcl->getInit()->isValueDependent(); } } } return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, TypeDependent, ValueDependent, SS)); } Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { PredefinedExpr::IdentType IT; switch (Kind) { default: assert(0 && "Unknown simple primary expr!"); case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; } // Pre-defined identifiers are of type char[x], where x is the length of the // string. unsigned Length; if (FunctionDecl *FD = getCurFunctionDecl()) Length = FD->getIdentifier()->getLength(); else if (ObjCMethodDecl *MD = getCurMethodDecl()) Length = MD->getSynthesizedMethodSize(); else { Diag(Loc, diag::ext_predef_outside_function); // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0; } llvm::APInt LengthI(32, Length + 1); QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const); ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); } Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) { llvm::SmallString<16> CharBuffer; CharBuffer.resize(Tok.getLength()); const char *ThisTokBegin = &CharBuffer[0]; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, Tok.getLocation(), PP); if (Literal.hadError()) return ExprError(); QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; return Owned(new (Context) CharacterLiteral(Literal.getValue(), Literal.isWide(), type, Tok.getLocation())); } Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) { // Fast path for a single digit (which is quite common). A single digit // cannot have a trigraph, escaped newline, radix prefix, or type suffix. if (Tok.getLength() == 1) { const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); unsigned IntSize = Context.Target.getIntWidth(); return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'), Context.IntTy, Tok.getLocation())); } llvm::SmallString<512> IntegerBuffer; // Add padding so that NumericLiteralParser can overread by one character. IntegerBuffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &IntegerBuffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, Tok.getLocation(), PP); if (Literal.hadError) return ExprError(); Expr *Res; if (Literal.isFloatingLiteral()) { QualType Ty; if (Literal.isFloat) Ty = Context.FloatTy; else if (!Literal.isLong) Ty = Context.DoubleTy; else Ty = Context.LongDoubleTy; const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); // isExact will be set by GetFloatValue(). bool isExact = false; Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact, Ty, Tok.getLocation()); } else if (!Literal.isIntegerLiteral()) { return ExprError(); } else { QualType Ty; // long long is a C99 feature. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && Literal.isLongLong) Diag(Tok.getLocation(), diag::ext_longlong); // Get the value in the widest-possible width. llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); if (Literal.GetIntegerValue(ResultVal)) { // If this value didn't fit into uintmax_t, warn and force to ull. Diag(Tok.getLocation(), diag::warn_integer_too_large); Ty = Context.UnsignedLongLongTy; assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && "long long is not intmax_t?"); } else { // If this value fits into a ULL, try to figure out what else it fits into // according to the rules of C99 6.4.4.1p5. // Octal, Hexadecimal, and integers with a U suffix are allowed to // be an unsigned int. bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; // Check from smallest to largest, picking the smallest type we can. unsigned Width = 0; if (!Literal.isLong && !Literal.isLongLong) { // Are int/unsigned possibilities? unsigned IntSize = Context.Target.getIntWidth(); // Does it fit in a unsigned int? if (ResultVal.isIntN(IntSize)) { // Does it fit in a signed int? if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) Ty = Context.IntTy; else if (AllowUnsigned) Ty = Context.UnsignedIntTy; Width = IntSize; } } // Are long/unsigned long possibilities? if (Ty.isNull() && !Literal.isLongLong) { unsigned LongSize = Context.Target.getLongWidth(); // Does it fit in a unsigned long? if (ResultVal.isIntN(LongSize)) { // Does it fit in a signed long? if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) Ty = Context.LongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongTy; Width = LongSize; } } // Finally, check long long if needed. if (Ty.isNull()) { unsigned LongLongSize = Context.Target.getLongLongWidth(); // Does it fit in a unsigned long long? if (ResultVal.isIntN(LongLongSize)) { // Does it fit in a signed long long? if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) Ty = Context.LongLongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongLongTy; Width = LongLongSize; } } // If we still couldn't decide a type, we probably have something that // does not fit in a signed long long, but has no U suffix. if (Ty.isNull()) { Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); Ty = Context.UnsignedLongLongTy; Width = Context.Target.getLongLongWidth(); } if (ResultVal.getBitWidth() != Width) ResultVal.trunc(Width); } Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation()); } // If this is an imaginary literal, create the ImaginaryLiteral wrapper. if (Literal.isImaginary) Res = new (Context) ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); return Owned(Res); } Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, ExprArg Val) { Expr *E = Val.takeAs(); assert((E != 0) && "ActOnParenExpr() missing expr"); return Owned(new (Context) ParenExpr(L, R, E)); } /// The UsualUnaryConversions() function is *not* called by this routine. /// See C99 6.3.2.1p[2-4] for more details. bool Sema::CheckSizeOfAlignOfOperand(QualType exprType, SourceLocation OpLoc, const SourceRange &ExprRange, bool isSizeof) { if (exprType->isDependentType()) return false; // C99 6.5.3.4p1: if (isa(exprType)) { // alignof(function) is allowed as an extension. if (isSizeof) Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange; return false; } // Allow sizeof(void)/alignof(void) as an extension. if (exprType->isVoidType()) { Diag(OpLoc, diag::ext_sizeof_void_type) << (isSizeof ? "sizeof" : "__alignof") << ExprRange; return false; } if (RequireCompleteType(OpLoc, exprType, isSizeof ? diag::err_sizeof_incomplete_type : diag::err_alignof_incomplete_type, ExprRange)) return true; // Reject sizeof(interface) and sizeof(interface) in 64-bit mode. if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) { Diag(OpLoc, diag::err_sizeof_nonfragile_interface) << exprType << isSizeof << ExprRange; return true; } return false; } bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, const SourceRange &ExprRange) { E = E->IgnoreParens(); // alignof decl is always ok. if (isa(E)) return false; // Cannot know anything else if the expression is dependent. if (E->isTypeDependent()) return false; if (E->getBitField()) { Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange; return true; } // Alignment of a field access is always okay, so long as it isn't a // bit-field. if (MemberExpr *ME = dyn_cast(E)) if (dyn_cast(ME->getMemberDecl())) return false; return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false); } /// \brief Build a sizeof or alignof expression given a type operand. Action::OwningExprResult Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc, bool isSizeOf, SourceRange R) { if (T.isNull()) return ExprError(); if (!T->isDependentType() && CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf)) return ExprError(); // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T, Context.getSizeType(), OpLoc, R.getEnd())); } /// \brief Build a sizeof or alignof expression given an expression /// operand. Action::OwningExprResult Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc, bool isSizeOf, SourceRange R) { // Verify that the operand is valid. bool isInvalid = false; if (E->isTypeDependent()) { // Delay type-checking for type-dependent expressions. } else if (!isSizeOf) { isInvalid = CheckAlignOfExpr(E, OpLoc, R); } else if (E->getBitField()) { // C99 6.5.3.4p1. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0; isInvalid = true; } else { isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true); } if (isInvalid) return ExprError(); // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E, Context.getSizeType(), OpLoc, R.getEnd())); } /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and /// the same for @c alignof and @c __alignof /// Note that the ArgRange is invalid if isType is false. Action::OwningExprResult Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, void *TyOrEx, const SourceRange &ArgRange) { // If error parsing type, ignore. if (TyOrEx == 0) return ExprError(); if (isType) { QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx); return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange); } // Get the end location. Expr *ArgEx = (Expr *)TyOrEx; Action::OwningExprResult Result = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange()); if (Result.isInvalid()) DeleteExpr(ArgEx); return move(Result); } QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) { if (V->isTypeDependent()) return Context.DependentTy; // These operators return the element type of a complex type. if (const ComplexType *CT = V->getType()->getAsComplexType()) return CT->getElementType(); // Otherwise they pass through real integer and floating point types here. if (V->getType()->isArithmeticType()) return V->getType(); // Reject anything else. Diag(Loc, diag::err_realimag_invalid_type) << V->getType() << (isReal ? "__real" : "__imag"); return QualType(); } Action::OwningExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, ExprArg Input) { Expr *Arg = (Expr *)Input.get(); UnaryOperator::Opcode Opc; switch (Kind) { default: assert(0 && "Unknown unary op!"); case tok::plusplus: Opc = UnaryOperator::PostInc; break; case tok::minusminus: Opc = UnaryOperator::PostDec; break; } if (getLangOptions().CPlusPlus && (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) { // Which overloaded operator? OverloadedOperatorKind OverOp = (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus; // C++ [over.inc]p1: // // [...] If the function is a member function with one // parameter (which shall be of type int) or a non-member // function with two parameters (the second of which shall be // of type int), it defines the postfix increment operator ++ // for objects of that type. When the postfix increment is // called as a result of using the ++ operator, the int // argument will have value zero. Expr *Args[2] = { Arg, new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0, /*isSigned=*/true), Context.IntTy, SourceLocation()) }; // Build the candidate set for overloading OverloadCandidateSet CandidateSet; AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(Arg, Method)) return ExprError(); } else { // Convert the arguments. if (PerformCopyInitialization(Arg, FnDecl->getParamDecl(0)->getType(), "passing")) return ExprError(); } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); Input.release(); Args[0] = Arg; return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr, Args, 2, ResultTy, OpLoc)); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0], "passing")) return ExprError(); break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << UnaryOperator::getOpcodeStr(Opc) << Arg->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << UnaryOperator::getOpcodeStr(Opc) << Arg->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. } QualType result = CheckIncrementDecrementOperand(Arg, OpLoc, Opc == UnaryOperator::PostInc); if (result.isNull()) return ExprError(); Input.release(); return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc)); } Action::OwningExprResult Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc, ExprArg Idx, SourceLocation RLoc) { Expr *LHSExp = static_cast(Base.get()), *RHSExp = static_cast(Idx.get()); if (getLangOptions().CPlusPlus && (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { Base.release(); Idx.release(); return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, Context.DependentTy, RLoc)); } if (getLangOptions().CPlusPlus && (LHSExp->getType()->isRecordType() || LHSExp->getType()->isEnumeralType() || RHSExp->getType()->isRecordType() || RHSExp->getType()->isEnumeralType())) { // Add the appropriate overloaded operators (C++ [over.match.oper]) // to the candidate set. OverloadCandidateSet CandidateSet; Expr *Args[2] = { LHSExp, RHSExp }; AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet, SourceRange(LLoc, RLoc)); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(LHSExp, Method) || PerformCopyInitialization(RHSExp, FnDecl->getParamDecl(0)->getType(), "passing")) return ExprError(); } else { // Convert the arguments. if (PerformCopyInitialization(LHSExp, FnDecl->getParamDecl(0)->getType(), "passing") || PerformCopyInitialization(RHSExp, FnDecl->getParamDecl(1)->getType(), "passing")) return ExprError(); } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); Base.release(); Idx.release(); Args[0] = LHSExp; Args[1] = RHSExp; return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, FnExpr, Args, 2, ResultTy, LLoc)); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0], "passing") || PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1], "passing")) return ExprError(); break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(LLoc, diag::err_ovl_ambiguous_oper) << "[]" << LHSExp->getSourceRange() << RHSExp->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); case OR_Deleted: Diag(LLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << "[]" << LHSExp->getSourceRange() << RHSExp->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return ExprError(); } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. } // Perform default conversions. DefaultFunctionArrayConversion(LHSExp); DefaultFunctionArrayConversion(RHSExp); QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent // to the expression *((e1)+(e2)). This means the array "Base" may actually be // in the subscript position. As a result, we need to derive the array base // and index from the expression types. Expr *BaseExpr, *IndexExpr; QualType ResultType; if (LHSTy->isDependentType() || RHSTy->isDependentType()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = Context.DependentTy; } else if (const PointerType *PTy = LHSTy->getAsPointerType()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = PTy->getPointeeType(); } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { // Handle the uncommon case of "123[Ptr]". BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = PTy->getPointeeType(); } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { BaseExpr = LHSExp; // vectors: V[123] IndexExpr = RHSExp; // FIXME: need to deal with const... ResultType = VTy->getElementType(); } else if (LHSTy->isArrayType()) { // If we see an array that wasn't promoted by // DefaultFunctionArrayConversion, it must be an array that // wasn't promoted because of the C90 rule that doesn't // allow promoting non-lvalue arrays. Warn, then // force the promotion here. Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << LHSExp->getSourceRange(); ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy)); LHSTy = LHSExp->getType(); BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = LHSTy->getAsPointerType()->getPointeeType(); } else if (RHSTy->isArrayType()) { // Same as previous, except for 123[f().a] case Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << RHSExp->getSourceRange(); ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy)); RHSTy = RHSExp->getType(); BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = RHSTy->getAsPointerType()->getPointeeType(); } else { return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) << LHSExp->getSourceRange() << RHSExp->getSourceRange()); } // C99 6.5.2.1p1 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) << IndexExpr->getSourceRange()); // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, // C++ [expr.sub]p1: The type "T" shall be a completely-defined object // type. Note that Functions are not objects, and that (in C99 parlance) // incomplete types are not object types. if (ResultType->isFunctionType()) { Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) << ResultType << BaseExpr->getSourceRange(); return ExprError(); } if (!ResultType->isDependentType() && RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type, BaseExpr->getSourceRange())) return ExprError(); // Diagnose bad cases where we step over interface counts. if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { Diag(LLoc, diag::err_subscript_nonfragile_interface) << ResultType << BaseExpr->getSourceRange(); return ExprError(); } Base.release(); Idx.release(); return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc)); } QualType Sema:: CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, IdentifierInfo &CompName, SourceLocation CompLoc) { const ExtVectorType *vecType = baseType->getAsExtVectorType(); // The vector accessor can't exceed the number of elements. const char *compStr = CompName.getName(); // This flag determines whether or not the component is one of the four // special names that indicate a subset of exactly half the elements are // to be selected. bool HalvingSwizzle = false; // This flag determines whether or not CompName has an 's' char prefix, // indicating that it is a string of hex values to be used as vector indices. bool HexSwizzle = *compStr == 's'; // Check that we've found one of the special components, or that the component // names must come from the same set. if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { HalvingSwizzle = true; } else if (vecType->getPointAccessorIdx(*compStr) != -1) { do compStr++; while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) { do compStr++; while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1); } if (!HalvingSwizzle && *compStr) { // We didn't get to the end of the string. This means the component names // didn't come from the same set *or* we encountered an illegal name. Diag(OpLoc, diag::err_ext_vector_component_name_illegal) << std::string(compStr,compStr+1) << SourceRange(CompLoc); return QualType(); } // Ensure no component accessor exceeds the width of the vector type it // operates on. if (!HalvingSwizzle) { compStr = CompName.getName(); if (HexSwizzle) compStr++; while (*compStr) { if (!vecType->isAccessorWithinNumElements(*compStr++)) { Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) << baseType << SourceRange(CompLoc); return QualType(); } } } // If this is a halving swizzle, verify that the base type has an even // number of elements. if (HalvingSwizzle && (vecType->getNumElements() & 1U)) { Diag(OpLoc, diag::err_ext_vector_component_requires_even) << baseType << SourceRange(CompLoc); return QualType(); } // The component accessor looks fine - now we need to compute the actual type. // The vector type is implied by the component accessor. For example, // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. // vec4.s0 is a float, vec4.s23 is a vec3, etc. // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2 : CompName.getLength(); if (HexSwizzle) CompSize--; if (CompSize == 1) return vecType->getElementType(); QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize); // Now look up the TypeDefDecl from the vector type. Without this, // diagostics look bad. We want extended vector types to appear built-in. for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) { if (ExtVectorDecls[i]->getUnderlyingType() == VT) return Context.getTypedefType(ExtVectorDecls[i]); } return VT; // should never get here (a typedef type should always be found). } static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, IdentifierInfo &Member, const Selector &Sel, ASTContext &Context) { if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member)) return PD; if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel)) return OMD; for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(), E = PDecl->protocol_end(); I != E; ++I) { if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context)) return D; } return 0; } static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy, IdentifierInfo &Member, const Selector &Sel, ASTContext &Context) { // Check protocols on qualified interfaces. Decl *GDecl = 0; for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(), E = QIdTy->qual_end(); I != E; ++I) { if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) { GDecl = PD; break; } // Also must look for a getter name which uses property syntax. if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) { GDecl = OMD; break; } } if (!GDecl) { for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(), E = QIdTy->qual_end(); I != E; ++I) { // Search in the protocol-qualifier list of current protocol. GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context); if (GDecl) return GDecl; } } return GDecl; } /// FindMethodInNestedImplementations - Look up a method in current and /// all base class implementations. /// ObjCMethodDecl *Sema::FindMethodInNestedImplementations( const ObjCInterfaceDecl *IFace, const Selector &Sel) { ObjCMethodDecl *Method = 0; if (ObjCImplementationDecl *ImpDecl = LookupObjCImplementation(IFace->getIdentifier())) Method = ImpDecl->getInstanceMethod(Context, Sel); if (!Method && IFace->getSuperClass()) return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel); return Method; } Action::OwningExprResult Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation MemberLoc, IdentifierInfo &Member, DeclPtrTy ObjCImpDecl) { Expr *BaseExpr = Base.takeAs(); assert(BaseExpr && "no record expression"); // Perform default conversions. DefaultFunctionArrayConversion(BaseExpr); QualType BaseType = BaseExpr->getType(); assert(!BaseType.isNull() && "no type for member expression"); // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr // must have pointer type, and the accessed type is the pointee. if (OpKind == tok::arrow) { if (BaseType->isDependentType()) return Owned(new (Context) CXXUnresolvedMemberExpr(Context, BaseExpr, true, OpLoc, DeclarationName(&Member), MemberLoc)); else if (const PointerType *PT = BaseType->getAsPointerType()) BaseType = PT->getPointeeType(); else if (getLangOptions().CPlusPlus && BaseType->isRecordType()) return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc, MemberLoc, Member)); else return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) << BaseType << BaseExpr->getSourceRange()); } else { if (BaseType->isDependentType()) { // Require that the base type isn't a pointer type // (so we'll report an error for) // T* t; // t.f; // // In Obj-C++, however, the above expression is valid, since it could be // accessing the 'f' property if T is an Obj-C interface. The extra check // allows this, while still reporting an error if T is a struct pointer. const PointerType *PT = BaseType->getAsPointerType(); if (!PT || (getLangOptions().ObjC1 && !PT->getPointeeType()->isRecordType())) return Owned(new (Context) CXXUnresolvedMemberExpr(Context, BaseExpr, false, OpLoc, DeclarationName(&Member), MemberLoc)); } } // Handle field access to simple records. This also handles access to fields // of the ObjC 'id' struct. if (const RecordType *RTy = BaseType->getAsRecordType()) { RecordDecl *RDecl = RTy->getDecl(); if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag, BaseExpr->getSourceRange())) return ExprError(); // The record definition is complete, now make sure the member is valid. // FIXME: Qualified name lookup for C++ is a bit more complicated than this. LookupResult Result = LookupQualifiedName(RDecl, DeclarationName(&Member), LookupMemberName, false); if (!Result) return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member) << &Member << BaseExpr->getSourceRange()); if (Result.isAmbiguous()) { DiagnoseAmbiguousLookup(Result, DeclarationName(&Member), MemberLoc, BaseExpr->getSourceRange()); return ExprError(); } NamedDecl *MemberDecl = Result; // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (MemberDecl->isInvalidDecl()) return ExprError(); // Check the use of this field if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) return ExprError(); if (FieldDecl *FD = dyn_cast(MemberDecl)) { // We may have found a field within an anonymous union or struct // (C++ [class.union]). if (cast(FD->getDeclContext())->isAnonymousStructOrUnion()) return BuildAnonymousStructUnionMemberReference(MemberLoc, FD, BaseExpr, OpLoc); // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] // FIXME: Handle address space modifiers QualType MemberType = FD->getType(); if (const ReferenceType *Ref = MemberType->getAsReferenceType()) MemberType = Ref->getPointeeType(); else { unsigned combinedQualifiers = MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers(); if (FD->isMutable()) combinedQualifiers &= ~QualType::Const; MemberType = MemberType.getQualifiedType(combinedQualifiers); } return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD, MemberLoc, MemberType)); } if (VarDecl *Var = dyn_cast(MemberDecl)) return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Var, MemberLoc, Var->getType().getNonReferenceType())); if (FunctionDecl *MemberFn = dyn_cast(MemberDecl)) return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn, MemberLoc, MemberFn->getType())); if (OverloadedFunctionDecl *Ovl = dyn_cast(MemberDecl)) return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, MemberLoc, Context.OverloadTy)); if (EnumConstantDecl *Enum = dyn_cast(MemberDecl)) return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, MemberLoc, Enum->getType())); if (isa(MemberDecl)) return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type) << DeclarationName(&Member) << int(OpKind == tok::arrow)); // We found a declaration kind that we didn't expect. This is a // generic error message that tells the user that she can't refer // to this member with '.' or '->'. return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) << DeclarationName(&Member) << int(OpKind == tok::arrow)); } // Handle access to Objective-C instance variables, such as "Obj->ivar" and // (*Obj).ivar. if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) { ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context, &Member, ClassDeclared)) { // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (IV->isInvalidDecl()) return ExprError(); // Check whether we can reference this field. if (DiagnoseUseOfDecl(IV, MemberLoc)) return ExprError(); if (IV->getAccessControl() != ObjCIvarDecl::Public && IV->getAccessControl() != ObjCIvarDecl::Package) { ObjCInterfaceDecl *ClassOfMethodDecl = 0; if (ObjCMethodDecl *MD = getCurMethodDecl()) ClassOfMethodDecl = MD->getClassInterface(); else if (ObjCImpDecl && getCurFunctionDecl()) { // Case of a c-function declared inside an objc implementation. // FIXME: For a c-style function nested inside an objc implementation // class, there is no implementation context available, so we pass // down the context as argument to this routine. Ideally, this context // need be passed down in the AST node and somehow calculated from the // AST for a function decl. Decl *ImplDecl = ObjCImpDecl.getAs(); if (ObjCImplementationDecl *IMPD = dyn_cast(ImplDecl)) ClassOfMethodDecl = IMPD->getClassInterface(); else if (ObjCCategoryImplDecl* CatImplClass = dyn_cast(ImplDecl)) ClassOfMethodDecl = CatImplClass->getClassInterface(); } if (IV->getAccessControl() == ObjCIvarDecl::Private) { if (ClassDeclared != IFTy->getDecl() || ClassOfMethodDecl != ClassDeclared) Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName(); } // @protected else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl)) Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName(); } return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, OpKind == tok::arrow)); } return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) << IFTy->getDecl()->getDeclName() << &Member << BaseExpr->getSourceRange()); } // Handle Objective-C property access, which is "Obj.property" where Obj is a // pointer to a (potentially qualified) interface type. const PointerType *PTy; const ObjCInterfaceType *IFTy; if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) && (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) { ObjCInterfaceDecl *IFace = IFTy->getDecl(); // Search for a declared property first. if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context, &Member)) { // Check whether we can reference this property. if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); QualType ResTy = PD->getType(); Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel); if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc)) ResTy = Getter->getResultType(); return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy, MemberLoc, BaseExpr)); } // Check protocols on qualified interfaces. for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(), E = IFTy->qual_end(); I != E; ++I) if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) { // Check whether we can reference this property. if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr)); } // If that failed, look for an "implicit" property by seeing if the nullary // selector is implemented. // FIXME: The logic for looking up nullary and unary selectors should be // shared with the code in ActOnInstanceMessage. Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) Getter = FindMethodInNestedImplementations(IFace, Sel); // Look through local category implementations associated with the class. if (!Getter) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == IFace) Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel); } } if (Getter) { // Check if we can reference this property. if (DiagnoseUseOfDecl(Getter, MemberLoc)) return ExprError(); } // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), &Member); ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. Setter = FindMethodInNestedImplementations(IFace, SetterSel); } // Look through local category implementations associated with the class. if (!Setter) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == IFace) Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel); } } if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) return ExprError(); if (Getter || Setter) { QualType PType; if (Getter) PType = Getter->getResultType(); else { for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(), E = Setter->param_end(); PI != E; ++PI) PType = (*PI)->getType(); } // FIXME: we must check that the setter has property type. return Owned(new (Context) ObjCKVCRefExpr(Getter, PType, Setter, MemberLoc, BaseExpr)); } return ExprError(Diag(MemberLoc, diag::err_property_not_found) << &Member << BaseType); } // Handle properties on qualified "id" protocols. const ObjCQualifiedIdType *QIdTy; if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) { // Check protocols on qualified interfaces. Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) { if (ObjCPropertyDecl *PD = dyn_cast(PMDecl)) { // Check the use of this declaration if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr)); } if (ObjCMethodDecl *OMD = dyn_cast(PMDecl)) { // Check the use of this method. if (DiagnoseUseOfDecl(OMD, MemberLoc)) return ExprError(); return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0)); } } return ExprError(Diag(MemberLoc, diag::err_property_not_found) << &Member << BaseType); } // Handle properties on ObjC 'Class' types. if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) { // Also must look for a getter name which uses property syntax. Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); if (ObjCMethodDecl *MD = getCurMethodDecl()) { ObjCInterfaceDecl *IFace = MD->getClassInterface(); ObjCMethodDecl *Getter; // FIXME: need to also look locally in the implementation. if ((Getter = IFace->lookupClassMethod(Context, Sel))) { // Check the use of this method. if (DiagnoseUseOfDecl(Getter, MemberLoc)) return ExprError(); } // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), &Member); ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. Setter = FindMethodInNestedImplementations(IFace, SetterSel); } // Look through local category implementations associated with the class. if (!Setter) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == IFace) Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel); } } if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) return ExprError(); if (Getter || Setter) { QualType PType; if (Getter) PType = Getter->getResultType(); else { for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(), E = Setter->param_end(); PI != E; ++PI) PType = (*PI)->getType(); } // FIXME: we must check that the setter has property type. return Owned(new (Context) ObjCKVCRefExpr(Getter, PType, Setter, MemberLoc, BaseExpr)); } return ExprError(Diag(MemberLoc, diag::err_property_not_found) << &Member << BaseType); } } // Handle 'field access' to vectors, such as 'V.xx'. if (BaseType->isExtVectorType()) { QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc); if (ret.isNull()) return ExprError(); return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc)); } Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union) << BaseType << BaseExpr->getSourceRange(); // If the user is trying to apply -> or . to a function or function // pointer, it's probably because they forgot parentheses to call // the function. Suggest the addition of those parentheses. if (BaseType == Context.OverloadTy || BaseType->isFunctionType() || (BaseType->isPointerType() && BaseType->getAsPointerType()->isFunctionType())) { SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd()); Diag(Loc, diag::note_member_reference_needs_call) << CodeModificationHint::CreateInsertion(Loc, "()"); } return ExprError(); } /// ConvertArgumentsForCall - Converts the arguments specified in /// Args/NumArgs to the parameter types of the function FDecl with /// function prototype Proto. Call is the call expression itself, and /// Fn is the function expression. For a C++ member function, this /// routine does not attempt to convert the object argument. Returns /// true if the call is ill-formed. bool Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc) { // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by // assignment, to the types of the corresponding parameter, ... unsigned NumArgsInProto = Proto->getNumArgs(); unsigned NumArgsToCheck = NumArgs; bool Invalid = false; // If too few arguments are available (and we don't have default // arguments for the remaining parameters), don't make the call. if (NumArgs < NumArgsInProto) { if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) << Fn->getType()->isBlockPointerType() << Fn->getSourceRange(); // Use default arguments for missing arguments NumArgsToCheck = NumArgsInProto; Call->setNumArgs(Context, NumArgsInProto); } // If too many are passed and not variadic, error on the extras and drop // them. if (NumArgs > NumArgsInProto) { if (!Proto->isVariadic()) { Diag(Args[NumArgsInProto]->getLocStart(), diag::err_typecheck_call_too_many_args) << Fn->getType()->isBlockPointerType() << Fn->getSourceRange() << SourceRange(Args[NumArgsInProto]->getLocStart(), Args[NumArgs-1]->getLocEnd()); // This deletes the extra arguments. Call->setNumArgs(Context, NumArgsInProto); Invalid = true; } NumArgsToCheck = NumArgsInProto; } // Continue to check argument types (even if we have too few/many args). for (unsigned i = 0; i != NumArgsToCheck; i++) { QualType ProtoArgType = Proto->getArgType(i); Expr *Arg; if (i < NumArgs) { Arg = Args[i]; if (RequireCompleteType(Arg->getSourceRange().getBegin(), ProtoArgType, diag::err_call_incomplete_argument, Arg->getSourceRange())) return true; // Pass the argument. if (PerformCopyInitialization(Arg, ProtoArgType, "passing")) return true; } else { if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) { Diag (Call->getSourceRange().getBegin(), diag::err_use_of_default_argument_to_function_declared_later) << FDecl << cast(FDecl->getDeclContext())->getDeclName(); Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)], diag::note_default_argument_declared_here); } // We already type-checked the argument, so we know it works. Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i)); } QualType ArgType = Arg->getType(); Call->setArg(i, Arg); } // If this is a variadic call, handle args passed through "...". if (Proto->isVariadic()) { VariadicCallType CallType = VariadicFunction; if (Fn->getType()->isBlockPointerType()) CallType = VariadicBlock; // Block else if (isa(Fn)) CallType = VariadicMethod; // Promote the arguments (C99 6.5.2.2p7). for (unsigned i = NumArgsInProto; i != NumArgs; i++) { Expr *Arg = Args[i]; Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType); Call->setArg(i, Arg); } } return Invalid; } /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. Action::OwningExprResult Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc, MultiExprArg args, SourceLocation *CommaLocs, SourceLocation RParenLoc) { unsigned NumArgs = args.size(); Expr *Fn = fn.takeAs(); Expr **Args = reinterpret_cast(args.release()); assert(Fn && "no function call expression"); FunctionDecl *FDecl = NULL; NamedDecl *NDecl = NULL; DeclarationName UnqualifiedName; if (getLangOptions().CPlusPlus) { // Determine whether this is a dependent call inside a C++ template, // in which case we won't do any semantic analysis now. // FIXME: Will need to cache the results of name lookup (including ADL) in // Fn. bool Dependent = false; if (Fn->isTypeDependent()) Dependent = true; else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) Dependent = true; if (Dependent) return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, Context.DependentTy, RParenLoc)); // Determine whether this is a call to an object (C++ [over.call.object]). if (Fn->getType()->isRecordType()) return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, CommaLocs, RParenLoc)); // Determine whether this is a call to a member function. if (MemberExpr *MemExpr = dyn_cast(Fn->IgnoreParens())) if (isa(MemExpr->getMemberDecl()) || isa(MemExpr->getMemberDecl())) return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, CommaLocs, RParenLoc)); } // If we're directly calling a function, get the appropriate declaration. DeclRefExpr *DRExpr = NULL; Expr *FnExpr = Fn; bool ADL = true; while (true) { if (ImplicitCastExpr *IcExpr = dyn_cast(FnExpr)) FnExpr = IcExpr->getSubExpr(); else if (ParenExpr *PExpr = dyn_cast(FnExpr)) { // Parentheses around a function disable ADL // (C++0x [basic.lookup.argdep]p1). ADL = false; FnExpr = PExpr->getSubExpr(); } else if (isa(FnExpr) && cast(FnExpr)->getOpcode() == UnaryOperator::AddrOf) { FnExpr = cast(FnExpr)->getSubExpr(); } else if ((DRExpr = dyn_cast(FnExpr))) { // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1). ADL &= !isa(DRExpr); break; } else if (UnresolvedFunctionNameExpr *DepName = dyn_cast(FnExpr)) { UnqualifiedName = DepName->getName(); break; } else { // Any kind of name that does not refer to a declaration (or // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3). ADL = false; break; } } OverloadedFunctionDecl *Ovl = 0; if (DRExpr) { FDecl = dyn_cast(DRExpr->getDecl()); Ovl = dyn_cast(DRExpr->getDecl()); NDecl = dyn_cast(DRExpr->getDecl()); } if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) { // We don't perform ADL for implicit declarations of builtins. if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit()) ADL = false; // We don't perform ADL in C. if (!getLangOptions().CPlusPlus) ADL = false; if (Ovl || ADL) { FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0, UnqualifiedName, LParenLoc, Args, NumArgs, CommaLocs, RParenLoc, ADL); if (!FDecl) return ExprError(); // Update Fn to refer to the actual function selected. Expr *NewFn = 0; if (QualifiedDeclRefExpr *QDRExpr = dyn_cast_or_null(DRExpr)) NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(), QDRExpr->getLocation(), false, false, QDRExpr->getQualifierRange(), QDRExpr->getQualifier()); else NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(), Fn->getSourceRange().getBegin()); Fn->Destroy(Context); Fn = NewFn; } } // Promote the function operand. UsualUnaryConversions(Fn); // Make the call expr early, before semantic checks. This guarantees cleanup // of arguments and function on error. ExprOwningPtr TheCall(this, new (Context) CallExpr(Context, Fn, Args, NumArgs, Context.BoolTy, RParenLoc)); const FunctionType *FuncT; if (!Fn->getType()->isBlockPointerType()) { // C99 6.5.2.2p1 - "The expression that denotes the called function shall // have type pointer to function". const PointerType *PT = Fn->getType()->getAsPointerType(); if (PT == 0) return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); FuncT = PT->getPointeeType()->getAsFunctionType(); } else { // This is a block call. FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()-> getAsFunctionType(); } if (FuncT == 0) return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); // Check for a valid return type if (!FuncT->getResultType()->isVoidType() && RequireCompleteType(Fn->getSourceRange().getBegin(), FuncT->getResultType(), diag::err_call_incomplete_return, TheCall->getSourceRange())) return ExprError(); // We know the result type of the call, set it. TheCall->setType(FuncT->getResultType().getNonReferenceType()); if (const FunctionProtoType *Proto = dyn_cast(FuncT)) { if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs, RParenLoc)) return ExprError(); } else { assert(isa(FuncT) && "Unknown FunctionType!"); if (FDecl) { // Check if we have too few/too many template arguments, based // on our knowledge of the function definition. const FunctionDecl *Def = 0; if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) { const FunctionProtoType *Proto = Def->getType()->getAsFunctionProtoType(); if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) { Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); } } } // Promote the arguments (C99 6.5.2.2p6). for (unsigned i = 0; i != NumArgs; i++) { Expr *Arg = Args[i]; DefaultArgumentPromotion(Arg); if (RequireCompleteType(Arg->getSourceRange().getBegin(), Arg->getType(), diag::err_call_incomplete_argument, Arg->getSourceRange())) return ExprError(); TheCall->setArg(i, Arg); } } if (CXXMethodDecl *Method = dyn_cast_or_null(FDecl)) if (!Method->isStatic()) return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) << Fn->getSourceRange()); // Check for sentinels if (NDecl) DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); // Do special checking on direct calls to functions. if (FDecl) return CheckFunctionCall(FDecl, TheCall.take()); if (NDecl) return CheckBlockCall(NDecl, TheCall.take()); return Owned(TheCall.take()); } Action::OwningExprResult Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprArg InitExpr) { assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); QualType literalType = QualType::getFromOpaquePtr(Ty); // FIXME: put back this assert when initializers are worked out. //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); Expr *literalExpr = static_cast(InitExpr.get()); if (literalType->isArrayType()) { if (literalType->isVariableArrayType()) return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); } else if (!literalType->isDependentType() && RequireCompleteType(LParenLoc, literalType, diag::err_typecheck_decl_incomplete_type, SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()))) return ExprError(); if (CheckInitializerTypes(literalExpr, literalType, LParenLoc, DeclarationName(), /*FIXME:DirectInit=*/false)) return ExprError(); bool isFileScope = getCurFunctionOrMethodDecl() == 0; if (isFileScope) { // 6.5.2.5p3 if (CheckForConstantInitializer(literalExpr, literalType)) return ExprError(); } InitExpr.release(); return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope)); } Action::OwningExprResult Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, SourceLocation RBraceLoc) { unsigned NumInit = initlist.size(); Expr **InitList = reinterpret_cast(initlist.release()); // Semantic analysis for initializers is done by ActOnDeclarator() and // CheckInitializer() - it requires knowledge of the object being intialized. InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc); E->setType(Context.VoidTy); // FIXME: just a place holder for now. return Owned(E); } /// CheckCastTypes - Check type constraints for casting between types. bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) { UsualUnaryConversions(castExpr); // C99 6.5.4p2: the cast type needs to be void or scalar and the expression // type needs to be scalar. if (castType->isVoidType()) { // Cast to void allows any expr type. } else if (castType->isDependentType() || castExpr->isTypeDependent()) { // We can't check any more until template instantiation time. } else if (!castType->isScalarType() && !castType->isVectorType()) { if (Context.getCanonicalType(castType).getUnqualifiedType() == Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) && (castType->isStructureType() || castType->isUnionType())) { // GCC struct/union extension: allow cast to self. // FIXME: Check that the cast destination type is complete. Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) << castType << castExpr->getSourceRange(); } else if (castType->isUnionType()) { // GCC cast to union extension RecordDecl *RD = castType->getAsRecordType()->getDecl(); RecordDecl::field_iterator Field, FieldEnd; for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context); Field != FieldEnd; ++Field) { if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() == Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) { Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) << castExpr->getSourceRange(); break; } } if (Field == FieldEnd) return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) << castExpr->getType() << castExpr->getSourceRange(); } else { // Reject any other conversions to non-scalar types. return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) << castType << castExpr->getSourceRange(); } } else if (!castExpr->getType()->isScalarType() && !castExpr->getType()->isVectorType()) { return Diag(castExpr->getLocStart(), diag::err_typecheck_expect_scalar_operand) << castExpr->getType() << castExpr->getSourceRange(); } else if (castExpr->getType()->isVectorType()) { if (CheckVectorCast(TyR, castExpr->getType(), castType)) return true; } else if (castType->isVectorType()) { if (CheckVectorCast(TyR, castType, castExpr->getType())) return true; } else if (getLangOptions().ObjC1 && isa(castExpr)) { return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR; } else if (!castType->isArithmeticType()) { QualType castExprType = castExpr->getType(); if (!castExprType->isIntegralType() && castExprType->isArithmeticType()) return Diag(castExpr->getLocStart(), diag::err_cast_pointer_from_non_pointer_int) << castExprType << castExpr->getSourceRange(); } else if (!castExpr->getType()->isArithmeticType()) { if (!castType->isIntegralType() && castType->isArithmeticType()) return Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int) << castType << castExpr->getSourceRange(); } if (isa(castExpr)) return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr); return false; } bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) { assert(VectorTy->isVectorType() && "Not a vector type!"); if (Ty->isVectorType() || Ty->isIntegerType()) { if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) return Diag(R.getBegin(), Ty->isVectorType() ? diag::err_invalid_conversion_between_vectors : diag::err_invalid_conversion_between_vector_and_integer) << VectorTy << Ty << R; } else return Diag(R.getBegin(), diag::err_invalid_conversion_between_vector_and_scalar) << VectorTy << Ty << R; return false; } Action::OwningExprResult Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprArg Op) { assert((Ty != 0) && (Op.get() != 0) && "ActOnCastExpr(): missing type or expr"); Expr *castExpr = Op.takeAs(); QualType castType = QualType::getFromOpaquePtr(Ty); if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr)) return ExprError(); return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc)); } /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension. /// In that case, lhs = cond. /// C99 6.5.15 QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, SourceLocation QuestionLoc) { // C++ is sufficiently different to merit its own checker. if (getLangOptions().CPlusPlus) return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc); UsualUnaryConversions(Cond); UsualUnaryConversions(LHS); UsualUnaryConversions(RHS); QualType CondTy = Cond->getType(); QualType LHSTy = LHS->getType(); QualType RHSTy = RHS->getType(); // first, check the condition. if (!CondTy->isScalarType()) { // C99 6.5.15p2 Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << CondTy; return QualType(); } // Now check the two expressions. // If both operands have arithmetic type, do the usual arithmetic conversions // to find a common type: C99 6.5.15p3,5. if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { UsualArithmeticConversions(LHS, RHS); return LHS->getType(); } // If both operands are the same structure or union type, the result is that // type. if (const RecordType *LHSRT = LHSTy->getAsRecordType()) { // C99 6.5.15p3 if (const RecordType *RHSRT = RHSTy->getAsRecordType()) if (LHSRT->getDecl() == RHSRT->getDecl()) // "If both the operands have structure or union type, the result has // that type." This implies that CV qualifiers are dropped. return LHSTy.getUnqualifiedType(); // FIXME: Type of conditional expression must be complete in C mode. } // C99 6.5.15p5: "If both operands have void type, the result has void type." // The following || allows only one side to be void (a GCC-ism). if (LHSTy->isVoidType() || RHSTy->isVoidType()) { if (!LHSTy->isVoidType()) Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void) << RHS->getSourceRange(); if (!RHSTy->isVoidType()) Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void) << LHS->getSourceRange(); ImpCastExprToType(LHS, Context.VoidTy); ImpCastExprToType(RHS, Context.VoidTy); return Context.VoidTy; } // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has // the type of the other operand." if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() || Context.isObjCObjectPointerType(LHSTy)) && RHS->isNullPointerConstant(Context)) { ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer. return LHSTy; } if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() || Context.isObjCObjectPointerType(RHSTy)) && LHS->isNullPointerConstant(Context)) { ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer. return RHSTy; } const PointerType *LHSPT = LHSTy->getAsPointerType(); const PointerType *RHSPT = RHSTy->getAsPointerType(); const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType(); const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType(); // Handle the case where both operands are pointers before we handle null // pointer constants in case both operands are null pointer constants. if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6 // get the "pointed to" types QualType lhptee = (LHSPT ? LHSPT->getPointeeType() : LHSBPT->getPointeeType()); QualType rhptee = (RHSPT ? RHSPT->getPointeeType() : RHSBPT->getPointeeType()); // ignore qualifiers on void (C99 6.5.15p3, clause 6) if (lhptee->isVoidType() && (RHSBPT || rhptee->isIncompleteOrObjectType())) { // Figure out necessary qualifiers (C99 6.5.15p6) QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers()); QualType destType = Context.getPointerType(destPointee); ImpCastExprToType(LHS, destType); // add qualifiers if necessary ImpCastExprToType(RHS, destType); // promote to void* return destType; } if (rhptee->isVoidType() && (LHSBPT || lhptee->isIncompleteOrObjectType())) { QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers()); QualType destType = Context.getPointerType(destPointee); ImpCastExprToType(LHS, destType); // add qualifiers if necessary ImpCastExprToType(RHS, destType); // promote to void* return destType; } bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT); if (sameKind && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { // Two identical pointer types are always compatible. return LHSTy; } QualType compositeType = LHSTy; // If either type is an Objective-C object type then check // compatibility according to Objective-C. if (Context.isObjCObjectPointerType(LHSTy) || Context.isObjCObjectPointerType(RHSTy)) { // If both operands are interfaces and either operand can be // assigned to the other, use that type as the composite // type. This allows // xxx ? (A*) a : (B*) b // where B is a subclass of A. // // Additionally, as for assignment, if either type is 'id' // allow silent coercion. Finally, if the types are // incompatible then make sure to use 'id' as the composite // type so the result is acceptable for sending messages to. // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. // It could return the composite type. const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); if (LHSIface && RHSIface && Context.canAssignObjCInterfaces(LHSIface, RHSIface)) { compositeType = LHSTy; } else if (LHSIface && RHSIface && Context.canAssignObjCInterfaces(RHSIface, LHSIface)) { compositeType = RHSTy; } else if (Context.isObjCIdStructType(lhptee) || Context.isObjCIdStructType(rhptee)) { compositeType = Context.getObjCIdType(); } else if (LHSBPT || RHSBPT) { if (!sameKind || !Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } else { Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); QualType incompatTy = Context.getObjCIdType(); ImpCastExprToType(LHS, incompatTy); ImpCastExprToType(RHS, incompatTy); return incompatTy; } } else if (!sameKind || !Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) { Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); // In this situation, we assume void* type. No especially good // reason, but this is what gcc does, and we do have to pick // to get a consistent AST. QualType incompatTy = Context.getPointerType(Context.VoidTy); ImpCastExprToType(LHS, incompatTy); ImpCastExprToType(RHS, incompatTy); return incompatTy; } // The pointer types are compatible. // C99 6.5.15p6: If both operands are pointers to compatible types *or* to // differently qualified versions of compatible types, the result type is // a pointer to an appropriately qualified version of the *composite* // type. // FIXME: Need to calculate the composite type. // FIXME: Need to add qualifiers ImpCastExprToType(LHS, compositeType); ImpCastExprToType(RHS, compositeType); return compositeType; } // GCC compatibility: soften pointer/integer mismatch. if (RHSTy->isPointerType() && LHSTy->isIntegerType()) { Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer. return RHSTy; } if (LHSTy->isPointerType() && RHSTy->isIntegerType()) { Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer. return LHSTy; } // Need to handle "id" explicitly. Unlike "id", whose canonical type // evaluates to "struct objc_object *" (and is handled above when comparing // id with statically typed objects). if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) { // GCC allows qualified id and any Objective-C type to devolve to // id. Currently localizing to here until clear this should be // part of ObjCQualifiedIdTypesAreCompatible. if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) || (LHSTy->isObjCQualifiedIdType() && Context.isObjCObjectPointerType(RHSTy)) || (RHSTy->isObjCQualifiedIdType() && Context.isObjCObjectPointerType(LHSTy))) { // FIXME: This is not the correct composite type. This only happens to // work because id can more or less be used anywhere, however this may // change the type of method sends. // FIXME: gcc adds some type-checking of the arguments and emits // (confusing) incompatible comparison warnings in some // cases. Investigate. QualType compositeType = Context.getObjCIdType(); ImpCastExprToType(LHS, compositeType); ImpCastExprToType(RHS, compositeType); return compositeType; } } // Otherwise, the operands are not compatible. Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, ExprArg Cond, ExprArg LHS, ExprArg RHS) { Expr *CondExpr = (Expr *) Cond.get(); Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get(); // If this is the gnu "x ?: y" extension, analyze the types as though the LHS // was the condition. bool isLHSNull = LHSExpr == 0; if (isLHSNull) LHSExpr = CondExpr; QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr, QuestionLoc); if (result.isNull()) return ExprError(); Cond.release(); LHS.release(); RHS.release(); return Owned(new (Context) ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr, RHSExpr, result)); } // CheckPointerTypesForAssignment - This is a very tricky routine (despite // being closely modeled after the C99 spec:-). The odd characteristic of this // routine is it effectively iqnores the qualifiers on the top level pointee. // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. // FIXME: add a couple examples in this comment. Sema::AssignConvertType Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { QualType lhptee, rhptee; // get the "pointed to" type (ignoring qualifiers at the top level) lhptee = lhsType->getAsPointerType()->getPointeeType(); rhptee = rhsType->getAsPointerType()->getPointeeType(); // make sure we operate on the canonical type lhptee = Context.getCanonicalType(lhptee); rhptee = Context.getCanonicalType(rhptee); AssignConvertType ConvTy = Compatible; // C99 6.5.16.1p1: This following citation is common to constraints // 3 & 4 (below). ...and the type *pointed to* by the left has all the // qualifiers of the type *pointed to* by the right; // FIXME: Handle ExtQualType if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) ConvTy = CompatiblePointerDiscardsQualifiers; // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or // incomplete type and the other is a pointer to a qualified or unqualified // version of void... if (lhptee->isVoidType()) { if (rhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(rhptee->isFunctionType()); return FunctionVoidPointer; } if (rhptee->isVoidType()) { if (lhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(lhptee->isFunctionType()); return FunctionVoidPointer; } // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or // unqualified versions of compatible types, ... lhptee = lhptee.getUnqualifiedType(); rhptee = rhptee.getUnqualifiedType(); if (!Context.typesAreCompatible(lhptee, rhptee)) { // Check if the pointee types are compatible ignoring the sign. // We explicitly check for char so that we catch "char" vs // "unsigned char" on systems where "char" is unsigned. if (lhptee->isCharType()) { lhptee = Context.UnsignedCharTy; } else if (lhptee->isSignedIntegerType()) { lhptee = Context.getCorrespondingUnsignedType(lhptee); } if (rhptee->isCharType()) { rhptee = Context.UnsignedCharTy; } else if (rhptee->isSignedIntegerType()) { rhptee = Context.getCorrespondingUnsignedType(rhptee); } if (lhptee == rhptee) { // Types are compatible ignoring the sign. Qualifier incompatibility // takes priority over sign incompatibility because the sign // warning can be disabled. if (ConvTy != Compatible) return ConvTy; return IncompatiblePointerSign; } // General pointer incompatibility takes priority over qualifiers. return IncompatiblePointer; } return ConvTy; } /// CheckBlockPointerTypesForAssignment - This routine determines whether two /// block pointer types are compatible or whether a block and normal pointer /// are compatible. It is more restrict than comparing two function pointer // types. Sema::AssignConvertType Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, QualType rhsType) { QualType lhptee, rhptee; // get the "pointed to" type (ignoring qualifiers at the top level) lhptee = lhsType->getAsBlockPointerType()->getPointeeType(); rhptee = rhsType->getAsBlockPointerType()->getPointeeType(); // make sure we operate on the canonical type lhptee = Context.getCanonicalType(lhptee); rhptee = Context.getCanonicalType(rhptee); AssignConvertType ConvTy = Compatible; // For blocks we enforce that qualifiers are identical. if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers()) ConvTy = CompatiblePointerDiscardsQualifiers; if (!Context.typesAreCompatible(lhptee, rhptee)) return IncompatibleBlockPointer; return ConvTy; } /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently /// has code to accommodate several GCC extensions when type checking /// pointers. Here are some objectionable examples that GCC considers warnings: /// /// int a, *pint; /// short *pshort; /// struct foo *pfoo; /// /// pint = pshort; // warning: assignment from incompatible pointer type /// a = pint; // warning: assignment makes integer from pointer without a cast /// pint = a; // warning: assignment makes pointer from integer without a cast /// pint = pfoo; // warning: assignment from incompatible pointer type /// /// As a result, the code for dealing with pointers is more complex than the /// C99 spec dictates. /// Sema::AssignConvertType Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { // Get canonical types. We're not formatting these types, just comparing // them. lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); if (lhsType == rhsType) return Compatible; // Common case: fast path an exact match. // If the left-hand side is a reference type, then we are in a // (rare!) case where we've allowed the use of references in C, // e.g., as a parameter type in a built-in function. In this case, // just make sure that the type referenced is compatible with the // right-hand side type. The caller is responsible for adjusting // lhsType so that the resulting expression does not have reference // type. if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) { if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) return Compatible; return Incompatible; } if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) { if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false)) return Compatible; // Relax integer conversions like we do for pointers below. if (rhsType->isIntegerType()) return IntToPointer; if (lhsType->isIntegerType()) return PointerToInt; return IncompatibleObjCQualifiedId; } if (lhsType->isVectorType() || rhsType->isVectorType()) { // For ExtVector, allow vector splats; float -> if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) if (LV->getElementType() == rhsType) return Compatible; // If we are allowing lax vector conversions, and LHS and RHS are both // vectors, the total size only needs to be the same. This is a bitcast; // no bits are changed but the result type is different. if (getLangOptions().LaxVectorConversions && lhsType->isVectorType() && rhsType->isVectorType()) { if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) return IncompatibleVectors; } return Incompatible; } if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) return Compatible; if (isa(lhsType)) { if (rhsType->isIntegerType()) return IntToPointer; if (isa(rhsType)) return CheckPointerTypesForAssignment(lhsType, rhsType); if (rhsType->getAsBlockPointerType()) { if (lhsType->getAsPointerType()->getPointeeType()->isVoidType()) return Compatible; // Treat block pointers as objects. if (getLangOptions().ObjC1 && lhsType == Context.getCanonicalType(Context.getObjCIdType())) return Compatible; } return Incompatible; } if (isa(lhsType)) { if (rhsType->isIntegerType()) return IntToBlockPointer; // Treat block pointers as objects. if (getLangOptions().ObjC1 && rhsType == Context.getCanonicalType(Context.getObjCIdType())) return Compatible; if (rhsType->isBlockPointerType()) return CheckBlockPointerTypesForAssignment(lhsType, rhsType); if (const PointerType *RHSPT = rhsType->getAsPointerType()) { if (RHSPT->getPointeeType()->isVoidType()) return Compatible; } return Incompatible; } if (isa(rhsType)) { // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. if (lhsType == Context.BoolTy) return Compatible; if (lhsType->isIntegerType()) return PointerToInt; if (isa(lhsType)) return CheckPointerTypesForAssignment(lhsType, rhsType); if (isa(lhsType) && rhsType->getAsPointerType()->getPointeeType()->isVoidType()) return Compatible; return Incompatible; } if (isa(lhsType) && isa(rhsType)) { if (Context.typesAreCompatible(lhsType, rhsType)) return Compatible; } return Incompatible; } /// \brief Constructs a transparent union from an expression that is /// used to initialize the transparent union. static void ConstructTransparentUnion(ASTContext &C, Expr *&E, QualType UnionType, FieldDecl *Field) { // Build an initializer list that designates the appropriate member // of the transparent union. InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(), &E, 1, SourceLocation()); Initializer->setType(UnionType); Initializer->setInitializedFieldInUnion(Field); // Build a compound literal constructing a value of the transparent // union type from this initializer list. E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer, false); } Sema::AssignConvertType Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) { QualType FromType = rExpr->getType(); // If the ArgType is a Union type, we want to handle a potential // transparent_union GCC extension. const RecordType *UT = ArgType->getAsUnionType(); if (!UT || !UT->getDecl()->hasAttr()) return Incompatible; // The field to initialize within the transparent union. RecordDecl *UD = UT->getDecl(); FieldDecl *InitField = 0; // It's compatible if the expression matches any of the fields. for (RecordDecl::field_iterator it = UD->field_begin(Context), itend = UD->field_end(Context); it != itend; ++it) { if (it->getType()->isPointerType()) { // If the transparent union contains a pointer type, we allow: // 1) void pointer // 2) null pointer constant if (FromType->isPointerType()) if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) { ImpCastExprToType(rExpr, it->getType()); InitField = *it; break; } if (rExpr->isNullPointerConstant(Context)) { ImpCastExprToType(rExpr, it->getType()); InitField = *it; break; } } if (CheckAssignmentConstraints(it->getType(), rExpr->getType()) == Compatible) { InitField = *it; break; } } if (!InitField) return Incompatible; ConstructTransparentUnion(Context, rExpr, ArgType, InitField); return Compatible; } Sema::AssignConvertType Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { if (getLangOptions().CPlusPlus) { if (!lhsType->isRecordType()) { // C++ 5.17p3: If the left operand is not of class type, the // expression is implicitly converted (C++ 4) to the // cv-unqualified type of the left operand. if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(), "assigning")) return Incompatible; return Compatible; } // FIXME: Currently, we fall through and treat C++ classes like C // structures. } // C99 6.5.16.1p1: the left operand is a pointer and the right is // a null pointer constant. if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() || lhsType->isBlockPointerType()) && rExpr->isNullPointerConstant(Context)) { ImpCastExprToType(rExpr, lhsType); return Compatible; } // This check seems unnatural, however it is necessary to ensure the proper // conversion of functions/arrays. If the conversion were done for all // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary // expressions that surpress this implicit conversion (&, sizeof). // // Suppress this for references: C++ 8.5.3p5. if (!lhsType->isReferenceType()) DefaultFunctionArrayConversion(rExpr); Sema::AssignConvertType result = CheckAssignmentConstraints(lhsType, rExpr->getType()); // C99 6.5.16.1p2: The value of the right operand is converted to the // type of the assignment expression. // CheckAssignmentConstraints allows the left-hand side to be a reference, // so that we can use references in built-in functions even in C. // The getNonReferenceType() call makes sure that the resulting expression // does not have reference type. if (result != Incompatible && rExpr->getType() != lhsType) ImpCastExprToType(rExpr, lhsType.getNonReferenceType()); return result; } QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { Diag(Loc, diag::err_typecheck_invalid_operands) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType lhsType = Context.getCanonicalType(lex->getType()).getUnqualifiedType(); QualType rhsType = Context.getCanonicalType(rex->getType()).getUnqualifiedType(); // If the vector types are identical, return. if (lhsType == rhsType) return lhsType; // Handle the case of a vector & extvector type of the same size and element // type. It would be nice if we only had one vector type someday. if (getLangOptions().LaxVectorConversions) { // FIXME: Should we warn here? if (const VectorType *LV = lhsType->getAsVectorType()) { if (const VectorType *RV = rhsType->getAsVectorType()) if (LV->getElementType() == RV->getElementType() && LV->getNumElements() == RV->getNumElements()) { return lhsType->isExtVectorType() ? lhsType : rhsType; } } } // If the lhs is an extended vector and the rhs is a scalar of the same type // or a literal, promote the rhs to the vector type. if (const ExtVectorType *V = lhsType->getAsExtVectorType()) { QualType eltType = V->getElementType(); if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) || (eltType->isIntegerType() && isa(rex)) || (eltType->isFloatingType() && isa(rex))) { ImpCastExprToType(rex, lhsType); return lhsType; } } // If the rhs is an extended vector and the lhs is a scalar of the same type, // promote the lhs to the vector type. if (const ExtVectorType *V = rhsType->getAsExtVectorType()) { QualType eltType = V->getElementType(); if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) || (eltType->isIntegerType() && isa(lex)) || (eltType->isFloatingType() && isa(lex))) { ImpCastExprToType(lex, rhsType); return rhsType; } } // You cannot convert between vector values of different size. Diag(Loc, diag::err_typecheck_vector_not_convertable) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } inline QualType Sema::CheckMultiplyDivideOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckRemainderOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) return CheckVectorOperands(Loc, lex, rex); return InvalidOperands(Loc, lex, rex); } QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { QualType compType = CheckVectorOperands(Loc, lex, rex); if (CompLHSTy) *CompLHSTy = compType; return compType; } QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); // handle the common case first (both operands are arithmetic). if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) { if (CompLHSTy) *CompLHSTy = compType; return compType; } // Put any potential pointer into PExp Expr* PExp = lex, *IExp = rex; if (IExp->getType()->isPointerType()) std::swap(PExp, IExp); if (const PointerType *PTy = PExp->getType()->getAsPointerType()) { if (IExp->getType()->isIntegerType()) { QualType PointeeTy = PTy->getPointeeType(); // Check for arithmetic on pointers to incomplete types. if (PointeeTy->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_void_type) << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } // GNU extension: arithmetic on pointer to void Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); } else if (PointeeTy->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_function_type) << lex->getType() << lex->getSourceRange(); return QualType(); } // GNU extension: arithmetic on pointer to function Diag(Loc, diag::ext_gnu_ptr_func_arith) << lex->getType() << lex->getSourceRange(); } else if (!PTy->isDependentType() && RequireCompleteType(Loc, PointeeTy, diag::err_typecheck_arithmetic_incomplete_type, PExp->getSourceRange(), SourceRange(), PExp->getType())) return QualType(); // Diagnose bad cases where we step over interface counts. if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { Diag(Loc, diag::err_arithmetic_nonfragile_interface) << PointeeTy << PExp->getSourceRange(); return QualType(); } if (CompLHSTy) { QualType LHSTy = lex->getType(); if (LHSTy->isPromotableIntegerType()) LHSTy = Context.IntTy; else { QualType T = isPromotableBitField(lex, Context); if (!T.isNull()) LHSTy = T; } *CompLHSTy = LHSTy; } return PExp->getType(); } } return InvalidOperands(Loc, lex, rex); } // C99 6.5.6 QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { QualType compType = CheckVectorOperands(Loc, lex, rex); if (CompLHSTy) *CompLHSTy = compType; return compType; } QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); // Enforce type constraints: C99 6.5.6p3. // Handle the common case first (both operands are arithmetic). if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) { if (CompLHSTy) *CompLHSTy = compType; return compType; } // Either ptr - int or ptr - ptr. if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) { QualType lpointee = LHSPTy->getPointeeType(); // The LHS must be an completely-defined object type. bool ComplainAboutVoid = false; Expr *ComplainAboutFunc = 0; if (lpointee->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_void_type) << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } // GNU C extension: arithmetic on pointer to void ComplainAboutVoid = true; } else if (lpointee->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_function_type) << lex->getType() << lex->getSourceRange(); return QualType(); } // GNU C extension: arithmetic on pointer to function ComplainAboutFunc = lex; } else if (!lpointee->isDependentType() && RequireCompleteType(Loc, lpointee, diag::err_typecheck_sub_ptr_object, lex->getSourceRange(), SourceRange(), lex->getType())) return QualType(); // Diagnose bad cases where we step over interface counts. if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { Diag(Loc, diag::err_arithmetic_nonfragile_interface) << lpointee << lex->getSourceRange(); return QualType(); } // The result type of a pointer-int computation is the pointer type. if (rex->getType()->isIntegerType()) { if (ComplainAboutVoid) Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); if (ComplainAboutFunc) Diag(Loc, diag::ext_gnu_ptr_func_arith) << ComplainAboutFunc->getType() << ComplainAboutFunc->getSourceRange(); if (CompLHSTy) *CompLHSTy = lex->getType(); return lex->getType(); } // Handle pointer-pointer subtractions. if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) { QualType rpointee = RHSPTy->getPointeeType(); // RHS must be a completely-type object type. // Handle the GNU void* extension. if (rpointee->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_void_type) << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } ComplainAboutVoid = true; } else if (rpointee->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_function_type) << rex->getType() << rex->getSourceRange(); return QualType(); } // GNU extension: arithmetic on pointer to function if (!ComplainAboutFunc) ComplainAboutFunc = rex; } else if (!rpointee->isDependentType() && RequireCompleteType(Loc, rpointee, diag::err_typecheck_sub_ptr_object, rex->getSourceRange(), SourceRange(), rex->getType())) return QualType(); if (getLangOptions().CPlusPlus) { // Pointee types must be the same: C++ [expr.add] if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { Diag(Loc, diag::err_typecheck_sub_ptr_compatible) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } } else { // Pointee types must be compatible C99 6.5.6p3 if (!Context.typesAreCompatible( Context.getCanonicalType(lpointee).getUnqualifiedType(), Context.getCanonicalType(rpointee).getUnqualifiedType())) { Diag(Loc, diag::err_typecheck_sub_ptr_compatible) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } } if (ComplainAboutVoid) Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); if (ComplainAboutFunc) Diag(Loc, diag::ext_gnu_ptr_func_arith) << ComplainAboutFunc->getType() << ComplainAboutFunc->getSourceRange(); if (CompLHSTy) *CompLHSTy = lex->getType(); return Context.getPointerDiffType(); } } return InvalidOperands(Loc, lex, rex); } // C99 6.5.7 QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { // C99 6.5.7p2: Each of the operands shall have integer type. if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) return InvalidOperands(Loc, lex, rex); // Shifts don't perform usual arithmetic conversions, they just do integer // promotions on each operand. C99 6.5.7p3 QualType LHSTy; if (lex->getType()->isPromotableIntegerType()) LHSTy = Context.IntTy; else { LHSTy = isPromotableBitField(lex, Context); if (LHSTy.isNull()) LHSTy = lex->getType(); } if (!isCompAssign) ImpCastExprToType(lex, LHSTy); UsualUnaryConversions(rex); // "The type of the result is that of the promoted left operand." return LHSTy; } // C99 6.5.8, C++ [expr.rel] QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned OpaqueOpc, bool isRelational) { BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc; if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorCompareOperands(lex, rex, Loc, isRelational); // C99 6.5.8p3 / C99 6.5.9p4 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) UsualArithmeticConversions(lex, rex); else { UsualUnaryConversions(lex); UsualUnaryConversions(rex); } QualType lType = lex->getType(); QualType rType = rex->getType(); if (!lType->isFloatingType() && !(lType->isBlockPointerType() && isRelational)) { // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. // NOTE: Don't warn about comparisons of enum constants. These can arise // from macro expansions, and are usually quite deliberate. Expr *LHSStripped = lex->IgnoreParens(); Expr *RHSStripped = rex->IgnoreParens(); if (DeclRefExpr* DRL = dyn_cast(LHSStripped)) if (DeclRefExpr* DRR = dyn_cast(RHSStripped)) if (DRL->getDecl() == DRR->getDecl() && !isa(DRL->getDecl())) Diag(Loc, diag::warn_selfcomparison); if (isa(LHSStripped)) LHSStripped = LHSStripped->IgnoreParenCasts(); if (isa(RHSStripped)) RHSStripped = RHSStripped->IgnoreParenCasts(); // Warn about comparisons against a string constant (unless the other // operand is null), the user probably wants strcmp. Expr *literalString = 0; Expr *literalStringStripped = 0; if ((isa(LHSStripped) || isa(LHSStripped)) && !RHSStripped->isNullPointerConstant(Context)) { literalString = lex; literalStringStripped = LHSStripped; } else if ((isa(RHSStripped) || isa(RHSStripped)) && !LHSStripped->isNullPointerConstant(Context)) { literalString = rex; literalStringStripped = RHSStripped; } if (literalString) { std::string resultComparison; switch (Opc) { case BinaryOperator::LT: resultComparison = ") < 0"; break; case BinaryOperator::GT: resultComparison = ") > 0"; break; case BinaryOperator::LE: resultComparison = ") <= 0"; break; case BinaryOperator::GE: resultComparison = ") >= 0"; break; case BinaryOperator::EQ: resultComparison = ") == 0"; break; case BinaryOperator::NE: resultComparison = ") != 0"; break; default: assert(false && "Invalid comparison operator"); } Diag(Loc, diag::warn_stringcompare) << isa(literalStringStripped) << literalString->getSourceRange() << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ") << CodeModificationHint::CreateInsertion(lex->getLocStart(), "strcmp(") << CodeModificationHint::CreateInsertion( PP.getLocForEndOfToken(rex->getLocEnd()), resultComparison); } } // The result of comparisons is 'bool' in C++, 'int' in C. QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy; if (isRelational) { if (lType->isRealType() && rType->isRealType()) return ResultTy; } else { // Check for comparisons of floating point operands using != and ==. if (lType->isFloatingType()) { assert(rType->isFloatingType()); CheckFloatComparison(Loc,lex,rex); } if (lType->isArithmeticType() && rType->isArithmeticType()) return ResultTy; } bool LHSIsNull = lex->isNullPointerConstant(Context); bool RHSIsNull = rex->isNullPointerConstant(Context); // All of the following pointer related warnings are GCC extensions, except // when handling null pointer constants. One day, we can consider making them // errors (when -pedantic-errors is enabled). if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 QualType LCanPointeeTy = Context.getCanonicalType(lType->getAsPointerType()->getPointeeType()); QualType RCanPointeeTy = Context.getCanonicalType(rType->getAsPointerType()->getPointeeType()); // Simple check: if the pointee types are identical, we're done. if (LCanPointeeTy == RCanPointeeTy) return ResultTy; if (getLangOptions().CPlusPlus) { // C++ [expr.rel]p2: // [...] Pointer conversions (4.10) and qualification // conversions (4.4) are performed on pointer operands (or on // a pointer operand and a null pointer constant) to bring // them to their composite pointer type. [...] // // C++ [expr.eq]p2 uses the same notion for (in)equality // comparisons of pointers. QualType T = FindCompositePointerType(lex, rex); if (T.isNull()) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } ImpCastExprToType(lex, T); ImpCastExprToType(rex, T); return ResultTy; } if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2 !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() && !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), RCanPointeeTy.getUnqualifiedType()) && !Context.areComparableObjCPointerTypes(lType, rType)) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType); // promote the pointer to pointer return ResultTy; } // C++ allows comparison of pointers with null pointer constants. if (getLangOptions().CPlusPlus) { if (lType->isPointerType() && RHSIsNull) { ImpCastExprToType(rex, lType); return ResultTy; } if (rType->isPointerType() && LHSIsNull) { ImpCastExprToType(lex, rType); return ResultTy; } // And comparison of nullptr_t with itself. if (lType->isNullPtrType() && rType->isNullPtrType()) return ResultTy; } // Handle block pointer types. if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) { QualType lpointee = lType->getAsBlockPointerType()->getPointeeType(); QualType rpointee = rType->getAsBlockPointerType()->getPointeeType(); if (!LHSIsNull && !RHSIsNull && !Context.typesAreCompatible(lpointee, rpointee)) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType); // promote the pointer to pointer return ResultTy; } // Allow block pointers to be compared with null pointer constants. if (!isRelational && ((lType->isBlockPointerType() && rType->isPointerType()) || (lType->isPointerType() && rType->isBlockPointerType()))) { if (!LHSIsNull && !RHSIsNull) { if (!((rType->isPointerType() && rType->getAsPointerType() ->getPointeeType()->isVoidType()) || (lType->isPointerType() && lType->getAsPointerType() ->getPointeeType()->isVoidType()))) Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType); // promote the pointer to pointer return ResultTy; } if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) { if (lType->isPointerType() || rType->isPointerType()) { const PointerType *LPT = lType->getAsPointerType(); const PointerType *RPT = rType->getAsPointerType(); bool LPtrToVoid = LPT ? Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false; bool RPtrToVoid = RPT ? Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false; if (!LPtrToVoid && !RPtrToVoid && !Context.typesAreCompatible(lType, rType)) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); return ResultTy; } ImpCastExprToType(rex, lType); return ResultTy; } if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) { ImpCastExprToType(rex, lType); return ResultTy; } else { if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) { Diag(Loc, diag::warn_incompatible_qualified_id_operands) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); return ResultTy; } } } if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) && rType->isIntegerType()) { if (!RHSIsNull) Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); // promote the integer to pointer return ResultTy; } if (lType->isIntegerType() && (rType->isPointerType() || rType->isObjCQualifiedIdType())) { if (!LHSIsNull) Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(lex, rType); // promote the integer to pointer return ResultTy; } // Handle block pointers. if (!isRelational && RHSIsNull && lType->isBlockPointerType() && rType->isIntegerType()) { ImpCastExprToType(rex, lType); // promote the integer to pointer return ResultTy; } if (!isRelational && LHSIsNull && lType->isIntegerType() && rType->isBlockPointerType()) { ImpCastExprToType(lex, rType); // promote the integer to pointer return ResultTy; } return InvalidOperands(Loc, lex, rex); } /// CheckVectorCompareOperands - vector comparisons are a clang extension that /// operates on extended vector types. Instead of producing an IntTy result, /// like a scalar comparison, a vector comparison produces a vector of integer /// types. QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isRelational) { // Check to make sure we're operating on vectors of the same type and width, // Allowing one side to be a scalar of element type. QualType vType = CheckVectorOperands(Loc, lex, rex); if (vType.isNull()) return vType; QualType lType = lex->getType(); QualType rType = rex->getType(); // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. if (!lType->isFloatingType()) { if (DeclRefExpr* DRL = dyn_cast(lex->IgnoreParens())) if (DeclRefExpr* DRR = dyn_cast(rex->IgnoreParens())) if (DRL->getDecl() == DRR->getDecl()) Diag(Loc, diag::warn_selfcomparison); } // Check for comparisons of floating point operands using != and ==. if (!isRelational && lType->isFloatingType()) { assert (rType->isFloatingType()); CheckFloatComparison(Loc,lex,rex); } // FIXME: Vector compare support in the LLVM backend is not fully reliable, // just reject all vector comparisons for now. if (1) { Diag(Loc, diag::err_typecheck_vector_comparison) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } // Return the type for the comparison, which is the same as vector type for // integer vectors, or an integer type of identical size and number of // elements for floating point vectors. if (lType->isIntegerType()) return lType; const VectorType *VTy = lType->getAsVectorType(); unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); if (TypeSize == Context.getTypeSize(Context.IntTy)) return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.LongTy)) return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && "Unhandled vector element size in vector compare"); return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); } inline QualType Sema::CheckBitwiseOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] Expr *&lex, Expr *&rex, SourceLocation Loc) { UsualUnaryConversions(lex); UsualUnaryConversions(rex); if (lex->getType()->isScalarType() && rex->getType()->isScalarType()) return Context.IntTy; return InvalidOperands(Loc, lex, rex); } /// IsReadonlyProperty - Verify that otherwise a valid l-value expression /// is a read-only property; return true if so. A readonly property expression /// depends on various declarations and thus must be treated specially. /// static bool IsReadonlyProperty(Expr *E, Sema &S) { if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { const ObjCPropertyRefExpr* PropExpr = cast(E); if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) { QualType BaseType = PropExpr->getBase()->getType(); if (const PointerType *PTy = BaseType->getAsPointerType()) if (const ObjCInterfaceType *IFTy = PTy->getPointeeType()->getAsObjCInterfaceType()) if (ObjCInterfaceDecl *IFace = IFTy->getDecl()) if (S.isPropertyReadonly(PDecl, IFace)) return true; } } return false; } /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, /// emit an error and return true. If so, return false. static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { SourceLocation OrigLoc = Loc; Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, &Loc); if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) IsLV = Expr::MLV_ReadonlyProperty; if (IsLV == Expr::MLV_Valid) return false; unsigned Diag = 0; bool NeedType = false; switch (IsLV) { // C99 6.5.16p2 default: assert(0 && "Unknown result from isModifiableLvalue!"); case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; case Expr::MLV_ArrayType: Diag = diag::err_typecheck_array_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_NotObjectType: Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_LValueCast: Diag = diag::err_typecheck_lvalue_casts_not_supported; break; case Expr::MLV_InvalidExpression: Diag = diag::err_typecheck_expression_not_modifiable_lvalue; break; case Expr::MLV_IncompleteType: case Expr::MLV_IncompleteVoidType: return S.RequireCompleteType(Loc, E->getType(), diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E->getSourceRange()); case Expr::MLV_DuplicateVectorComponents: Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; break; case Expr::MLV_NotBlockQualified: Diag = diag::err_block_decl_ref_not_modifiable_lvalue; break; case Expr::MLV_ReadonlyProperty: Diag = diag::error_readonly_property_assignment; break; case Expr::MLV_NoSetterProperty: Diag = diag::error_nosetter_property_assignment; break; } SourceRange Assign; if (Loc != OrigLoc) Assign = SourceRange(OrigLoc, OrigLoc); if (NeedType) S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; else S.Diag(Loc, Diag) << E->getSourceRange() << Assign; return true; } // C99 6.5.16.1 QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc, QualType CompoundType) { // Verify that LHS is a modifiable lvalue, and emit error if not. if (CheckForModifiableLvalue(LHS, Loc, *this)) return QualType(); QualType LHSType = LHS->getType(); QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType; AssignConvertType ConvTy; if (CompoundType.isNull()) { // Simple assignment "x = y". ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS); // Special case of NSObject attributes on c-style pointer types. if (ConvTy == IncompatiblePointer && ((Context.isObjCNSObjectType(LHSType) && Context.isObjCObjectPointerType(RHSType)) || (Context.isObjCNSObjectType(RHSType) && Context.isObjCObjectPointerType(LHSType)))) ConvTy = Compatible; // If the RHS is a unary plus or minus, check to see if they = and + are // right next to each other. If so, the user may have typo'd "x =+ 4" // instead of "x += 4". Expr *RHSCheck = RHS; if (ImplicitCastExpr *ICE = dyn_cast(RHSCheck)) RHSCheck = ICE->getSubExpr(); if (UnaryOperator *UO = dyn_cast(RHSCheck)) { if ((UO->getOpcode() == UnaryOperator::Plus || UO->getOpcode() == UnaryOperator::Minus) && Loc.isFileID() && UO->getOperatorLoc().isFileID() && // Only if the two operators are exactly adjacent. Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() && // And there is a space or other character before the subexpr of the // unary +/-. We don't want to warn on "x=-1". Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() && UO->getSubExpr()->getLocStart().isFileID()) { Diag(Loc, diag::warn_not_compound_assign) << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-") << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); } } } else { // Compound assignment "x += y" ConvTy = CheckAssignmentConstraints(LHSType, RHSType); } if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, RHS, "assigning")) return QualType(); // C99 6.5.16p3: The type of an assignment expression is the type of the // left operand unless the left operand has qualified type, in which case // it is the unqualified version of the type of the left operand. // C99 6.5.16.1p2: In simple assignment, the value of the right operand // is converted to the type of the assignment expression (above). // C++ 5.17p1: the type of the assignment expression is that of its left // operand. return LHSType.getUnqualifiedType(); } // C99 6.5.17 QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) { // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions. DefaultFunctionArrayConversion(RHS); // FIXME: Check that RHS type is complete in C mode (it's legal for it to be // incomplete in C++). return RHS->getType(); } /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc, bool isInc) { if (Op->isTypeDependent()) return Context.DependentTy; QualType ResType = Op->getType(); assert(!ResType.isNull() && "no type for increment/decrement expression"); if (getLangOptions().CPlusPlus && ResType->isBooleanType()) { // Decrement of bool is not allowed. if (!isInc) { Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); return QualType(); } // Increment of bool sets it to true, but is deprecated. Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); } else if (ResType->isRealType()) { // OK! } else if (const PointerType *PT = ResType->getAsPointerType()) { // C99 6.5.2.4p2, 6.5.6p2 if (PT->getPointeeType()->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type) << Op->getSourceRange(); return QualType(); } // Pointer to void is a GNU extension in C. Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); } else if (PT->getPointeeType()->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type) << Op->getType() << Op->getSourceRange(); return QualType(); } Diag(OpLoc, diag::ext_gnu_ptr_func_arith) << ResType << Op->getSourceRange(); } else if (RequireCompleteType(OpLoc, PT->getPointeeType(), diag::err_typecheck_arithmetic_incomplete_type, Op->getSourceRange(), SourceRange(), ResType)) return QualType(); } else if (ResType->isComplexType()) { // C99 does not support ++/-- on complex types, we allow as an extension. Diag(OpLoc, diag::ext_integer_increment_complex) << ResType << Op->getSourceRange(); } else { Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) << ResType << Op->getSourceRange(); return QualType(); } // At this point, we know we have a real, complex or pointer type. // Now make sure the operand is a modifiable lvalue. if (CheckForModifiableLvalue(Op, OpLoc, *this)) return QualType(); return ResType; } /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). /// This routine allows us to typecheck complex/recursive expressions /// where the declaration is needed for type checking. We only need to /// handle cases when the expression references a function designator /// or is an lvalue. Here are some examples: /// - &(x) => x /// - &*****f => f for f a function designator. /// - &s.xx => s /// - &s.zz[1].yy -> s, if zz is an array /// - *(x + 1) -> x, if x is an array /// - &"123"[2] -> 0 /// - & __real__ x -> x static NamedDecl *getPrimaryDecl(Expr *E) { switch (E->getStmtClass()) { case Stmt::DeclRefExprClass: case Stmt::QualifiedDeclRefExprClass: return cast(E)->getDecl(); case Stmt::MemberExprClass: // If this is an arrow operator, the address is an offset from // the base's value, so the object the base refers to is // irrelevant. if (cast(E)->isArrow()) return 0; // Otherwise, the expression refers to a part of the base return getPrimaryDecl(cast(E)->getBase()); case Stmt::ArraySubscriptExprClass: { // FIXME: This code shouldn't be necessary! We should catch the implicit // promotion of register arrays earlier. Expr* Base = cast(E)->getBase(); if (ImplicitCastExpr* ICE = dyn_cast(Base)) { if (ICE->getSubExpr()->getType()->isArrayType()) return getPrimaryDecl(ICE->getSubExpr()); } return 0; } case Stmt::UnaryOperatorClass: { UnaryOperator *UO = cast(E); switch(UO->getOpcode()) { case UnaryOperator::Real: case UnaryOperator::Imag: case UnaryOperator::Extension: return getPrimaryDecl(UO->getSubExpr()); default: return 0; } } case Stmt::ParenExprClass: return getPrimaryDecl(cast(E)->getSubExpr()); case Stmt::ImplicitCastExprClass: // If the result of an implicit cast is an l-value, we care about // the sub-expression; otherwise, the result here doesn't matter. return getPrimaryDecl(cast(E)->getSubExpr()); default: return 0; } } /// CheckAddressOfOperand - The operand of & must be either a function /// designator or an lvalue designating an object. If it is an lvalue, the /// object cannot be declared with storage class register or be a bit field. /// Note: The usual conversions are *not* applied to the operand of the & /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. /// In C++, the operand might be an overloaded function name, in which case /// we allow the '&' but retain the overloaded-function type. QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { // Make sure to ignore parentheses in subsequent checks op = op->IgnoreParens(); if (op->isTypeDependent()) return Context.DependentTy; if (getLangOptions().C99) { // Implement C99-only parts of addressof rules. if (UnaryOperator* uOp = dyn_cast(op)) { if (uOp->getOpcode() == UnaryOperator::Deref) // Per C99 6.5.3.2, the address of a deref always returns a valid result // (assuming the deref expression is valid). return uOp->getSubExpr()->getType(); } // Technically, there should be a check for array subscript // expressions here, but the result of one is always an lvalue anyway. } NamedDecl *dcl = getPrimaryDecl(op); Expr::isLvalueResult lval = op->isLvalue(Context); if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { // C99 6.5.3.2p1 // The operand must be either an l-value or a function designator if (!op->getType()->isFunctionType()) { // FIXME: emit more specific diag... Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) << op->getSourceRange(); return QualType(); } } else if (op->getBitField()) { // C99 6.5.3.2p1 // The operand cannot be a bit-field Diag(OpLoc, diag::err_typecheck_address_of) << "bit-field" << op->getSourceRange(); return QualType(); } else if (isa(op) || (isa(op) && cast(op)->getBase()->getType()->isVectorType())){ // The operand cannot be an element of a vector Diag(OpLoc, diag::err_typecheck_address_of) << "vector element" << op->getSourceRange(); return QualType(); } else if (dcl) { // C99 6.5.3.2p1 // We have an lvalue with a decl. Make sure the decl is not declared // with the register storage-class specifier. if (const VarDecl *vd = dyn_cast(dcl)) { if (vd->getStorageClass() == VarDecl::Register) { Diag(OpLoc, diag::err_typecheck_address_of) << "register variable" << op->getSourceRange(); return QualType(); } } else if (isa(dcl)) { return Context.OverloadTy; } else if (isa(dcl)) { // Okay: we can take the address of a field. // Could be a pointer to member, though, if there is an explicit // scope qualifier for the class. if (isa(op)) { DeclContext *Ctx = dcl->getDeclContext(); if (Ctx && Ctx->isRecord()) return Context.getMemberPointerType(op->getType(), Context.getTypeDeclType(cast(Ctx)).getTypePtr()); } } else if (CXXMethodDecl *MD = dyn_cast(dcl)) { // Okay: we can take the address of a function. // As above. if (isa(op) && MD->isInstance()) return Context.getMemberPointerType(op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); } else if (!isa(dcl)) assert(0 && "Unknown/unexpected decl type"); } if (lval == Expr::LV_IncompleteVoidType) { // Taking the address of a void variable is technically illegal, but we // allow it in cases which are otherwise valid. // Example: "extern void x; void* y = &x;". Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); } // If the operand has type "type", the result has type "pointer to type". return Context.getPointerType(op->getType()); } QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) { if (Op->isTypeDependent()) return Context.DependentTy; UsualUnaryConversions(Op); QualType Ty = Op->getType(); // Note that per both C89 and C99, this is always legal, even if ptype is an // incomplete type or void. It would be possible to warn about dereferencing // a void pointer, but it's completely well-defined, and such a warning is // unlikely to catch any mistakes. if (const PointerType *PT = Ty->getAsPointerType()) return PT->getPointeeType(); Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) << Ty << Op->getSourceRange(); return QualType(); } static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( tok::TokenKind Kind) { BinaryOperator::Opcode Opc; switch (Kind) { default: assert(0 && "Unknown binop!"); case tok::periodstar: Opc = BinaryOperator::PtrMemD; break; case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break; case tok::star: Opc = BinaryOperator::Mul; break; case tok::slash: Opc = BinaryOperator::Div; break; case tok::percent: Opc = BinaryOperator::Rem; break; case tok::plus: Opc = BinaryOperator::Add; break; case tok::minus: Opc = BinaryOperator::Sub; break; case tok::lessless: Opc = BinaryOperator::Shl; break; case tok::greatergreater: Opc = BinaryOperator::Shr; break; case tok::lessequal: Opc = BinaryOperator::LE; break; case tok::less: Opc = BinaryOperator::LT; break; case tok::greaterequal: Opc = BinaryOperator::GE; break; case tok::greater: Opc = BinaryOperator::GT; break; case tok::exclaimequal: Opc = BinaryOperator::NE; break; case tok::equalequal: Opc = BinaryOperator::EQ; break; case tok::amp: Opc = BinaryOperator::And; break; case tok::caret: Opc = BinaryOperator::Xor; break; case tok::pipe: Opc = BinaryOperator::Or; break; case tok::ampamp: Opc = BinaryOperator::LAnd; break; case tok::pipepipe: Opc = BinaryOperator::LOr; break; case tok::equal: Opc = BinaryOperator::Assign; break; case tok::starequal: Opc = BinaryOperator::MulAssign; break; case tok::slashequal: Opc = BinaryOperator::DivAssign; break; case tok::percentequal: Opc = BinaryOperator::RemAssign; break; case tok::plusequal: Opc = BinaryOperator::AddAssign; break; case tok::minusequal: Opc = BinaryOperator::SubAssign; break; case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; case tok::ampequal: Opc = BinaryOperator::AndAssign; break; case tok::caretequal: Opc = BinaryOperator::XorAssign; break; case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; case tok::comma: Opc = BinaryOperator::Comma; break; } return Opc; } static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( tok::TokenKind Kind) { UnaryOperator::Opcode Opc; switch (Kind) { default: assert(0 && "Unknown unary op!"); case tok::plusplus: Opc = UnaryOperator::PreInc; break; case tok::minusminus: Opc = UnaryOperator::PreDec; break; case tok::amp: Opc = UnaryOperator::AddrOf; break; case tok::star: Opc = UnaryOperator::Deref; break; case tok::plus: Opc = UnaryOperator::Plus; break; case tok::minus: Opc = UnaryOperator::Minus; break; case tok::tilde: Opc = UnaryOperator::Not; break; case tok::exclaim: Opc = UnaryOperator::LNot; break; case tok::kw___real: Opc = UnaryOperator::Real; break; case tok::kw___imag: Opc = UnaryOperator::Imag; break; case tok::kw___extension__: Opc = UnaryOperator::Extension; break; } return Opc; } /// CreateBuiltinBinOp - Creates a new built-in binary operation with /// operator @p Opc at location @c TokLoc. This routine only supports /// built-in operations; ActOnBinOp handles overloaded operators. Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, unsigned Op, Expr *lhs, Expr *rhs) { QualType ResultTy; // Result type of the binary operator. BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op; // The following two variables are used for compound assignment operators QualType CompLHSTy; // Type of LHS after promotions for computation QualType CompResultTy; // Type of computation result switch (Opc) { case BinaryOperator::Assign: ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType()); break; case BinaryOperator::PtrMemD: case BinaryOperator::PtrMemI: ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc, Opc == BinaryOperator::PtrMemI); break; case BinaryOperator::Mul: case BinaryOperator::Div: ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Rem: ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Add: ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Sub: ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Shl: case BinaryOperator::Shr: ResultTy = CheckShiftOperands(lhs, rhs, OpLoc); break; case BinaryOperator::LE: case BinaryOperator::LT: case BinaryOperator::GE: case BinaryOperator::GT: ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true); break; case BinaryOperator::EQ: case BinaryOperator::NE: ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false); break; case BinaryOperator::And: case BinaryOperator::Xor: case BinaryOperator::Or: ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); break; case BinaryOperator::LAnd: case BinaryOperator::LOr: ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc); break; case BinaryOperator::MulAssign: case BinaryOperator::DivAssign: CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BinaryOperator::RemAssign: CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BinaryOperator::AddAssign: CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy); if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BinaryOperator::SubAssign: CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy); if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BinaryOperator::ShlAssign: case BinaryOperator::ShrAssign: CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BinaryOperator::AndAssign: case BinaryOperator::XorAssign: case BinaryOperator::OrAssign: CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BinaryOperator::Comma: ResultTy = CheckCommaOperands(lhs, rhs, OpLoc); break; } if (ResultTy.isNull()) return ExprError(); if (CompResultTy.isNull()) return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc)); else return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompLHSTy, CompResultTy, OpLoc)); } // Binary Operators. 'Tok' is the token for the operator. Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, ExprArg LHS, ExprArg RHS) { BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); Expr *lhs = LHS.takeAs(), *rhs = RHS.takeAs(); assert((lhs != 0) && "ActOnBinOp(): missing left expression"); assert((rhs != 0) && "ActOnBinOp(): missing right expression"); if (getLangOptions().CPlusPlus && (lhs->getType()->isOverloadableType() || rhs->getType()->isOverloadableType())) { // Find all of the overloaded operators visible from this // point. We perform both an operator-name lookup from the local // scope and an argument-dependent lookup based on the types of // the arguments. FunctionSet Functions; OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); if (OverOp != OO_None) { LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(), Functions); Expr *Args[2] = { lhs, rhs }; DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OverOp); ArgumentDependentLookup(OpName, Args, 2, Functions); } // Build the (potentially-overloaded, potentially-dependent) // binary operation. return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs); } // Build a built-in binary operation. return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs); } Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, unsigned OpcIn, ExprArg InputArg) { UnaryOperator::Opcode Opc = static_cast(OpcIn); // FIXME: Input is modified below, but InputArg is not updated appropriately. Expr *Input = (Expr *)InputArg.get(); QualType resultType; switch (Opc) { case UnaryOperator::PostInc: case UnaryOperator::PostDec: case UnaryOperator::OffsetOf: assert(false && "Invalid unary operator"); break; case UnaryOperator::PreInc: case UnaryOperator::PreDec: resultType = CheckIncrementDecrementOperand(Input, OpLoc, Opc == UnaryOperator::PreInc); break; case UnaryOperator::AddrOf: resultType = CheckAddressOfOperand(Input, OpLoc); break; case UnaryOperator::Deref: DefaultFunctionArrayConversion(Input); resultType = CheckIndirectionOperand(Input, OpLoc); break; case UnaryOperator::Plus: case UnaryOperator::Minus: UsualUnaryConversions(Input); resultType = Input->getType(); if (resultType->isDependentType()) break; if (resultType->isArithmeticType()) // C99 6.5.3.3p1 break; else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 resultType->isEnumeralType()) break; else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 Opc == UnaryOperator::Plus && resultType->isPointerType()) break; return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange()); case UnaryOperator::Not: // bitwise complement UsualUnaryConversions(Input); resultType = Input->getType(); if (resultType->isDependentType()) break; // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. if (resultType->isComplexType() || resultType->isComplexIntegerType()) // C99 does not support '~' for complex conjugation. Diag(OpLoc, diag::ext_integer_complement_complex) << resultType << Input->getSourceRange(); else if (!resultType->isIntegerType()) return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange()); break; case UnaryOperator::LNot: // logical negation // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). DefaultFunctionArrayConversion(Input); resultType = Input->getType(); if (resultType->isDependentType()) break; if (!resultType->isScalarType()) // C99 6.5.3.3p1 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange()); // LNot always has type int. C99 6.5.3.3p5. // In C++, it's bool. C++ 5.3.1p8 resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy; break; case UnaryOperator::Real: case UnaryOperator::Imag: resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real); break; case UnaryOperator::Extension: resultType = Input->getType(); break; } if (resultType.isNull()) return ExprError(); InputArg.release(); return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc)); } // Unary Operators. 'Tok' is the token for the operator. Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, ExprArg input) { Expr *Input = (Expr*)input.get(); UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op); if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) { // Find all of the overloaded operators visible from this // point. We perform both an operator-name lookup from the local // scope and an argument-dependent lookup based on the types of // the arguments. FunctionSet Functions; OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); if (OverOp != OO_None) { LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), Functions); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OverOp); ArgumentDependentLookup(OpName, &Input, 1, Functions); } return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input)); } return CreateBuiltinUnaryOp(OpLoc, Opc, move(input)); } /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, IdentifierInfo *LabelII) { // Look up the record for this label identifier. LabelStmt *&LabelDecl = getLabelMap()[LabelII]; // If we haven't seen this label yet, create a forward reference. It // will be validated and/or cleaned up in ActOnFinishFunctionBody. if (LabelDecl == 0) LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0); // Create the AST node. The address of a label always has type 'void*'. return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl, Context.getPointerType(Context.VoidTy))); } Sema::OwningExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt, SourceLocation RPLoc) { // "({..})" Stmt *SubStmt = static_cast(substmt.get()); assert(SubStmt && isa(SubStmt) && "Invalid action invocation!"); CompoundStmt *Compound = cast(SubStmt); bool isFileScope = getCurFunctionOrMethodDecl() == 0; if (isFileScope) return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); // FIXME: there are a variety of strange constraints to enforce here, for // example, it is not possible to goto into a stmt expression apparently. // More semantic analysis is needed. // If there are sub stmts in the compound stmt, take the type of the last one // as the type of the stmtexpr. QualType Ty = Context.VoidTy; if (!Compound->body_empty()) { Stmt *LastStmt = Compound->body_back(); // If LastStmt is a label, skip down through into the body. while (LabelStmt *Label = dyn_cast(LastStmt)) LastStmt = Label->getSubStmt(); if (Expr *LastExpr = dyn_cast(LastStmt)) Ty = LastExpr->getType(); } // FIXME: Check that expression type is complete/non-abstract; statement // expressions are not lvalues. substmt.release(); return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc)); } Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, TypeTy *argty, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RPLoc) { // FIXME: This function leaks all expressions in the offset components on // error. QualType ArgTy = QualType::getFromOpaquePtr(argty); assert(!ArgTy.isNull() && "Missing type argument!"); bool Dependent = ArgTy->isDependentType(); // We must have at least one component that refers to the type, and the first // one is known to be a field designator. Verify that the ArgTy represents // a struct/union/class. if (!Dependent && !ArgTy->isRecordType()) return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy); // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable // with an incomplete type would be illegal. // Otherwise, create a null pointer as the base, and iteratively process // the offsetof designators. QualType ArgTyPtr = Context.getPointerType(ArgTy); Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr); Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref, ArgTy, SourceLocation()); // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a // GCC extension, diagnose them. // FIXME: This diagnostic isn't actually visible because the location is in // a system header! if (NumComponents != 1) Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); if (!Dependent) { bool DidWarnAboutNonPOD = false; // FIXME: Dependent case loses a lot of information here. And probably // leaks like a sieve. for (unsigned i = 0; i != NumComponents; ++i) { const OffsetOfComponent &OC = CompPtr[i]; if (OC.isBrackets) { // Offset of an array sub-field. TODO: Should we allow vector elements? const ArrayType *AT = Context.getAsArrayType(Res->getType()); if (!AT) { Res->Destroy(Context); return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType()); } // FIXME: C++: Verify that operator[] isn't overloaded. // Promote the array so it looks more like a normal array subscript // expression. DefaultFunctionArrayConversion(Res); // C99 6.5.2.1p1 Expr *Idx = static_cast(OC.U.E); // FIXME: Leaks Res if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType()) return ExprError(Diag(Idx->getLocStart(), diag::err_typecheck_subscript_not_integer) << Idx->getSourceRange()); Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd); continue; } const RecordType *RC = Res->getType()->getAsRecordType(); if (!RC) { Res->Destroy(Context); return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType()); } // Get the decl corresponding to this. RecordDecl *RD = RC->getDecl(); if (CXXRecordDecl *CRD = dyn_cast(RD)) { if (!CRD->isPOD() && !DidWarnAboutNonPOD) { ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type) << SourceRange(CompPtr[0].LocStart, OC.LocEnd) << Res->getType()); DidWarnAboutNonPOD = true; } } FieldDecl *MemberDecl = dyn_cast_or_null(LookupQualifiedName(RD, OC.U.IdentInfo, LookupMemberName) .getAsDecl()); // FIXME: Leaks Res if (!MemberDecl) return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member) << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd)); // FIXME: C++: Verify that MemberDecl isn't a static field. // FIXME: Verify that MemberDecl isn't a bitfield. if (cast(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) { Res = BuildAnonymousStructUnionMemberReference( SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs(); } else { // MemberDecl->getType() doesn't get the right qualifiers, but it // doesn't matter here. Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType().getNonReferenceType()); } } } return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(), BuiltinLoc)); } Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, TypeTy *arg1,TypeTy *arg2, SourceLocation RPLoc) { QualType argT1 = QualType::getFromOpaquePtr(arg1); QualType argT2 = QualType::getFromOpaquePtr(arg2); assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); if (getLangOptions().CPlusPlus) { Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus) << SourceRange(BuiltinLoc, RPLoc); return ExprError(); } return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc)); } Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprArg cond, ExprArg expr1, ExprArg expr2, SourceLocation RPLoc) { Expr *CondExpr = static_cast(cond.get()); Expr *LHSExpr = static_cast(expr1.get()); Expr *RHSExpr = static_cast(expr2.get()); assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); QualType resType; if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { resType = Context.DependentTy; } else { // The conditional expression is required to be a constant expression. llvm::APSInt condEval(32); SourceLocation ExpLoc; if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) return ExprError(Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant) << CondExpr->getSourceRange()); // If the condition is > zero, then the AST type is the same as the LSHExpr. resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType(); } cond.release(); expr1.release(); expr2.release(); return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc)); } //===----------------------------------------------------------------------===// // Clang Extensions. //===----------------------------------------------------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is started. void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { // Analyze block parameters. BlockSemaInfo *BSI = new BlockSemaInfo(); // Add BSI to CurBlock. BSI->PrevBlockInfo = CurBlock; CurBlock = BSI; BSI->ReturnType = 0; BSI->TheScope = BlockScope; BSI->hasBlockDeclRefExprs = false; BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking; CurFunctionNeedsScopeChecking = false; BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc); PushDeclContext(BlockScope, BSI->TheDecl); } void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); if (ParamInfo.getNumTypeObjects() == 0 || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) { ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo); QualType T = GetTypeForDeclarator(ParamInfo, CurScope); if (T->isArrayType()) { Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array); return; } // The parameter list is optional, if there was none, assume (). if (!T->isFunctionType()) T = Context.getFunctionType(T, NULL, 0, 0, 0); CurBlock->hasPrototype = true; CurBlock->isVariadic = false; // Check for a valid sentinel attribute on this block. if (CurBlock->TheDecl->getAttr()) { Diag(ParamInfo.getAttributes()->getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; // FIXME: remove the attribute. } QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType(); // Do not allow returning a objc interface by-value. if (RetTy->isObjCInterfaceType()) { Diag(ParamInfo.getSourceRange().getBegin(), diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; return; } return; } // Analyze arguments to block. assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function && "Not a function declarator!"); DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun; CurBlock->hasPrototype = FTI.hasPrototype; CurBlock->isVariadic = true; // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes // no arguments, not a function that takes a single void argument. if (FTI.hasPrototype && FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && (!FTI.ArgInfo[0].Param.getAs()->getType().getCVRQualifiers()&& FTI.ArgInfo[0].Param.getAs()->getType()->isVoidType())) { // empty arg list, don't push any params. CurBlock->isVariadic = false; } else if (FTI.hasPrototype) { for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs()); CurBlock->isVariadic = FTI.isVariadic; } CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(), CurBlock->Params.size()); CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic); ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo); for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), E = CurBlock->TheDecl->param_end(); AI != E; ++AI) // If this has an identifier, add it to the scope stack. if ((*AI)->getIdentifier()) PushOnScopeChains(*AI, CurBlock->TheScope); // Check for a valid sentinel attribute on this block. if (!CurBlock->isVariadic && CurBlock->TheDecl->getAttr()) { Diag(ParamInfo.getAttributes()->getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; // FIXME: remove the attribute. } // Analyze the return type. QualType T = GetTypeForDeclarator(ParamInfo, CurScope); QualType RetTy = T->getAsFunctionType()->getResultType(); // Do not allow returning a objc interface by-value. if (RetTy->isObjCInterfaceType()) { Diag(ParamInfo.getSourceRange().getBegin(), diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; } else if (!RetTy->isDependentType()) CurBlock->ReturnType = RetTy.getTypePtr(); } /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { // Ensure that CurBlock is deleted. llvm::OwningPtr CC(CurBlock); CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking; // Pop off CurBlock, handle nested blocks. PopDeclContext(); CurBlock = CurBlock->PrevBlockInfo; // FIXME: Delete the ParmVarDecl objects as well??? } /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtArg body, Scope *CurScope) { // If blocks are disabled, emit an error. if (!LangOpts.Blocks) Diag(CaretLoc, diag::err_blocks_disable); // Ensure that CurBlock is deleted. llvm::OwningPtr BSI(CurBlock); PopDeclContext(); // Pop off CurBlock, handle nested blocks. CurBlock = CurBlock->PrevBlockInfo; QualType RetTy = Context.VoidTy; if (BSI->ReturnType) RetTy = QualType(BSI->ReturnType, 0); llvm::SmallVector ArgTypes; for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i) ArgTypes.push_back(BSI->Params[i]->getType()); QualType BlockTy; if (!BSI->hasPrototype) BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0); else BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(), BSI->isVariadic, 0); // FIXME: Check that return/parameter types are complete/non-abstract BlockTy = Context.getBlockPointerType(BlockTy); // If needed, diagnose invalid gotos and switches in the block. if (CurFunctionNeedsScopeChecking) DiagnoseInvalidJumps(static_cast(body.get())); CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking; BSI->TheDecl->setBody(body.takeAs()); return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy, BSI->hasBlockDeclRefExprs)); } Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, ExprArg expr, TypeTy *type, SourceLocation RPLoc) { QualType T = QualType::getFromOpaquePtr(type); Expr *E = static_cast(expr.get()); Expr *OrigExpr = E; InitBuiltinVaListType(); // Get the va_list type QualType VaListType = Context.getBuiltinVaListType(); if (VaListType->isArrayType()) { // Deal with implicit array decay; for example, on x86-64, // va_list is an array, but it's supposed to decay to // a pointer for va_arg. VaListType = Context.getArrayDecayedType(VaListType); // Make sure the input expression also decays appropriately. UsualUnaryConversions(E); } else { // Otherwise, the va_list argument must be an l-value because // it is modified by va_arg. if (!E->isTypeDependent() && CheckForModifiableLvalue(E, BuiltinLoc, *this)) return ExprError(); } if (!E->isTypeDependent() && !Context.hasSameType(VaListType, E->getType())) { return ExprError(Diag(E->getLocStart(), diag::err_first_argument_to_va_arg_not_of_type_va_list) << OrigExpr->getType() << E->getSourceRange()); } // FIXME: Check that type is complete/non-abstract // FIXME: Warn if a non-POD type is passed in. expr.release(); return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc)); } Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { // The type of __null will be int or long, depending on the size of // pointers on the target. QualType Ty; if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth()) Ty = Context.IntTy; else Ty = Context.LongTy; return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); } bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, const char *Flavor) { // Decode the result (notice that AST's are still created for extensions). bool isInvalid = false; unsigned DiagKind; switch (ConvTy) { default: assert(0 && "Unknown conversion type"); case Compatible: return false; case PointerToInt: DiagKind = diag::ext_typecheck_convert_pointer_int; break; case IntToPointer: DiagKind = diag::ext_typecheck_convert_int_pointer; break; case IncompatiblePointer: DiagKind = diag::ext_typecheck_convert_incompatible_pointer; break; case IncompatiblePointerSign: DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; break; case FunctionVoidPointer: DiagKind = diag::ext_typecheck_convert_pointer_void_func; break; case CompatiblePointerDiscardsQualifiers: // If the qualifiers lost were because we were applying the // (deprecated) C++ conversion from a string literal to a char* // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: // Ideally, this check would be performed in // CheckPointerTypesForAssignment. However, that would require a // bit of refactoring (so that the second argument is an // expression, rather than a type), which should be done as part // of a larger effort to fix CheckPointerTypesForAssignment for // C++ semantics. if (getLangOptions().CPlusPlus && IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) return false; DiagKind = diag::ext_typecheck_convert_discards_qualifiers; break; case IntToBlockPointer: DiagKind = diag::err_int_to_block_pointer; break; case IncompatibleBlockPointer: DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; break; case IncompatibleObjCQualifiedId: // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since // it can give a more specific diagnostic. DiagKind = diag::warn_incompatible_qualified_id; break; case IncompatibleVectors: DiagKind = diag::warn_incompatible_vectors; break; case Incompatible: DiagKind = diag::err_typecheck_convert_incompatible; isInvalid = true; break; } Diag(Loc, DiagKind) << DstType << SrcType << Flavor << SrcExpr->getSourceRange(); return isInvalid; } bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){ llvm::APSInt ICEResult; if (E->isIntegerConstantExpr(ICEResult, Context)) { if (Result) *Result = ICEResult; return false; } Expr::EvalResult EvalResult; if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || EvalResult.HasSideEffects) { Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); if (EvalResult.Diag) { // We only show the note if it's not the usual "invalid subexpression" // or if it's actually in a subexpression. if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) Diag(EvalResult.DiagLoc, EvalResult.Diag); } return true; } Diag(E->getExprLoc(), diag::ext_expr_not_ice) << E->getSourceRange(); if (EvalResult.Diag && Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored) Diag(EvalResult.DiagLoc, EvalResult.Diag); if (Result) *Result = EvalResult.Val.getInt(); return false; }