//===-- tsan_rtl_report.cc ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_suppressions.h" #include "tsan_symbolize.h" #include "tsan_report.h" #include "tsan_sync.h" #include "tsan_mman.h" #include "tsan_flags.h" #include "tsan_fd.h" namespace __tsan { using namespace __sanitizer; // NOLINT static ReportStack *SymbolizeStack(StackTrace trace); void TsanCheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2) { // There is high probability that interceptors will check-fail as well, // on the other hand there is no sense in processing interceptors // since we are going to die soon. ScopedIgnoreInterceptors ignore; #if !SANITIZER_GO cur_thread()->ignore_sync++; cur_thread()->ignore_reads_and_writes++; #endif Printf("FATAL: ThreadSanitizer CHECK failed: " "%s:%d \"%s\" (0x%zx, 0x%zx)\n", file, line, cond, (uptr)v1, (uptr)v2); PrintCurrentStackSlow(StackTrace::GetCurrentPc()); Die(); } // Can be overriden by an application/test to intercept reports. #ifdef TSAN_EXTERNAL_HOOKS bool OnReport(const ReportDesc *rep, bool suppressed); #else SANITIZER_WEAK_CXX_DEFAULT_IMPL bool OnReport(const ReportDesc *rep, bool suppressed) { (void)rep; return suppressed; } #endif SANITIZER_WEAK_DEFAULT_IMPL void __tsan_on_report(const ReportDesc *rep) { (void)rep; } static void StackStripMain(SymbolizedStack *frames) { SymbolizedStack *last_frame = nullptr; SymbolizedStack *last_frame2 = nullptr; for (SymbolizedStack *cur = frames; cur; cur = cur->next) { last_frame2 = last_frame; last_frame = cur; } if (last_frame2 == 0) return; #if !SANITIZER_GO const char *last = last_frame->info.function; const char *last2 = last_frame2->info.function; // Strip frame above 'main' if (last2 && 0 == internal_strcmp(last2, "main")) { last_frame->ClearAll(); last_frame2->next = nullptr; // Strip our internal thread start routine. } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) { last_frame->ClearAll(); last_frame2->next = nullptr; // Strip global ctors init. } else if (last && 0 == internal_strcmp(last, "__do_global_ctors_aux")) { last_frame->ClearAll(); last_frame2->next = nullptr; // If both are 0, then we probably just failed to symbolize. } else if (last || last2) { // Ensure that we recovered stack completely. Trimmed stack // can actually happen if we do not instrument some code, // so it's only a debug print. However we must try hard to not miss it // due to our fault. DPrintf("Bottom stack frame is missed\n"); } #else // The last frame always point into runtime (gosched0, goexit0, runtime.main). last_frame->ClearAll(); last_frame2->next = nullptr; #endif } ReportStack *SymbolizeStackId(u32 stack_id) { if (stack_id == 0) return 0; StackTrace stack = StackDepotGet(stack_id); if (stack.trace == nullptr) return nullptr; return SymbolizeStack(stack); } static ReportStack *SymbolizeStack(StackTrace trace) { if (trace.size == 0) return 0; SymbolizedStack *top = nullptr; for (uptr si = 0; si < trace.size; si++) { const uptr pc = trace.trace[si]; uptr pc1 = pc; // We obtain the return address, but we're interested in the previous // instruction. if ((pc & kExternalPCBit) == 0) pc1 = StackTrace::GetPreviousInstructionPc(pc); SymbolizedStack *ent = SymbolizeCode(pc1); CHECK_NE(ent, 0); SymbolizedStack *last = ent; while (last->next) { last->info.address = pc; // restore original pc for report last = last->next; } last->info.address = pc; // restore original pc for report last->next = top; top = ent; } StackStripMain(top); ReportStack *stack = ReportStack::New(); stack->frames = top; return stack; } ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) { ctx->thread_registry->CheckLocked(); void *mem = internal_alloc(MBlockReport, sizeof(ReportDesc)); rep_ = new(mem) ReportDesc; rep_->typ = typ; rep_->tag = tag; ctx->report_mtx.Lock(); } ScopedReportBase::~ScopedReportBase() { ctx->report_mtx.Unlock(); DestroyAndFree(rep_); } void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) { ReportStack **rs = rep_->stacks.PushBack(); *rs = SymbolizeStack(stack); (*rs)->suppressable = suppressable; } void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack, const MutexSet *mset) { void *mem = internal_alloc(MBlockReportMop, sizeof(ReportMop)); ReportMop *mop = new(mem) ReportMop; rep_->mops.PushBack(mop); mop->tid = s.tid(); mop->addr = addr + s.addr0(); mop->size = s.size(); mop->write = s.IsWrite(); mop->atomic = s.IsAtomic(); mop->stack = SymbolizeStack(stack); mop->external_tag = external_tag; if (mop->stack) mop->stack->suppressable = true; for (uptr i = 0; i < mset->Size(); i++) { MutexSet::Desc d = mset->Get(i); u64 mid = this->AddMutex(d.id); ReportMopMutex mtx = {mid, d.write}; mop->mset.PushBack(mtx); } } void ScopedReportBase::AddUniqueTid(int unique_tid) { rep_->unique_tids.PushBack(unique_tid); } void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) { for (uptr i = 0; i < rep_->threads.Size(); i++) { if ((u32)rep_->threads[i]->id == tctx->tid) return; } void *mem = internal_alloc(MBlockReportThread, sizeof(ReportThread)); ReportThread *rt = new(mem) ReportThread; rep_->threads.PushBack(rt); rt->id = tctx->tid; rt->os_id = tctx->os_id; rt->running = (tctx->status == ThreadStatusRunning); rt->name = internal_strdup(tctx->name); rt->parent_tid = tctx->parent_tid; rt->workerthread = tctx->workerthread; rt->stack = 0; rt->stack = SymbolizeStackId(tctx->creation_stack_id); if (rt->stack) rt->stack->suppressable = suppressable; } #if !SANITIZER_GO static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) { int unique_id = *(int *)arg; return tctx->unique_id == (u32)unique_id; } static ThreadContext *FindThreadByUidLocked(int unique_id) { ctx->thread_registry->CheckLocked(); return static_cast( ctx->thread_registry->FindThreadContextLocked( FindThreadByUidLockedCallback, &unique_id)); } static ThreadContext *FindThreadByTidLocked(int tid) { ctx->thread_registry->CheckLocked(); return static_cast( ctx->thread_registry->GetThreadLocked(tid)); } static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) { uptr addr = (uptr)arg; ThreadContext *tctx = static_cast(tctx_base); if (tctx->status != ThreadStatusRunning) return false; ThreadState *thr = tctx->thr; CHECK(thr); return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) || (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size)); } ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) { ctx->thread_registry->CheckLocked(); ThreadContext *tctx = static_cast( ctx->thread_registry->FindThreadContextLocked(IsInStackOrTls, (void*)addr)); if (!tctx) return 0; ThreadState *thr = tctx->thr; CHECK(thr); *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size); return tctx; } #endif void ScopedReportBase::AddThread(int unique_tid, bool suppressable) { #if !SANITIZER_GO if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid)) AddThread(tctx, suppressable); #endif } void ScopedReportBase::AddMutex(const SyncVar *s) { for (uptr i = 0; i < rep_->mutexes.Size(); i++) { if (rep_->mutexes[i]->id == s->uid) return; } void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex)); ReportMutex *rm = new(mem) ReportMutex; rep_->mutexes.PushBack(rm); rm->id = s->uid; rm->addr = s->addr; rm->destroyed = false; rm->stack = SymbolizeStackId(s->creation_stack_id); } u64 ScopedReportBase::AddMutex(u64 id) { u64 uid = 0; u64 mid = id; uptr addr = SyncVar::SplitId(id, &uid); SyncVar *s = ctx->metamap.GetIfExistsAndLock(addr, true); // Check that the mutex is still alive. // Another mutex can be created at the same address, // so check uid as well. if (s && s->CheckId(uid)) { mid = s->uid; AddMutex(s); } else { AddDeadMutex(id); } if (s) s->mtx.Unlock(); return mid; } void ScopedReportBase::AddDeadMutex(u64 id) { for (uptr i = 0; i < rep_->mutexes.Size(); i++) { if (rep_->mutexes[i]->id == id) return; } void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex)); ReportMutex *rm = new(mem) ReportMutex; rep_->mutexes.PushBack(rm); rm->id = id; rm->addr = 0; rm->destroyed = true; rm->stack = 0; } void ScopedReportBase::AddLocation(uptr addr, uptr size) { if (addr == 0) return; #if !SANITIZER_GO int fd = -1; int creat_tid = kInvalidTid; u32 creat_stack = 0; if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) { ReportLocation *loc = ReportLocation::New(ReportLocationFD); loc->fd = fd; loc->tid = creat_tid; loc->stack = SymbolizeStackId(creat_stack); rep_->locs.PushBack(loc); ThreadContext *tctx = FindThreadByUidLocked(creat_tid); if (tctx) AddThread(tctx); return; } MBlock *b = 0; Allocator *a = allocator(); if (a->PointerIsMine((void*)addr)) { void *block_begin = a->GetBlockBegin((void*)addr); if (block_begin) b = ctx->metamap.GetBlock((uptr)block_begin); } if (b != 0) { ThreadContext *tctx = FindThreadByTidLocked(b->tid); ReportLocation *loc = ReportLocation::New(ReportLocationHeap); loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr); loc->heap_chunk_size = b->siz; loc->external_tag = b->tag; loc->tid = tctx ? tctx->tid : b->tid; loc->stack = SymbolizeStackId(b->stk); rep_->locs.PushBack(loc); if (tctx) AddThread(tctx); return; } bool is_stack = false; if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) { ReportLocation *loc = ReportLocation::New(is_stack ? ReportLocationStack : ReportLocationTLS); loc->tid = tctx->tid; rep_->locs.PushBack(loc); AddThread(tctx); } #endif if (ReportLocation *loc = SymbolizeData(addr)) { loc->suppressable = true; rep_->locs.PushBack(loc); return; } } #if !SANITIZER_GO void ScopedReportBase::AddSleep(u32 stack_id) { rep_->sleep = SymbolizeStackId(stack_id); } #endif void ScopedReportBase::SetCount(int count) { rep_->count = count; } const ReportDesc *ScopedReportBase::GetReport() const { return rep_; } ScopedReport::ScopedReport(ReportType typ, uptr tag) : ScopedReportBase(typ, tag) {} ScopedReport::~ScopedReport() {} void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk, MutexSet *mset, uptr *tag) { // This function restores stack trace and mutex set for the thread/epoch. // It does so by getting stack trace and mutex set at the beginning of // trace part, and then replaying the trace till the given epoch. Trace* trace = ThreadTrace(tid); ReadLock l(&trace->mtx); const int partidx = (epoch / kTracePartSize) % TraceParts(); TraceHeader* hdr = &trace->headers[partidx]; if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize) return; CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0); const u64 epoch0 = RoundDown(epoch, TraceSize()); const u64 eend = epoch % TraceSize(); const u64 ebegin = RoundDown(eend, kTracePartSize); DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n", tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx); Vector stack; stack.Resize(hdr->stack0.size + 64); for (uptr i = 0; i < hdr->stack0.size; i++) { stack[i] = hdr->stack0.trace[i]; DPrintf2(" #%02zu: pc=%zx\n", i, stack[i]); } if (mset) *mset = hdr->mset0; uptr pos = hdr->stack0.size; Event *events = (Event*)GetThreadTrace(tid); for (uptr i = ebegin; i <= eend; i++) { Event ev = events[i]; EventType typ = (EventType)(ev >> kEventPCBits); uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1)); DPrintf2(" %zu typ=%d pc=%zx\n", i, typ, pc); if (typ == EventTypeMop) { stack[pos] = pc; } else if (typ == EventTypeFuncEnter) { if (stack.Size() < pos + 2) stack.Resize(pos + 2); stack[pos++] = pc; } else if (typ == EventTypeFuncExit) { if (pos > 0) pos--; } if (mset) { if (typ == EventTypeLock) { mset->Add(pc, true, epoch0 + i); } else if (typ == EventTypeUnlock) { mset->Del(pc, true); } else if (typ == EventTypeRLock) { mset->Add(pc, false, epoch0 + i); } else if (typ == EventTypeRUnlock) { mset->Del(pc, false); } } for (uptr j = 0; j <= pos; j++) DPrintf2(" #%zu: %zx\n", j, stack[j]); } if (pos == 0 && stack[0] == 0) return; pos++; stk->Init(&stack[0], pos); ExtractTagFromStack(stk, tag); } static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2], uptr addr_min, uptr addr_max) { bool equal_stack = false; RacyStacks hash; bool equal_address = false; RacyAddress ra0 = {addr_min, addr_max}; { ReadLock lock(&ctx->racy_mtx); if (flags()->suppress_equal_stacks) { hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr)); hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr)); for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) { if (hash == ctx->racy_stacks[i]) { VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n"); equal_stack = true; break; } } } if (flags()->suppress_equal_addresses) { for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) { RacyAddress ra2 = ctx->racy_addresses[i]; uptr maxbeg = max(ra0.addr_min, ra2.addr_min); uptr minend = min(ra0.addr_max, ra2.addr_max); if (maxbeg < minend) { VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n"); equal_address = true; break; } } } } if (!equal_stack && !equal_address) return false; if (!equal_stack) { Lock lock(&ctx->racy_mtx); ctx->racy_stacks.PushBack(hash); } if (!equal_address) { Lock lock(&ctx->racy_mtx); ctx->racy_addresses.PushBack(ra0); } return true; } static void AddRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2], uptr addr_min, uptr addr_max) { Lock lock(&ctx->racy_mtx); if (flags()->suppress_equal_stacks) { RacyStacks hash; hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr)); hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr)); ctx->racy_stacks.PushBack(hash); } if (flags()->suppress_equal_addresses) { RacyAddress ra0 = {addr_min, addr_max}; ctx->racy_addresses.PushBack(ra0); } } bool OutputReport(ThreadState *thr, const ScopedReport &srep) { if (!flags()->report_bugs || thr->suppress_reports) return false; atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime()); const ReportDesc *rep = srep.GetReport(); CHECK_EQ(thr->current_report, nullptr); thr->current_report = rep; Suppression *supp = 0; uptr pc_or_addr = 0; for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp); for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp); for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp); for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp); if (pc_or_addr != 0) { Lock lock(&ctx->fired_suppressions_mtx); FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp}; ctx->fired_suppressions.push_back(s); } { bool old_is_freeing = thr->is_freeing; thr->is_freeing = false; bool suppressed = OnReport(rep, pc_or_addr != 0); thr->is_freeing = old_is_freeing; if (suppressed) { thr->current_report = nullptr; return false; } } PrintReport(rep); __tsan_on_report(rep); ctx->nreported++; if (flags()->halt_on_error) Die(); thr->current_report = nullptr; return true; } bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) { ReadLock lock(&ctx->fired_suppressions_mtx); for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { if (ctx->fired_suppressions[k].type != type) continue; for (uptr j = 0; j < trace.size; j++) { FiredSuppression *s = &ctx->fired_suppressions[k]; if (trace.trace[j] == s->pc_or_addr) { if (s->supp) atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed); return true; } } } return false; } static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) { ReadLock lock(&ctx->fired_suppressions_mtx); for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { if (ctx->fired_suppressions[k].type != type) continue; FiredSuppression *s = &ctx->fired_suppressions[k]; if (addr == s->pc_or_addr) { if (s->supp) atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed); return true; } } return false; } static bool RaceBetweenAtomicAndFree(ThreadState *thr) { Shadow s0(thr->racy_state[0]); Shadow s1(thr->racy_state[1]); CHECK(!(s0.IsAtomic() && s1.IsAtomic())); if (!s0.IsAtomic() && !s1.IsAtomic()) return true; if (s0.IsAtomic() && s1.IsFreed()) return true; if (s1.IsAtomic() && thr->is_freeing) return true; return false; } void ReportRace(ThreadState *thr) { CheckNoLocks(thr); // Symbolizer makes lots of intercepted calls. If we try to process them, // at best it will cause deadlocks on internal mutexes. ScopedIgnoreInterceptors ignore; if (!flags()->report_bugs) return; if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr)) return; bool freed = false; { Shadow s(thr->racy_state[1]); freed = s.GetFreedAndReset(); thr->racy_state[1] = s.raw(); } uptr addr = ShadowToMem((uptr)thr->racy_shadow_addr); uptr addr_min = 0; uptr addr_max = 0; { uptr a0 = addr + Shadow(thr->racy_state[0]).addr0(); uptr a1 = addr + Shadow(thr->racy_state[1]).addr0(); uptr e0 = a0 + Shadow(thr->racy_state[0]).size(); uptr e1 = a1 + Shadow(thr->racy_state[1]).size(); addr_min = min(a0, a1); addr_max = max(e0, e1); if (IsExpectedReport(addr_min, addr_max - addr_min)) return; } ReportType typ = ReportTypeRace; if (thr->is_vptr_access && freed) typ = ReportTypeVptrUseAfterFree; else if (thr->is_vptr_access) typ = ReportTypeVptrRace; else if (freed) typ = ReportTypeUseAfterFree; if (IsFiredSuppression(ctx, typ, addr)) return; const uptr kMop = 2; VarSizeStackTrace traces[kMop]; uptr tags[kMop] = {kExternalTagNone}; uptr toppc = TraceTopPC(thr); if (toppc >> kEventPCBits) { // This is a work-around for a known issue. // The scenario where this happens is rather elaborate and requires // an instrumented __sanitizer_report_error_summary callback and // a __tsan_symbolize_external callback and a race during a range memory // access larger than 8 bytes. MemoryAccessRange adds the current PC to // the trace and starts processing memory accesses. A first memory access // triggers a race, we report it and call the instrumented // __sanitizer_report_error_summary, which adds more stuff to the trace // since it is intrumented. Then a second memory access in MemoryAccessRange // also triggers a race and we get here and call TraceTopPC to get the // current PC, however now it contains some unrelated events from the // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit // event. Later we subtract -1 from it (in GetPreviousInstructionPc) // and the resulting PC has kExternalPCBit set, so we pass it to // __tsan_symbolize_external_ex. __tsan_symbolize_external_ex is within its // rights to crash since the PC is completely bogus. // test/tsan/double_race.cc contains a test case for this. toppc = 0; } ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]); if (IsFiredSuppression(ctx, typ, traces[0])) return; // MutexSet is too large to live on stack. Vector mset_buffer; mset_buffer.Resize(sizeof(MutexSet) / sizeof(u64) + 1); MutexSet *mset2 = new(&mset_buffer[0]) MutexSet(); Shadow s2(thr->racy_state[1]); RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]); if (IsFiredSuppression(ctx, typ, traces[1])) return; if (HandleRacyStacks(thr, traces, addr_min, addr_max)) return; // If any of the accesses has a tag, treat this as an "external" race. uptr tag = kExternalTagNone; for (uptr i = 0; i < kMop; i++) { if (tags[i] != kExternalTagNone) { typ = ReportTypeExternalRace; tag = tags[i]; break; } } ThreadRegistryLock l0(ctx->thread_registry); ScopedReport rep(typ, tag); for (uptr i = 0; i < kMop; i++) { Shadow s(thr->racy_state[i]); rep.AddMemoryAccess(addr, tags[i], s, traces[i], i == 0 ? &thr->mset : mset2); } for (uptr i = 0; i < kMop; i++) { FastState s(thr->racy_state[i]); ThreadContext *tctx = static_cast( ctx->thread_registry->GetThreadLocked(s.tid())); if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1) continue; rep.AddThread(tctx); } rep.AddLocation(addr_min, addr_max - addr_min); #if !SANITIZER_GO { // NOLINT Shadow s(thr->racy_state[1]); if (s.epoch() <= thr->last_sleep_clock.get(s.tid())) rep.AddSleep(thr->last_sleep_stack_id); } #endif if (!OutputReport(thr, rep)) return; AddRacyStacks(thr, traces, addr_min, addr_max); } void PrintCurrentStack(ThreadState *thr, uptr pc) { VarSizeStackTrace trace; ObtainCurrentStack(thr, pc, &trace); PrintStack(SymbolizeStack(trace)); } // Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes // __sanitizer_print_stack_trace exists in the actual unwinded stack, but // tail-call to PrintCurrentStackSlow breaks this assumption because // __sanitizer_print_stack_trace disappears after tail-call. // However, this solution is not reliable enough, please see dvyukov's comment // http://reviews.llvm.org/D19148#406208 // Also see PR27280 comment 2 and 3 for breaking examples and analysis. ALWAYS_INLINE void PrintCurrentStackSlow(uptr pc) { #if !SANITIZER_GO BufferedStackTrace *ptrace = new(internal_alloc(MBlockStackTrace, sizeof(BufferedStackTrace))) BufferedStackTrace(); ptrace->Unwind(kStackTraceMax, pc, 0, 0, 0, 0, false); for (uptr i = 0; i < ptrace->size / 2; i++) { uptr tmp = ptrace->trace_buffer[i]; ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1]; ptrace->trace_buffer[ptrace->size - i - 1] = tmp; } PrintStack(SymbolizeStack(*ptrace)); #endif } } // namespace __tsan using namespace __tsan; extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_print_stack_trace() { PrintCurrentStackSlow(StackTrace::GetCurrentPc()); } } // extern "C"