//===-- SILowerI1Copies.cpp - Lower I1 Copies -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass lowers all occurrences of i1 values (with a vreg_1 register class) // to lane masks (32 / 64-bit scalar registers). The pass assumes machine SSA // form and a wave-level control flow graph. // // Before this pass, values that are semantically i1 and are defined and used // within the same basic block are already represented as lane masks in scalar // registers. However, values that cross basic blocks are always transferred // between basic blocks in vreg_1 virtual registers and are lowered by this // pass. // // The only instructions that use or define vreg_1 virtual registers are COPY, // PHI, and IMPLICIT_DEF. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/MachineSSAUpdater.h" #include "llvm/InitializePasses.h" #define DEBUG_TYPE "si-i1-copies" using namespace llvm; static unsigned createLaneMaskReg(MachineFunction &MF); static unsigned insertUndefLaneMask(MachineBasicBlock &MBB); namespace { class SILowerI1Copies : public MachineFunctionPass { public: static char ID; private: bool IsWave32 = false; MachineFunction *MF = nullptr; MachineDominatorTree *DT = nullptr; MachinePostDominatorTree *PDT = nullptr; MachineRegisterInfo *MRI = nullptr; const GCNSubtarget *ST = nullptr; const SIInstrInfo *TII = nullptr; unsigned ExecReg; unsigned MovOp; unsigned AndOp; unsigned OrOp; unsigned XorOp; unsigned AndN2Op; unsigned OrN2Op; DenseSet ConstrainRegs; public: SILowerI1Copies() : MachineFunctionPass(ID) { initializeSILowerI1CopiesPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Lower i1 Copies"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } private: void lowerCopiesFromI1(); void lowerPhis(); void lowerCopiesToI1(); bool isConstantLaneMask(Register Reg, bool &Val) const; void buildMergeLaneMasks(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, unsigned PrevReg, unsigned CurReg); MachineBasicBlock::iterator getSaluInsertionAtEnd(MachineBasicBlock &MBB) const; bool isVreg1(Register Reg) const { return Reg.isVirtual() && MRI->getRegClass(Reg) == &AMDGPU::VReg_1RegClass; } bool isLaneMaskReg(unsigned Reg) const { return TII->getRegisterInfo().isSGPRReg(*MRI, Reg) && TII->getRegisterInfo().getRegSizeInBits(Reg, *MRI) == ST->getWavefrontSize(); } }; /// Helper class that determines the relationship between incoming values of a /// phi in the control flow graph to determine where an incoming value can /// simply be taken as a scalar lane mask as-is, and where it needs to be /// merged with another, previously defined lane mask. /// /// The approach is as follows: /// - Determine all basic blocks which, starting from the incoming blocks, /// a wave may reach before entering the def block (the block containing the /// phi). /// - If an incoming block has no predecessors in this set, we can take the /// incoming value as a scalar lane mask as-is. /// -- A special case of this is when the def block has a self-loop. /// - Otherwise, the incoming value needs to be merged with a previously /// defined lane mask. /// - If there is a path into the set of reachable blocks that does _not_ go /// through an incoming block where we can take the scalar lane mask as-is, /// we need to invent an available value for the SSAUpdater. Choices are /// 0 and undef, with differing consequences for how to merge values etc. /// /// TODO: We could use region analysis to quickly skip over SESE regions during /// the traversal. /// class PhiIncomingAnalysis { MachinePostDominatorTree &PDT; // For each reachable basic block, whether it is a source in the induced // subgraph of the CFG. DenseMap ReachableMap; SmallVector ReachableOrdered; SmallVector Stack; SmallVector Predecessors; public: PhiIncomingAnalysis(MachinePostDominatorTree &PDT) : PDT(PDT) {} /// Returns whether \p MBB is a source in the induced subgraph of reachable /// blocks. bool isSource(MachineBasicBlock &MBB) const { return ReachableMap.find(&MBB)->second; } ArrayRef predecessors() const { return Predecessors; } void analyze(MachineBasicBlock &DefBlock, ArrayRef IncomingBlocks) { assert(Stack.empty()); ReachableMap.clear(); ReachableOrdered.clear(); Predecessors.clear(); // Insert the def block first, so that it acts as an end point for the // traversal. ReachableMap.try_emplace(&DefBlock, false); ReachableOrdered.push_back(&DefBlock); for (MachineBasicBlock *MBB : IncomingBlocks) { if (MBB == &DefBlock) { ReachableMap[&DefBlock] = true; // self-loop on DefBlock continue; } ReachableMap.try_emplace(MBB, false); ReachableOrdered.push_back(MBB); // If this block has a divergent terminator and the def block is its // post-dominator, the wave may first visit the other successors. bool Divergent = false; for (MachineInstr &MI : MBB->terminators()) { if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO || MI.getOpcode() == AMDGPU::SI_IF || MI.getOpcode() == AMDGPU::SI_ELSE || MI.getOpcode() == AMDGPU::SI_LOOP) { Divergent = true; break; } } if (Divergent && PDT.dominates(&DefBlock, MBB)) append_range(Stack, MBB->successors()); } while (!Stack.empty()) { MachineBasicBlock *MBB = Stack.pop_back_val(); if (!ReachableMap.try_emplace(MBB, false).second) continue; ReachableOrdered.push_back(MBB); append_range(Stack, MBB->successors()); } for (MachineBasicBlock *MBB : ReachableOrdered) { bool HaveReachablePred = false; for (MachineBasicBlock *Pred : MBB->predecessors()) { if (ReachableMap.count(Pred)) { HaveReachablePred = true; } else { Stack.push_back(Pred); } } if (!HaveReachablePred) ReachableMap[MBB] = true; if (HaveReachablePred) { for (MachineBasicBlock *UnreachablePred : Stack) { if (!llvm::is_contained(Predecessors, UnreachablePred)) Predecessors.push_back(UnreachablePred); } } Stack.clear(); } } }; /// Helper class that detects loops which require us to lower an i1 COPY into /// bitwise manipulation. /// /// Unfortunately, we cannot use LoopInfo because LoopInfo does not distinguish /// between loops with the same header. Consider this example: /// /// A-+-+ /// | | | /// B-+ | /// | | /// C---+ /// /// A is the header of a loop containing A, B, and C as far as LoopInfo is /// concerned. However, an i1 COPY in B that is used in C must be lowered to /// bitwise operations to combine results from different loop iterations when /// B has a divergent branch (since by default we will compile this code such /// that threads in a wave are merged at the entry of C). /// /// The following rule is implemented to determine whether bitwise operations /// are required: use the bitwise lowering for a def in block B if a backward /// edge to B is reachable without going through the nearest common /// post-dominator of B and all uses of the def. /// /// TODO: This rule is conservative because it does not check whether the /// relevant branches are actually divergent. /// /// The class is designed to cache the CFG traversal so that it can be re-used /// for multiple defs within the same basic block. /// /// TODO: We could use region analysis to quickly skip over SESE regions during /// the traversal. /// class LoopFinder { MachineDominatorTree &DT; MachinePostDominatorTree &PDT; // All visited / reachable block, tagged by level (level 0 is the def block, // level 1 are all blocks reachable including but not going through the def // block's IPDOM, etc.). DenseMap Visited; // Nearest common dominator of all visited blocks by level (level 0 is the // def block). Used for seeding the SSAUpdater. SmallVector CommonDominators; // Post-dominator of all visited blocks. MachineBasicBlock *VisitedPostDom = nullptr; // Level at which a loop was found: 0 is not possible; 1 = a backward edge is // reachable without going through the IPDOM of the def block (if the IPDOM // itself has an edge to the def block, the loop level is 2), etc. unsigned FoundLoopLevel = ~0u; MachineBasicBlock *DefBlock = nullptr; SmallVector Stack; SmallVector NextLevel; public: LoopFinder(MachineDominatorTree &DT, MachinePostDominatorTree &PDT) : DT(DT), PDT(PDT) {} void initialize(MachineBasicBlock &MBB) { Visited.clear(); CommonDominators.clear(); Stack.clear(); NextLevel.clear(); VisitedPostDom = nullptr; FoundLoopLevel = ~0u; DefBlock = &MBB; } /// Check whether a backward edge can be reached without going through the /// given \p PostDom of the def block. /// /// Return the level of \p PostDom if a loop was found, or 0 otherwise. unsigned findLoop(MachineBasicBlock *PostDom) { MachineDomTreeNode *PDNode = PDT.getNode(DefBlock); if (!VisitedPostDom) advanceLevel(); unsigned Level = 0; while (PDNode->getBlock() != PostDom) { if (PDNode->getBlock() == VisitedPostDom) advanceLevel(); PDNode = PDNode->getIDom(); Level++; if (FoundLoopLevel == Level) return Level; } return 0; } /// Add undef values dominating the loop and the optionally given additional /// blocks, so that the SSA updater doesn't have to search all the way to the /// function entry. void addLoopEntries(unsigned LoopLevel, MachineSSAUpdater &SSAUpdater, ArrayRef Blocks = {}) { assert(LoopLevel < CommonDominators.size()); MachineBasicBlock *Dom = CommonDominators[LoopLevel]; for (MachineBasicBlock *MBB : Blocks) Dom = DT.findNearestCommonDominator(Dom, MBB); if (!inLoopLevel(*Dom, LoopLevel, Blocks)) { SSAUpdater.AddAvailableValue(Dom, insertUndefLaneMask(*Dom)); } else { // The dominator is part of the loop or the given blocks, so add the // undef value to unreachable predecessors instead. for (MachineBasicBlock *Pred : Dom->predecessors()) { if (!inLoopLevel(*Pred, LoopLevel, Blocks)) SSAUpdater.AddAvailableValue(Pred, insertUndefLaneMask(*Pred)); } } } private: bool inLoopLevel(MachineBasicBlock &MBB, unsigned LoopLevel, ArrayRef Blocks) const { auto DomIt = Visited.find(&MBB); if (DomIt != Visited.end() && DomIt->second <= LoopLevel) return true; if (llvm::is_contained(Blocks, &MBB)) return true; return false; } void advanceLevel() { MachineBasicBlock *VisitedDom; if (!VisitedPostDom) { VisitedPostDom = DefBlock; VisitedDom = DefBlock; Stack.push_back(DefBlock); } else { VisitedPostDom = PDT.getNode(VisitedPostDom)->getIDom()->getBlock(); VisitedDom = CommonDominators.back(); for (unsigned i = 0; i < NextLevel.size();) { if (PDT.dominates(VisitedPostDom, NextLevel[i])) { Stack.push_back(NextLevel[i]); NextLevel[i] = NextLevel.back(); NextLevel.pop_back(); } else { i++; } } } unsigned Level = CommonDominators.size(); while (!Stack.empty()) { MachineBasicBlock *MBB = Stack.pop_back_val(); if (!PDT.dominates(VisitedPostDom, MBB)) NextLevel.push_back(MBB); Visited[MBB] = Level; VisitedDom = DT.findNearestCommonDominator(VisitedDom, MBB); for (MachineBasicBlock *Succ : MBB->successors()) { if (Succ == DefBlock) { if (MBB == VisitedPostDom) FoundLoopLevel = std::min(FoundLoopLevel, Level + 1); else FoundLoopLevel = std::min(FoundLoopLevel, Level); continue; } if (Visited.try_emplace(Succ, ~0u).second) { if (MBB == VisitedPostDom) NextLevel.push_back(Succ); else Stack.push_back(Succ); } } } CommonDominators.push_back(VisitedDom); } }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) INITIALIZE_PASS_END(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false, false) char SILowerI1Copies::ID = 0; char &llvm::SILowerI1CopiesID = SILowerI1Copies::ID; FunctionPass *llvm::createSILowerI1CopiesPass() { return new SILowerI1Copies(); } static unsigned createLaneMaskReg(MachineFunction &MF) { const GCNSubtarget &ST = MF.getSubtarget(); MachineRegisterInfo &MRI = MF.getRegInfo(); return MRI.createVirtualRegister(ST.isWave32() ? &AMDGPU::SReg_32RegClass : &AMDGPU::SReg_64RegClass); } static unsigned insertUndefLaneMask(MachineBasicBlock &MBB) { MachineFunction &MF = *MBB.getParent(); const GCNSubtarget &ST = MF.getSubtarget(); const SIInstrInfo *TII = ST.getInstrInfo(); unsigned UndefReg = createLaneMaskReg(MF); BuildMI(MBB, MBB.getFirstTerminator(), {}, TII->get(AMDGPU::IMPLICIT_DEF), UndefReg); return UndefReg; } /// Lower all instructions that def or use vreg_1 registers. /// /// In a first pass, we lower COPYs from vreg_1 to vector registers, as can /// occur around inline assembly. We do this first, before vreg_1 registers /// are changed to scalar mask registers. /// /// Then we lower all defs of vreg_1 registers. Phi nodes are lowered before /// all others, because phi lowering looks through copies and can therefore /// often make copy lowering unnecessary. bool SILowerI1Copies::runOnMachineFunction(MachineFunction &TheMF) { // Only need to run this in SelectionDAG path. if (TheMF.getProperties().hasProperty( MachineFunctionProperties::Property::Selected)) return false; MF = &TheMF; MRI = &MF->getRegInfo(); DT = &getAnalysis(); PDT = &getAnalysis(); ST = &MF->getSubtarget(); TII = ST->getInstrInfo(); IsWave32 = ST->isWave32(); if (IsWave32) { ExecReg = AMDGPU::EXEC_LO; MovOp = AMDGPU::S_MOV_B32; AndOp = AMDGPU::S_AND_B32; OrOp = AMDGPU::S_OR_B32; XorOp = AMDGPU::S_XOR_B32; AndN2Op = AMDGPU::S_ANDN2_B32; OrN2Op = AMDGPU::S_ORN2_B32; } else { ExecReg = AMDGPU::EXEC; MovOp = AMDGPU::S_MOV_B64; AndOp = AMDGPU::S_AND_B64; OrOp = AMDGPU::S_OR_B64; XorOp = AMDGPU::S_XOR_B64; AndN2Op = AMDGPU::S_ANDN2_B64; OrN2Op = AMDGPU::S_ORN2_B64; } lowerCopiesFromI1(); lowerPhis(); lowerCopiesToI1(); for (unsigned Reg : ConstrainRegs) MRI->constrainRegClass(Reg, &AMDGPU::SReg_1_XEXECRegClass); ConstrainRegs.clear(); return true; } #ifndef NDEBUG static bool isVRegCompatibleReg(const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI, Register Reg) { unsigned Size = TRI.getRegSizeInBits(Reg, MRI); return Size == 1 || Size == 32; } #endif void SILowerI1Copies::lowerCopiesFromI1() { SmallVector DeadCopies; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { if (MI.getOpcode() != AMDGPU::COPY) continue; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); if (!isVreg1(SrcReg)) continue; if (isLaneMaskReg(DstReg) || isVreg1(DstReg)) continue; // Copy into a 32-bit vector register. LLVM_DEBUG(dbgs() << "Lower copy from i1: " << MI); DebugLoc DL = MI.getDebugLoc(); assert(isVRegCompatibleReg(TII->getRegisterInfo(), *MRI, DstReg)); assert(!MI.getOperand(0).getSubReg()); ConstrainRegs.insert(SrcReg); BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addImm(0) .addImm(0) .addImm(-1) .addReg(SrcReg); DeadCopies.push_back(&MI); } for (MachineInstr *MI : DeadCopies) MI->eraseFromParent(); DeadCopies.clear(); } } void SILowerI1Copies::lowerPhis() { MachineSSAUpdater SSAUpdater(*MF); LoopFinder LF(*DT, *PDT); PhiIncomingAnalysis PIA(*PDT); SmallVector Vreg1Phis; SmallVector IncomingBlocks; SmallVector IncomingRegs; SmallVector IncomingUpdated; #ifndef NDEBUG DenseSet PhiRegisters; #endif for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB.phis()) { if (isVreg1(MI.getOperand(0).getReg())) Vreg1Phis.push_back(&MI); } } MachineBasicBlock *PrevMBB = nullptr; for (MachineInstr *MI : Vreg1Phis) { MachineBasicBlock &MBB = *MI->getParent(); if (&MBB != PrevMBB) { LF.initialize(MBB); PrevMBB = &MBB; } LLVM_DEBUG(dbgs() << "Lower PHI: " << *MI); Register DstReg = MI->getOperand(0).getReg(); MRI->setRegClass(DstReg, IsWave32 ? &AMDGPU::SReg_32RegClass : &AMDGPU::SReg_64RegClass); // Collect incoming values. for (unsigned i = 1; i < MI->getNumOperands(); i += 2) { assert(i + 1 < MI->getNumOperands()); Register IncomingReg = MI->getOperand(i).getReg(); MachineBasicBlock *IncomingMBB = MI->getOperand(i + 1).getMBB(); MachineInstr *IncomingDef = MRI->getUniqueVRegDef(IncomingReg); if (IncomingDef->getOpcode() == AMDGPU::COPY) { IncomingReg = IncomingDef->getOperand(1).getReg(); assert(isLaneMaskReg(IncomingReg) || isVreg1(IncomingReg)); assert(!IncomingDef->getOperand(1).getSubReg()); } else if (IncomingDef->getOpcode() == AMDGPU::IMPLICIT_DEF) { continue; } else { assert(IncomingDef->isPHI() || PhiRegisters.count(IncomingReg)); } IncomingBlocks.push_back(IncomingMBB); IncomingRegs.push_back(IncomingReg); } #ifndef NDEBUG PhiRegisters.insert(DstReg); #endif // Phis in a loop that are observed outside the loop receive a simple but // conservatively correct treatment. std::vector DomBlocks = {&MBB}; for (MachineInstr &Use : MRI->use_instructions(DstReg)) DomBlocks.push_back(Use.getParent()); MachineBasicBlock *PostDomBound = PDT->findNearestCommonDominator(DomBlocks); unsigned FoundLoopLevel = LF.findLoop(PostDomBound); SSAUpdater.Initialize(DstReg); if (FoundLoopLevel) { LF.addLoopEntries(FoundLoopLevel, SSAUpdater, IncomingBlocks); for (unsigned i = 0; i < IncomingRegs.size(); ++i) { IncomingUpdated.push_back(createLaneMaskReg(*MF)); SSAUpdater.AddAvailableValue(IncomingBlocks[i], IncomingUpdated.back()); } for (unsigned i = 0; i < IncomingRegs.size(); ++i) { MachineBasicBlock &IMBB = *IncomingBlocks[i]; buildMergeLaneMasks( IMBB, getSaluInsertionAtEnd(IMBB), {}, IncomingUpdated[i], SSAUpdater.GetValueInMiddleOfBlock(&IMBB), IncomingRegs[i]); } } else { // The phi is not observed from outside a loop. Use a more accurate // lowering. PIA.analyze(MBB, IncomingBlocks); for (MachineBasicBlock *MBB : PIA.predecessors()) SSAUpdater.AddAvailableValue(MBB, insertUndefLaneMask(*MBB)); for (unsigned i = 0; i < IncomingRegs.size(); ++i) { MachineBasicBlock &IMBB = *IncomingBlocks[i]; if (PIA.isSource(IMBB)) { IncomingUpdated.push_back(0); SSAUpdater.AddAvailableValue(&IMBB, IncomingRegs[i]); } else { IncomingUpdated.push_back(createLaneMaskReg(*MF)); SSAUpdater.AddAvailableValue(&IMBB, IncomingUpdated.back()); } } for (unsigned i = 0; i < IncomingRegs.size(); ++i) { if (!IncomingUpdated[i]) continue; MachineBasicBlock &IMBB = *IncomingBlocks[i]; buildMergeLaneMasks( IMBB, getSaluInsertionAtEnd(IMBB), {}, IncomingUpdated[i], SSAUpdater.GetValueInMiddleOfBlock(&IMBB), IncomingRegs[i]); } } Register NewReg = SSAUpdater.GetValueInMiddleOfBlock(&MBB); if (NewReg != DstReg) { MRI->replaceRegWith(NewReg, DstReg); MI->eraseFromParent(); } IncomingBlocks.clear(); IncomingRegs.clear(); IncomingUpdated.clear(); } } void SILowerI1Copies::lowerCopiesToI1() { MachineSSAUpdater SSAUpdater(*MF); LoopFinder LF(*DT, *PDT); SmallVector DeadCopies; for (MachineBasicBlock &MBB : *MF) { LF.initialize(MBB); for (MachineInstr &MI : MBB) { if (MI.getOpcode() != AMDGPU::IMPLICIT_DEF && MI.getOpcode() != AMDGPU::COPY) continue; Register DstReg = MI.getOperand(0).getReg(); if (!isVreg1(DstReg)) continue; if (MRI->use_empty(DstReg)) { DeadCopies.push_back(&MI); continue; } LLVM_DEBUG(dbgs() << "Lower Other: " << MI); MRI->setRegClass(DstReg, IsWave32 ? &AMDGPU::SReg_32RegClass : &AMDGPU::SReg_64RegClass); if (MI.getOpcode() == AMDGPU::IMPLICIT_DEF) continue; DebugLoc DL = MI.getDebugLoc(); Register SrcReg = MI.getOperand(1).getReg(); assert(!MI.getOperand(1).getSubReg()); if (!SrcReg.isVirtual() || (!isLaneMaskReg(SrcReg) && !isVreg1(SrcReg))) { assert(TII->getRegisterInfo().getRegSizeInBits(SrcReg, *MRI) == 32); unsigned TmpReg = createLaneMaskReg(*MF); BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CMP_NE_U32_e64), TmpReg) .addReg(SrcReg) .addImm(0); MI.getOperand(1).setReg(TmpReg); SrcReg = TmpReg; } // Defs in a loop that are observed outside the loop must be transformed // into appropriate bit manipulation. std::vector DomBlocks = {&MBB}; for (MachineInstr &Use : MRI->use_instructions(DstReg)) DomBlocks.push_back(Use.getParent()); MachineBasicBlock *PostDomBound = PDT->findNearestCommonDominator(DomBlocks); unsigned FoundLoopLevel = LF.findLoop(PostDomBound); if (FoundLoopLevel) { SSAUpdater.Initialize(DstReg); SSAUpdater.AddAvailableValue(&MBB, DstReg); LF.addLoopEntries(FoundLoopLevel, SSAUpdater); buildMergeLaneMasks(MBB, MI, DL, DstReg, SSAUpdater.GetValueInMiddleOfBlock(&MBB), SrcReg); DeadCopies.push_back(&MI); } } for (MachineInstr *MI : DeadCopies) MI->eraseFromParent(); DeadCopies.clear(); } } bool SILowerI1Copies::isConstantLaneMask(Register Reg, bool &Val) const { const MachineInstr *MI; for (;;) { MI = MRI->getUniqueVRegDef(Reg); if (MI->getOpcode() != AMDGPU::COPY) break; Reg = MI->getOperand(1).getReg(); if (!Reg.isVirtual()) return false; if (!isLaneMaskReg(Reg)) return false; } if (MI->getOpcode() != MovOp) return false; if (!MI->getOperand(1).isImm()) return false; int64_t Imm = MI->getOperand(1).getImm(); if (Imm == 0) { Val = false; return true; } if (Imm == -1) { Val = true; return true; } return false; } static void instrDefsUsesSCC(const MachineInstr &MI, bool &Def, bool &Use) { Def = false; Use = false; for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.getReg() == AMDGPU::SCC) { if (MO.isUse()) Use = true; else Def = true; } } } /// Return a point at the end of the given \p MBB to insert SALU instructions /// for lane mask calculation. Take terminators and SCC into account. MachineBasicBlock::iterator SILowerI1Copies::getSaluInsertionAtEnd(MachineBasicBlock &MBB) const { auto InsertionPt = MBB.getFirstTerminator(); bool TerminatorsUseSCC = false; for (auto I = InsertionPt, E = MBB.end(); I != E; ++I) { bool DefsSCC; instrDefsUsesSCC(*I, DefsSCC, TerminatorsUseSCC); if (TerminatorsUseSCC || DefsSCC) break; } if (!TerminatorsUseSCC) return InsertionPt; while (InsertionPt != MBB.begin()) { InsertionPt--; bool DefSCC, UseSCC; instrDefsUsesSCC(*InsertionPt, DefSCC, UseSCC); if (DefSCC) return InsertionPt; } // We should have at least seen an IMPLICIT_DEF or COPY llvm_unreachable("SCC used by terminator but no def in block"); } void SILowerI1Copies::buildMergeLaneMasks(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, unsigned PrevReg, unsigned CurReg) { bool PrevVal; bool PrevConstant = isConstantLaneMask(PrevReg, PrevVal); bool CurVal; bool CurConstant = isConstantLaneMask(CurReg, CurVal); if (PrevConstant && CurConstant) { if (PrevVal == CurVal) { BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(CurReg); } else if (CurVal) { BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(ExecReg); } else { BuildMI(MBB, I, DL, TII->get(XorOp), DstReg) .addReg(ExecReg) .addImm(-1); } return; } unsigned PrevMaskedReg = 0; unsigned CurMaskedReg = 0; if (!PrevConstant) { if (CurConstant && CurVal) { PrevMaskedReg = PrevReg; } else { PrevMaskedReg = createLaneMaskReg(*MF); BuildMI(MBB, I, DL, TII->get(AndN2Op), PrevMaskedReg) .addReg(PrevReg) .addReg(ExecReg); } } if (!CurConstant) { // TODO: check whether CurReg is already masked by EXEC if (PrevConstant && PrevVal) { CurMaskedReg = CurReg; } else { CurMaskedReg = createLaneMaskReg(*MF); BuildMI(MBB, I, DL, TII->get(AndOp), CurMaskedReg) .addReg(CurReg) .addReg(ExecReg); } } if (PrevConstant && !PrevVal) { BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg) .addReg(CurMaskedReg); } else if (CurConstant && !CurVal) { BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg) .addReg(PrevMaskedReg); } else if (PrevConstant && PrevVal) { BuildMI(MBB, I, DL, TII->get(OrN2Op), DstReg) .addReg(CurMaskedReg) .addReg(ExecReg); } else { BuildMI(MBB, I, DL, TII->get(OrOp), DstReg) .addReg(PrevMaskedReg) .addReg(CurMaskedReg ? CurMaskedReg : ExecReg); } }